File "equation-of-a-line.html"

Path: /StudyIB/mathsanalysis/page/651/equation-of-a-linehtml
File size: 67.1 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html><html lang="EN"><head>  <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-PZBWZ8J');</script> <title>Equation of a Line</title><!-- Removed by WebCopy --><!--<base href="/">--><!-- Removed by WebCopy --><meta http-equiv="x-ua-compatible" content="IE=Edge"><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1"><link href="../../../css/bootstrap.flatly.min.css" rel="stylesheet" media="screen"><link rel="stylesheet" href="../../../fonts/awesome/css/font-awesome.min.css"><link href="../../../js/jquery-fancybox/jquery.fancybox.min.css" type="text/css" rel="stylesheet"><link rel="stylesheet" href="../../../css/style.min.css?v=202301301645"><meta name="robots" content="index, follow"><meta name="googlebot" content="noarchive"><meta prefix="og: http://ogp.me/ns#" property="og:title" name="og:title" content="StudyIB Maths: Analysis & Approaches: Equation of a Line"> <meta prefix="og: http://ogp.me/ns#" property="og:image" content="https://studyib.net/img/studyib-card-default.jpg"> <meta prefix="og: http://ogp.me/ns#" property="og:description" name="og:description" content="You should already be familiar with the equation of a straight line in Cartesian form in 2 dimensions, y = ax + b. When we move into 3 dimensions, the Cartesian form becomes a little more awkward. Don't worry, vectors are here to help us out! Once you unde"> <meta prefix="og: http://ogp.me/ns#" property="og:url" name="og:url" content="https://studyib.net/mathsanalysis/page/651/equation-of-a-line"> <meta prefix="og: http://ogp.me/ns#" property="og:site_name" name="og:site_name" content="StudyIB - Your IB learning companion"> <meta prefix="og: http://ogp.me/ns#" property="og:locale" name="og:locale" content="en"> <meta prefix="og: http://ogp.me/ns#" property="og:type" name="og:type" content="website"> <meta name="description" content="You should already be familiar with the equation of a straight line in Cartesian form in 2 dimensions, y = ax + b. When we move into 3 dimensions, the Cartesian form becomes a little more awkward. Don't worry, vectors are here to help us out! Once you unde"> <meta name="image" content="https://studyib.net/img/studyib-card-default.jpg"> <meta name="keywords" content="Vectors, Equation of line, Lambda, Lines, Cartesian, Parametric, Vector, IB, IBDP, InThinking, International Baccalaureate, Revision, Revision websites, Student Sites, Students, Learning, Guidance, Exam, Questions, Practice problems"> <meta itemprop="name" content="StudyIB Maths: Analysis & Approaches: Equation of a Line"> <meta itemprop="description" content="You should already be familiar with the equation of a straight line in Cartesian form in 2 dimensions, y = ax + b. When we move into 3 dimensions, the Cartesian form becomes a little more awkward. Don't worry, vectors are here to help us out! Once you unde"> <meta itemprop="image" content="https://studyib.net/img/studyib-card-default.jpg"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:title" content="StudyIB Maths: Analysis & Approaches: Equation of a Line"> <meta name="twitter:description" content="You should already be familiar with the equation of a straight line in Cartesian form in 2 dimensions, y = ax + b. When we move into 3 dimensions, the Cartesian form becomes a little more awkward. Don't worry, vectors are here to help us out! Once you unde"> <meta name="twitter:image" content="https://studyib.net/img/studyib-card-default.jpg"> <meta name="twitter:creator" content="@inthinker"><link rel="stylesheet" href="../../../css/snippets.min.css?v=202209111300"><link rel="stylesheet" href="../../../css/article.min.css?v=202211221000"><link rel="stylesheet" type="text/css" href="../../../js/slick-carousel/slick.min.css"><link rel="stylesheet" type="text/css" href="../../../js/slick-carousel/slick-theme.min.css"><style type="text/css">.filter-sl-only { display: none; }</style><script src="../../../ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script src="../../../js/ifvisible.min.js"></script><script>ifvisible.setIdleDuration(300);</script><link rel="apple-touch-icon-precomposed" sizes="57x57" href="../../../img/favicon/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon-precomposed" sizes="114x114" href="../../../img/favicon/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon-precomposed" sizes="72x72" href="../../../img/favicon/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon-precomposed" sizes="144x144" href="../../../img/favicon/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon-precomposed" sizes="60x60" href="../../../img/favicon/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon-precomposed" sizes="120x120" href="../../../img/favicon/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon-precomposed" sizes="76x76" href="../../../img/favicon/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon-precomposed" sizes="152x152" href="../../../img/favicon/apple-touch-icon-152x152.png"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-196x196.png" sizes="196x196"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-16x16.png" sizes="16x16"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-128.png" sizes="128x128"> <meta name="application-name" content="StudyIB: Your IB Learning Companion"> <meta name="msapplication-TileColor" content="#A5BED5"> <meta name="msapplication-TileImage" content="/img/favicon/mstile-144x144.png"> <meta name="msapplication-square70x70logo" content="/img/favicon/mstile-70x70.png"> <meta name="msapplication-square150x150logo" content="/img/favicon/mstile-150x150.png"> <meta name="msapplication-wide310x150logo" content="/img/favicon/mstile-310x150.png"> <meta name="msapplication-square310x310logo" content="/img/favicon/mstile-310x310.png"><script>var stdHash = "6da675cbcb3d25f050b05557349abc79", stdTicket = "082b9c9c4ae3624d";</script><script src="../../../js/user/local-stats.min.js?v=202205311700"></script><link href="../../../css/subjects-frontpage.min.css?v=202302031000" rel="stylesheet"></head><body class="public mathsanalysis">  <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-PZBWZ8J" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div id="top-header"> <div class="wmap general hidden-sm hidden-xs subjects"> <div class="layout-wrapper"> <div class="container-fluid"> <a href=""> <img class="header-thinker" src="../../../img/header-thinker.svg"> </a> <h1> <a href="../../../mathsanalysis.html"> <span style="font-family: 'Helvetica Narrow','Arial Narrow',Tahoma,Arial,Helvetica,sans-serif;font-stretch: condensed;letter-spacing: -1px">IBDP Maths: Analysis & Approaches</span> </a> <a href="https://inthinking.net" title="inthinking.net" class="inthinking-logo pull-right"> <img src="../../../img/header-logo.svg" style="height: 80px; width: auto;"> </a> </h1> <p class="slogan">InThinking Revision Sites for students</p> <p class="author">Website by <strong>Richard Wade</strong></p> <p class="updated">Updated 3 February 2023</p> </div> </div> </div> <nav id="public-topnav" class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header">  <a class="navbar-brand hidden-md hidden-lg" href="../../../index.htm"> <img class="header-xs-thinker" src="../../../img/header-thinker.svg"> </a>  <button type="button" class="collapsed navbar-toggle" data-toggle="collapse" data-target="#subject-navbar-collapse" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <i class="fa fa-fw fa-2x fa-user"></i> </button>  <div class="brand hidden-lg hidden-md hidden-sm"> <a class="brand-xs" href="../../../mathsanalysis.html"> <strong class="title" style="white-space: nowrap;font-size: 18px;">Maths: A&A</strong> </a> </div> </div>  <div class="collapse navbar-collapse" id="subject-navbar-collapse"> <ul class="nav navbar-bar navbar-userbox hidden-md hidden-lg"><li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="fa fa-fw fa-lg fa-user-circle" style="margin-right: 5px;"></i><span style="font-size: 16px;"></span></a><ul class="dropdown-menu"><li class="dropdown-submenu"><a class="dropdown-toggle" href="#" data-toggle="dropdown"><i class="fa fa-fw fa-globe"></i> Subjects</a><ul class="dropdown-menu"><li></li><li class=""><a href="../../../biology.html">DP Biology</a></li><li class=""><a href="../../../chemistry.html">DP Chemistry</a></li><li class=""><a href="../../../englishalanglit.html">DP English A: Language & Literature</a></li><li class="active"><a href="../../../mathsanalysis.html"><i class="fa fa-caret-right"></i> DP Maths: Analysis & Approaches</a></li><li class=""><a href="../../../mathsapplications.html">DP Maths: Applications & Interpretations SL</a></li><li class=""><a href="../../../physics.html">DP Physics</a></li><li class=""><a href="../../../spanishb.html">DP Spanish B</a></li></ul></li><li class="menu-item"><a href="../../../user.html"><i class="fa fa-fw fa-dashboard"></i> Dashboard</a></li><li class="menu-item"><a href="../../../user/profile.html"><i class="fa fa-fw fa-cog"></i> My profile</a></li><li class="menu-item"><a href="../../../user/messages.html"><i class="fa fa-fw fa-envelope"></i> Messages</a></li><li class="menu-item hidden-md hidden-lg mt-xs-3"><a href="../../../index.htm?logout=1" class="btn btn-primary btn-xs-block"><i class="fa fa-fw fa-lg fa-power-off text-danger"></i>Log out</a></li></ul></li></ul> <ul class="nav navbar-bar"><li class=""><a class="home" href="../../../mathsanalysis.html"><i class="fa fa-fw fa-home"></i>&nbsp;Home</a></li><li class=""><a class="topics" href="#"><i class="fa fa-fw fa-th-large"></i>&nbsp;Topics</a></li><li class=""><a class="favorites" href="../../../mathsanalysis.html"><i class="fa fa-fw fa-star"></i>&nbsp;My favorites</a></li><li class=""><a class="qbank" href="../../test-your-knowledge.html"><i class="fa fa-fw fa-question"></i>&nbsp;Question bank</a></li><li class=""><a class="sitemap" href="../../sitemap.html"><i class="fa fa-fw fa-sitemap"></i>&nbsp;Sitemap</a></li><li class=""><a class="activity" href="../../../mathsanalysis.html"><i class="fa fa-fw fa-calendar-check-o"></i>&nbsp;My activity</a></li></ul> <ul class="nav navbar-bar navbar-right"> <li>  <form class="navbar-form hidden-md hidden-lg" role="search" method="get" action="mathsanalysis/search"> <div class="input-group"> <input class="form-control nav-search" name="glob" type="search" placeholder="Search..."> <span class="input-group-btn"> <button type="submit" class="btn bg-blue"> <i class="fa fa-search">&nbsp;</i> </button> </span> </div> </form>  <a href="#" class="toggle-menu-search hidden-sm hidden-xs" data-toggle="dropdown"> <i class="fa fa-lg fa-search"></i> </a> </li></ul> </div> </div></nav><nav id="nav-menu-search" class="shadow-bottom hidden-sm hidden-xs" style="display: none;"> <div class="container-fluid"> <form class="" role="search" method="get" action="mathsanalysis/search"> <input class="form-control nav-search" name="glob" type="search" placeholder="Search Maths: A&A..."> <button class="btn btn-sm btn-primary" type="submit"> Search </button> </form> </div></nav><div class="modal fade" tabindex="-1" role="dialog" id="modal-mini-login"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-body"> <button aria-hidden="true" data-dismiss="modal" class="close hidden-xs login-button-close" type="button">&times;</button> <form method="post"> <div class="form-group"> <input name="user-email" class="form-control" type="text" placeholder="Email"> </div> <div class="form-group"> <input name="user-password" class="form-control" type="password" placeholder="Password"> <input name="user-fp" class="fp" value="d8c893da5db7501669ffeeac46273ba6" type="hidden"> </div> <div class="form-group"> <a href="../../../reset-password.html" class="reset-password" style="font-weight: normal;"> Forgot your password? </a> </div> <div class="form-group"> <button type="submit" name="submit-login" value="1" class="btn btn-primary btn-block text-center"> <i class="fa fa-user fa-fw"></i> Log in </button> </div> </form> </div> </div> </div></div></div><div class="modal fade" id="show-topics" tabindex="-1" role="dialog"><div id="dialog-topics" class="modal-dialog modal-dialog-topics"><div class="modal-content"><div class="modal-body modal-body-topics"><div id="new-frontpage-toplevels-topics" class="frontpage-box"><div class="row"><div class="col-md-4 col-sm-4"><div class="item"><a href="../3016/free-access-weekend.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Free Access Weekend</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/free.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../2696/start-here.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Start Here</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/start-here.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../2902/examination-questions.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Examination Questions</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/exam.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../2563/question-bank.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Question Bank</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/questionbank.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../537/algebra.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Algebra</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/images/algebra.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../539/functions.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Functions</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/images/function_s.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../540/geometry-trigonometry.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Geometry &amp; Trigonometry</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/photo-by-a-href=httpsunsplash.com@pawel_czerwinskiutm_source=unsplash-utm_medium=referral-utm_content=creditcopytextpawel-czerwinskia-on-a-href=httpsunsplash.comutm_source=unsplash-utm_medium=referral-utm_co.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../549/stats-probability.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Stats &amp; Probability</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/images/probability.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../550/calculus.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Calculus</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/images/calculus1.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../857/exam-tips.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Exam Tips</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/files/exam-tips/exam-tips.jpg'); height: 10vw;"></div></div></a></div></div></div></div></div></div></div></div><div class="container-fluid shadow-ith"><div class="row frontpage"> <div class="col-md-3" id="left-column"> <p class="visible-xs-block"></p><div class="dropdown user-menu hidden-xs" style="margin-bottom: 20px;"> <button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown" style="border-radius: 0; padding: 6px 18px;"> <i class="fa fa-fw fa-user-circle"></i>  <small><i class="fa fa-caret-down"></i></small> </button> <ul class="dropdown-menu"> <li class="dropdown-submenu"><a href="#"><i class="fa fa-fw fa-globe"></i> Subjects</a><ul id="user-subjects-menu" class="dropdown-menu"><li></li><li class=""><a href="../../../biology.html">DP Biology</a></li><li class=""><a href="../../../chemistry.html">DP Chemistry</a></li><li class=""><a href="../../../englishalanglit.html">DP English A: Language & Literature</a></li><li class="active"><a href="../../../mathsanalysis.html"><i class="fa fa-caret-right"></i> DP Maths: Analysis & Approaches</a></li><li class=""><a href="../../../mathsapplications.html">DP Maths: Applications & Interpretations SL</a></li><li class=""><a href="../../../physics.html">DP Physics</a></li><li class=""><a href="../../../spanishb.html">DP Spanish B</a></li></ul></li><li class="divider"></li><li><a href="../../../user.html"><i class="fa fa-fw fa-dashboard"></i> Dashboard</a></li><li><a href="../../../user/profile.html"><i class="fa fa-fw fa-cog"></i> My profile</a></li><li><a href="../../../user/messages.html"><i class="fa fa-fw fa-envelope"></i> Messages</a></li> <li class="divider"></li> <li> <a href="../../../index.htm?logout=1"> <i class="fa fa-fw fa-power-off"></i> Log out </a> </li> </ul></div> <div id="side-nav"><h4 class="side-nav-title dropdown"><a href="../540/geometry-trigonometry.html" class="dropdown-toggle toplevel-dropdown" data-toggle="dropdown"><i class="fa fa-ellipsis-v"></i></a>&nbsp;&nbsp;<a href="../540/geometry-trigonometry.html">Geometry & Trigonometry</a><ul class="dropdown-menu"><li><a href="../../../mathsanalysis.html" style="padding-left: 5px; border-bottom: solid 1px #ddd"><i class="fa fa-fw fa-home"></i> Home</a></li><li><a href="../3016/free-access-weekend.html"><i class="fa fa-fw fa-caret-right"></i> Free Access Weekend</a></li><li><a href="../2696/start-here.html"><i class="fa fa-fw fa-caret-right"></i> Start Here</a></li><li><a href="../2902/examination-questions.html"><i class="fa fa-fw fa-caret-right"></i> Examination Questions</a></li><li><a href="../2563/question-bank.html"><i class="fa fa-fw fa-caret-right"></i> Question Bank</a></li><li><a href="../537/algebra.html"><i class="fa fa-fw fa-caret-right"></i> Algebra</a></li><li><a href="../539/functions.html"><i class="fa fa-fw fa-caret-right"></i> Functions</a></li><li><a href="../549/stats-probability.html"><i class="fa fa-fw fa-caret-right"></i> Stats & Probability</a></li><li><a href="../550/calculus.html"><i class="fa fa-fw fa-caret-right"></i> Calculus</a></li><li><a href="../857/exam-tips.html"><i class="fa fa-fw fa-caret-right"></i> Exam Tips</a></li></ul><div class="pull-right"><a class="sidenav-expand" title="Expand all" href="#"><i class="fa fa-plus-circle"></i></a>&nbsp;<a class="sidenav-compress" title="Compress all" href="#"><i class="fa fa-minus-circle"></i></a></div></h4><ul class="side-nav level-0"><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2797/3-dimensional-solids.html">3-Dimensional Solids</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2798/radians-arcs-and-sectors.html">Radians, Arcs and Sectors</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2820/right-angled-trigonometry.html">Right-angled Trigonometry</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../686/sine-and-cosine-rule.html">Sine and Cosine Rule</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../869/unit-circle-hl.html">Unit Circle HL</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2825/trigonometric-graphs.html">Trigonometric Graphs</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2789/pythagorean-identities-hl.html">Pythagorean Identities HL</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2795/compound-angle-formulae.html">Compound Angle Formulae</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2793/double-angle-formulae-hl.html">Double Angle Formulae HL</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../685/solving-trigonometric-equations.html">Solving Trigonometric Equations</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../652/scalar-product-and-angles-.html">Scalar Product and Angles </a></label></li><li class="expanded parent selected"><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="equation-of-a-line.html">Equation of a Line</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../667/intersection-of-lines.html">Intersection of Lines</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../669/kinematics.html">Kinematics</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../668/vector-product.html">Vector Product</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../650/equations-of-planes.html">Equations of Planes</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../655/intersection-of-planes.html">Intersection of Planes</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../666/intersection-of-line-and-plane.html">Intersection of Line and Plane</a></label></li></ul></div> <div class="hidden-xs hidden-sm"> <button class="btn btn-default btn-block text-xs-center" data-toggle="modal" data-target="#modal-feedback" style="margin-bottom: 10px"><i class="fa fa-send"></i>&nbsp;&nbsp;Feedback</button> </div> </div> <div class="col-md-9" id="main-column"> <h1 class="page_title"> Equation of a Line <a href="#" class="mark-page-favorite pull-right" data-pid="651" title="Mark as favorite" onclick="return false;"><i class="fa fa-star-o"></i></a> </h1> <ol class="breadcrumb"> <li><a href="../../../mathsanalysis.html"><i class="fa fa-home"></i></a><i class="fa fa-fw fa-chevron-right divider"></i></li><li><a href="../540/geometry-trigonometry.html">Geometry & Trigonometry</a><i class="fa fa-fw fa-chevron-right divider"></i></li><li><span class="gray">Equation of a Line</span></li> <span class="pull-right" style="color: #555" title="Suggested study time: 30 minutes"><i class="fa fa-clock-o"></i> 30&apos;</span> </ol> <article id="main-article"> <p><img alt="" src="../../files/vectors/lines/main.jpg" style="float: left; width: 100px; height: 100px;">You should already be familiar with the equation of a straight line in Cartesian form in 2 dimensions, y = ax + b. When we move into 3 dimensions, the Cartesian form becomes a little more awkward. Don&#39;t worry, vectors are here to help us out! Once you understand the vector equation of a line, it is really useful for solving all sorts of problems with angles and intersections.</p> <hr class="hidden-separator"> <div class="panel panel-turquoise panel-has-colored-body"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Key Concepts</p> </div> </div> <div class="panel-body"> <div> <p>On this page, you should learn about</p> <ul> <li>vector equations of lines in two and three dimensions in the three different forms <ul> <li>vector form</li> <li>parametric form</li> <li>cartesian form</li> </ul> </li> </ul> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-yellow panel-has-colored-body"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Essentials</p> </div> </div> <div class="panel-body"> <p>The following videos will help you understand all the concepts&nbsp;from&nbsp;this page</p> <div class="panel panel-yellow panel-has-colored-body panel-has-border"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Vector Equation of a Line</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="320"> <p>In the following video we are going to look at the equation of a straight line in vector form and gain a strong conceptual understanding of what this formula means</p> <p style="text-align: center;"><span class="math-tex">\(\textbf{ r }\ =\ \overrightarrow { OA } +\lambda \textbf{b}\)</span></p> <p>You are probably used to Cartesian form of the equation of a straight line (y = mx + c) and perhaps are wondering why you need <strong>vectors</strong> to describe a straight line. There are number of answers to this</p> <ol> <li>The Cartesian form is a bit messy when used in 3D.</li> <li>Finding intersections and the angles which lines meet is easier in vector form.</li> <li>Describing motion is really helpful using velocity vectors.</li> </ol> <p>Let&#39;s start by looking at an example in 2D and then we can move into 3D</p> <div class="video-embed vimeo"><iframe allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="" mozallowfullscreen="" webkitallowfullscreen="" height="420" width="100%" src="https://player.vimeo.com/video/253851747"></iframe></div> <h4><span>​</span><span class="fa fa-pencil" style="color:rgb(0, 0, 0);"></span><span>​</span> Notes from the video</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><span class="fa fa-print" style="color:rgb(0, 0, 0);font-size:14px;"></span> Print from <a href="../../files/vectors/lines/vector-equation-of-lines.pdf" target="_blank">here</a></p> <p style="text-align: center;"><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/vectors/lines/vector-equation-of-lines.pdf" width="640"></iframe></p> </section> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-yellow panel-has-colored-body panel-has-border panel-expandable"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Converting between the different Forms</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="321"> <p>In the following video we are going to look at the three different forms of the equation of a straight line. In particular, we are going to look at how we can convert from one form to another.</p> <table border="0" cellpadding="0" cellspacing="0" style="width: 100%;"> <tbody> <tr> <td style="text-align: center;"> <p><span class="math-tex">\(\textbf{r}=\left( \begin{matrix} 1 \\ -2 \\ 3 \end{matrix} \right) +\lambda \left( \begin{matrix} -1 \\ 3 \\ 4 \end{matrix} \right) \)</span></p> </td> <td>Vector Form</td> </tr> <tr> <td style="text-align: center;"> <p><span class="math-tex">\(x=1-\lambda \\ y=-2+3\lambda \\ z=3+4\lambda \)</span></p> </td> <td>Parametric Form</td> </tr> <tr> <td style="text-align: center;"> <p><span class="math-tex">\(\frac { x-1 }{ -1 } =\frac { y-(-2) }{ 3 } =\frac { z-3 }{ 4 } \)</span></p> </td> <td>Cartesian Form</td> </tr> </tbody> </table> <div class="video-embed vimeo"><iframe allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="" mozallowfullscreen="" webkitallowfullscreen="" height="420" width="100%" src="https://player.vimeo.com/video/254017542"></iframe></div> <h4><span>​</span><span class="fa fa-pencil" style="color:rgb(0, 0, 0);"></span><span>​</span> Notes from the video</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><span class="fa fa-print" style="color:rgb(0, 0, 0);font-size:14px;"></span> Print from <a href="../../files/vectors/lines/vector_-parametric-and-cartesian-form-of-straight-line.pdf" target="_blank">here</a></p> <p style="text-align: center;"><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/vectors/lines/vector_-parametric-and-cartesian-form-of-straight-line.pdf" width="640"></iframe></p> </section> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-yellow panel-has-colored-body panel-has-border panel-expandable"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Example - Equidistant Points</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="327"> <p>In the following video we are going to look at a lovely application of the equation of the straight line to find points equidistant from another point. We don&#39;t necessarily have to do it in this way, but it might help us really understand what the vector equation of a straight line means.</p> <p>Here is the example</p> <p><em>A(3,-1,2) and B(6,-7,-7) lie on a straight line L. C also lies on the straight line L. Find the coordinates of the point C given that <span class="math-tex">\(\left| \overrightarrow { AC } \right| =\left| \overrightarrow { AB } \right| \)</span>.</em></p> <div class="video-embed vimeo"><iframe allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="" mozallowfullscreen="" webkitallowfullscreen="" height="420" width="100%" src="https://player.vimeo.com/video/265402041"></iframe></div> <h4><span>​</span><span tabindex="-1"><span class="fa fa-pencil" data-widget="FontAwesome" style="color:rgb(0, 0, 0);"></span><span style="background:rgba(220,220,220,0.5);background-image:url(../../../ckeditor/plugins/widget/images/handle.png)"><img draggable="true" height="15" src="" title="Click and drag to move" width="15"></span></span><span>​</span> Notes from the video</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><span tabindex="-1"><span class="fa fa-print" data-widget="FontAwesome" style="color:rgb(0, 0, 0);font-size:14px;"></span><span style="background:rgba(220,220,220,0.5);background-image:url(../../../ckeditor/plugins/widget/images/handle.png)"><img draggable="true" height="15" src="" title="Click and drag to move" width="15"></span></span> Print from <a href="../../files/vectors/lines/equidistant-points.pdf" target="_blank">here</a></p> <p style="text-align: center;"><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/vectors/lines/equidistant-points.pdf" width="640"></iframe></p> </section> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-yellow panel-has-colored-body panel-has-border panel-expandable"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Velocity Vectors</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="322"> <p>In the following video we are going to look we will try and gain a conceptual understanding of velocity vectors. One of the key ideas of this topic is to decide if objects collide. It is not enough to consider if their paths cross. We need to think about whether they occupy the <strong>same position</strong> at the <strong>same moment in time</strong>.</p> <hr class="hidden-separator"> <p>To get you started, you might like to play <a href="http://www.geogebra.org/m/SkeytGs5" target="_blank">this game</a> to give you an idea about what is going on. Try to hit the submarine with the torpedo!</p> <hr class="hidden-separator"> <p>Now let&#39;s consider the example below:</p> <p><em>A submarine is initially positioned at (0, 5) travels with velocity <span class="math-tex">\(\left( \begin{matrix} 4 \\ -3 \end{matrix} \right) \\ \)</span>ms-1 .</em></p> <p><em>One second later a torpedo is fired from (3, 0) with velocity <span class="math-tex">\(\left( \begin{matrix} 5 \\ 1 \end{matrix} \right) \\ \)</span>ms-1 .</em></p> <p><em>Does the torpedo manage to shoot the submarine?</em></p> <div class="video-embed vimeo"><iframe allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="" mozallowfullscreen="" webkitallowfullscreen="" height="420" width="100%" src="https://player.vimeo.com/video/264948030"></iframe></div> <h4><span>​</span><span class="fa fa-pencil" style="color:rgb(0, 0, 0);"></span><span>​</span> Notes from the video</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><span class="fa fa-print" style="color:rgb(0, 0, 0);font-size:14px;"></span> Print from <a href="../../files/vectors/lines/velocity-vectors.pdf" target="_blank">here</a></p> <p style="text-align: center;"><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/vectors/lines/velocity-vectors.pdf" width="640"></iframe></p> </section> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-has-colored-body panel-violet"> <div class="panel-heading"><a class="expander pull-right" href="#"><span class="fa fa-plus"></span></a> <div> <p>Summary</p> </div> </div> <div class="panel-body"> <div> <p><iframe align="middle" frameborder="1" height="480" scrolling="yes" src="../../files/vectors/lines/lines_revision-notes.pdf" width="640"></iframe></p> <p>Print from <a href="../../files/vectors/lines/lines_revision-notes.pdf" target="_blank">here</a></p> </div> </div> <div class="panel-footer"> <div> <p>text</p> </div> </div> </div> <div class="panel panel-has-colored-body panel-green"> <div class="panel-heading"><a class="expander pull-right" href="#"><span class="fa fa-plus"></span></a> <div> <p>Test Yourself</p> </div> </div> <div class="panel-body"> <p>Here is a quiz from about equations of lines in vector form</p> <br><a class="btn btn-primary btn-block text-center" data-toggle="modal" href="#37cb90ac"><i class="fa fa-play"></i> START QUIZ!</a><div class="modal fade modal-slide-quiz" id="37cb90ac"> <div class="modal-dialog" style="width: 95vw; max-width: 960px"> <div class="modal-content"> <div class="modal-header slide-quiz-title"> <h4 class="modal-title" style="width: 100%;"> Vectors - Equation of Line <strong class="q-number pull-right"> <span class="counter">1</span>/<span class="total">1</span> </strong> </h4> </div> <div class="modal-body p-xs-3"> <div class="slide-quiz" data-stats="11-180-651" style="opacity: 0"> <div class="exercise shadow-bottom"><div class="q-question"><p>The equation of the line below is given by the equation <span class="math-tex">\(\textbf{r}=\overrightarrow { OA } +\lambda \overrightarrow { AB } \)</span>.</p><p>To describe the<strong> position of C</strong>, what is a possible value of <span class="math-tex">\(\lambda\)</span></p><p style="text-align: center;"><img alt="" src="../../files/vectors/lines/mcq/q1.jpg" style="width: 300px; height: 150px;"></p><p style="text-align: center;"> </p></div><div class="q-answer"><p><label class="radio"><input type="radio"> -0.8</label></p><p><label class="radio"><input type="radio"> 0.5</label></p><p><label class="radio"><input type="radio"> 1</label></p><p><label class="radio"><input class="c" type="radio"> 1.5</label></p></div><div class="q-explanation"></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The equation of the line below is given by the equation <span class="math-tex">\(\textbf{r}=\overrightarrow { OA } +\lambda \overrightarrow { AB } \)</span>.</p><p>To describe the<strong> position of C</strong>, what is a possible value of <span class="math-tex">\(\lambda\)</span></p><p style="text-align: center;"><img alt="" src="../../files/vectors/lines/mcq/q2.jpg" style="width: 300px; height: 114px;"></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> -0.8</label><label class="radio"><span class="radio"> <span class="radio"></span></span></label></p><p><label class="radio"><input type="radio"> 1.5</label></p><p><label class="radio"><input type="radio"> 1</label></p><p><label class="radio"><input class="c" type="radio"> 0.5</label></p></div><div class="q-explanation"></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The equation of the line below is given by the equation <span class="math-tex">\(\textbf{r}=\overrightarrow { OA } +\lambda \overrightarrow { AB } \)</span>.</p><p>To describe the<strong> position of C</strong>, what is a possible value of <span class="math-tex">\(\lambda\)</span></p><p style="text-align: center;"><img alt="" src="../../files/vectors/lines/mcq/q3.jpg" style="width: 300px; height: 114px;"></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> 0.5</label></p><p><label class="radio"><input type="radio"> 1.5</label></p><p><label class="radio"><input type="radio"> 1</label></p><p><label class="radio"><input class="c" type="radio"> -0.8</label></p></div><div class="q-explanation"></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Which of the following points lie on the line <span class="math-tex">\(\textbf{r}=\left( \begin{matrix} 1 \\ -2 \end{matrix} \right) +\lambda \left( \begin{matrix} 3 \\ 4 \end{matrix} \right) \)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> (3,2)</label></p><p><label class="radio"><input type="radio"> (3,4)</label></p><p><label class="radio"><input type="radio"> (4,3)</label></p><p><label class="radio"><input class="c" type="radio"> (-5,-10)</label></p></div><div class="q-explanation"><p><span class="math-tex">\(\left( \begin{matrix} 1 \\ -2 \end{matrix} \right) +(-2) \left( \begin{matrix} 3 \\ 4 \end{matrix} \right) = \left( \begin{matrix} -5 \\ -10 \end{matrix} \right)\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>What is the value of <strong><em>a </em></strong>so that (-7,-8,4) lies on the line <span class="math-tex">\({ r }=\left( \begin{matrix} a \\ -2 \\ 0 \end{matrix} \right) +\lambda \left( \begin{matrix} 4 \\ 3 \\ -2 \end{matrix} \right) \)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> -1</label></p><p><label class="radio"><input type="radio"> -7</label></p><p><label class="radio"><input type="radio"> -11</label></p><p><label class="radio"><input class="c" type="radio"> 1</label></p></div><div class="q-explanation"><p><span class="math-tex">\({ r }=\left( \begin{matrix} 1 \\ -2 \\ 0 \end{matrix} \right) +(-2)\left( \begin{matrix} 4 \\ 3 \\ -2 \end{matrix} \right) \)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>What are the values of <strong><em>a </em></strong>and <strong><em>b </em></strong>so that (-2,-7,4) lies on the line <span class="math-tex">\({ r }=\left( \begin{matrix} 1 \\ -1 \\ -2 \end{matrix} \right) +\lambda \left( \begin{matrix} a \\ b \\ 2 \end{matrix} \right) \)</span></p></div><div class="q-answer"><p>a = <input type="text" style="height: auto;" data-c="-1"> <span class="review"></span></p><p>b = <input type="text" style="height: auto;" data-c="-2"> <span class="review"></span></p></div><div class="q-explanation"><p><span class="math-tex">\({ r }=\left( \begin{matrix} 1 \\ -1 \\ -2 \end{matrix} \right) +3 \left( \begin{matrix} -1 \\ -2 \\ 2 \end{matrix} \right) =\left( \begin{matrix} -2 \\ -7 \\ 4 \end{matrix} \right) \)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The vector equation of a line L is <span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} -1 \\ -2 \\ 3 \end{matrix} \right) +\mu \left( \begin{matrix} 1 \\ -2 \\ -4 \end{matrix} \right) \)</span></p><p>The vector <span class="math-tex">\(\left( \begin{matrix} a \\ b \\ 8 \end{matrix} \right) \)</span> is parallel to this line.</p><p>Find <strong><em>a </em></strong>and <strong><em>b</em></strong></p></div><div class="q-answer"><p>a = <input type="text" style="height: auto;" data-c="-2"> <span class="review"></span></p><p>b = <input type="text" style="height: auto;" data-c="4"> <span class="review"></span></p></div><div class="q-explanation"><p>The line <span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} { x }_{ 0 } \\ { y }_{ 0 } \\ { z }_{ 0 } \end{matrix} \right) +\mu \left( \begin{matrix} l \\ m \\ n \end{matrix} \right) \)</span>is parallel to <span class="math-tex">\(\left( \begin{matrix} l \\ m \\ n \end{matrix} \right) \)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div> </div> </div> <div class="modal-footer slide-quiz-actions"> <div class=""> <div class="pull-left pull-xs-none mb-xs-3"> <button class="btn btn-default d-xs-none btn-prev"> <i class="fa fa-arrow-left"></i>&nbsp;&nbsp;Prev </button> </div> <div class="pull-right pull-xs-none"> <button class="btn btn-success btn-xs-block text-xs-center btn-results" style="display: none"> <i class="fa fa-bar-chart"></i> Check Results </button> <button class="btn btn-default d-xs-none btn-next"> Next&nbsp;&nbsp;<i class="fa fa-arrow-right"></i> </button> <button class="btn btn-default btn-xs-block text-xs-center btn-close" data-dismiss="modal" style="display: none"> Close </button> </div> </div> </div> </div> </div></div> <hr class="hidden-separator"> <p>The following quiz tests your understanding of converting between the different forms of a straight line (vector, parametric and Cartesian).</p> <br><a class="btn btn-primary btn-block text-center" data-toggle="modal" href="#bae38dfe"><i class="fa fa-play"></i> START QUIZ!</a><div class="modal fade modal-slide-quiz" id="bae38dfe"> <div class="modal-dialog" style="width: 95vw; max-width: 960px"> <div class="modal-content"> <div class="modal-header slide-quiz-title"> <h4 class="modal-title" style="width: 100%;"> Equation of Line (different forms) HL <strong class="q-number pull-right"> <span class="counter">1</span>/<span class="total">1</span> </strong> </h4> </div> <div class="modal-body p-xs-3"> <div class="slide-quiz" data-stats="11-183-651" style="opacity: 0"> <div class="exercise shadow-bottom"><div class="q-question"><p>The vector equation of a line is <span class="math-tex">\({ r }=\left( \begin{matrix} -1 \\ 0 \\ 2 \end{matrix} \right) +\mu \left( \begin{matrix} 3 \\ -2 \\ -1 \end{matrix} \right) \)</span>. Which is the correct parametric form of the line.</p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(x=-1+3\mu \\ \\ z=2-\mu \)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(x=-1+2\mu \\ y=3-2\lambda-\mu\\ \)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(x=3-\mu \\ y=-2\\ z=-1+2\mu \)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(x=-1+3\mu \\ y=-2\mu \\ z=2-\mu \)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} { x }_{ 0 } \\ { y }_{ 0 } \\ { z }_{ 0 } \end{matrix} \right) +\mu \left( \begin{matrix} l \\ m \\ n \end{matrix} \right) \)</span>corresponds to <span class="math-tex">\(\frac { x-{ x }_{ 0 } }{ l } =\frac { y-{ y }_{ 0 } }{ m } =\frac { z-{ z }_{ 0 } }{ n } \)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The vector equation of a line L is <span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} 1 \\ -3 \\ 0 \end{matrix} \right) +\mu \left( \begin{matrix} 2 \\ -3 \\ 1 \end{matrix} \right) \)</span></p><p>The Cartesian equation of a line L is <span class="math-tex">\(\frac { x-a }{ 2 } =\frac { y-b }{ -3 } =\frac { z-c }{ 1 } \)</span></p><p>Find <strong><em>a</em></strong>, <strong><em>b</em></strong> and <strong><em>c</em></strong></p></div><div class="q-answer"><p>a = <input type="text" style="height: auto;" data-c="1"> <span class="review"></span></p><p>b = <input type="text" style="height: auto;" data-c="-3"> <span class="review"></span></p><p>c = <input type="text" style="height: auto;" data-c="0"> <span class="review"></span></p></div><div class="q-explanation"><p><span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} { x }_{ 0 } \\ { y }_{ 0 } \\ { z }_{ 0 } \end{matrix} \right) +\mu \left( \begin{matrix} l \\ m \\ n \end{matrix} \right) \)</span> corresponds to <span class="math-tex">\(\frac { x-{ x }_{ 0 } }{ l } =\frac { y-{ y }_{ 0 } }{ m } =\frac { z-{ z }_{ 0 } }{ n } \)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The vector equation of a line L is <span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right) +\mu \left( \begin{matrix} a \\ b \\ c \end{matrix} \right) \)</span></p><p>The Cartesian equation of a line L is <span class="math-tex">\(\frac { 1-x }{ 3 } =\frac { y+1 }{ 2 } =z\)</span></p><p>Find <strong><em>a</em></strong>, <strong><em>b</em></strong> and <strong><em>c</em></strong></p></div><div class="q-answer"><p>a = <input type="text" style="height: auto;" data-c="-3"> <span class="review"></span></p><p>b = <input type="text" style="height: auto;" data-c="2"> <span class="review"></span></p><p>c = <input type="text" style="height: auto;" data-c="1"> <span class="review"></span></p></div><div class="q-explanation"><p><span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} { x }_{ 0 } \\ { y }_{ 0 } \\ { z }_{ 0 } \end{matrix} \right) +\mu \left( \begin{matrix} l \\ m \\ n \end{matrix} \right) \)</span> corresponds to <span class="math-tex">\(\frac { x-{ x }_{ 0 } }{ l } =\frac { y-{ y }_{ 0 } }{ m } =\frac { z-{ z }_{ 0 } }{ n } \)</span></p><p>The Cartesian form can be written as follows <span class="math-tex">\(\frac { x-1 }{ -3 } =\frac { y-(-1) }{ 2 }=\frac { z-0 }{ 1 }\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The Cartesian equation of a line L is <span class="math-tex">\(\frac { x-3 }{ 5 } =2y =z+1\)</span></p><p>The vector equation of a line L is <span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} a \\ b \\ c \end{matrix} \right) +\mu \left( \begin{matrix} d \\ e \\ f \end{matrix} \right) \)</span></p><p>Find <strong><em>a </em></strong>, <strong><em>b</em></strong> , <strong><em>c</em></strong> , <strong><em>d</em></strong> , <strong><em>e</em></strong> and <strong><em>f</em></strong></p></div><div class="q-answer"><p>a = <input type="text" style="height: auto;" data-c="3"> <span class="review"></span></p><p>b = <input type="text" style="height: auto;" data-c="0"> <span class="review"></span></p><p>c = <input type="text" style="height: auto;" data-c="-1"> <span class="review"></span></p><p>d = <input type="text" style="height: auto;" data-c="5"> <span class="review"></span></p><p>e = <input type="text" style="height: auto;" data-c="0.5"> <span class="review"></span></p><p>f = <input type="text" style="height: auto;" data-c="1"> <span class="review"></span></p></div><div class="q-explanation"><p><span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} { x }_{ 0 } \\ { y }_{ 0 } \\ { z }_{ 0 } \end{matrix} \right) +\mu \left( \begin{matrix} l \\ m \\ n \end{matrix} \right) \)</span>corresponds to <span class="math-tex">\(\frac { x-{ x }_{ 0 } }{ l } =\frac { y-{ y }_{ 0 } }{ m } =\frac { z-{ z }_{ 0 } }{ n } \)</span></p><p>The Cartesian form can be written as follows <span class="math-tex">\(\frac { x-3 }{ 5 } =\frac { y-0 }{ 0.5 }=\frac { z-(-1) }{ 1 }\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The Cartesian equation of a line L is <span class="math-tex">\(3x=\frac { y+1 }{ 2 } =1+z\)</span></p><p>The line is parallel to the vector <span class="math-tex">\(\left( \begin{matrix} a \\ b \\ -3 \end{matrix} \right) \)</span>.</p><p>Find <strong><em>a </em></strong>and <strong><em>b</em></strong></p></div><div class="q-answer"><p>a = <input type="text" style="height: auto;" data-c="-1"> <span class="review"></span></p><p>b = <input type="text" style="height: auto;" data-c="-6"> <span class="review"></span></p></div><div class="q-explanation"><p><span class="math-tex">\(\frac { x-{ x }_{ 0 } }{ l } =\frac { y-{ y }_{ 0 } }{ m } =\frac { z-{ z }_{ 0 } }{ n } \)</span> corresponds to <span class="math-tex">\(\textbf{ r }=\left( \begin{matrix} { x }_{ 0 } \\ { y }_{ 0 } \\ { z }_{ 0 } \end{matrix} \right) +\mu \left( \begin{matrix} l \\ m \\ n \end{matrix} \right) \)</span>which is parallel to <span class="math-tex">\(\left( \begin{matrix} l \\ m \\ n \end{matrix} \right) \)</span></p><p>The Cartesian form can be written as follows <span class="math-tex">\(\frac { x-0 }{ \frac { 1 }{ 3 } } =\frac { y-(-1) }{ 2 }=\frac { z-(-1) }{ 1 }\)</span> which is parallel to <span class="math-tex">\(\left( \begin{matrix} \frac{1}{3} \\ 2 \\ 1 \end{matrix} \right) \)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div> </div> </div> <div class="modal-footer slide-quiz-actions"> <div class=""> <div class="pull-left pull-xs-none mb-xs-3"> <button class="btn btn-default d-xs-none btn-prev"> <i class="fa fa-arrow-left"></i>&nbsp;&nbsp;Prev </button> </div> <div class="pull-right pull-xs-none"> <button class="btn btn-success btn-xs-block text-xs-center btn-results" style="display: none"> <i class="fa fa-bar-chart"></i> Check Results </button> <button class="btn btn-default d-xs-none btn-next"> Next&nbsp;&nbsp;<i class="fa fa-arrow-right"></i> </button> <button class="btn btn-default btn-xs-block text-xs-center btn-close" data-dismiss="modal" style="display: none"> Close </button> </div> </div> </div> </div> </div></div> </div> <div class="panel-footer"> <div> <p>text</p> </div> </div> </div> <div class="panel panel-has-colored-body panel-default"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Exam-style Questions</p> </div> </div> <div class="panel-body"> <div class="panel panel-has-colored-body panel-default panel-has-border"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Question 1</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="326"> <p><img class="sibico" src="../../../img/sibico/hl-green.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="HL easy"> <img class="sibico" src="../../../img/sibico/no-calc.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="No calculator"></p> <p>A line L passes through the points A(1,-1,3) and B(3,-4,4)</p> <p>Point C (x,y,1) also lies on the line L. Find x and y.</p> <h4><span class="fa fa-support" style="color:rgb(0, 0, 0);"></span> Hint</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden">If the equation of the straight line is given by <span class="math-tex">\(\textbf{r}= \textbf{a}+\lambda \textbf{b}\)</span> then a certain value of <span class="math-tex">\(\lambda \)</span> will define the position of the position vector <span class="math-tex">\(\overrightarrow { OC } \)</span>. Find this value and use it to find x and y.</section> <h4><span class="fa fa-pencil" style="color:rgb(0, 0, 0);"></span> Full Solution</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><span class="fa fa-print" style="color:rgb(0, 0, 0);font-size:14px;"></span> Print from <a href="../../files/vectors/lines/esq_eqofline2hl.pdf" target="_blank">here</a></p> <p><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/vectors/lines/esq_eqofline2hl.pdf" width="640"></iframe></p> </section> <h4>&nbsp;</h4> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-has-colored-body panel-default panel-has-border panel-expandable"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Question 2</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="328"> <p><img class="sibico" src="../../../img/sibico/hl-green.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="HL easy"> <img class="sibico" src="../../../img/sibico/sl-red.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="SL difficult"> <img class="sibico" src="../../../img/sibico/no-calc.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="No calculator"></p> <p>A line L passes through the points A(0,2,-4) and B(3,-3,2)</p> <p>Point C also lies on the line L. Find the coordinates of C given that <span class="math-tex">\(\left| \overrightarrow { AC } \right| =\left| \overrightarrow { AB } \right| \)</span></p> <h4><span class="fa fa-support" style="color:rgb(0, 0, 0);"></span> Hint</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p>Draw a diagram!</p> <p>Find the equation of the straight line. What is the value of <span class="math-tex">\(\lambda \)</span> that defines the position of B? Think about what this value should be for C.</p> </section> <h4><span class="fa fa-pencil" style="color:rgb(0, 0, 0);"></span> Full Solution</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><span class="fa fa-print" style="color:rgb(0, 0, 0);font-size:14px;"></span> Print from <a href="../../files/vectors/lines/esq_eqofline3.pdf" target="_blank">here</a></p> <p><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/vectors/lines/esq_eqofline3.pdf" width="640"></iframe></p> </section> <h4>&nbsp;</h4> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-has-colored-body panel-default panel-has-border panel-expandable"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Question 3</p> </div> </div> <div class="panel-body"> <div class="smart-object center" data-id="329"> <p><img class="sibico" src="../../../img/sibico/hl-orange.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="HL moderate"> <img class="sibico" src="../../../img/sibico/sl-red.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="SL difficult"> <img class="sibico" src="../../../img/sibico/no-calc.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="No calculator"></p> <p>A line L passes through the points A(0,2,-4) and B(3,-3,2)</p> <p>Point C also lies on the line L. Find the possible coordinates of C given that <span class="math-tex">\(\left| \overrightarrow { AC } \right| =2\left| \overrightarrow { AB } \right| \)</span></p> <h4><span class="fa fa-support" style="color:rgb(0, 0, 0);"></span> Hint</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p>Draw a diagram!</p> <p>Is there just one answer?</p> <p>Find the equation of the straight line. What is the value of <span class="math-tex">\(\lambda \)</span> that defines the position of B? Think about what this value should be for C.</p> </section> <h4><span class="fa fa-pencil" style="color:rgb(0, 0, 0);"></span> Full Solution</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><span class="fa fa-print" style="color:rgb(0, 0, 0);font-size:14px;"></span> Print from <a href="../../files/vectors/lines/esq_eqofline4.pdf" target="_blank">here</a></p> <p><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/vectors/lines/esq_eqofline4.pdf" width="640"></iframe></p> </section> <h4>&nbsp;</h4> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> </div> </div> <div class="page-container panel-self-assessment" data-id="651"> <div class="panel-heading">MY PROGRESS</div> <div class="panel-body understanding-rate"> <div class="msg"></div>  <label class="label-lg">Self-assessment</label><p>How much of <strong>Equation of a Line</strong> have you understood?</p><div class="slider-container text-center"><div id="self-assessment-slider" class="sib-slider self-assessment " data-value="1" data-percentage=""></div></div>  <label class="label-lg">My notes</label> <textarea name="page-notes" class="form-control" rows="3" placeholder="Write your notes here..."></textarea> </div> <div class="panel-footer text-xs-center"> <span id="last-edited" class="mb-xs-3"> </span> <div class="actions mt-xs-3">  <button id="save-my-progress" type="button" class="btn btn-sm btn-primary text-center btn-xs-block"> <i class="fa fa-fw fa-floppy-o"></i> Save </button> </div> </div></div> <div id="modal-feedback" class="modal fade" tabindex="-1" role="dialog"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h4 class="modal-title">Feedback</h4> <button type="button" class="close hidden-xs hidden-sm" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="errors"></div> <p><strong>Which of the following best describes your feedback?</strong></p> <form method="post" style="overflow: hidden"> <div class="form-group"> <div class="radio"><label style="color: #121212;"><input type="radio" name="feedback-type" value="Recommendation"> Recommend</label></div><div class="radio"><label style="color: #121212;"><input type="radio" name="feedback-type" value="Problem"> Report a problem</label></div><div class="radio"><label style="color: #121212;"><input type="radio" name="feedback-type" value="Improvement"> Suggest an improvement</label></div><div class="radio"><label style="color: #121212;"><input type="radio" name="feedback-type" value="Other"> Other</label></div> </div> <hr> <div class="row"> <div class="col-md-6"> <div class="form-group"> <label for="feedback-name">Name</label> <input type="text" class="form-control" name="feedback-name" placeholder="Name" value=" "> </div> </div> <div class="col-md-6"> <div class="form-group"> <label for="feedback-email">Email address</label> <input type="email" class="form-control" name="feedback-email" placeholder="Email" value="@airmail.cc"> </div> </div> </div> <div class="form-group"> <label for="feedback-comments">Comments</label> <textarea class="form-control" name="feedback-comments" style="resize: vertical;"></textarea> </div> <input type="hidden" name="feedback-ticket" value="082b9c9c4ae3624d"> <input type="hidden" name="feedback-url" value="https://studyib.net/mathsanalysis/page/651/equation-of-a-line"> <input type="hidden" name="feedback-subject" value="11"> <input type="hidden" name="feedback-subject-name" value="Maths: Analysis & Approaches"> <div class="pull-left"> </div> </form> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary btn-xs-block feedback-submit mb-xs-3 pull-right"> <i class="fa fa-send"></i> Send </button> <button type="button" class="btn btn-default btn-xs-block m-xs-0 pull-left" data-dismiss="modal"> Close </button> </div> </div> </div></div> </article> <hr class="hidden-md hidden-lg"> <div class="hidden-md hidden-lg mt-xs-3"> <button class="btn btn-default btn-block text-xs-center" data-toggle="modal" data-target="#modal-feedback" style="margin-bottom: 10px"><i class="fa fa-send"></i>&nbsp;&nbsp;Feedback</button> </div> </div> <input type="hidden" id="user-id" value="38342"></div><input id="ticket" type="hidden" value="082b9c9c4ae3624d"><input id="tzoffset" type="hidden" value="new"><input id="fp" class="fp" type="hidden" value=""></div><div id="std-footer"> <div class="wmap"> <div class="layout-wrapper"> <p> <a href="https://www.inthinking.net"> &copy; <span id="footer-year"></span> <em>InThinking</em> <script>document.getElementById("footer-year").innerHTML = new Date().getFullYear();</script> </a> &nbsp;| &nbsp; <a target="_self" href="../../../about.html"> About us </a> &nbsp;|&nbsp; <a target="_self" href="../../../terms-and-conditions.html"> Legal </a> &nbsp;|&nbsp; <a target="_self" href="../../../contact.html"> Contact </a> </p> <p> <a class="social" target="_blank" href="https://twitter.com/#!/inthinker"> <img src="../../../img/social/twitter-square.svg"> Twitter </a> <a class="social" target="_blank" href="https://www.facebook.com/inthinking.net"> <img src="../../../img/social/facebook-square.svg"> Facebook </a> <a class="social" target="_blank" href="https://www.linkedin.com/profile/view?id=139741989"> <img src="../../../img/social/linkedin-square.svg"> LinkedIn </a> </p> </div> </div></div><script src="../../../js/jquery-1.11.3.min.js"></script><script src="../../../js/bootstrap.min.js"></script><script src="../../../js/jquery-fancybox/jquery.fancybox.min.js"></script><script>var pageId = 651;</script><script type="text/javascript" src="../../../js/jqueryui/jquery-ui-custom.min.js"></script><script type="text/javascript" src="../../../js/jqueryui/jquery.ui.touch-punch.js"></script><script type="text/javascript" src="../../../js/std-quizzes-helpers.min.js?v=20220406"></script><script src="../../../ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script type="text/javascript" src="../../../js/slick-carousel/slick.min.js"></script><script type="text/javascript" src="../../../js/std-slide-quizzes.min.js?v=20220406"></script><script type="text/javascript" src="../../../js/jqueryui/jquery-ui.min.js"></script><script type="text/javascript" src="../../../js/jqueryui/jquery.ui.touch-punch.min.js"></script><script src="../../../js/user/page-my-progress.min.js?v=202211221000"></script><script>var sAJAX='/pages/subjects/activity/user-stats-page.php?t=082b9c9c4ae3624d&p=651&s=11&x=27580';var sData='k4iA6GSB03BgPm13aUuRPHpsE3KeSVBAEzP5PHpsE39FIxiA6GSB0bfjSYyBPm1Ff0cL60fjW3NlW36l6zpOZGqBPFAF7YcHEKvr6GSDPmjoPHfh7YBm74P5GD6baFAbOUcSIxiDZ3BRWVOFwBR3azA3wxA3axAraFA3aLrRPnyBSnKR74P5GDaSezAFWGcrE0ij6GyDPmjoPmO4OxP5k4ijExP5ODPAIxirZ0fREzP5PBEB6bfh7Fpc70KsSYBhWFphEFpOZGqBPFAFSVBAEzP5PBEjEYKhPFAFSYcH74P5k4irWbpj6bOFwBR3aD6RaDuy0zAF738jWYyDPmjWamfSIxiRE0EBWVOFwBRDIduAIduyIdu400rRPHfh7YBm74P5GLrRPHaTZGyR74P5GLrRPnyBSnKR74P5GLLvIxPDOmuFwHRFZGCFwmO4OzAFSYBrWY9FwFic7GNlW36lUYB2EzpdW3q3E0irZGqHPYiBSVSBEGNlSYsBPYfjEnEB7nK2SxpYWbi874PRPHfq7Y9FwFiGZGfBW4PRPHfsEbOFwHRFSYvAZGaDPmjWam73Id7yOKrRPHaTZGyR74P5GD6r0zAFWYK3EGyDPmjWOzAyOFAyOzAyOcLvIxirWbpj6bOFwB8SIxiDZ3BRWVOFwB8SIxiRE0EBWVOFwB8SezAFODP4PmjoPnBgPm1DOmPRPHfjSYyBPm1FKnKRW3ajSVglKnKmSYv474PRPHfq7Y9FwFiGZGfBW4PRPHfsEbOFwHRFSYvAZGaDPmjWam73Id7yOKrRPHaTZGyR74P5GD6r0zAFWYK3EGyDPmjWOzAbIdlRwzAyOzAyOFAyOcLvIxirWbpj6bOFwB8SIxiDZ3BRWVOFwB8SIxiRE0EBWVOFwB8SezAFODP3PmjoPnBgPm1DOm6RPHfjSYyBPm1FfKaf03KyW3ERZGqBOgsOPFAFSVBAEzP5PBfBkVCFIxir6GSDPmjoPHfh7YBm74P5GD7yOzA3aDESIxiDZ3BRWVOFwBR3axAraBrRPnyBSnKR74P5GDCROKLvIxirWbpj6bOFwB8SIxiDZ3BRWVOFwB8SIxiRE0EBWVOFwB8SezAFODPbPmjoPnBgPm1DOm7RPHfjSYyBPm1FKnKmSYv47Lvc70KjEYBDSYc2SxpCW3B2SVOFIxirk0pBPm1FKnBgEGXFIxir6GSDPmjoPHfh7YBm74P5GD6baFAbOUcSIxiDZ3BRWVOFwBR3a4AraFA3acrRPnyBSnKR74P5GDuROUuRwxAqIdu400rRPHfh7YBm74P5GLrRPHaTZGyR74P5GLrRPnyBSnKR74P5GLLvIxPDOmlFwHRFZGCFwmO4wxAFSYBrWY9FwFic9Lcef0chEnyjWn9DPFAFSVBAEzP5PBcLE0arZGv2PFAFSYcH74P5k4irWbpj6bOFwBR3aD6RaDuy0zAF738jWYyDPmjWamCRad6RamSSIxiRE0EBWVOFwBRyIdgROUpSezAFSYvAZGaDPmjW0zAF738jWYyDPmjW0zAFWYK3EGyDPmjW00rRPmO4wzP5k4ijExP5ODPqIxirZ0fREzP5PgKU9KvB7Gvn7bfRZGqBaxPRPHfq7Y9FwFifSGKDSYBhWFPRPHfsEbOFwHRFSYvAZGaDPmjWam73Id7yOKrRPHaTZGyR74P5GD6rIdC3Id6b0zAFWYK3EGyDPmjWOUuRwzAy00rRPHfh7YBm74P5GLrRPHaTZGyR74P5GLrRPnyBSnKR74P5GLLvezAF7bKFEYv86GB2Pm1FPFAF7YcrZxP5PBAhWGcrZVasWncRk0aj7LAh7YcHEKAham9y0xvB70KsSYBhWFLhEFLsIGyjWn9FeC==';var loopSecs = 30;var minSecsLog = 60;var lsKey = '11-83608-651';</script><script src="../../../js/subjects/activity/user-stats-page.min.js?v=202205311700"></script><script src="../../../js/subjects/activity/my-favorites.min.js?v=20220610"></script><script src="../../../js/subjects/feedback.min.js?v=202211221000"></script><script>var sessionUpdateSecs = 300;</script><script type="text/javascript" src="../../../js/session-updater.js"></script><script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');ga('create', 'UA-98480796-4', 'auto');ga('send', 'pageview');</script><script src="../../../js/devicefp/devicefp.min.js"></script><script src="../../../js/jq-quickfit/jq-quickfit.min.js?v=20220201"></script><script src="../../../js/frontpage-subjects.min.js?v=202211161300"></script><script type="text/javascript" src="../../../js/studyib-jq.min.js?v=202211241300"></script><script type="text/javascript">$(document).ready(function(){	$('#trigger-modal-video-overview').click(function() {	if( $('#modal-video-overview .modal-body iframe').attr('src').length == 0 ) {	$('#modal-video-overview .modal-body iframe').attr('src', 'https://www.youtube.com/embed/hxxtdiLdTFk?rel=0');	}	});	$('#modal-video-overview').on('hidden.bs.modal', function() {	$('#modal-video-overview .modal-body iframe').attr('src', '');	});	});</script></body></html>