File "differential-equations-integrating-factor.html"

Path: /StudyIB/mathsanalysis/page/2109/differential-equations-integrating-factorhtml
File size: 81.97 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html><html lang="EN"><head>  <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-PZBWZ8J');</script> <title>Differential Equations - Integrating Factor</title><!-- Removed by WebCopy --><!--<base href="/">--><!-- Removed by WebCopy --><meta http-equiv="x-ua-compatible" content="IE=Edge"><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1"><link href="../../../css/bootstrap.flatly.min.css" rel="stylesheet" media="screen"><link rel="stylesheet" href="../../../fonts/awesome/css/font-awesome.min.css"><link href="../../../js/jquery-fancybox/jquery.fancybox.min.css" type="text/css" rel="stylesheet"><link rel="stylesheet" href="../../../css/style.min.css?v=202301301645"><meta name="robots" content="index, follow"><meta name="googlebot" content="noarchive"><meta prefix="og: http://ogp.me/ns#" property="og:title" name="og:title" content="StudyIB Maths: Analysis & Approaches: Differential Equations - Integrating Factor"> <meta prefix="og: http://ogp.me/ns#" property="og:image" content="https://studyib.net/img/studyib-card-default.jpg"> <meta prefix="og: http://ogp.me/ns#" property="og:description" name="og:description" content="On this page we will look at another type of differential equations: linear differential equations in the form y' + P(x)y=Q(x) which can be solved by using an integrating factor. There are many applications of this type of differential equation...."> <meta prefix="og: http://ogp.me/ns#" property="og:url" name="og:url" content="https://studyib.net/mathsanalysis/page/2109/differential-equations-integrating-factor"> <meta prefix="og: http://ogp.me/ns#" property="og:site_name" name="og:site_name" content="StudyIB - Your IB learning companion"> <meta prefix="og: http://ogp.me/ns#" property="og:locale" name="og:locale" content="en"> <meta prefix="og: http://ogp.me/ns#" property="og:type" name="og:type" content="website"> <meta name="description" content="On this page we will look at another type of differential equations: linear differential equations in the form y' + P(x)y=Q(x) which can be solved by using an integrating factor. There are many applications of this type of differential equation...."> <meta name="image" content="https://studyib.net/img/studyib-card-default.jpg"> <meta name="keywords" content="First order, Integrating factor, Linear, IB, IBDP, InThinking, International Baccalaureate, Revision, Revision websites, Student Sites, Students, Learning, Guidance, Exam, Questions, Practice problems, Diagnose, Help, Notes"> <meta itemprop="name" content="StudyIB Maths: Analysis & Approaches: Differential Equations - Integrating Factor"> <meta itemprop="description" content="On this page we will look at another type of differential equations: linear differential equations in the form y' + P(x)y=Q(x) which can be solved by using an integrating factor. There are many applications of this type of differential equation...."> <meta itemprop="image" content="https://studyib.net/img/studyib-card-default.jpg"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:title" content="StudyIB Maths: Analysis & Approaches: Differential Equations - Integrating Factor"> <meta name="twitter:description" content="On this page we will look at another type of differential equations: linear differential equations in the form y' + P(x)y=Q(x) which can be solved by using an integrating factor. There are many applications of this type of differential equation...."> <meta name="twitter:image" content="https://studyib.net/img/studyib-card-default.jpg"> <meta name="twitter:creator" content="@inthinker"><link rel="stylesheet" href="../../../css/snippets.min.css?v=202209111300"><link rel="stylesheet" href="../../../css/article.min.css?v=202211221000"><link rel="stylesheet" type="text/css" href="../../../js/slick-carousel/slick.min.css"><link rel="stylesheet" type="text/css" href="../../../js/slick-carousel/slick-theme.min.css"><style type="text/css">.filter-sl-only { display: none; }</style><script src="../../../ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script src="../../../js/ifvisible.min.js"></script><script>ifvisible.setIdleDuration(300);</script><link rel="apple-touch-icon-precomposed" sizes="57x57" href="../../../img/favicon/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon-precomposed" sizes="114x114" href="../../../img/favicon/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon-precomposed" sizes="72x72" href="../../../img/favicon/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon-precomposed" sizes="144x144" href="../../../img/favicon/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon-precomposed" sizes="60x60" href="../../../img/favicon/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon-precomposed" sizes="120x120" href="../../../img/favicon/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon-precomposed" sizes="76x76" href="../../../img/favicon/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon-precomposed" sizes="152x152" href="../../../img/favicon/apple-touch-icon-152x152.png"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-196x196.png" sizes="196x196"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-16x16.png" sizes="16x16"> <link rel="icon" type="image/png" href="../../../img/favicon/favicon-128.png" sizes="128x128"> <meta name="application-name" content="StudyIB: Your IB Learning Companion"> <meta name="msapplication-TileColor" content="#A5BED5"> <meta name="msapplication-TileImage" content="/img/favicon/mstile-144x144.png"> <meta name="msapplication-square70x70logo" content="/img/favicon/mstile-70x70.png"> <meta name="msapplication-square150x150logo" content="/img/favicon/mstile-150x150.png"> <meta name="msapplication-wide310x150logo" content="/img/favicon/mstile-310x150.png"> <meta name="msapplication-square310x310logo" content="/img/favicon/mstile-310x310.png"><script>var stdHash = "6da675cbcb3d25f050b05557349abc79", stdTicket = "082b9c9c4ae3624d";</script><script src="../../../js/user/local-stats.min.js?v=202205311700"></script><link href="../../../css/subjects-frontpage.min.css?v=202302031000" rel="stylesheet"></head><body class="public mathsanalysis">  <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-PZBWZ8J" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div id="top-header"> <div class="wmap general hidden-sm hidden-xs subjects"> <div class="layout-wrapper"> <div class="container-fluid"> <a href=""> <img class="header-thinker" src="../../../img/header-thinker.svg"> </a> <h1> <a href="../../../mathsanalysis.html"> <span style="font-family: 'Helvetica Narrow','Arial Narrow',Tahoma,Arial,Helvetica,sans-serif;font-stretch: condensed;letter-spacing: -1px">IBDP Maths: Analysis & Approaches</span> </a> <a href="https://inthinking.net" title="inthinking.net" class="inthinking-logo pull-right"> <img src="../../../img/header-logo.svg" style="height: 80px; width: auto;"> </a> </h1> <p class="slogan">InThinking Revision Sites for students</p> <p class="author">Website by <strong>Richard Wade</strong></p> <p class="updated">Updated 3 February 2023</p> </div> </div> </div> <nav id="public-topnav" class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header">  <a class="navbar-brand hidden-md hidden-lg" href="../../../index.htm"> <img class="header-xs-thinker" src="../../../img/header-thinker.svg"> </a>  <button type="button" class="collapsed navbar-toggle" data-toggle="collapse" data-target="#subject-navbar-collapse" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <i class="fa fa-fw fa-2x fa-user"></i> </button>  <div class="brand hidden-lg hidden-md hidden-sm"> <a class="brand-xs" href="../../../mathsanalysis.html"> <strong class="title" style="white-space: nowrap;font-size: 18px;">Maths: A&A</strong> </a> </div> </div>  <div class="collapse navbar-collapse" id="subject-navbar-collapse"> <ul class="nav navbar-bar navbar-userbox hidden-md hidden-lg"><li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="fa fa-fw fa-lg fa-user-circle" style="margin-right: 5px;"></i><span style="font-size: 16px;"></span></a><ul class="dropdown-menu"><li class="dropdown-submenu"><a class="dropdown-toggle" href="#" data-toggle="dropdown"><i class="fa fa-fw fa-globe"></i> Subjects</a><ul class="dropdown-menu"><li></li><li class=""><a href="../../../biology.html">DP Biology</a></li><li class=""><a href="../../../chemistry.html">DP Chemistry</a></li><li class=""><a href="../../../englishalanglit.html">DP English A: Language & Literature</a></li><li class="active"><a href="../../../mathsanalysis.html"><i class="fa fa-caret-right"></i> DP Maths: Analysis & Approaches</a></li><li class=""><a href="../../../mathsapplications.html">DP Maths: Applications & Interpretations SL</a></li><li class=""><a href="../../../physics.html">DP Physics</a></li><li class=""><a href="../../../spanishb.html">DP Spanish B</a></li></ul></li><li class="menu-item"><a href="../../../user.html"><i class="fa fa-fw fa-dashboard"></i> Dashboard</a></li><li class="menu-item"><a href="../../../user/profile.html"><i class="fa fa-fw fa-cog"></i> My profile</a></li><li class="menu-item"><a href="../../../user/messages.html"><i class="fa fa-fw fa-envelope"></i> Messages</a></li><li class="menu-item hidden-md hidden-lg mt-xs-3"><a href="../../../index.htm?logout=1" class="btn btn-primary btn-xs-block"><i class="fa fa-fw fa-lg fa-power-off text-danger"></i>Log out</a></li></ul></li></ul> <ul class="nav navbar-bar"><li class=""><a class="home" href="../../../mathsanalysis.html"><i class="fa fa-fw fa-home"></i>&nbsp;Home</a></li><li class=""><a class="topics" href="#"><i class="fa fa-fw fa-th-large"></i>&nbsp;Topics</a></li><li class=""><a class="favorites" href="../../../mathsanalysis.html"><i class="fa fa-fw fa-star"></i>&nbsp;My favorites</a></li><li class=""><a class="qbank" href="../../test-your-knowledge.html"><i class="fa fa-fw fa-question"></i>&nbsp;Question bank</a></li><li class=""><a class="sitemap" href="../../sitemap.html"><i class="fa fa-fw fa-sitemap"></i>&nbsp;Sitemap</a></li><li class=""><a class="activity" href="../../../mathsanalysis.html"><i class="fa fa-fw fa-calendar-check-o"></i>&nbsp;My activity</a></li></ul> <ul class="nav navbar-bar navbar-right"> <li>  <form class="navbar-form hidden-md hidden-lg" role="search" method="get" action="mathsanalysis/search"> <div class="input-group"> <input class="form-control nav-search" name="glob" type="search" placeholder="Search..."> <span class="input-group-btn"> <button type="submit" class="btn bg-blue"> <i class="fa fa-search">&nbsp;</i> </button> </span> </div> </form>  <a href="#" class="toggle-menu-search hidden-sm hidden-xs" data-toggle="dropdown"> <i class="fa fa-lg fa-search"></i> </a> </li></ul> </div> </div></nav><nav id="nav-menu-search" class="shadow-bottom hidden-sm hidden-xs" style="display: none;"> <div class="container-fluid"> <form class="" role="search" method="get" action="mathsanalysis/search"> <input class="form-control nav-search" name="glob" type="search" placeholder="Search Maths: A&A..."> <button class="btn btn-sm btn-primary" type="submit"> Search </button> </form> </div></nav><div class="modal fade" tabindex="-1" role="dialog" id="modal-mini-login"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-body"> <button aria-hidden="true" data-dismiss="modal" class="close hidden-xs login-button-close" type="button">&times;</button> <form method="post"> <div class="form-group"> <input name="user-email" class="form-control" type="text" placeholder="Email"> </div> <div class="form-group"> <input name="user-password" class="form-control" type="password" placeholder="Password"> <input name="user-fp" class="fp" value="d8c893da5db7501669ffeeac46273ba6" type="hidden"> </div> <div class="form-group"> <a href="../../../reset-password.html" class="reset-password" style="font-weight: normal;"> Forgot your password? </a> </div> <div class="form-group"> <button type="submit" name="submit-login" value="1" class="btn btn-primary btn-block text-center"> <i class="fa fa-user fa-fw"></i> Log in </button> </div> </form> </div> </div> </div></div></div><div class="modal fade" id="show-topics" tabindex="-1" role="dialog"><div id="dialog-topics" class="modal-dialog modal-dialog-topics"><div class="modal-content"><div class="modal-body modal-body-topics"><div id="new-frontpage-toplevels-topics" class="frontpage-box"><div class="row"><div class="col-md-4 col-sm-4"><div class="item"><a href="../3016/free-access-weekend.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Free Access Weekend</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/free.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../2696/start-here.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Start Here</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/start-here.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../2902/examination-questions.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Examination Questions</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/exam.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../2563/question-bank.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Question Bank</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/questionbank.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../537/algebra.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Algebra</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/images/algebra.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../539/functions.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Functions</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/images/function_s.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../540/geometry-trigonometry.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Geometry &amp; Trigonometry</h3></div><div class="body"><div class="cropper" style="background-image: url('../../images/photo-by-a-href=httpsunsplash.com@pawel_czerwinskiutm_source=unsplash-utm_medium=referral-utm_content=creditcopytextpawel-czerwinskia-on-a-href=httpsunsplash.comutm_source=unsplash-utm_medium=referral-utm_co.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../549/stats-probability.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Stats &amp; Probability</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/images/probability.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../550/calculus.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Calculus</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/images/calculus1.jpg'); height: 10vw;"></div></div></a></div></div><div class="col-md-4 col-sm-4"><div class="item"><a href="../857/exam-tips.html"><div class="header" style="height: 35px;"><h3 class="title special" style="margin-top: 0;">Exam Tips</h3></div><div class="body"><div class="cropper" style="background-image: url('/media/mathsanalysis/files/exam-tips/exam-tips.jpg'); height: 10vw;"></div></div></a></div></div></div></div></div></div></div></div><div class="container-fluid shadow-ith"><div class="row frontpage"> <div class="col-md-3" id="left-column"> <p class="visible-xs-block"></p><div class="dropdown user-menu hidden-xs" style="margin-bottom: 20px;"> <button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown" style="border-radius: 0; padding: 6px 18px;"> <i class="fa fa-fw fa-user-circle"></i>  <small><i class="fa fa-caret-down"></i></small> </button> <ul class="dropdown-menu"> <li class="dropdown-submenu"><a href="#"><i class="fa fa-fw fa-globe"></i> Subjects</a><ul id="user-subjects-menu" class="dropdown-menu"><li></li><li class=""><a href="../../../biology.html">DP Biology</a></li><li class=""><a href="../../../chemistry.html">DP Chemistry</a></li><li class=""><a href="../../../englishalanglit.html">DP English A: Language & Literature</a></li><li class="active"><a href="../../../mathsanalysis.html"><i class="fa fa-caret-right"></i> DP Maths: Analysis & Approaches</a></li><li class=""><a href="../../../mathsapplications.html">DP Maths: Applications & Interpretations SL</a></li><li class=""><a href="../../../physics.html">DP Physics</a></li><li class=""><a href="../../../spanishb.html">DP Spanish B</a></li></ul></li><li class="divider"></li><li><a href="../../../user.html"><i class="fa fa-fw fa-dashboard"></i> Dashboard</a></li><li><a href="../../../user/profile.html"><i class="fa fa-fw fa-cog"></i> My profile</a></li><li><a href="../../../user/messages.html"><i class="fa fa-fw fa-envelope"></i> Messages</a></li> <li class="divider"></li> <li> <a href="../../../index.htm?logout=1"> <i class="fa fa-fw fa-power-off"></i> Log out </a> </li> </ul></div> <div id="side-nav"><h4 class="side-nav-title dropdown"><a href="../550/calculus.html" class="dropdown-toggle toplevel-dropdown" data-toggle="dropdown"><i class="fa fa-ellipsis-v"></i></a>&nbsp;&nbsp;<a href="../550/calculus.html">Calculus</a><ul class="dropdown-menu"><li><a href="../../../mathsanalysis.html" style="padding-left: 5px; border-bottom: solid 1px #ddd"><i class="fa fa-fw fa-home"></i> Home</a></li><li><a href="../3016/free-access-weekend.html"><i class="fa fa-fw fa-caret-right"></i> Free Access Weekend</a></li><li><a href="../2696/start-here.html"><i class="fa fa-fw fa-caret-right"></i> Start Here</a></li><li><a href="../2902/examination-questions.html"><i class="fa fa-fw fa-caret-right"></i> Examination Questions</a></li><li><a href="../2563/question-bank.html"><i class="fa fa-fw fa-caret-right"></i> Question Bank</a></li><li><a href="../537/algebra.html"><i class="fa fa-fw fa-caret-right"></i> Algebra</a></li><li><a href="../539/functions.html"><i class="fa fa-fw fa-caret-right"></i> Functions</a></li><li><a href="../540/geometry-trigonometry.html"><i class="fa fa-fw fa-caret-right"></i> Geometry & Trigonometry</a></li><li><a href="../549/stats-probability.html"><i class="fa fa-fw fa-caret-right"></i> Stats & Probability</a></li><li><a href="../857/exam-tips.html"><i class="fa fa-fw fa-caret-right"></i> Exam Tips</a></li></ul><div class="pull-right"><a class="sidenav-expand" title="Expand all" href="#"><i class="fa fa-plus-circle"></i></a>&nbsp;<a class="sidenav-compress" title="Compress all" href="#"><i class="fa fa-minus-circle"></i></a></div></h4><ul class="side-nav level-0"><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2405/hl-mixed-differentiation.html">HL Mixed Differentiation</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../1165/mixed-integration.html">Mixed Integration</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../657/introducing-derivatives.html">Introducing Derivatives</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../658/graphs-and-derivatives.html">Graphs and Derivatives</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../742/chain-rule.html">Chain Rule</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../743/product-and-quotient-rule.html">Product and Quotient Rule</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../744/equation-of-tangent-and-normal.html">Equation of Tangent and Normal</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../695/optimisation.html">Optimisation</a></label></li><li class=""><label style="padding-left: 0px"><a class="expander" href="#" style="font-size: .9em"><i class="fa fa-fw fa-caret-right"></i></a><a href="../741/implicit-differentiation.html">Implicit Differentiation</a></label><ul class="side-nav level-1"><li class=""><label style="padding-left: 14px"><i class="fa fa-fw"></i><a href="../565/graphs-of-implicit-equations.html">Graphs of Implicit Equations</a></label></li></ul></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2872/related-rates-of-change.html">Related Rates of Change</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2829/lhopitals-rule.html">L'Hôpital's Rule</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../586/definite-integration.html">Definite Integration</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../730/area-between-graphs-hl.html">Area between Graphs HL</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../644/volume-of-revolution.html">Volume of Revolution</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../634/integration-by-substitution-hl.html">Integration by Substitution HL</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../635/integration-by-parts.html">Integration by Parts</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2107/differential-equations-separable-variables.html">Differential Equations - Separable Variables</a></label></li><li class="expanded parent selected"><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="differential-equations-integrating-factor.html">Differential Equations - Integrating Factor</a></label></li><li class=""><label style="padding-left: 0px"><i class="fa fa-fw"></i><a href="../2108/differential-equations-homogeneous.html">Differential Equations - Homogeneous</a></label></li></ul></div> <div class="hidden-xs hidden-sm"> <button class="btn btn-default btn-block text-xs-center" data-toggle="modal" data-target="#modal-feedback" style="margin-bottom: 10px"><i class="fa fa-send"></i>&nbsp;&nbsp;Feedback</button> </div> </div> <div class="col-md-9" id="main-column"> <h1 class="page_title"> Differential Equations - Integrating Factor <a href="#" class="mark-page-favorite pull-right" data-pid="2109" title="Mark as favorite" onclick="return false;"><i class="fa fa-star-o"></i></a> </h1> <ol class="breadcrumb"> <li><a href="../../../mathsanalysis.html"><i class="fa fa-home"></i></a><i class="fa fa-fw fa-chevron-right divider"></i></li><li><a href="../550/calculus.html">Calculus</a><i class="fa fa-fw fa-chevron-right divider"></i></li><li><span class="gray">Differential Equations - Integrating Factor</span></li> <span class="pull-right" style="color: #555" title="Suggested study time: 30 minutes"><i class="fa fa-clock-o"></i> 30&apos;</span> </ol> <article id="main-article"> <p><img alt="" src="../../files/integration/differential-equations/integrating-factor/main-1.png" style="float: left; width: 100px; height: 100px;">On this page we will look at another type of differential equations: linear differential equations in the form y&#39; + P(x)y=Q(x) which can be solved by using an integrating factor. There are many applications of this type of differential equation. For example, in electrical engineering, we can solve Kirchhoff&#39;s Laws to model electrical circuits. To be successful with this topic, you will need to have strong foundations in the following areas: integration techniques (especially in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x\)</span>) and manipulation of logarithms and exponents. You can get some practice in these areas&nbsp;if you complete all the quizzes on this page before attempting the exam-style questions.</p> <hr class="hidden-separator"> <div class="panel panel-turquoise panel-has-colored-body"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Key Concepts</p> </div> </div> <div class="panel-body"> <div> <p>On this page, you should learn about&nbsp;</p> <ul> <li>solving&nbsp;<span class="math-tex">\(\large \frac{\text{d}y}{\text{d}x}+P(x)y=Q(x)\)</span>&nbsp;</li> <li>using the integrating factor&nbsp;<span class="math-tex">\(I=e^{\int P(x)\mathrm{d}x}\)</span></li> </ul> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-yellow panel-has-colored-body"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Essentials</p> </div> </div> <div class="panel-body"> <div> <p>In order to use the integrating factor method, the differential equation&nbsp;needs to be in the form <span class="math-tex">\(\large \frac{\text{d}y}{\text{d}x}+P(x)y=Q(x)\)</span>. In the following videos we look at how the method&nbsp;works.</p> <div class="panel panel-yellow panel-has-colored-body panel-has-border"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Easier Example&nbsp;</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="904"> <p>In the following video we will look at an easier question that requires the integrating factor method to solve it. In particular, we will look at how the method works and why it works. You will see that you need to be confident in quite a few areas of the HL course to be able to carry it out. In this case, we need to use integration by recognition and integration by parts.</p> <hr class="hidden-separator"> <p>Find the general solution to the differential equation</p> <p style="text-align: center;"><span class="math-tex">\(\large \frac{\text{d}y}{\text{d}x}+\frac{y}{x}=\sin x\)</span></p> <p>in the form <span class="math-tex">\(\large y=f(x)\)</span></p> <hr class="hidden-separator"> <div class="video-embed vimeo"><iframe allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="" mozallowfullscreen="" webkitallowfullscreen="" height="420" width="100%" src="https://player.vimeo.com/video/589232581"></iframe></div> <h4><span>​</span><span></span>Notes from the video</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p>Print from <a href="../../files/integration/differential-equations/integrating-factor/de_intfactor1_videonotes.pdf" target="_blank">here</a></p> <p style="text-align: center;"><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/integration/differential-equations/integrating-factor/de_intfactor1_videonotes.pdf" width="640"></iframe></p> </section> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-yellow panel-has-colored-body panel-has-border"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Difficult Example</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="905"> <p>In the following video we look at how we can find the particular solution to a differential equation using an integrating factor. This example is more challenging, since we have to re-arrange the differential equation to put it in the correct form and the integration is more difficult.</p> <hr class="hidden-separator"> <p>Find the particular solution to the differential equation</p> <p style="text-align: center;"><span class="math-tex">\(\large \cos x\frac{\text{d}y}{\text{d}x}+{y}\ {\sin x}=\sin 2x\)</span></p> <p>given that <span class="math-tex">\(\large y(0)=2\)</span></p> <hr class="hidden-separator"> <div class="video-embed vimeo"><iframe allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="" mozallowfullscreen="" webkitallowfullscreen="" height="420" width="100%" src="https://player.vimeo.com/video/593154555"></iframe></div> <h4><span>​</span><span></span>Notes from the video</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p>Print from <a href="../../files/integration/differential-equations/integrating-factor/de_intfactor2_videonotes.pdf" target="_blank">here</a></p> <p style="text-align: center;"><iframe align="middle" frameborder="0" height="480" scrolling="yes" src="../../files/integration/differential-equations/integrating-factor/de_intfactor2_videonotes.pdf" width="640"></iframe></p> </section> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-has-colored-body panel-violet"> <div class="panel-heading"><a class="expander pull-right" href="#"><span class="fa fa-plus"></span></a> <div> <p>Summary</p> </div> </div> <div class="panel-body"> <div> <p><iframe align="middle" frameborder="1" height="480" scrolling="yes" src="../../files/integration/differential-equations/integrating-factor/revision-notes_de_integrating_factor.pdf" width="640"></iframe></p> <p>Print from <a href="../../files/integration/differential-equations/integrating-factor/revision-notes_de_integrating_factor.pdf" target="_blank">here</a></p> </div> </div> <div class="panel-footer"> <div> <p>text</p> </div> </div> </div> <div class="panel panel-has-colored-body panel-green"> <div class="panel-heading"><a class="expander pull-right" href="#"><span class="fa fa-plus"></span></a> <div> <p>Test Yourself</p> </div> </div> <div class="panel-body"> <div> <p>To solve differential equations with an integrating factor, we are often required to manipulate <strong>exponents of logarithmic functions</strong>. This will give you practice in that skill</p> <br><a class="btn btn-primary btn-block text-center" data-toggle="modal" href="#b22412df"><i class="fa fa-play"></i> START QUIZ!</a><div class="modal fade modal-slide-quiz" id="b22412df"> <div class="modal-dialog" style="width: 95vw; max-width: 960px"> <div class="modal-content"> <div class="modal-header slide-quiz-title"> <h4 class="modal-title" style="width: 100%;"> Manipulating exponents of logarithmic functions <strong class="q-number pull-right"> <span class="counter">1</span>/<span class="total">1</span> </strong> </h4> </div> <div class="modal-body p-xs-3"> <div class="slide-quiz" data-stats="11-589-2109" style="opacity: 0"> <div class="exercise shadow-bottom"><div class="q-question"><p>Simplify <span class="math-tex">\(e^{\ln x}\)</span></p></div><div class="q-answer"><p><label class="radio"><input class="c" type="radio"> x</label></p><p><label class="radio"><input type="radio"> -x</label></p><p><label class="radio"><input type="radio"> x²</label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\({1} \over x\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(e^x\)</span> and <span class="math-tex">\(\ln x\)</span> are inverse functions, so the exponential function will undo the logarithmic function</p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Simplify <span class="math-tex">\(e^{\ln x^2}\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\({1} \over x^2\)</span></label></p><p><label class="radio"><input type="radio"> 2x</label></p><p><label class="radio"><input class="c" type="radio"> x²</label></p><p><label class="radio"><input type="radio"> x</label></p></div><div class="q-explanation"><p><span class="math-tex">\(e^x\)</span> and <span class="math-tex">\(\ln x\)</span> are inverse functions, so the exponential function will undo the logarithmic function</p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Simplify <span class="math-tex">\(e^{3\ln x}\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> x</label></p><p><label class="radio"><input type="radio"> 3x</label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\({1} \over x\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(x^3\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(e^{3\ln x}=e^{\ln x^3}\)</span></p><p><span class="math-tex">\(e^x\)</span><span tabindex="-1"></span> and <span class="math-tex">\(\ln x\)</span> are inverse functions, so the exponential function will undo the logarithmic function</p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Simplify <span class="math-tex">\(e^{-\ln x}\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> x</label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{x}\)</span></label></p><p><label class="radio"><input type="radio"> -x</label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(-\frac{1}{x}\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(e^{-\ln x}=e^{\ln x^{-1}}=e^{\ln \frac{1}{x}}\)</span></p><p><span class="math-tex">\(e^x\)</span><span tabindex="-1"></span> and <span class="math-tex">\(\ln x\)</span> are inverse functions, so the exponential function will undo the logarithmic function</p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Find the correct simplifications of the following questions</p><p><br> <span class="q-text-draggable draggable" draggable="true">cosec(x)</span> <span class="q-text-draggable draggable" draggable="true">2sin(x)</span> <span class="q-text-draggable draggable" draggable="true">cosec²(x)</span> <span class="q-text-draggable draggable" draggable="true">sin²(x)</span> <span class="q-text-draggable draggable" draggable="true">sin(x)</span> <span class="q-text-draggable draggable" draggable="true">-sin(x)</span> </p></div><div class="q-answer"><p>a) <span class="math-tex">\(e^{\ln(\sin x)}\)</span> = <input type="text" style="height: auto;" data-c="sin(x)"> <span class="review"></span> </p><p>b) <span class="math-tex">\(e^{-\ln(\sin x)}\)</span> = <input type="text" style="height: auto;" data-c="cosec(x)"> <span class="review"></span> </p><p>c) <span class="math-tex">\(e^{2\ln(\sin x)}\)</span> = <input type="text" style="height: auto;" data-c="sin²(x)"> <span class="review"></span> </p><p>d) <span class="math-tex">\(e^{-2\ln(\sin x)}\)</span> = <input type="text" style="height: auto;" data-c="cosec²(x)"> <span class="review"></span> </p></div><div class="q-explanation"><p><span class="math-tex">\(e^x\)</span><span tabindex="-1"></span> and <span class="math-tex">\(\ln x\)</span> are inverse functions, so the exponential function will undo the logarithmic function</p><p>b) <span class="math-tex">\(e^{-\ln(\sin x)}=e^{\ln(\sin x)^{-1}}=e^{\ln(\frac{1}{\sin x})}=cosecx\)</span></p><p>c) <span class="math-tex">\(e^{2\ln(\sin x)}=e^{\ln(\sin x)^2}=sin²x\)</span></p><p>d) <span class="math-tex">\(e^{-2\ln(\sin x)}=e^{\ln(\sin x)^{-2}}=e^{\ln\frac{1}{(\sin x)^2}}=cosec²x\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Simplify <span class="math-tex">\(e^{\ln (1+x)}\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> ln(1+x)</label></p><p><label class="radio"><input type="radio"> x</label></p><p><label class="radio"><input class="c" type="radio"> 1 + x</label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^{1+x}\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(e^x\)</span><span tabindex="-1"></span> and <span class="math-tex">\(\ln x\)</span> are inverse functions, so the exponential function will undo the logarithmic function</p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Simplify <span class="math-tex">\(e^{-3ln(1+x)}\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(-(1+x)^3\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{3}{1+x}\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{(1+x)^3}\)</span></label></p><p><label class="radio"><input type="radio"> -3(1+x)</label></p></div><div class="q-explanation"><p><span class="math-tex">\(e^{-3ln(1+x)}=e^{ln(1+x)^{-3}}\)</span></p><p><span class="math-tex">\(e^x\)</span><span tabindex="-1"></span> and <span class="math-tex">\(\ln x\)</span> are inverse functions, so the exponential function will undo the logarithmic function</p><p><span class="math-tex">\(=(1+x)^{-3}=\frac{1}{(1+x)^3}\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Simplify <span class="math-tex">\(e^{-\frac{1}{2}ln(1-x^2)}\)</span></p></div><div class="q-answer"><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{\sqrt{1-x^2}}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{1-x}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{2(1-x^2)}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(-\frac{1}{2}(1-x^2)\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(e^{-\frac{1}{2}ln(1-x^2)}=e^{ln(1-x^2)^{-\frac{1}{2}}}\)</span></p><p><span class="math-tex">\(e^x\)</span><span tabindex="-1"></span> and <span class="math-tex">\(\ln x\)</span> are inverse functions, so the exponential function will undo the logarithmic function</p><p><span class="math-tex">\(=(1-x^2)^{-\frac{1}{2}}=\frac{1}{\sqrt{1-x^2}}\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div> </div> </div> <div class="modal-footer slide-quiz-actions"> <div class=""> <div class="pull-left pull-xs-none mb-xs-3"> <button class="btn btn-default d-xs-none btn-prev"> <i class="fa fa-arrow-left"></i>&nbsp;&nbsp;Prev </button> </div> <div class="pull-right pull-xs-none"> <button class="btn btn-success btn-xs-block text-xs-center btn-results" style="display: none"> <i class="fa fa-bar-chart"></i> Check Results </button> <button class="btn btn-default d-xs-none btn-next"> Next&nbsp;&nbsp;<i class="fa fa-arrow-right"></i> </button> <button class="btn btn-default btn-xs-block text-xs-center btn-close" data-dismiss="modal" style="display: none"> Close </button> </div> </div> </div> </div> </div></div> <hr class="hidden-separator"> <p>Often differential equations with an integrating factor require us to carry out integrations in the form&nbsp;<span class="math-tex">\(\large\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p> <p>The following quiz wil help you practise these type of integrals</p> <br><a class="btn btn-primary btn-block text-center" data-toggle="modal" href="#5a9fe73e"><i class="fa fa-play"></i> START QUIZ!</a><div class="modal fade modal-slide-quiz" id="5a9fe73e"> <div class="modal-dialog" style="width: 95vw; max-width: 960px"> <div class="modal-content"> <div class="modal-header slide-quiz-title"> <h4 class="modal-title" style="width: 100%;"> Integrals in form f&#039;(x)/f(x) <strong class="q-number pull-right"> <span class="counter">1</span>/<span class="total">1</span> </strong> </h4> </div> <div class="modal-body p-xs-3"> <div class="slide-quiz" data-stats="11-590-2109" style="opacity: 0"> <div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{1}{2x} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln |x|+C\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{2}\ln |x|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln |2x|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{2x}+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\int\frac{1}{2x} \mathrm{d}x=\frac{1}{2} \int\frac{1}{x} \mathrm{d}x=\frac{1}{2}\ln |x|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{2x}{x^2+1} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{2}\ln|x^2+1|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(2\ln |x^2+1|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{x^2+1}+C\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\ln |x^2+1|+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)=2x\)</span></p><p>Hence integral is in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p><p><span class="math-tex">\(\int\frac{2x}{x^2+1} \mathrm{d}x=\ln |x^2+1|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{\cos x}{\sin x} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(\tan x+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(-\ln|\sin x|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln|\cos x|+C\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\ln |\sin x|+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\frac{\mathrm{d}}{\mathrm{d}x}(\sin x)=\cos x\)</span></p><p>Hence integral is in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p><p><span class="math-tex">\(\int\frac{\cos x}{\sin x} \mathrm{d}x=\ln |\sin x|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\tan x \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln|\cos x|+C\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(-\ln |\cos x|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\sec² x+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln|\sin x|+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\int\tan x \mathrm{d}x=\int\frac{\sin x}{\cos x} \mathrm{d}x=-\int\frac{-\sin x}{\cos x} \mathrm{d}x\)</span></p><p><span class="math-tex">\(\frac{\mathrm{d}}{\mathrm{d}x}(\cos x)=-\sin x\)</span></p><p>Hence integral is in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p><p><span class="math-tex">\(-\int\frac{-\sin x}{\cos x} \mathrm{d}x=-\ln |\cos x|+C\)</span></p><p>We could also write this answer as <span class="math-tex">\(\ln |\sec x|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{4}{x} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="checkbox"><input type="checkbox"> <span class="math-tex">\(-\frac{4}{x^2}+C\)</span></label></p><p><label class="checkbox"><input class="c" type="checkbox"> <span class="math-tex">\(4\ln |x|+C\)</span></label></p><p><label class="checkbox"><input type="checkbox"> <span class="math-tex">\(\ln |x|+C\)</span></label></p><p><label class="checkbox"><input class="c" type="checkbox"> <span class="math-tex">\(\ln |x^4|+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\int\frac{4}{x} \mathrm{d}x=4 \int\frac{1}{x} \mathrm{d}x=4\ln |x|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{1}{1-x} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln|1-x|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(-\ln|1-x²|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{1-x^2}+C\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(-\ln|1-x|+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\int\frac{1}{1-x} \mathrm{d}x=-\int\frac{-1}{1-x} \mathrm{d}x\)</span></p><p><span class="math-tex">\(\frac{\mathrm{d}}{\mathrm{d}x}(1-x)=-1\)</span></p><p>Hence integral is in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p><p><span class="math-tex">\(-\int\frac{-1}{1-x} \mathrm{d}x=-\ln|1-x|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{x}{x^2+1} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(x^2+1+C\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{2}\ln|x^2+1|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(2\ln|x^2+1|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln|x^2+1|+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\int\frac{x}{x^2+1} \mathrm{d}x=\frac{1}{2}\int\frac{2x}{x^2+1} \mathrm{d}x\)</span></p><p><span class="math-tex">\(\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)=2x\)</span></p><p>Hence integral is in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p><p><span class="math-tex">\(\frac{1}{2}\int\frac{2x}{x^2+1} \mathrm{d}x=\frac{1}{2}\ln|x^2+1|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{x+3}{x^2+6x+1} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(2\ln|x^2+6x+1|+C\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{2}\ln|x^2+6x+1|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln |x+3|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln|x^2+6x+1|+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\int\frac{x+3}{x^2+6x+1} \mathrm{d}x=\frac{1}{2}\int\frac{2x+6}{x^2+6x+1} \mathrm{d}x\)</span></p><p><span class="math-tex">\(\frac{\mathrm{d}}{\mathrm{d}x}(x^2+6x+1)=2x+6\)</span></p><p>Hence integral is in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p><p><span class="math-tex">\(\frac{1}{2}\int\frac{2x+6}{x^2+6x+1} \mathrm{d}x=\frac{1}{2}\ln|x^2+6x+1|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{x^3}{1+x^4} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln|1+x^4|+C\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{4}\ln|1+x^4|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(4\ln|1+x^4|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(4\ln|x^3|+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\int\frac{x^3}{1+x^4} \mathrm{d}x=\frac{1}{4}\int\frac{4x^3}{1+x^4} \mathrm{d}x\)</span></p><p><span class="math-tex">\(\frac{\mathrm{d}}{\mathrm{d}x}(1+x^4)=4x^3\)</span></p><p>Hence integral is in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p><p><span class="math-tex">\(\frac{1}{4}\int\frac{4x^3}{1+x^4} \mathrm{d}x=\frac{1}{4}\ln|1+x^4|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>Work out <span class="math-tex">\(\large\int\frac{1}{x\ln x} \mathrm{d}x\)</span></p></div><div class="q-answer"><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\ln|\ln x|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{x}+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln|x\ln x|+C\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{x^2(\ln x)^2}+C\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(\int\frac{1}{x\ln x} \mathrm{d}x=\int\frac{\frac{1}{x}}{\ln x} \mathrm{d}x\)</span></p><p><span class="math-tex">\(\frac{\mathrm{d}}{\mathrm{d}x}(\ln x)=\frac{1}{x}\)</span></p><p>Hence integral is in the form <span class="math-tex">\(\int\frac{f'(x)}{f(x)} \mathrm{d}x=\ln |f(x)|+C\)</span></p><p><span class="math-tex">\(\int\frac{\frac{1}{x}}{\ln x} \mathrm{d}x=\ln|\ln x|+C\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div> </div> </div> <div class="modal-footer slide-quiz-actions"> <div class=""> <div class="pull-left pull-xs-none mb-xs-3"> <button class="btn btn-default d-xs-none btn-prev"> <i class="fa fa-arrow-left"></i>&nbsp;&nbsp;Prev </button> </div> <div class="pull-right pull-xs-none"> <button class="btn btn-success btn-xs-block text-xs-center btn-results" style="display: none"> <i class="fa fa-bar-chart"></i> Check Results </button> <button class="btn btn-default d-xs-none btn-next"> Next&nbsp;&nbsp;<i class="fa fa-arrow-right"></i> </button> <button class="btn btn-default btn-xs-block text-xs-center btn-close" data-dismiss="modal" style="display: none"> Close </button> </div> </div> </div> </div> </div></div> <hr class="hidden-separator"> <p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span>&nbsp;</strong></em>for the differential equation in the form&nbsp;<span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span>&nbsp;can be found by evaluating&nbsp;<span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p> <p>The following quiz gives you some practice in finding the integrating factor</p> <br><a class="btn btn-primary btn-block text-center" data-toggle="modal" href="#77f1c762"><i class="fa fa-play"></i> START QUIZ!</a><div class="modal fade modal-slide-quiz" id="77f1c762"> <div class="modal-dialog" style="width: 95vw; max-width: 960px"> <div class="modal-content"> <div class="modal-header slide-quiz-title"> <h4 class="modal-title" style="width: 100%;"> Integrating factor for differential equations <strong class="q-number pull-right"> <span class="counter">1</span>/<span class="total">1</span> </strong> </h4> </div> <div class="modal-body p-xs-3"> <div class="slide-quiz" data-stats="11-591-2109" style="opacity: 0"> <div class="exercise shadow-bottom"><div class="q-question"><p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span> </strong></em>for the differential equation in the form <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span> can be found by evaluating <span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p><hr class="hidden-separator"><p>What is the integrating factor for the differential equation <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+2y=e^x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^x\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(2x\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^{x^2}\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(e^{2x}\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(I=e^{\int 2 \ \mathrm{d}x}\\ I=e^{2x}\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span> </strong></em>for the differential equation in the form <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span> can be found by evaluating <span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p><hr class="hidden-separator"><p>What is the integrating factor for the differential equation <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+\frac{y}{x}=\sin x\)</span></p></div><div class="q-answer"><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(x\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln x\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^{-\frac{1}{x^2}}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^x\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(I=e^{\int \frac{1}{x} \ \mathrm{d}x}\\ I=e^{\ln x}\\ I=x\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span> </strong></em>for the differential equation in the form <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span> can be found by evaluating <span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p><hr class="hidden-separator"><p>What is the integrating factor for the differential equation <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+\frac{2}{x}y=x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{2}x\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(2x\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^{2x}\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(x^2\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(I=e^{\int \frac{2}{x} \mathrm{d}x}\\ I=e^{2\ln x}\\ I=e^{\ln x^2}\\ I=x^2\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span> </strong></em>for the differential equation in the form <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span> can be found by evaluating <span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p><hr class="hidden-separator"><p>What is the integrating factor for the differential equation <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}-\frac{x^2y}{1+x^3}=x^2\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(-(1+x^3)\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{{1+x^3}}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(1+x^3\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{\sqrt[ 3]{1+x^3}}\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(I=e^{\int -\frac{x^2}{1+x^3} \mathrm{d}x}\\ I=e^{-\int \frac{x^2}{1+x^3} \mathrm{d}x}\\ I=e^{-\frac{1}{3}\int \frac{3x^2}{1+x^3} \mathrm{d}x}\\ I=e^{-\frac{1}{3}\ln |1+x^3|}\\ I=e^{\ln (1+x^3)^{-\frac{1}{3}}}\\ I= (1+x^3)^{-\frac{1}{3}}\\ I=\frac{1}{\sqrt[ 3]{1+x^3}}\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span> </strong></em>for the differential equation in the form <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span> can be found by evaluating <span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p><hr class="hidden-separator"><p>What is the integrating factor for the differential equation <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+y \tan x=\sin x\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(\arccos x\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{\cos x}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^{\sec^2x}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\cos x\)</span></label></p></div><div class="q-explanation"><p><span class="math-tex">\(I=e^{\int \tan x \ \mathrm{d}x}\\ I=e^{\int \frac{\sin x}{\cos x} \mathrm{d}x}\\ I=e^{-\int \frac{-\sin x}{\cos x} \mathrm{d}x}\\ I=e^{-\ln \cos x}\\ I=e^{\ln (\cos x)^{-1}}\\ I=(\cos x)^{-1}\\ I=\frac{1}{\cos x}\\ I=\sec x\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span> </strong></em>for the differential equation in the form <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span> can be found by evaluating <span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p><hr class="hidden-separator"><p>What is the integrating factor for the differential equation <span class="math-tex">\(\large x\frac{\mathrm{d}y}{\mathrm{d}x}-y=x^3\)</span></p></div><div class="q-answer"><p><label class="radio"><input type="radio"> <span class="math-tex">\(-x^2\)</span></label></p><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\frac{1}{x^2}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(x^2\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{x}\)</span></label></p></div><div class="q-explanation"><p>We need to put the differential equation in the correct form</p><p><span class="math-tex">\( x\frac{\mathrm{d}y}{\mathrm{d}x}-y=x^3\\ \frac{\mathrm{d}y}{\mathrm{d}x}-\frac{y}{x}=x^2\)</span></p><p><span class="math-tex">\(I=e^{\int -\frac{2}{x} \mathrm{d}x}\\ I=e^{-2\ln x}\\ I=e^{\ln x^{-2}}\\ I=x^{-2}\\ I=\frac{1}{x^2}\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span> </strong></em>for the differential equation in the form <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span> can be found by evaluating <span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p><hr class="hidden-separator"><p>What is the integrating factor for the differential equation <span class="math-tex">\(\large (1+x)\frac{\mathrm{d}y}{\mathrm{d}x}+y=1+x\)</span></p></div><div class="q-answer"><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(1+x\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{-1}{(1+x)^2}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\frac{1}{1+x}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\ln (1+x)\)</span></label></p></div><div class="q-explanation"><p>We need to put the differential equation in the correct form</p><p><span class="math-tex">\((1+x)\frac{\mathrm{d}y}{\mathrm{d}x}+y=1+x\\ \frac{\mathrm{d}y}{\mathrm{d}x}+\frac{1}{1+x}y=1\)</span></p><p><span class="math-tex">\(I=e^{\int \frac{1}{1+x} \mathrm{d}x}\\ I=e^{\ln (1+x)}\\ I=1+x\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div><div class="exercise shadow-bottom"><div class="q-question"><p>The integrating factor, <em><strong><span class="math-tex">\(I\)</span> </strong></em>for the differential equation in the form <span class="math-tex">\(\large\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\)</span> can be found by evaluating <span class="math-tex">\(\large I=e^{\int P(x) \mathrm{d}x}\)</span></p><hr class="hidden-separator"><p>What is the integrating factor for the differential equation <span class="math-tex">\(\large\sin x\frac{\mathrm{d}y}{\mathrm{d}x}+y \cos x=\mathrm{cosec} x\)</span></p></div><div class="q-answer"><p><label class="radio"><input class="c" type="radio"> <span class="math-tex">\(\sin x\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^{\cot x}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(e^{\sin x}\)</span></label></p><p><label class="radio"><input type="radio"> <span class="math-tex">\(\mathrm{cosec}x\)</span></label></p></div><div class="q-explanation"><p>We need to put the differential equation in the correct form</p><p><span class="math-tex">\(\sin x\frac{\mathrm{d}y}{\mathrm{d}x}+y \cos x=\mathrm{cosec} x\\ \frac{\mathrm{d}y}{\mathrm{d}x}+ \frac{\cos x}{\sin x}y=\frac{1}{\sin^2x}\)</span></p><p><span class="math-tex">\( I=e^{\int \frac{\cos x}{\sin x} \mathrm{d}x}\\ I=e^{\ln \sin x}\\ I=\sin x\)</span></p></div><div class="slide-q-actions"><button class="btn btn-default btn-sm btn-xs-block text-xs-center check"><i class="fa fa-check-square-o"></i> Check</button></div></div> </div> </div> <div class="modal-footer slide-quiz-actions"> <div class=""> <div class="pull-left pull-xs-none mb-xs-3"> <button class="btn btn-default d-xs-none btn-prev"> <i class="fa fa-arrow-left"></i>&nbsp;&nbsp;Prev </button> </div> <div class="pull-right pull-xs-none"> <button class="btn btn-success btn-xs-block text-xs-center btn-results" style="display: none"> <i class="fa fa-bar-chart"></i> Check Results </button> <button class="btn btn-default d-xs-none btn-next"> Next&nbsp;&nbsp;<i class="fa fa-arrow-right"></i> </button> <button class="btn btn-default btn-xs-block text-xs-center btn-close" data-dismiss="modal" style="display: none"> Close </button> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-footer"> <div> <p>text</p> </div> </div> </div> <div class="panel panel-has-colored-body panel-default"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Exam-style Questions</p> </div> </div> <div class="panel-body"> <div> <div class="panel panel-has-colored-body panel-default panel-has-border"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Question 1</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="897"> <p><img class="sibico" src="../../../img/sibico/hl-orange.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="HL moderate"> <img class="sibico" src="../../../img/sibico/no-calc.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="No calculator"></p> <p>Consider the following first order differential equation</p> <p><span class="math-tex">\(\large x\frac{\text{d}y}{\text{d}x}+3y=\frac{lnx}{x}\)</span></p> <p>a) Show that <em><strong>x<sup>3</sup></strong></em> is the integrating factor for this differential equation</p> <p>b) Hence, find the general solution of this differential equation in the form <em><strong>y = f(x)</strong></em></p> <h4>Hint</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><content> </content>a) The integrating factor, <span class="math-tex">\(I=e^{\int \frac{3}{x}dx}\)</span></p> <p>b) We should recognise the product rule for differentiation <img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor1hint.png" style="width: 250px; height: 43px;"></p> <p>We should use integration by parts to integrate xlnx</p> </section> <h4>Full Solution</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor1.png" style="width: 600px; height: 259px;"></p> <p><img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor1b.png" style="width: 928px; height: 647px;"></p> </section> <h4>&nbsp;</h4> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-has-colored-body panel-default panel-has-border panel-expandable"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Question 2</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="898"> <p><img class="sibico" src="../../../img/sibico/hl-red.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="HL difficult"> <img class="sibico" src="../../../img/sibico/no-calc.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="No calculator"></p> <p>Consider the following differential equation <span class="math-tex">\(\large \frac{\text{d}y}{\text{d}x}+ytanx=secx\)</span></p> <p>a) Using a suitable integrating factor show that the differential equation can be written as <span class="math-tex">\(\large \frac{y}{cosx}=\int sec^²x {dx}\)</span></p> <p>b) Given that (0 , 2) lies on the curve, show that the particular solution of the differential equation is<strong><em> <span class="math-tex">\(\large y=sinx+2cosx\)</span></em></strong></p> <h4>Hint</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p>a) This is a differential equation in the form <span class="math-tex">\(\large \frac{\text{d}y}{\text{d}x}+P(x)y=Q(x)\)</span></p> <p>We use the integrating factor <span class="math-tex">\(I=e^{\int tanxdx }\)</span></p> <p><content> </content>You will need to use integration by substitution or recognition to integrate <em><strong>tanx</strong></em></p> <p>We should recognise the product rule for differentiation <img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor2hint.png" style="width: 300px; height: 61px;"></p> </section> <h4>Full Solution</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor2a.png" style="width: 600px; height: 256px;"></p> <p><img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor2b.png" style="width: 600px; height: 553px;"></p> </section> <h4>&nbsp;</h4> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="panel panel-has-colored-body panel-default panel-has-border panel-expandable"> <div class="panel-heading"><a class="expander" href="#"><span class="fa fa-plus"></span></a> <div> <p>Question 3</p> </div> </div> <div class="panel-body"> <div> <div class="smart-object center" data-id="902"> <p><img class="sibico" src="../../../img/sibico/hl-red.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="HL difficult"> <img class="sibico" src="../../../img/sibico/no-calc.svg" style="height:1.25em;width: auto;vertical-align:text-bottom" title="No calculator"></p> <p>Consider the following differential equation <span class="math-tex">\(\large \sin x\frac{\text{d}y}{\text{d}x}+y\cos x=2\sin^2 x\)</span></p> <p>a) Show that the integrating factor of this differential equation is <span class="math-tex">\(\large \sin x\)</span></p> <p>b) Solve the differential equation, giving your answer in the form <span class="math-tex">\(y=f(x)\)</span></p> <h4>Hint</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p>a) This is a differential equation in the form <span class="math-tex">\(\large \frac{\text{d}y}{\text{d}x}+P(x)y=Q(x)\)</span></p> <p>We use the integrating factor <span class="math-tex">\(\large I=e^{\int \frac{\cos x}{\sin x}dx }\)</span></p> <p><content> </content>You will need to use integration by substitution or recognition for this integration</p> <p>b) We should recognise the product rule for differentiation <img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactorhint.png" style="width: 400px; height: 70px;"></p> </section> <h4>Full Solution</h4> <button class="btn btn-xs bg-turquoise showhider"><i class="fa fa-fw fa-plus"></i></button><section class="hiddenbox hidden"> <p><img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor3a.png" style="width: 600px; height: 348px;"></p> <p><img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor3b.png" style="width: 600px; height: 310px;"></p> <p><img alt="" src="../../files/integration/differential-equations/esq_de_integratingfactor3c.png" style="width: 600px; height: 118px;"></p> </section> <h4>&nbsp;</h4> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> </div> </div> <div class="panel-footer"> <div>&nbsp;</div> </div> </div> <div class="page-container panel-self-assessment" data-id="2109"> <div class="panel-heading">MY PROGRESS</div> <div class="panel-body understanding-rate"> <div class="msg"></div>  <label class="label-lg">Self-assessment</label><p>How much of <strong>Differential Equations - Integrating Factor</strong> have you understood?</p><div class="slider-container text-center"><div id="self-assessment-slider" class="sib-slider self-assessment " data-value="1" data-percentage=""></div></div>  <label class="label-lg">My notes</label> <textarea name="page-notes" class="form-control" rows="3" placeholder="Write your notes here..."></textarea> </div> <div class="panel-footer text-xs-center"> <span id="last-edited" class="mb-xs-3"> </span> <div class="actions mt-xs-3">  <button id="save-my-progress" type="button" class="btn btn-sm btn-primary text-center btn-xs-block"> <i class="fa fa-fw fa-floppy-o"></i> Save </button> </div> </div></div> <div id="modal-feedback" class="modal fade" tabindex="-1" role="dialog"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h4 class="modal-title">Feedback</h4> <button type="button" class="close hidden-xs hidden-sm" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="errors"></div> <p><strong>Which of the following best describes your feedback?</strong></p> <form method="post" style="overflow: hidden"> <div class="form-group"> <div class="radio"><label style="color: #121212;"><input type="radio" name="feedback-type" value="Recommendation"> Recommend</label></div><div class="radio"><label style="color: #121212;"><input type="radio" name="feedback-type" value="Problem"> Report a problem</label></div><div class="radio"><label style="color: #121212;"><input type="radio" name="feedback-type" value="Improvement"> Suggest an improvement</label></div><div class="radio"><label style="color: #121212;"><input type="radio" name="feedback-type" value="Other"> Other</label></div> </div> <hr> <div class="row"> <div class="col-md-6"> <div class="form-group"> <label for="feedback-name">Name</label> <input type="text" class="form-control" name="feedback-name" placeholder="Name" value=" "> </div> </div> <div class="col-md-6"> <div class="form-group"> <label for="feedback-email">Email address</label> <input type="email" class="form-control" name="feedback-email" placeholder="Email" value="@airmail.cc"> </div> </div> </div> <div class="form-group"> <label for="feedback-comments">Comments</label> <textarea class="form-control" name="feedback-comments" style="resize: vertical;"></textarea> </div> <input type="hidden" name="feedback-ticket" value="082b9c9c4ae3624d"> <input type="hidden" name="feedback-url" value="https://studyib.net/mathsanalysis/page/2109/differential-equations-integrating-factor"> <input type="hidden" name="feedback-subject" value="11"> <input type="hidden" name="feedback-subject-name" value="Maths: Analysis & Approaches"> <div class="pull-left"> </div> </form> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary btn-xs-block feedback-submit mb-xs-3 pull-right"> <i class="fa fa-send"></i> Send </button> <button type="button" class="btn btn-default btn-xs-block m-xs-0 pull-left" data-dismiss="modal"> Close </button> </div> </div> </div></div> </article> <hr class="hidden-md hidden-lg"> <div class="hidden-md hidden-lg mt-xs-3"> <button class="btn btn-default btn-block text-xs-center" data-toggle="modal" data-target="#modal-feedback" style="margin-bottom: 10px"><i class="fa fa-send"></i>&nbsp;&nbsp;Feedback</button> </div> </div> <input type="hidden" id="user-id" value="38342"></div><input id="ticket" type="hidden" value="082b9c9c4ae3624d"><input id="tzoffset" type="hidden" value="new"><input id="fp" class="fp" type="hidden" value=""></div><div id="std-footer"> <div class="wmap"> <div class="layout-wrapper"> <p> <a href="https://www.inthinking.net"> &copy; <span id="footer-year"></span> <em>InThinking</em> <script>document.getElementById("footer-year").innerHTML = new Date().getFullYear();</script> </a> &nbsp;| &nbsp; <a target="_self" href="../../../about.html"> About us </a> &nbsp;|&nbsp; <a target="_self" href="../../../terms-and-conditions.html"> Legal </a> &nbsp;|&nbsp; <a target="_self" href="../../../contact.html"> Contact </a> </p> <p> <a class="social" target="_blank" href="https://twitter.com/#!/inthinker"> <img src="../../../img/social/twitter-square.svg"> Twitter </a> <a class="social" target="_blank" href="https://www.facebook.com/inthinking.net"> <img src="../../../img/social/facebook-square.svg"> Facebook </a> <a class="social" target="_blank" href="https://www.linkedin.com/profile/view?id=139741989"> <img src="../../../img/social/linkedin-square.svg"> LinkedIn </a> </p> </div> </div></div><script src="../../../js/jquery-1.11.3.min.js"></script><script src="../../../js/bootstrap.min.js"></script><script src="../../../js/jquery-fancybox/jquery.fancybox.min.js"></script><script>var pageId = 2109;</script><script type="text/javascript" src="../../../js/jqueryui/jquery-ui-custom.min.js"></script><script type="text/javascript" src="../../../js/jqueryui/jquery.ui.touch-punch.js"></script><script type="text/javascript" src="../../../js/std-quizzes-helpers.min.js?v=20220406"></script><script src="../../../ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script type="text/javascript" src="../../../js/slick-carousel/slick.min.js"></script><script type="text/javascript" src="../../../js/std-slide-quizzes.min.js?v=20220406"></script><script type="text/javascript" src="../../../js/jqueryui/jquery-ui.min.js"></script><script type="text/javascript" src="../../../js/jqueryui/jquery.ui.touch-punch.min.js"></script><script src="../../../js/user/page-my-progress.min.js?v=202211221000"></script><script>var sAJAX='/pages/subjects/activity/user-stats-page.php?t=082b9c9c4ae3624d&p=2109&s=11&x=28974';var sData='k4iA6GSB03BgPm14OUQqIxiA6GSB0bfq7Y9FwFiA6GSBPFAF7YcHEKvrZ0fREzP5PgfjEnEB7nK2SYBsWxpc70KsSYBhWHOlIzpiWHfBEbisSYB2E4pY6GarWbPFIxiA6GSB0bfsEbOFwHRFSYvAZGaDPmjWOUuywcrRPHaTZGyR74P5GD6r0zAFWYK3EGyDPmjWOLLvIxi860fB7nBsWVOFwHRFwdgbPmjoPnBgPm1NwU7RPHfjSYyBPm1FfKaf0rfc03B2SYKH7ncrZGqHEncmSYv4OzPRPHfq7Y9FwFifSGKDSYBhWFPRPHfsEbOFwHRFSYvAZGaDPmjWOUuywcrRPHaTZGyR74P5GD6rIdC30zAFWYK3EGyDPmjWOzADIduy00rRPHfh7YBm74P5GLrRPHaTZGyR74P5GLrRPnyBSnKR74P5GLLvIxPNwUlFwHRFZGCFwmlqwxAFSYBrWY9FwFic9LcefuKeZGqrEGS460fjWnSn6GarWbP4PFAFSVBAEzP5PBcLE0arZGv2PFAFSYcH74P5k4irWbpj6bOFwBRyOUuN0zAF738jWYyDPmjWamCRadESIxiRE0EBWVOFwBRyOFAD00rRPHfh7YBm74P5GLrRPHaTZGyR74P5GLrRPnyBSnKR74P5GLLvIxPqOdPFwHRFZGCFwmgAOFAFSYBrWY9FwFic9LcefuKeZGqrEGS460fjWnSn6GarWbPDPFAFSVBAEzP5PBcLE0arZGv2PFAFSYcH74P5k4irWbpj6bOFwBRyOUuN0zAF738jWYyDPmjWamCRadESIxiRE0EBWVOFwBR3IdaSezAFSYvAZGaDPmjW0zAF738jWYyDPmjW0zAFWYK3EGyDPmjW00rRPmgAaxP5k4ijExP5wUQrIxirZ0fREzP5Pgfc03B2SYKH7ncrZGqHEncmSYv4OzPRPHfq7Y9FwFiGZGfBW4PRPHfsEbOFwHRFSYvAZGaDPmjWOUuywcrRPHaTZGyR74P5GD6r0zAFWYK3EGyDPmjWaFAD00rRPHfh7YBm74P5GLrRPHaTZGyR74P5GLrRPnyBSnKR74P5GLLvIxPqOd9FwHRFZGCFwmgAazAFSYBrWY9FwFiufKvjWHfBEbisSYB2E3Es6bfh7mPFIxirk0pBPm1FKnBgEGXFIxir6GSDPmjoPHfh7YBm74P5GDuyOUsSIxiDZ3BRWVOFwBR3acrRPnyBSnKR74P5GDOROUiSezAFSYvAZGaDPmjW0zAF738jWYyDPmjW0zAFWYK3EGyDPmjW00LvIxiDSGigW3LsZGNFwFPFIxiA60f1Pm1F0xv860f173c26Gyq73BD0xvA6GSB0xX4OUQq0xvgZGEnE0iBWHfj6GA8E0cL60fjW3qDIGB2SYKH7ncrZGqHIGEs6bfh7Fiv';var loopSecs = 30;var minSecsLog = 60;var lsKey = '11-83608-2109';</script><script src="../../../js/subjects/activity/user-stats-page.min.js?v=202205311700"></script><script src="../../../js/subjects/activity/my-favorites.min.js?v=20220610"></script><script src="../../../js/subjects/feedback.min.js?v=202211221000"></script><script>var sessionUpdateSecs = 300;</script><script type="text/javascript" src="../../../js/session-updater.js"></script><script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');ga('create', 'UA-98480796-4', 'auto');ga('send', 'pageview');</script><script src="../../../js/devicefp/devicefp.min.js"></script><script src="../../../js/jq-quickfit/jq-quickfit.min.js?v=20220201"></script><script src="../../../js/frontpage-subjects.min.js?v=202211161300"></script><script type="text/javascript" src="../../../js/studyib-jq.min.js?v=202211241300"></script><script type="text/javascript">$(document).ready(function(){	$('#trigger-modal-video-overview').click(function() {	if( $('#modal-video-overview .modal-body iframe').attr('src').length == 0 ) {	$('#modal-video-overview .modal-body iframe').attr('src', 'https://www.youtube.com/embed/hxxtdiLdTFk?rel=0');	}	});	$('#modal-video-overview').on('hidden.bs.modal', function() {	$('#modal-video-overview .modal-body iframe').attr('src', '');	});	});</script></body></html>