File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 9 HTML/markSceme-HL-paper2html
File size: 1.31 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Two identical positive point charges X and Y are placed 0.30 m apart on a horizontal line. O is the point midway between X and Y. The charge on X and the charge on Y is +4.0 µC.</p>
</div>
<div class="specification">
<p>A positive charge Z is released from rest 0.010 m from O on the line between X and Y. Z then begins to oscillate about point O.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electric potential at O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, the variation of the electric potential <em>V</em> with distance between X and Y.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the direction of the resultant force acting on Z as it oscillates.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce whether the motion of Z is simple harmonic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>k</mi><mi>Q</mi></mrow><mi>r</mi></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mfenced><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>15</mn></mrow></mfrac></math> <em><strong>OR</strong> </em>240 «kV» for one charge calculated ✓</p>
<p>480 «kV» for both ✓</p>
<p> </p>
<p><em><strong>MP1</strong> can be seen or implied from calculation.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP2</strong> for <strong>MP3</strong>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>symmetric curve around 0 with potential always positive, “bowl shape up” and curve not touching the horizontal axis. ✓</p>
<p>clear asymptotes at X and Y ✓</p>
<p> </p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force is towards O ✓</p>
<p>always ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>motion is not SHM ✓</p>
<p>«because SHM requires force proportional to r and» this force depends on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>r</mi><mn>2</mn></msup></mfrac></math> ✓</p>
<p><em><strong><br>ALTERNATIVE 2</strong></em></p>
<p>motion is not SHM ✓</p>
<p>energy-distance «graph must be parabolic for SHM and this» graph is not parabolic ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was generally well approached. Two common errors were either starting with the wrong equation (electric potential energy or Coulomb's law) or subtracting the potentials rather than adding them.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates drew a graph that was awarded two marks. Many had a generally correct shape, but common errors were drawing the graph touching the x-axis at O and drawing a general parabola with no clear asymptotes.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to identify the direction of the force on the particle at position Z, but a common error was to miss that the question was about the direction as the particle was oscillating. Examiners were looking for a clear understanding that the force was always directed toward the equilibrium position, and not just at the moment shown in the diagram.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question for candidates. Most simply assumed that because the charge was oscillating that this meant the motion was simple harmonic. Some did recognize that it was not, and most of those candidates correctly identified that the relationship between force and displacement was an inverse square.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows the variation with diffraction angle of the intensity of light after it has passed through four parallel slits.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The number of slits is increased but their separation and width stay the same. All slits are illuminated.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the Doppler effect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A plate performs simple harmonic oscillations with a frequency of 39 Hz and an amplitude of 8.0 cm.</p>
<p>Show that the maximum speed of the oscillating plate is about 20 m s<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sound of frequency 2400 Hz is emitted from a stationary source towards the oscillating plate in (b). The speed of sound is 340 m s<sup>−1</sup>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Determine the maximum frequency of the sound that is received back at the source after reflection at the plate.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what will happen to the angular position of the primary maxima.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what will happen to the width of the primary maxima.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what will happen to the intensity of the secondary maxima.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the change in the observed frequency ✓</p>
<p>when there is relative motion between the source and the observer ✓</p>
<p> </p>
<p><em>Do not award<strong> MP1</strong> if they refer to wavelength.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi mathvariant="normal">π</mi><mi>f</mi><mi>A</mi></math> ✓</p>
<p>maximum speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>39</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>080</mn><mo>=</mo><mn>19</mn><mo>.</mo><mn>6</mn></math> «m s<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>frequency at plate <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2400</mn><mo>×</mo><mfrac><mrow><mn>340</mn><mo>+</mo><mn>19</mn><mo>.</mo><mn>6</mn></mrow><mn>340</mn></mfrac></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2538</mn><mo> </mo></math>Hz»</p>
<p>at source <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2538</mn><mo>×</mo><mfrac><mn>340</mn><mrow><mn>340</mn><mo>-</mo><mn>19</mn><mo>.</mo><mn>6</mn></mrow></mfrac><mo>=</mo><mn>2694</mn><mo>≈</mo><mn>2700</mn></math> «Hz» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Award <strong>[1]</strong> mark when the effect is only applied once.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stays the same ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases ✓</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases ✓</p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Police use radar to detect speeding cars. A police officer stands at the side of the road and points a radar device at an approaching car. The device emits microwaves which reflect off the car and return to the device. A change in frequency between the emitted and received microwaves is measured at the radar device.</p>
<p>The frequency change Δ<em>f</em> is given by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\Delta f = \frac{{2fv}}{c}">
<mi mathvariant="normal">Δ</mi>
<mi>f</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>f</mi>
<mi>v</mi>
</mrow>
<mi>c</mi>
</mfrac>
</math></span></p>
<p>where <em>f</em> is the transmitter frequency, <em>v</em> is the speed of the car and <em>c</em> is the wave speed.</p>
<p>The following data are available.</p>
Transmitter frequency <em>f</em>
= 40 GHz
Δ<em>f</em>
= 9.5 kHz
Maximum speed allowed
= 28 m s<sup>–1</sup>
<p> </p>
<p>(i) Explain the reason for the frequency change.</p>
<p>(ii) Suggest why there is a factor of 2 in the frequency-change equation.</p>
<p>(iii) Determine whether the speed of the car is below the maximum speed allowed.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Airports use radar to track the position of aircraft. The waves are reflected from the aircraft and detected by a large circular receiver. The receiver must be able to resolve the radar images of two aircraft flying close to each other.</p>
<p>The following data are available.</p>
Diameter of circular radar receiver
= 9.3 m
Wavelength of radar
= 2.5 cm
Distance of two aircraft from the airport
= 31 km
<p> </p>
<p>Calculate the minimum distance between the two aircraft when their images can just be resolved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i<br>mention of Doppler effect<br><em><strong>OR</strong></em><br>«relative» motion between source and observer produces frequency/wavelength change<br><em>Accept answers which refer to a double frequency shift.</em><br><em>Award <strong>[0]</strong> if there is any suggestion that the wave speed is changed in the process.</em><br><br>the reflected waves come from an approaching “source” <br><em><strong>OR</strong></em><br>the incident waves strike an approaching “observer”</p>
<p>increased frequency received «by the device <em><strong>or</strong></em> by the car»</p>
<p><br><br>ii<br>the car is a moving “observer” and then a moving “source”, so the Doppler effect occurs twice<br><em><strong>OR</strong></em><br>the reflected radar appears to come from a “virtual image” of the device travelling at 2 v towards the device</p>
<p> </p>
<p>iii<br><strong>ALTERNATIVE 1</strong><br><em>For both alternatives, allow ecf to conclusion if v <strong>OR</strong> Δf are incorrectly calculated.</em></p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left( {3 \times {{10}^8}} \right) \times \left( {9.5 \times {{10}^3}} \right)}}{{\left( {40 \times {{10}^9}} \right) \times 2}} = ">
<mfrac>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>9.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>40</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>9</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 36 «ms<sup>–1</sup>»</p>
<p>«36> 28» so car exceeded limit<br><em>There must be a sense of a conclusion even if numbers are not quoted.</em></p>
<p><strong>ALTERNATIVE 2</strong><br><em>reverse argument using speed limit.</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta f = ">
<mi mathvariant="normal">Δ</mi>
<mi>f</mi>
<mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2 \times 40 \times {{10}^9} \times 28}}{{3 \times {{10}^8}}} = ">
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>40</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>9</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>28</mn>
</mrow>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 7500 «Hz»</p>
<p>« 9500> 7500» so car exceeded limit<br><em>There must be a sense of a conclusion even if numbers are not quoted.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{31 \times {{10}^3} \times 1.22 \times 2.5 \times {{10}^{ - 2}}}}{{9.3}}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>31</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>1.22</mn>
<mo>×</mo>
<mn>2.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>9.3</mn>
</mrow>
</mfrac>
</math></span><em><br>Award <strong>[2]</strong> for a bald correct answer.</em><br><em>Award <strong>[1 max]</strong> for POT error.</em></p>
<p>100 «m»<br><em>Award <strong>[1 max]</strong> for 83m (omits 1.22).</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A student is investigating a method to measure the mass of a wooden block by timing the period of its oscillations on a spring.</p>
</div>
<div class="specification">
<p>A 0.52 kg mass performs simple harmonic motion with a period of 0.86 s when attached to the spring. A wooden block attached to the same spring oscillates with a period of 0.74 s.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>With the block stationary a longitudinal wave is made to travel through the original spring from left to right. The diagram shows the variation with distance <em>x</em> of the displacement <em>y</em> of the coils of the spring at an instant of time.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A point on the graph has been labelled that represents a point P on the spring.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the conditions required for an object to perform simple harmonic motion (SHM).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of the wooden block.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In carrying out the experiment the student displaced the block horizontally by 4.8 cm from the equilibrium position. Determine the total energy in the oscillation of the wooden block.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical spring is placed in parallel and the experiment in (b) is repeated. Suggest how this change affects the fractional uncertainty in the mass of the block.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of motion of P on the spring.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain whether P is at the centre of a compression or the centre of a rarefaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>acceleration/restoring force is proportional to displacement<br>and in the opposite direction/directed towards equilibrium</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{T_1^2}}{{T_2^2}} = \frac{{{m_1}}}{{{m_2}}}">
<mfrac>
<mrow>
<msubsup>
<mi>T</mi>
<mn>1</mn>
<mn>2</mn>
</msubsup>
</mrow>
<mrow>
<msubsup>
<mi>T</mi>
<mn>2</mn>
<mn>2</mn>
</msubsup>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>mass = 0.38 / 0.39 «kg»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>«use of <em>T <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\pi \sqrt {\frac{m}{k}} ">
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<msqrt>
<mfrac>
<mi>m</mi>
<mi>k</mi>
</mfrac>
</msqrt>
</math></span></em>» <em>k</em> = 28 «Nm<sup>–1</sup>»</p>
<p>«use of <em>T <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\pi \sqrt {\frac{m}{k}} ">
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<msqrt>
<mfrac>
<mi>m</mi>
<mi>k</mi>
</mfrac>
</msqrt>
</math></span></em>» <em>m</em> = 0.38 / 0.39 «kg»</p>
<p> </p>
<p><em>Allow ECF from MP1.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ω </em>= «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{{0.74}}">
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>0.74</mn>
</mrow>
</mfrac>
</math></span>» <em>= </em>8.5 «rads<sup>–1</sup>»</p>
<p>total energy = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 0.39 \times {8.5^2} \times {(4.8 \times {10^{ - 2}})^2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>0.39</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>8.5</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<mo stretchy="false">(</mo>
<mn>4.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>= 0.032 «J»</p>
<p> </p>
<p><em>Allow ECF from (b) and incorrect ω.</em></p>
<p><em>Allow answer using k from part (b).</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>spring constant/k/stiffness would increase<br><em>T</em> would be smaller<br>fractional uncertainty in <em>T</em> would be greater, so fractional uncertainty of mass of block would be greater</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>left</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>coils to the right of P move right and the coils to the left move left</p>
<p>hence P at centre of rarefaction</p>
<p> </p>
<p><em>Do not allow a bald statement of rarefaction or answers that don’t include reference to the movement of coils.</em></p>
<p><em>Allow ECF from MP1 if the movement of the coils imply a compression.</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigates how light can be used to measure the speed of a toy train.</p>
<p style="text-align: center;"><img src=""><img src="blob:https://questionbank.ibo.org/55ba542d-3306-4ee7-8386-825edadb928d"></p>
<p>Light from a laser is incident on a double slit. The light from the slits is detected by a light sensor attached to the train.</p>
<p>The graph shows the variation with time of the output voltage from the light sensor as the train moves parallel to the slits. The output voltage is proportional to the intensity of light incident on the sensor.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><img src="blob:https://questionbank.ibo.org/4e0f3fdc-c845-43ef-ba7c-39bab20625cf"></p>
<p> </p>
</div>
<div class="specification">
<p>As the train continues to move, the first diffraction minimum is observed when the light sensor is at a distance of 0.13 m from the centre of the fringe pattern.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A student investigates how light can be used to measure the speed of a toy train.</p>
<p style="text-align: center;"><img src=""></p>
<p>Light from a laser is incident on a double slit. The light from the slits is detected by a light sensor attached to the train.</p>
<p>The graph shows the variation with time of the output voltage from the light sensor as the train moves parallel to the slits. The output voltage is proportional to the intensity of light incident on the sensor.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the light passing through the slits, why a series of voltage peaks occurs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The slits are separated by 1.5 mm and the laser light has a wavelength of 6.3 x 10<sup>–7</sup> m. The slits are 5.0 m from the train track. Calculate the separation between two adjacent positions of the train when the output voltage is at a maximum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the speed of the train.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the width of one of the slits.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the variation in the output voltage from the light sensor that will be observed as the train moves beyond the first diffraction minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In another experiment the student replaces the light sensor with a sound sensor. The train travels away from a loudspeaker that is emitting sound waves of constant amplitude and frequency towards a reflecting barrier.</p>
<p><img src=""></p>
<p>The graph shows the variation with time of the output voltage from the sounds sensor.</p>
<p><img src=""></p>
<p>Explain how this effect arises.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«light» superposes/interferes</p>
<p>pattern consists of «intensity» maxima and minima<br><em><strong>OR</strong></em><br>consisting of constructive and destructive «interference»</p>
<p>voltage peaks correspond to interference maxima</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{{\lambda D}}{d} = \frac{{6.3 \times {{10}^{ - 7}} \times 5.0}}{{1.5 \times {{10}^{ - 3}}}} = ">
<mi>s</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>λ</mi>
<mi>D</mi>
</mrow>
<mi>d</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>5.0</mn>
</mrow>
<mrow>
<mn>1.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 2.1 x 10<sup>–3 </sup>«m» </p>
<p> </p>
<p><em>If no unit assume m.</em><br><em>Correct answer only.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct read-off from graph of 25 m s</p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{t} = \frac{{2.1 \times {{10}^{ - 3}}}}{{25 \times {{10}^{ - 3}}}} = ">
<mfrac>
<mi>x</mi>
<mi>t</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>25</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 8.4 x 10<sup>–2</sup> «m s<sup>–1</sup>»</p>
<p> </p>
<p><em>Allow ECF from (b)(i)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>angular width of diffraction minimum = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.13}}{{5.0}}">
<mfrac>
<mrow>
<mn>0.13</mn>
</mrow>
<mrow>
<mn>5.0</mn>
</mrow>
</mfrac>
</math></span> «= 0.026 rad»</p>
<p>slit width = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{d} = \frac{{6.3 \times {{10}^{ - 7}}}}{{0.026}} = ">
<mfrac>
<mi>λ</mi>
<mi>d</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>0.026</mn>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 2.4 x 10<sup>–5</sup> «m»</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> for solution using 1.22 factor.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«beyond the first diffraction minimum» average voltage is smaller<br><br>«voltage minimum» spacing is «approximately» same<br><em><strong>OR</strong></em><br>rate of variation of voltage is unchanged</p>
<p> </p>
<p><em>OWTTE</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«reflection at barrier» leads to two waves travelling in opposite directions </p>
<p>mention of formation of standing wave</p>
<p>maximum corresponds to antinode/maximum displacement «of air molecules»<br><em><strong>OR</strong></em><br>complete cancellation at node position</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Yellow light from a sodium lamp of wavelength 590 nm is incident at normal incidence on a double slit. The resulting interference pattern is observed on a screen. The intensity of the pattern on the screen is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The double slit is replaced by a diffraction grating that has 600 lines per millimetre. The resulting pattern on the screen is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why zero intensity is observed at position A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The distance from the centre of the pattern to A is 4.1 x 10<sup>–2</sup> m. The distance from the screen to the slits is 7.0 m.</p>
<p><img src=""></p>
<p>Calculate the width of each slit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the separation of the two slits.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the differences between the pattern on the screen due to the grating and the pattern due to the double slit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The yellow light is made from two very similar wavelengths that produce two lines in the spectrum of sodium. The wavelengths are 588.995 nm and 589.592 nm. These two lines can just be resolved in the second-order spectrum of this diffraction grating. Determine the beam width of the light incident on the diffraction grating.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the diagram shows the combined effect of «single slit» diffraction and «double slit» interference</p>
<p>recognition that there is a minimum of the single slit pattern</p>
<p><em><strong>OR</strong></em></p>
<p>a missing maximum of the double slit pattern at A</p>
<p>waves «from the single slit» are in antiphase/cancel/have a path difference of (<em>n</em> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>)<em>λ</em>/destructive interference at A</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>θ</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.1 \times {{10}^{ - 2}}}}{{7.0}}">
<mfrac>
<mrow>
<mn>4.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>7.0</mn>
</mrow>
</mfrac>
</math></span> <em><strong>OR</strong> b</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{\theta }">
<mfrac>
<mi>λ</mi>
<mi>θ</mi>
</mfrac>
</math></span> «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7.0 \times 5.9 \times {{10}^{ - 7}}}}{{4.1 \times {{10}^{ - 2}}}}">
<mfrac>
<mrow>
<mn>7.0</mn>
<mo>×</mo>
<mn>5.9</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»</p>
<p>1.0 × 10<sup>–4</sup> «m»</p>
<p><em>Award <strong>[0]</strong> for use of double slit formula (which gives the correct answer so do not award BCA) </em></p>
<p><em>Allow use of sin or tan for small angles</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>s</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\lambda D}}{d}">
<mfrac>
<mrow>
<mi>λ</mi>
<mi>D</mi>
</mrow>
<mi>d</mi>
</mfrac>
</math></span> with 3 fringes «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{590 \times {{10}^{ - 9}} \times 7.0}}{{4.1 \times {{10}^{ - 2}}}}">
<mfrac>
<mrow>
<mn>590</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>7.0</mn>
</mrow>
<mrow>
<mn>4.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»</p>
<p>3.0 x 10<sup>–4</sup> «m»</p>
<p><em>Allow ECF.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>fringes are further apart because the separation of slits is «much» less</p>
<p>intensity does not change «significantly» across the pattern <em><strong>or</strong> </em>diffraction envelope is broader because slits are «much» narrower</p>
<p>the fringes are narrower/sharper because the region/area of constructive interference is smaller/there are more slits</p>
<p>intensity of peaks has increased because more light can pass through</p>
<p><em>Award <strong>[1 max]</strong> for stating one or more differences with no explanation</em></p>
<p><em>Award <strong>[2 max]</strong> for stating one difference with its explanation</em></p>
<p><em>Award <strong>[MP3]</strong> for a second difference with its explanation</em></p>
<p><em>Allow “peaks” for “fringes”</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>λ</em> = 589.592 – 588.995</p>
<p><em><strong>OR</strong></em></p>
<p>Δ<em>λ</em> = 0.597 «nm»</p>
<p><em>N</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{{m\Delta \lambda }}">
<mfrac>
<mi>λ</mi>
<mrow>
<mi>m</mi>
<mi mathvariant="normal">Δ</mi>
<mi>λ</mi>
</mrow>
</mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{589}}{{2 \times 0.597}}">
<mfrac>
<mrow>
<mn>589</mn>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>0.597</mn>
</mrow>
</mfrac>
</math></span> «493»</p>
<p>beam width = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{493}}{{600}}">
<mfrac>
<mrow>
<mn>493</mn>
</mrow>
<mrow>
<mn>600</mn>
</mrow>
</mfrac>
</math></span> =» 8.2 x 10<sup>–4</sup> «m» <em><strong>or</strong> </em>0.82 «mm»</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical solid cylinder of uniform cross-sectional area <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> floats in water. The cylinder is partially submerged. When the cylinder floats at rest, a mark is aligned with the water surface. The cylinder is pushed vertically downwards so that the mark is a distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> below the water surface.</p>
<p style="text-align: center;"><img src="" width="509" height="210"></p>
<p style="text-align: left;">At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> the cylinder is released. The resultant vertical force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> on the cylinder is related to the displacement <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> of the mark by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mo>-</mo><mi>ρ</mi><mi>A</mi><mi>g</mi><mi>x</mi></math></p>
<p style="text-align: left;">where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi></math> is the density of water.</p>
</div>
<div class="specification">
<p>The cylinder was initially pushed down a distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>250</mn><mo> </mo><mi mathvariant="normal">m</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the cylinder performs simple harmonic motion when released.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the cylinder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>118</mn><mo> </mo><mi>kg</mi></math> and the cross-sectional area of the cylinder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>29</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup></math>. The density of water is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>03</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo> </mo><mi>kg</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></math>. Show that the angular frequency of oscillation of the cylinder is about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>4</mn><mo> </mo><mo> </mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum kinetic energy <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>kmax</mi></msub></math> of the cylinder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, the graph to show how the kinetic energy of the cylinder varies with time during <strong>one</strong> period of oscillation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="610" height="371"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the </span><span class="fontstyle2">«</span><span class="fontstyle0">restoring</span><span class="fontstyle2">» </span><span class="fontstyle0">force/acceleration is proportional to displacement </span><span class="fontstyle3">✓ </span></p>
<p><em><span class="fontstyle4"><br>Allow use of symbols i.e. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>∝</mo><mo>-</mo><mi>x</mi></math><span class="fontstyle4"> or </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∝</mo><mo>-</mo><mi>x</mi></math></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">Evidence of equating <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><msup><mi>ω</mi><mn>2</mn></msup><mi>x</mi><mo>=</mo><mi>ρ</mi><mi>A</mi><mi>g</mi><mi>x</mi></math> «to obtain <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ρ</mi><mi>A</mi><mi>g</mi></mrow><mi>m</mi></mfrac><mo>=</mo><msup><mi>ω</mi><mn>2</mn></msup></math>» ✓</span></p>
<p> </p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><msqrt><mfrac><mrow><mn>1</mn><mo>.</mo><mn>03</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>29</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mn>118</mn></mfrac></msqrt></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>43</mn><mo>«</mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><span class="fontstyle0">Answer to at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">3</mn></math> s.f.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">K</mi></msub></math> </span><span class="fontstyle1">is a maximum when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> hence</span><span class="fontstyle0">» <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mrow><mi mathvariant="normal">K</mi><mo>,</mo><mo> </mo><mi>max</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>118</mn><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>4</mn><mn>2</mn></msup><mfenced><mrow><mn>0</mn><mo>.</mo><msup><mn>250</mn><mn>2</mn></msup><mo>-</mo><msup><mn>0</mn><mn>2</mn></msup></mrow></mfenced></math> </span><span class="fontstyle3">✓</span></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>71</mn><mo>.</mo><mn>4</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> <span class="fontstyle3">✓</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">energy never negative </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">correct shape with two maxima </span><span class="fontstyle2">✓</span></p>
<p><img src=""></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was well answered with candidates gaining credit for answers in words or symbols.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again, very well answered.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A straightforward calculation with the most common mistake being missing the squared on the omega.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates answered with a graph that was only positive so scored the first mark.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>There is a proposal to power a space satellite X as it orbits the Earth. In this model, X is connected by an electronically-conducting cable to another smaller satellite Y.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Satellite Y orbits closer to the centre of Earth than satellite X. Outline why</p>
</div>
<div class="specification">
<p>The cable acts as a spring. Satellite Y has a mass <em>m</em> of 3.5 x 10<sup>2</sup> kg. Under certain circumstances, satellite Y will perform simple harmonic motion (SHM) with a period <em>T</em> of 5.2 s.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Satellite X orbits 6600 km from the centre of the Earth.</p>
<p>Mass of the Earth = 6.0 x 10<sup>24</sup> kg</p>
<p>Show that the orbital speed of satellite X is about 8 km s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the orbital times for X and Y are different.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>satellite Y requires a propulsion system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable between the satellites cuts the magnetic field lines of the Earth at right angles.</p>
<p><img src=""></p>
<p>Explain why satellite X becomes positively charged.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Satellite X must release ions into the space between the satellites. Explain why the current in the cable will become zero unless there is a method for transferring charge from X to Y.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The magnetic field strength of the Earth is 31 μT at the orbital radius of the satellites. The cable is 15 km in length. Calculate the emf induced in the cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the value of <em>k</em> in the following expression.</p>
<p><em>T</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi \sqrt {\frac{m}{k}} ">
<mn>2</mn>
<mi>π</mi>
<msqrt>
<mfrac>
<mi>m</mi>
<mi>k</mi>
</mfrac>
</msqrt>
</math></span></p>
<p>Give an appropriate unit for your answer. Ignore the mass of the cable and any oscillation of satellite X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the energy changes in the satellite Y-cable system during one cycle of the oscillation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {\frac{{G{M_E}}}{r}} ">
<mi>v</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mi>G</mi>
<mrow>
<msub>
<mi>M</mi>
<mi>E</mi>
</msub>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</msqrt>
</math></span>» = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{6.67 \times {{10}^{ - 11}} \times 6.0 \times {{10}^{24}}}}{{6600 \times {{10}^3}}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>6.67</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>11</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>6.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>24</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>6600</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>7800 «m s<sup>–1</sup>»</p>
<p><em>Full substitution required</em></p>
<p><em>Must see 2+ significant figures.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Y has smaller orbit/orbital speed is greater so time period is less</p>
<p><em>Allow answer from appropriate equation</em></p>
<p><em>Allow converse argument for X</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to stop Y from getting ahead</p>
<p>to remain stationary with respect to X</p>
<p>otherwise will add tension to cable/damage satellite/pull X out of its orbit</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>cable is a conductor and contains electrons</p>
<p>electrons/charges experience a force when moving in a magnetic field</p>
<p>use of a suitable hand rule to show that satellite Y becomes negative «so X becomes positive»</p>
<p><em><strong>Alternative 2</strong></em></p>
<p>cable is a conductor</p>
<p>so current will flow by induction flow when it moves through a B field</p>
<p>use of a suitable hand rule to show current to right so «X becomes positive»</p>
<p><em>Marks should be awarded from either one alternative or the other.</em></p>
<p><em>Do not allow discussion of positive charges moving towards X</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons would build up at satellite Y/positive charge at X</p>
<p>preventing further charge flow</p>
<p>by electrostatic repulsion</p>
<p>unless a complete circuit exists</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>ε</em> = <em>Blv =</em>» 31 x 10<sup>–6</sup> x 7990 x 15000</p>
<p>3600 «V»</p>
<p><em>Allow 3700 «V» from v = 8000 m s<sup>–1</sup>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>k</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4{\pi ^2}m}}{{{T^2}}} = ">
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>m</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>T</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times {\pi ^2} \times 350}}{{{{5.2}^2}}}">
<mfrac>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>350</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mn>5.2</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>510</p>
<p>N m<sup>–1</sup> <em><strong>or</strong> </em>kg s<sup>–2</sup></p>
<p><em>Allow MP1 and MP2 for a bald correct answer</em></p>
<p><em>Allow 500</em></p>
<p><em>Allow N/m etc.</em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>p</sub> in the cable/system transfers to <em>E</em><sub>k</sub> of Y</p>
<p>and back again twice in each cycle</p>
<p><em>Exclusive use of gravitational potential energy negates MP1</em></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A painting is protected behind a transparent glass sheet of refractive index <em>n</em><sub>glass</sub>. A coating of thickness <em>w</em> is added to the glass sheet to reduce reflection. The refractive index of the coating <em>n</em><sub>coating</sub> is such that <em>n</em><sub>glass</sub> > <em>n</em><sub>coating</sub> > 1.</p>
<p>The diagram illustrates rays <strong>normally</strong> incident on the coating. Incident angles on the diagram are drawn away from the normal for clarity.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the phase change when a ray is reflected at B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the condition for <em>w</em> that eliminates reflection for a particular light wavelength in air <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mtext>air</mtext></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the Rayleigh criterion for resolution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The painting contains a pattern of red dots with a spacing of 3 mm. Assume the wavelength of red light is 700 nm. The average diameter of the pupil of a human eye is 4 mm. Calculate the maximum possible distance at which these red dots are distinguished.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>«change is» </mtext><mi>π</mi><mo>/</mo><mn>180</mn><mo>°</mo></math> <strong>✓</strong></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«to eliminate reflection» destructive interference is required <strong>✓</strong></p>
<p>phase change is the same at both boundaries / no relative phase change due to reflections <strong>✓</strong></p>
<p>therefore <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>w</mi><msub><mi>n</mi><mtext>coating</mtext></msub><mo>=</mo><mfenced><mrow><mi>m</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced><msub><mi>λ</mi><mtext>air</mtext></msub></math></p>
<p><strong><em>OR</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mo>=</mo><mfrac><msub><mi>λ</mi><mtext>coating</mtext></msub><mn>4</mn></mfrac></math></p>
<p> <strong><em>OR</em></strong></p>
<p><strong><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mo>=</mo><mfrac><msub><mi>λ</mi><mtext>air</mtext></msub><mrow><mn>4</mn><msub><mi>n</mi><mtext>coating</mtext></msub></mrow></mfrac></math> ✓<br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>central maximum of one diffraction pattern lies over the central/first minimum of the other diffraction pattern<strong> ✓</strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mo>«</mo><mn>1</mn><mo>.</mo><mn>22</mn><mfrac><mi>λ</mi><mi>b</mi></mfrac><mo>=</mo><mn>1</mn><mo>.</mo><mn>22</mn><mfrac><mrow><mn>700</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn></mrow></msup></mrow><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>2</mn><mo>.</mo><mn>14</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup><mo>«</mo><mtext>rad</mtext><mo>»</mo></math> ✓</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>=</mo><mn>14</mn><mo>«</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo> </mo><mo> </mo><mtext>m</mtext><mo>»</mo></math> ✓</strong> </p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>On a guitar, the strings played vibrate between two fixed points. The frequency of vibration is modified by changing the string length using a finger. The different strings have different wave speeds. When a string is plucked, a standing wave forms between the bridge and the finger.</p>
<p> <img src=""></p>
</div>
<div class="specification">
<p>The string is displaced 0.4 cm at point P to sound the guitar. Point P on the string vibrates with simple harmonic motion (shm) in its first harmonic with a frequency of 195 Hz. The sounding length of the string is 62 cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how a standing wave is produced on the string.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the wave on the string is about 240 m s<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show how the acceleration of point P varies with its displacement from the rest position.</p>
<p> <img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in m s<sup>−1</sup>, the maximum velocity of vibration of point P when it is vibrating with a frequency of 195 Hz.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in terms of <em>g</em>, the maximum acceleration of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the displacement needed to double the energy of the string.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The string is made to vibrate in its third harmonic. State the distance between consecutive nodes. </p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«travelling» wave moves along the length of the string and reflects «at fixed end» <strong>✓</strong></p>
<p>superposition/interference of incident and reflected waves <strong>✓</strong></p>
<p>the superposition of the reflections is reinforced only for certain wavelengths <strong>✓</strong> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>2</mn><mi>l</mi><mo>=</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>62</mn><mo>=</mo><mo>«</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo> </mo><mtext>m</mtext><mo>»</mo></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mi>f</mi><mi>λ</mi><mo>=</mo><mn>195</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>=</mo><mn>242</mn><mo> </mo><mo>«</mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</p>
<p><em>Answer must be to 3 or more sf or working shown for<strong> MP2.</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>straight line through origin with negative gradient <strong>✓</strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>max velocity occurs at x = 0 <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>«</mo><mo>(</mo><mn>2</mn><mi>π</mi><mo>)</mo><mo>(</mo><mn>195</mn><mo>)</mo><msqrt><mn>0</mn><mo>.</mo><msup><mn>004</mn><mn>2</mn></msup></msqrt><mo>»</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>9</mn><mo> </mo><mo>«</mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><msup><mfenced><mrow><msub><mn>2</mn><mi mathvariant="normal">π</mi></msub><mo> </mo><mn>195</mn></mrow></mfenced><mn>2</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>004</mn><mo>=</mo><mn>6005</mn><mo> </mo><mo>«</mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>600</mn><mo> </mo><mtext>g</mtext></math> <strong>✓</strong></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>∝</mo><msup><mi>A</mi><mn>2</mn></msup><mtext mathvariant="bold-italic"> OR </mtext><msup><msub><mi>x</mi><mtext>o</mtext></msub><mn>2</mn></msup></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><msqrt><mn>2</mn></msqrt><mo>=</mo><mn>0</mn><mo>.</mo><mn>57</mn><mo> </mo><mo>«</mo><mtext>cm</mtext><mo>»</mo><mo> </mo><mo>≅</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>6</mn><mo> </mo><mo>«</mo><mtext>cm</mtext><mo>»</mo></math> <strong>✓</strong></p>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>62</mn><mn>3</mn></mfrac><mo>=</mo><mn>21</mn><mo> </mo><mo>«</mo><mtext>cm</mtext><mo>»</mo></math> <strong>✓</strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Monochromatic light of wavelength <em>λ</em> is normally incident on a diffraction grating. The diagram shows adjacent slits of the diffraction grating labelled V, W and X. Light waves are diffracted through an angle <em>θ</em> to form a <strong>second-order</strong> diffraction maximum. Points Z and Y are labelled.</p>
<p style="text-align: center;"> <img src=""></p>
</div>
<div class="specification">
<p>State the effect on the graph of the variation of sin <em>θ</em> with <em>n</em> of:</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the phase difference between the waves at V and Y.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in terms of <em>λ</em>, the path length between points X and Z.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The separation of adjacent slits is <em>d</em>. Show that for the second-order diffraction maximum <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>λ</mi><mo>=</mo><mi>d</mi><mi>sin</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Monochromatic light of wavelength 633 nm is normally incident on a diffraction grating. The diffraction maxima incident on a screen are detected and their angle <em>θ</em> to the central beam is determined. The graph shows the variation of sin<em>θ</em> with the order <em>n</em> of the maximum. The central order corresponds to <em>n</em> = 0.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Determine a mean value for the number of slits per millimetre of the grating.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>using a light source with a smaller wavelength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>increasing the distance between the diffraction grating and the screen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>0 <em><strong>OR</strong> </em>2<em>π</em> <em><strong>OR</strong> </em>360° <strong>✓</strong></p>
<p> </p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4<em>λ</em> <strong>✓</strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>«</mo><mo>=</mo><mfrac><mtext>XZ</mtext><mtext>VX</mtext></mfrac><mo>»</mo><mo>=</mo><mfrac><mrow><mn>4</mn><mi>λ</mi></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac></math><strong>✓</strong></p>
<p><em><br>Do <strong>not</strong> award <strong>ECF</strong> from(a)(ii).</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>identifies gradient with <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>λ</mi><mi>d</mi></mfrac></math> <em><strong>OR</strong> </em>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mi>n</mi><mi>λ</mi></math><strong> ✓</strong></p>
<p>gradient = 0.08 <em><strong>OR</strong> </em>correct replacement in equation with coordinates of a point <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mfrac><mrow><mn>633</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>080</mn></mrow></mfrac><mo>=</mo><mo>«</mo><mn>7</mn><mo>.</mo><mn>91</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mtext>m</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>26</mn><mo>×</mo><msup><mn>10</mn><mn>2</mn></msup><mo> </mo><mtext mathvariant="bold-italic">OR</mtext><mo> </mo><mn>1</mn><mo>.</mo><mn>27</mn><mo>×</mo><mn>102</mn><mo>«</mo><msup><mtext>mm</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<p><em><br>Allow <strong>ECF</strong> from <strong>MP3</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient smaller <strong>✓</strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no change <strong>✓</strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.</p>
</div>
<div class="specification">
<p>The beam is incident normally on a double slit. The distance between the slits is 0.300 mm. A screen is at a distance <em>D </em>from the slits. The diffraction angle <em>θ </em>is labelled.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.53.34.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/03.a"></p>
</div>
<div class="specification">
<p>The graph of variation of intensity with diffraction angle for this experiment is shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_12.36.49.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/03.b"></p>
</div>
<div class="specification">
<p>A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.</p>
</div>
<div class="specification">
<p>The beam is incident normally on a double slit. The distance between the slits is 0.300 mm. A screen is at a distance <em>D </em>from the slits. The diffraction angle <em>θ </em>is labelled.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.53.34.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/03.a"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A series of dark and bright fringes appears on the screen. Explain how a dark fringe is formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the beam has to be coherent in order for the fringes to be visible.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wavelength of the beam as observed on Earth is 633.0 nm. The separation between a dark and a bright fringe on the screen is 4.50 mm. Calculate <em>D</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angular separation between the central peak and the missing peak in the double-slit interference intensity pattern. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, in mm, the width of one slit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wavelength of the light in the beam when emitted by the galaxy was 621.4 nm.</p>
<p>Explain, without further calculation, what can be deduced about the relative motion of the galaxy and the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>superposition of light from each slit / interference of light from both slits</p>
<p>with path/phase difference of any half-odd multiple of wavelength/any odd multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> (in words or symbols)</p>
<p>producing destructive interference</p>
<p> </p>
<p><em>Ignore any reference to crests and troughs.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>light waves (from slits) must have constant phase difference / no phase difference / be in phase</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of solving for <em>D </em>«<em>D</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{sd}}{\lambda }">
<mo>=</mo>
<mfrac>
<mrow>
<mi>s</mi>
<mi>d</mi>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span>» ✔</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.50 \times {{10}^{ - 3}} \times 0.300 \times {{10}^{ - 3}}}}{{633.0 \times {{10}^{ - 9}}}} \times 2">
<mfrac>
<mrow>
<mn>4.50</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>0.300</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>633.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>×</mo>
<mn>2</mn>
</math></span>» = 4.27 «m» ✔</p>
<p> </p>
<p><em>Award <strong>[1]</strong> max for 2.13 m.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sin <em>θ</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times 633.0 \times {{10}^{ - 9}}}}{{0.300 \times {{10}^{ - 3}}}}">
<mfrac>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>633.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>0.300</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>sin <em>θ</em> = 0.0084401…</p>
<p>final answer to three sig figs (<em>eg </em>0.00844 or 8.44 × 10<sup>–3</sup>)</p>
<p> </p>
<p><em>Allow ECF from (a)(iii).</em></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for 0.121 rad (can award MP3 in addition for proper sig fig)</em></p>
<p><em>Accept calculation in degrees leading to 0.481 degrees.</em></p>
<p><em>Award MP3 for any answer expressed to 3sf.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of diffraction formula <strong>«</strong><em>b</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{\theta }">
<mfrac>
<mi>λ</mi>
<mi>θ</mi>
</mfrac>
</math></span><strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{633.0 \times {{10}^{ - 9}}}}{{0.00844}}">
<mfrac>
<mrow>
<mn>633.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>0.00844</mn>
</mrow>
</mfrac>
</math></span></p>
<p><strong>«</strong>=<strong>»</strong> 7.5<strong>«</strong>00<strong>»</strong> × 10<sup>–2</sup><strong> «</strong>mm<strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from (b)(i).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength increases (so frequency decreases) / light is redshifted</p>
<p>galaxy is moving away from Earth</p>
<p> </p>
<p><em>Allow ECF for MP2 (ie wavelength decreases so moving towards).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An elastic climbing rope is tested by fixing one end of the rope to the top of a crane. The other end of the rope is connected to a block which is initially at position A. The block is released from rest. The mass of the rope is negligible.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.44.22.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/01"></p>
<p>The unextended length of the rope is 60.0 m. From position A to position B, the block falls freely.</p>
</div>
<div class="specification">
<p>In another test, the block hangs in equilibrium at the end of the same elastic rope. The elastic constant of the rope is 400 Nm<sup>–1</sup>. The block is pulled 3.50 m vertically below the equilibrium position and is then released from rest.</p>
</div>
<div class="specification">
<p>An elastic climbing rope is tested by fixing one end of the rope to the top of a crane. The other end of the rope is connected to a block which is initially at position A. The block is released from rest. The mass of the rope is negligible.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.44.22.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/01"></p>
<p>The unextended length of the rope is 60.0 m. From position A to position B, the block falls freely.</p>
</div>
<div class="specification">
<p>At position C the speed of the block reaches zero. The time taken for the block to fall between B and C is 0.759 s. The mass of the block is 80.0 kg.</p>
</div>
<div class="specification">
<p>For the rope and block, describe the energy changes that take place</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At position B the rope starts to extend. Calculate the speed of the block at position B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the magnitude of the average resultant force acting on the block between B and C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch on the diagram the average resultant force acting on the block between B and C. The arrow on the diagram represents the weight of the block.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the magnitude of the average force exerted by the rope on the block between B and C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>between A and B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>between B and C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The length reached by the rope at C is 77.4 m. Suggest how energy considerations could be used to determine the elastic constant of the rope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the time taken for the block to return to the equilibrium position for the first time. </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of the block as it passes the equilibrium position. </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of conservation of energy</p>
<p><strong><em>OR</em></strong></p>
<p><em>v</em><sup>2</sup> = <em>u</em><sup>2</sup> + 2<em>as</em></p>
<p> </p>
<p><em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2 \times 60.0 \times 9.81} ">
<msqrt>
<mn>2</mn>
<mo>×</mo>
<mn>60.0</mn>
<mo>×</mo>
<mn>9.81</mn>
</msqrt>
</math></span><strong>»</strong> = 34.3 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of impulse <em>F</em><sub>ave</sub> × Δ<em>t</em> = Δ<em>p</em></p>
<p><strong><em>OR</em></strong></p>
<p>use of <em>F</em> = <em>ma</em> with average acceleration</p>
<p><strong><em>OR</em></strong></p>
<p><em>F</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{80.0 \times 34.3}}{{0.759}}">
<mfrac>
<mrow>
<mn>80.0</mn>
<mo>×</mo>
<mn>34.3</mn>
</mrow>
<mrow>
<mn>0.759</mn>
</mrow>
</mfrac>
</math></span></p>
<p> </p>
<p>3620<strong>«</strong>N<strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from (a).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>upwards</p>
<p>clearly longer than weight</p>
<p> </p>
<p><em>For second marking point allow ECF from (b)(i) providing line is upwards.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3620 + 80.0 × 9.81</p>
<p>4400 <strong>«</strong>N<strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from (b)(i).</em></p>
<p><strong><em>[</em></strong><strong><em>2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(loss in) gravitational potential energy (of block) into kinetic energy (of block)</p>
<p> </p>
<p><em>Must</em><em> see names of energy (gravitational potential energy and kinetic energy) – Allow for reasonable variations of terminology (eg energy of motion for KE).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope</p>
<p> </p>
<p><em>See note for 1(c)(i) for naming convention.</em></p>
<p><em>Must see either the block or the rope (or both) mentioned in connection with the appropriate energies.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>k can be determined using EPE = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>kx</em><sup>2</sup></p>
<p>correct statement or equation showing</p>
<p>GPE at A = EPE at C</p>
<p><strong><em>OR</em></strong></p>
<p>(GPE + KE) at B = EPE at C</p>
<p> </p>
<p><em>Candidate must clearly indicate the energy associated with either position A or B for MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>T</em> = 2<em>π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{80.0}}{{400}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>80.0</mn>
</mrow>
<mrow>
<mn>400</mn>
</mrow>
</mfrac>
</msqrt>
</math></span> = 2.81 <strong>«</strong>s<strong>»</strong></p>
<p>time = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{4}">
<mfrac>
<mi>T</mi>
<mn>4</mn>
</mfrac>
</math></span> = 0.702 <strong>«</strong>s<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for kinematic solutions that assume a constant acceleration.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>ω</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{{2.81}}">
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>2.81</mn>
</mrow>
</mfrac>
</math></span> = 2.24 <strong>«</strong>rad s<sup>–1</sup><strong>»</strong></p>
<p><em>v </em>= 2.24 × 3.50 = 7.84 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>kx</em><sup>2</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>mv</em><sup>2</sup> <strong><em>OR</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>400 × 3.5<sup>2</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>80<em>v</em><sup>2</sup></p>
<p><em>v = </em>7.84 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for kinematic solutions that assume a constant acceleration.</em></p>
<p><em>Allow ECF for T from (e)(i).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The ball is now displaced through a small distance <em>x </em>from the bottom of the bowl and is then released from rest.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.19.20.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d"></p>
<p>The magnitude of the force on the ball towards the equilibrium position is given by</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{mgx}}{R}">
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
<mi>x</mi>
</mrow>
<mi>R</mi>
</mfrac>
</math></span></p>
<p>where <em>R </em>is the radius of the bowl.</p>
</div>
<div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>θ</em> to the horizontal.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following equation.</p>
<p> <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="F = \frac{{mg}}{{\tan \theta }}">
<mi>F</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ball will perform simple harmonic oscillations about the equilibrium position.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the period of oscillation of the ball is about 6 s.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The amplitude of oscillation is 0.12 m. On the axes, draw a graph to show the variation with time <em>t </em>of the velocity <strong><em>v </em></strong>of the ball during one period.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced so that its height from the horizontal is equal to 8.0 m.</p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>towards the centre <strong>«</strong>of the circle<strong>» </strong>/ horizontally to the right</p>
<p> </p>
<p><em>Do not accept towards the centre of the bowl</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward vertical arrow of any length</p>
<p>arrow of correct length</p>
<p> </p>
<p><em>Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required</em></p>
<p><em>eg</em>: <img src="images/Schermafbeelding_2018-08-12_om_13.22.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>F</em> = <em>N</em> cos <em>θ</em></p>
<p><em>mg</em> = <em>N</em> sin <em>θ</em></p>
<p>dividing/substituting to get result</p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>right angle triangle drawn with <em>F</em>, <em>N </em>and <em>W/mg </em>labelled</p>
<p>angle correctly labelled and arrows on forces in correct directions</p>
<p>correct use of trigonometry leading to the required relationship</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-12_om_13.28.39.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em>tan θ</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{O}}}{A} = \frac{{mg}}{F}">
<mfrac>
<mrow>
<mtext>O</mtext>
</mrow>
<mi>A</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mi>F</mi>
</mfrac>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg}}{{\tan \theta }}">
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span> = <em>m</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span></p>
<p><em>r</em> = <em>R</em> cos <em>θ</em></p>
<p><em>v</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{gR{{\cos }^2}\theta }}{{\sin \theta }}} /\sqrt {\frac{{gR\cos \theta }}{{\tan \theta }}} /\sqrt {\frac{{9.81 \times 8.0\cos 22}}{{\tan 22}}} ">
<msqrt>
<mfrac>
<mrow>
<mi>g</mi>
<mi>R</mi>
<mrow>
<msup>
<mrow>
<mi>cos</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</msqrt>
<mrow>
<mo>/</mo>
</mrow>
<msqrt>
<mfrac>
<mrow>
<mi>g</mi>
<mi>R</mi>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</msqrt>
<mrow>
<mo>/</mo>
</mrow>
<msqrt>
<mfrac>
<mrow>
<mn>9.81</mn>
<mo>×</mo>
<mn>8.0</mn>
<mi>cos</mi>
<mo></mo>
<mn>22</mn>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mn>22</mn>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p><em>v</em> = 13.4/13 <strong>«</strong><em>ms <sup>–</sup></em><em><sup>1</sup></em><strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for a bald correct answer </em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for an answer of 13.9/14 </em><strong>«</strong><em>ms <sup>–</sup></em><em><sup>1</sup></em><strong>»</strong><em>. MP2 omitted</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is no force to balance the weight/N is horizontal</p>
<p>so no / it is not possible</p>
<p> </p>
<p><em>Must see correct justification to award MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the <strong>«</strong>restoring<strong>» </strong>force/acceleration is proportional to displacement</p>
<p> </p>
<p><em>Direction is not required</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ω</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{g}{R}} ">
<msqrt>
<mfrac>
<mi>g</mi>
<mi>R</mi>
</mfrac>
</msqrt>
</math></span><strong>»</strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{9.81}}{{8.0}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>9.81</mn>
</mrow>
<mrow>
<mn>8.0</mn>
</mrow>
</mfrac>
</msqrt>
</math></span> <strong>«</strong>= 1.107 s<sup>–1</sup><strong>»</strong></p>
<p><em>T</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{\omega }">
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mi>ω</mi>
</mfrac>
</math></span> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{{1.107}}">
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>1.107</mn>
</mrow>
</mfrac>
</math></span> =<strong>»</strong> 5.7 <strong>«</strong>s<strong>»</strong></p>
<p> </p>
<p><em>Allow use of </em>or <em>g = 9.8 or 10</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for a substitution into T = 2π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{I}{g}} ">
<msqrt>
<mfrac>
<mi>I</mi>
<mi>g</mi>
</mfrac>
</msqrt>
</math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sine graph</p>
<p>correct amplitude <strong>«</strong>0.13 m s<sup>–1</sup><strong>»</strong></p>
<p>correct period and only 1 period shown</p>
<p> </p>
<p><em>Accept ± sine for shape of the graph. Accept 5.7 s or 6.0 s for the correct period.</em></p>
<p><em>Amplitude should be correct to ±</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <em>square for MP2</em></p>
<p><em>eg: v /</em>m s<sup>–1 </sup> <img src="images/Schermafbeelding_2018-08-14_om_06.59.06.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d.iii"></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed before collision <em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gR} "> <msqrt> <mn>2</mn> <mi>g</mi> <mi>R</mi> </msqrt> </math></span> =<strong>»</strong> 12.5 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>from conservation of momentum<strong>» </strong>common speed after collision is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span> initial speed <strong>«</strong><em>v<sub>c</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12.5}}{2}"> <mfrac> <mrow> <mn>12.5</mn> </mrow> <mn>2</mn> </mfrac> </math></span> = 6.25 ms<sup>–1</sup><strong>»</strong></p>
<p><em>h = </em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_c}^2}}{{2g}} = \frac{{{{6.25}^2}}}{{2 \times 9.81}}"> <mfrac> <mrow> <msup> <mrow> <msub> <mi>v</mi> <mi>c</mi> </msub> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>g</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>6.25</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>9.81</mn> </mrow> </mfrac> </math></span><strong>»</strong> 2.0 <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Allow 12.5 from incorrect use of kinematics equations</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for mg(8) = 2mgh leading to h = 4 m if done in one step.</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Allow ECF from MP2</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Monochromatic light from two identical lamps arrives on a screen.</p>
<p> <img src="images/Schermafbeelding_2018-08-14_om_07.02.59.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/05.a_01"></p>
<p>The intensity of light on the screen from each lamp separately is <em>I</em><sub>0</sub>.</p>
<p>On the axes, sketch a graph to show the variation with distance <em>x </em>on the screen of the intensity <em>I </em>of light on the screen.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Monochromatic light from a single source is incident on two thin, parallel slits.</p>
<p><img src="images/Schermafbeelding_2018-08-14_om_07.10.48.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/05.b_01"></p>
<p>The following data are available.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{Slit separation}}}&{ = 0.12{\text{ mm}}} \\ {{\text{Wavelength}}}&{ = 680{\text{ nm}}} \\ {{\text{Distance to screen}}}&{ = 3.5{\text{ m}}} \end{array}">
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Slit separation</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>0.12</mn>
<mrow>
<mtext> mm</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Wavelength</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>680</mn>
<mrow>
<mtext> nm</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Distance to screen</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>3.5</mn>
<mrow>
<mtext> m</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</math></span></p>
<p>The intensity <em>I </em>of light at the screen from each slit separately is <em>I</em><sub>0</sub>. Sketch, on the axes, a graph to show the variation with distance <em>x </em>on the screen of the intensity of light on the screen for this arrangement.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The slit separation is increased. Outline <strong>one </strong>change observed on the screen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>horizontal straight line through <em>I</em> = 2</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-14_om_07.07.00.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/05.a"></p>
<p><em>Accept a curve that falls from I = 2 as distance increases from centre but not if it falls to zero.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>standard two slit pattern<strong>»</strong></p>
<p>general shape with a maximum at <em>x </em>= 0</p>
<p>maxima at 4<em>I</em><sub>0</sub></p>
<p>maxima separated by <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{D\lambda }}{s}">
<mfrac>
<mrow>
<mi>D</mi>
<mi>λ</mi>
</mrow>
<mi>s</mi>
</mfrac>
</math></span> =<strong>»</strong> 2.0 cm</p>
<p> </p>
<p><em>Accept single slit modulated pattern provided central maximum is at 4. ie height of peaks decrease as they go away from central maximum. Peaks must be of the same width</em></p>
<p><em><img src="images/Schermafbeelding_2018-08-14_om_07.15.48.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/05.b/M"></em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>fringe width/separation decreases</p>
<p><strong><em>OR</em></strong></p>
<p>more maxima seen</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two equal positive fixed point charges <em>Q</em> = +44 μC and point P are at the vertices of an equilateral triangle of side 0.48 m.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Point P is now moved closer to the charges.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A point charge <em>q</em> = −2.0 μC and mass 0.25 kg is placed at P. When <em>x</em> is small compared to <em>d</em>, the magnitude of the net force on <em>q</em> is <em>F</em> ≈ 115<em>x</em>.</p>
</div>
<div class="specification">
<p>An uncharged parallel plate capacitor C is connected to a cell of emf 12 V, a resistor R and another resistor of resistance 20 MΩ.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the resultant electric field at P is 3 MN C<sup>−1</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant electric field at P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <em>q</em> will perform simple harmonic oscillations when it is released.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the period of oscillations of <em>q</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At <em>t</em> = 0, the switch is connected to X. On the axes, draw a sketch graph to show the variation with time of the voltage <em>V</em><sub>R</sub> across R.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The switch is then connected to Y and C discharges through the 20 MΩ resistor. The voltage <em>V</em><sub>c</sub> drops to 50 % of its initial value in 5.0 s. Determine the capacitance of C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«electric field at P from one charge is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>k</mi><mi>Q</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>44</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>48</mn><mn>2</mn></msup></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>7168</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math> «NC<sup>−1</sup>» ✓</p>
<p><br>« net field is » <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>7168</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mi>cos</mi><mo> </mo><mn>30</mn><mo>°</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>97</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math> «NC<sup>−1</sup>» ✓</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>directed vertically up «on plane of the page» ✓</p>
<p> </p>
<p><em>Allow an arrow pointing up on the diagram.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force «on <em>q</em>» is proportional to the displacement ✓</p>
<p>and opposite to the displacement / directed towards equilibrium ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>a</mi><mo>=</mo><mfrac><mi>F</mi><mi>m</mi></mfrac><mo>=</mo><mo>»</mo><msup><mi>ω</mi><mn>2</mn></msup><mi>x</mi><mo>=</mo><mfrac><mrow><mn>115</mn><mi>x</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>ω</mi></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>29</mn><mo> </mo><mo>«</mo><mtext>s</mtext><mo>»</mo></math> ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreasing from 12 ✓</p>
<p>correct shape as shown ✓</p>
<p><img src=""></p>
<p> </p>
<p><em>Do not penalize if the graph does not touch the t axis.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mrow><mn>5</mn><mo>.</mo><mn>0</mn></mrow><mrow><mn>20</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo> </mo><mi>C</mi></mrow></mfrac></mrow></msup></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup></math> «F» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the position of the principal lines in the visible spectrum of atomic hydrogen and some of the corresponding energy levels of the hydrogen atom.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>A low-pressure hydrogen discharge lamp contains a small amount of deuterium gas in addition to the hydrogen gas. The deuterium spectrum contains a red line with a wavelength very close to that of the hydrogen red line. The wavelengths for the principal lines in the visible spectra of deuterium and hydrogen are given in the table.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Light from the discharge lamp is normally incident on a diffraction grating.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the energy of a photon of blue light (435nm) emitted in the hydrogen spectrum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with an arrow labelled B on the diagram, the transition in the hydrogen spectrum that gives rise to the photon with the energy in (a)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain your answer to (a)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The light illuminates a width of 3.5 mm of the grating. The deuterium and hydrogen red lines can just be resolved in the second-order spectrum of the diffraction grating. Show that the grating spacing of the diffraction grating is about 2 × 10<sup>–6 </sup>m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle between the first-order line of the red light in the hydrogen spectrum and the second-order line of the violet light in the hydrogen spectrum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The light source is changed so that white light is incident on the diffraction grating. Outline the appearance of the diffraction pattern formed with white light.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies λ = 435 nm ✔</p>
<p><em>E</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{\lambda }">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{4.35 \times {{10}^{ - 7}}}}">
<mfrac>
<mrow>
<mn>6.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4.35</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> ✔</p>
<p>4.6 ×10<sup>−19</sup> «J» ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–0.605 <em><strong>OR</strong> </em>–0.870 <em><strong>OR</strong></em> –1.36 to –5.44 <em><strong>AND</strong></em> arrow pointing downwards ✔</p>
<p><em>Arrow <strong>MUST</strong> match calculation in (a)(i)</em></p>
<p><em>Allow ECF from (a)(i)</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Difference in energy levels is equal to the energy of the photon ✔</p>
<p>Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one ✔</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{{2\Delta \lambda }} = \frac{{656.20}}{{0.181 \times 2}} = 1813">
<mfrac>
<mi>λ</mi>
<mrow>
<mn>2</mn>
<mi mathvariant="normal">Δ</mi>
<mi>λ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>656.20</mn>
</mrow>
<mrow>
<mn>0.181</mn>
<mo>×</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>1813</mn>
</math></span> «lines» ✔</p>
<p>so spacing is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.5 \times {{10}^{ - 3}}}}{{1813}}">
<mfrac>
<mrow>
<mn>3.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1813</mn>
</mrow>
</mfrac>
</math></span> «= 1.9 × 10<sup>−6</sup> m» ✔</p>
<p> </p>
<p><em>Allow use of either wavelength or the mean value</em></p>
<p><em>Must see at least 2 SF for a bald correct answer</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 × 4.1 × 10<sup>−7</sup> = 1.9 × 10<sup>−6</sup> sin <em>θ</em><sub>v</sub> seen</p>
<p><em><strong>OR</strong></em></p>
<p>6.6 × 10<sup>−7</sup> = 1.9 × 10<sup>−6</sup> sin <em>θ</em><sub>r</sub> seen ✔</p>
<p> </p>
<p><em>θ</em><sub>v</sub> = 24 − 26 «°»</p>
<p><em><strong>OR</strong></em></p>
<p><em>θ</em><sub>r</sub> = 19 − 20 «°» ✔</p>
<p> </p>
<p>Δ<em>θ</em> = 5 − 6 «°» ✔</p>
<p> </p>
<p><em>For MP3 answer must follow from answers in MP2</em></p>
<p><em>For MP3 do not allow ECF from incorrect angles</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>centre of pattern is white ✔</p>
<p>coloured fringes are formed ✔</p>
<p>blue/violet edge of order is closer to centre of pattern</p>
<p><em><strong>OR</strong></em></p>
<p>red edge of order is furthest from centre of pattern ✔</p>
<p>the greater the order the wider the pattern ✔</p>
<p>there are gaps between «first and second order» spectra ✔</p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two loudspeakers A and B are initially equidistant from a microphone M. The frequency and intensity emitted by A and B are the same. A and B emit sound in phase. A is fixed in position.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>B is moved slowly away from M along the line MP. The graph shows the variation with distance travelled by B of the received intensity at M.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the received intensity varies between maximum and minimum values.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the wavelength of the sound measured at M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>B is placed at the first minimum. The frequency is then changed until the received intensity is again at a maximum.</p>
<p>Show that the lowest frequency at which the intensity maximum can occur is about 3 kHz.</p>
<p style="text-align:center;">Speed of sound = 340 m s<sup>−1</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Loudspeaker A is switched off. Loudspeaker B moves away from M at a speed of 1.5 m s<sup>−1</sup> while emitting a frequency of 3.0 kHz.</p>
<p>Determine the difference between the frequency detected at M and that emitted by B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>movement of B means that path distance is different « between BM and AM »<br><em><strong>OR</strong></em><br>movement of B creates a path difference «between BM and AM» ✓</p>
<p>interference<br><em><strong>OR</strong></em><br>superposition «of waves» ✓</p>
<p>maximum when waves arrive in phase / path difference = n x lambda<br><em><strong>OR</strong></em><br>minimum when waves arrive «180° or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math> » out of phase / path difference = (n+½) x lambda ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength = 26 cm ✓</p>
<p><br>peak to peak distance is the path difference which is one wavelength</p>
<p><em><strong>OR</strong></em></p>
<p>this is the distance B moves to be back in phase «with A» ✓</p>
<p> </p>
<p><em>Allow 25 – 27 cm for <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>λ</mi><mn>2</mn></mfrac></math>» = 13 cm ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>c</mi><mi>λ</mi></mfrac><mo>=</mo><mfrac><mn>340</mn><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow></mfrac><mo>=</mo></math>» 2.6 «kHz» ✓</p>
<p> </p>
<p><em>Allow ½ of wavelength from (b) or data from graph for <strong>MP1</strong>.</em></p>
<p><em>Allow ECF from <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>=</mo><mi>f</mi><mfrac><mi>v</mi><mrow><mi>v</mi><mo>+</mo><msub><mi>u</mi><mn>0</mn></msub></mrow></mfrac></math> (+ sign must be seen) <strong><em>OR</em> </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>= 2987 «Hz» ✓<br>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Δ</mi><mi>f</mi></math>» = 13 «Hz» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>Attempted use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>Δ</mi><mi>f</mi></mrow><mi>f</mi></mfrac></math>≈ <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>v</mi><mi>c</mi></mfrac></math><br><br>« Δf » = 13 «Hz» ✓</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was an "explain" questions, so examiners were looking for a clear discussion of the movement of speaker B creating a changing path difference between B and the microphone and A and the microphone. This path difference would lead to interference, and the examiners were looking for a connection between specific phase differences or path differences for maxima or minima. Some candidates were able to discuss basic concepts of interference (e.g. "there is constructive and destructive interference"), but failed to make clear connections between the physical situation and the given graph. A very common mistake candidates made was to think the question was about intensity and to therefore describe the decrease in peak height of the maxima on the graph. Another common mistake was to approach this as a Doppler question and to attempt to answer it based on the frequency difference of B.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates recognized that the wavelength was 26 cm, but the explanations were lacking the details about what information the graph was actually providing. Examiners were looking for a connection back to path difference, and not simply a description of peak-to-peak distance on the graph. Some candidates did not state a wavelength at all, and instead simply discussed the concept of wavelength or suggested that the wavelength was constant.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" question that had enough information for backwards working. Examiners were looking for evidence of using the wavelength from (b) or information from the graph to determine wavelength followed by a correct substitution and an answer to more significant digits than the given result.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were successful in setting up a Doppler calculation and determining the new frequency, although some missed the second step of finding the difference in frequencies.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>An experiment to investigate simple harmonic motion consists of a mass oscillating at the end of a vertical spring.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The mass oscillates vertically above a motion sensor that measures the speed of the mass. Test 1 is carried out with a 1.0 kg mass and spring of spring constant <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>k</mi><mn>1</mn></msub></math>. Test 2 is a repeat of the experiment with a 4.0 kg mass and spring of spring constant <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>k</mi><mn>2</mn></msub></math>. </p>
<p>The variation with time of the vertical speed of the masses, for one cycle of the oscillation, is shown for each test.<br><br></p>
<p> <img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the frequency of the oscillation for both tests.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>k</mi><mn>1</mn></msub><msub><mi>k</mi><mn>2</mn></msub></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the amplitude of oscillation for test 1.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In test 2, the maximum elastic potential energy <em>E</em><sub>p</sub> stored in the spring is 44 J.</p>
<p>When <em>t</em> = 0 the value of <em>E</em><sub>p</sub> for test 2 is zero.</p>
<p>Sketch, on the axes, the variation with time of <em>E</em><sub>p</sub> for test 2.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The motion sensor operates by detecting the sound waves reflected from the base of the mass. The sensor compares the frequency detected with the frequency emitted when the signal returns.</p>
<p>The sound frequency emitted by the sensor is 35 kHz. The speed of sound is 340 m s<sup>−1</sup>.</p>
<p>Determine the maximum frequency change detected by the sensor for test 2.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1.3 «Hz» ✓</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∝</mo><mi>m</mi></math> <em><strong>OR </strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>m</mi><mn>1</mn></msub><msub><mi>k</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><msub><mi>m</mi><mn>2</mn></msub><msub><mi>k</mi><mn>2</mn></msub></mfrac></math> ✓</p>
<p>0.25 <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>4</mn></mfrac></math> </strong></em>✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>v</em><sub>max</sub> = 4.8 «m s<sup>−1</sup>» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>0</mn></msub><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>v</mi><mi>ω</mi></mfrac><mo>=</mo><mfrac><mrow><mi>v</mi><mi>T</mi></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>80</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac></math>» = 0.61 «m» ✓</p>
<p> </p>
<p><em>Allow a range of 4.7 to 4.9 for <strong>MP1</strong></em></p>
<p><em>Allow a range of 0.58 to 0.62 for <strong>MP2</strong></em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(a)(i)</strong></em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>all energy shown positive ✓</p>
<p>curve starting and finishing at <em>E</em> = 0 with two peaks with at least one at 44 J<br><em><strong>OR</strong></em><br>curve starting and finishing at <em>E</em> = 0 with one peak at 44 J ✓</p>
<p> </p>
<p><em>Do not accept straight lines or discontinuous curves for <strong>MP2</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>read off of 9.4 «m s<sup>−1</sup>» ✓</p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>=</mo><mi>f</mi><mfenced><mfrac><mi>v</mi><mrow><mi>v</mi><mo>±</mo><msub><mi>u</mi><mi>s</mi></msub></mrow></mfrac></mfenced></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>=</mo><mi>f</mi><mfenced><mfrac><mrow><mi>v</mi><mo>±</mo><msub><mi>u</mi><mi>o</mi></msub></mrow><mi>v</mi></mfrac></mfenced></math> </strong></em>✓</p>
<p><em>f</em> = 36 «kHz» <em><strong>OR</strong> </em>34 «kHz» ✓</p>
<p>«recognition that there are two shifts so» change in<em> f</em> = 2 «kHz» <em><strong>OR</strong> f</em> = 37 «kHz» <em><strong>OR</strong> </em>33 «kHz» ✓</p>
<p> </p>
<p><em>Allow a range of 9.3 to 9.5 for <strong>MP1</strong></em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<p><em><strong>MP4</strong> can also be found by applying the Doppler effect twice.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>ai) The majority managed to answer this question correctly.</p>
<p>aii) A very well answered question where most worked correctly from the formula for the period of oscillation of a spring.</p>
<p>aiii) Quite a few answers had <em>v</em><sub>max</sub> from the wrong test.</p>
<p>aiv) Most common answers were a correct 2 peak curve, a correct 1 peak curve and a sine curve. Several alternatives were included in the MS as the original data provided in the question was inconsistent, i.e. 44 J is not the maximum kinetic energy available for the second test, and that was taken into account not to disadvantage any candidate´s interpretation.</p>
<p>b) Many got the first three marks for a correct Doppler shift calculation from the correct speed. . There were very few good correct full answers, might be a question to look at for 6/7 during grading.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Monochromatic coherent light is incident on two parallel slits of negligible width a distance <em>d</em> apart. A screen is placed a distance <em>D</em> from the slits. Point M is directly opposite the midpoint of the slits.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Initially the lower slit is covered and the intensity of light at M due to the upper slit alone is 22 W m<sup>-2</sup>. The lower slit is now uncovered.</span></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The width of each slit is increased to 0.030 mm. <em>D</em>, <em>d</em> and λ remain the same.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Deduce, in W m<sup>-2</sup>, the intensity at M.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">P is the first maximum of intensity on <strong>one</strong> side of M. The following data are available.</span></p>
<p><span style="background-color:#ffffff;"><em>d</em> = 0.12 mm </span></p>
<p><span style="background-color:#ffffff;"><em>D</em> = 1.5 m </span></p>
<p><span style="background-color:#ffffff;">Distance MP = 7.0 mm</span></p>
<p><span style="background-color:#ffffff;">Calculate, in nm, the wavelength λ of the light.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest why, after this change, the intensity at P will be less than that at M.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that, due to single slit diffraction, the intensity at a point on the screen a distance of 28 mm from M is zero.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">cii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">there is constructive interference at M<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">the amplitude doubles at M ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">intensity is «proportional to» amplitude<sup>2</sup> ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">88 «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">W m</span><sup style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">−2</sup>» ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{{\lambda D}}{d} \Rightarrow » \lambda = \frac{{sd}}{D}/\frac{{0.12 \times {{10}^{ - 3}} \times 7.0 \times {{10}^{ - 3}}}}{{1.5}}">
<mi>s</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>λ</mi>
<mi>D</mi>
</mrow>
<mi>d</mi>
</mfrac>
<mo stretchy="false">⇒</mo>
<mrow>
<mo>»</mo>
</mrow>
<mi>λ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>s</mi>
<mi>d</mi>
</mrow>
<mi>D</mi>
</mfrac>
<mrow>
<mo>/</mo>
</mrow>
<mfrac>
<mrow>
<mn>0.12</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>7.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.5</mn>
</mrow>
</mfrac>
</math></span> ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 560«{\text{nm}}">
<mi>λ</mi>
<mo>=</mo>
<mn>560</mn>
<mrow>
<mo>«</mo>
</mrow>
<mrow>
<mtext>nm</mtext>
</mrow>
</math></span>» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«the interference pattern will be modulated by»<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">single slit diffraction ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«envelope and so it will be less»</span></p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">the angular position of this point is <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{{28 \times {{10}^{ - 3}}}}{{1.5}} = 0.01867">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>28</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.5</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.01867</mn>
</math></span>«rad» ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">which coincides with the first minimum of the diffraction envelope</p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\lambda }{b} = \frac{{560 \times {{10}^{ - 9}}}}{{0.030 \times {{10}^{ - 3}}}} = 0.01867">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>λ</mi>
<mi>b</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>560</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>0.030</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.01867</mn>
</math></span> «rad» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«so intensity will be zero»</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"> </span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">the first minimum of the diffraction envelope is at <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\lambda }{b} = \frac{{560 \times {{10}^{ - 9}}}}{{0.030 \times {{10}^{ - 3}}}} = 0.01867">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>λ</mi>
<mi>b</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>560</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>0.030</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.01867</mn>
</math></span>«rad» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">distance on screen is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1.50 \times 0.01867 = 28">
<mi>y</mi>
<mo>=</mo>
<mn>1.50</mn>
<mo>×</mo>
<mn>0.01867</mn>
<mo>=</mo>
<mn>28</mn>
</math></span>«mm» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«so intensity will be zero»</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"> </p>
<div class="question_part_label">cii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered by those who attempted it but was the question that was most left blank. The most common mistake was the expected one of simply doubling the intensity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was very well answered. As the question asks for the answer to be given in nm a bald answer of 560 was acceptable. Candidates could also gain credit for an answer of e.g. 5.6 x 10-7 m provided that the m was included.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many recognised the significance of the single slit diffraction envelope.</p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Credit was often gained here for a calculation of an angle for alternative 2 in the markscheme but often the final substitution 1.50 was omitted to score the second mark. Both marks could be gained if the calculation was done in one step. Incorrect answers often included complicated calculations in an attempt to calculate an integer value.</p>
<div class="question_part_label">cii.</div>
</div>
<br><hr><br><div class="specification">
<p>A small metal pendulum bob is suspended at rest from a fixed point with a length of thread of negligible mass. Air resistance is negligible.</p>
<p>The pendulum begins to oscillate. Assume that the motion of the system is simple harmonic, and in one vertical plane.</p>
<p>The graph shows the variation of kinetic energy of the pendulum bob with time.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>When the 75 g bob is moving horizontally at 0.80 m s<sup>–1</sup>, it collides with a small stationary object also of mass 75 g. The object and the bob stick together.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in m, the length of the thread. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label on the graph with the letter X a point where the speed of the pendulum is half that of its initial speed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the pendulum bob is 75 g. Show that the maximum speed of the bob is about 0.7 m s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of the combined masses immediately after the collision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the collision is inelastic.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation of gravitational potential energy with time for the bob and the object after the collision. The data from the graph used in (a) is shown as a dashed line for reference.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">The speed after the collision of the bob and the object was measured using a sensor. This sensor emits a sound of frequency <em>f</em> and this sound is reflected from the moving bob. The sound is then detected by the sensor as frequency <em>f</em>′.</p>
<p style="text-align:left;">Explain why <em>f</em> and <em>f</em>′ are different.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies T as 2.25 s ✔</p>
<p>L = 1.26 m ✔</p>
<p>1.3 / 1.26 «m» ✔</p>
<p><em>Accept <span style="text-decoration:underline;">any</span> number of s.f. for MP2.</em></p>
<p><em>Accept <span style="text-decoration:underline;">any</span> answer with 2 or 3 s.f. for MP3</em>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>X labels any point <span style="text-decoration:underline;">on the curve</span> where <em>E<span style="font-size:11.6667px;"><sub>K</sub> </span></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> of maximum/5 mJ ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> mv<sup>2</sup> = 20 × 10<sup>−3</sup> seen <em><strong>OR </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 7.5 × 10<sup>-2</sup> × <em>v</em><sup>2</sup> = 20 × 10<sup>-3</sup> ✔</p>
<p>0.73 «m s<sup>−1</sup>» ✔</p>
<p><em>Must see at least 2 s.f. for MP2</em>.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.40 «m s<sup>-1</sup>» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>initial energy 24 mJ and final energy 12 mJ ✔</p>
<p>energy is lost/unequal /change in energy is 12 mJ ✔</p>
<p>inelastic collisions occur when energy is lost ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>graph with same period but inverted ✔</p>
<p>amplitude one half of the original/two boxes throughout (by eye) ✔</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mention of Doppler effect ✔</p>
<p>there is a change in the wavelength of the reflected wave ✔</p>
<p>because the wave speed is constant, there is a change in frequency ✔</p>
<div class="question_part_label">b.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was well approached by candidates. The noteworthy mistakes were not reading the correct period of the pendulum from the graph, and some simple calculation and mathematical errors. This question also had one mark for writing an answer with the correct number of significant digits. Candidates should be aware to look for significant digit question on the exam and can write any number with correct number of significant digits for the mark.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered. This is a “show that” question so candidates needed to clearly show the correct calculation and write an answer with at least one significant digit more than the given answer. Many candidates failed to appreciate that the energy was given in mJ and the mass was in grams, and that these values needed to be converted before substitution.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates fell into some broad categories on this question. This was a “show that” question, so there was an expectation of a mathematical argument. Many were able to successfully show that the initial and final kinetic energies were different and connect this to the concept of inelastic collisions. Some candidates tried to connect conservation of momentum unsuccessfully, and some simply wrote an extended response about the nature of inelastic collisions and noted that the bobs stuck together without any calculations. This approach was awarded zero marks.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates drew graphs that received one mark for either recognizing the phase difference between the gravitational potential energy and the kinetic energy, or for recognizing that the total energy was half the original energy. Few candidates had both features for both marks.</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was essentially about the Doppler effect, and therefore candidates were expected to give a good explanation for why there is a frequency difference. As with all explain questions, the candidates were required to go beyond the given information. Very few candidates earned marks beyond just recognizing that this was an example of the Doppler effect. Some did discuss the change in wavelength caused by the relative motion of the bob, although some candidates chose very vague descriptions like “the waves are all squished up” rather than using proper physics terms. Some candidates simply wrote and explained the equation from the data booklet, which did not receive marks. It should be noted that this was a three mark question, and yet some candidates attempted to answer it with a single sentence.</p>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The lens of an optical system is coated with a thin film of magnesium fluoride of thickness <em>d</em>. Monochromatic light of wavelength 656 nm in air is incident on the lens. The angle of incidence is <em>θ</em>. Two reflected rays, X and Y, are shown.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="414" height="320"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The following refractive indices are available.</span></span></p>
<p style="padding-left: 180px;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Air = 1.00<br>Magnesium fluoride = 1.38<br>Lens = 1.58</span></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The thickness of the magnesium fluoride film is <em>d</em>. For the case of normal incidence (<em>θ</em> = 0),</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Light from a point source is incident on the pupil of the eye of an observer. The diameter of the pupil is 2.8 mm.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict whether reflected ray X undergoes a phase change.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">state, in terms of <em>d</em>, the path difference between the reflected rays X and Y.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">calculate the smallest value of <em>d</em> that will result in destructive interference between ray X and ray Y.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">discuss a practical advantage of this arrangement.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw, on the axes, the variation with diffraction angle of the intensity of light incident on the retina of the observer.</span></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Estimate, in rad, the smallest angular separation of two distinct point sources of light of wavelength 656 nm that can be resolved by the eye of this observer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">there is a phase change ✔<br>of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> <em><strong>OR</strong> </em>as it is reflected off a medium of higher refractive index ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2<em>d</em> ✔<br><em>NOTE: Accept 2dn</em></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>d</mi><mi>n</mi><mo>=</mo><mfrac><mi>λ</mi><mn>2</mn></mfrac></math> <span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mo>«</mo><mfrac><mi>λ</mi><mrow><mn>4</mn><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mn>656</mn><mrow><mn>4</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>38</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>119</mn><mo> </mo><mo>«</mo><mi>nm</mi><mo>»</mo></math> ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [2]</strong> for bald correct answer</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">reflection from «front surface of» lens eliminated/reduced<br><em><strong>OR</strong></em><br>energy reaching sensor increased ✔<br></span></p>
<p><span style="background-color: #ffffff;">at one wavelength ✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept reference to reduction of glare for MP1</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">standard single slit diffraction pattern with correct overall shape ✔<br></span></p>
<p><span style="background-color: #ffffff;">secondary maxima of right size ✔</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="468" height="206"></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">NOTE: Secondary maximum not to exceed 1/5<sup>th</sup> of maximum intensity<br></span></span></em></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Ignore width of maxima</span></span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>22</mn><mi>λ</mi></mrow><mi>b</mi></mfrac></math><span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></math> <span style="background-color: #ffffff;">«rad» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">NOTE: Award <strong>[2]</strong> for bald correct answer</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A buoy, floating in a vertical tube, generates energy from the movement of water waves on the surface of the sea. When the buoy moves up, a cable turns a generator on the sea bed producing power. When the buoy moves down, the cable is wound in by a mechanism in the generator and no power is produced.</p>
<p style="text-align: center;"><img src=""></p>
<p>The motion of the buoy can be assumed to be simple harmonic.</p>
</div>
<div class="specification">
<p>Water can be used in other ways to generate energy.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the conditions necessary for simple harmonic motion (SHM) to occur.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A wave of amplitude 4.3 m and wavelength 35 m, moves with a speed of 3.4 m s<sup>–1</sup>. Calculate the maximum vertical speed of the buoy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show the variation with time of the generator output power. Label the time axis with a suitable scale.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to energy changes, the operation of a pumped storage hydroelectric system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The water in a particular pumped storage hydroelectric system falls a vertical distance of 270 m to the turbines. Calculate the speed at which water arrives at the turbines. Assume that there is no energy loss in the system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydroelectric system has four 250 MW generators. Determine the maximum time for which the hydroelectric system can maintain full output when a mass of 1.5 x 10<sup>10</sup> kg of water passes through the turbines.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Not all the stored energy can be retrieved because of energy losses in the system. Explain <strong>two</strong> such losses.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>force/acceleration proportional to displacement «from equilibrium position»</p>
<p>and directed towards equilibrium position/point<br><em><strong>OR</strong></em><br>and directed in opposite direction to the displacement from equilibrium position/point</p>
<p> </p>
<p><em>Do not award marks for stating the defining equation for SHM.</em><br><em>Award <strong>[1 max]</strong> for a ω–=<sup>2</sup>x with a and x defined.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>frequency of buoy movement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3.4}}{{35}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>3.4</mn>
</mrow>
<mrow>
<mn>35</mn>
</mrow>
</mfrac>
</math></span> <em><strong>or</strong></em> 0.097 «Hz»</p>
<p><em><strong>OR</strong></em></p>
<p>time period of buoy <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{35}}{{3.4}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>35</mn>
</mrow>
<mrow>
<mn>3.4</mn>
</mrow>
</mfrac>
</math></span> <em><strong>or</strong></em> 10.3 «s» <em><strong>or</strong></em> 10 «s»</p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi {x_0}}}{T}">
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msub>
<mi>x</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
<mi>T</mi>
</mfrac>
</math></span> <em><strong>or </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi f{x_0}">
<mn>2</mn>
<mi>π</mi>
<mi>f</mi>
<mrow>
<msub>
<mi>x</mi>
<mn>0</mn>
</msub>
</mrow>
</math></span>» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ = \frac{{2 \times \pi \times 4.3}}{{10.3}}">
<mtext> </mtext>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mi>π</mi>
<mo>×</mo>
<mn>4.3</mn>
</mrow>
<mrow>
<mn>10.3</mn>
</mrow>
</mfrac>
</math></span> <em><strong>or</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times \pi \times 0.097 \times 4.3">
<mn>2</mn>
<mo>×</mo>
<mi>π</mi>
<mo>×</mo>
<mn>0.097</mn>
<mo>×</mo>
<mn>4.3</mn>
</math></span></p>
<p>2.6 «m s<sup>–1</sup>»</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>peaks separated by gaps equal to width of each pulse «shape of peak roughly as shown»</p>
<p>one cycle taking 10 s shown on graph</p>
<p><img src=""></p>
<p><em>Judge by eye.</em><br><em>Do not accept cos<sub>2</sub> or sin<sub>2</sub> graph</em><br><em>At least two peaks needed.</em><br><em>Do not allow square waves or asymmetrical shapes.</em><br><em>Allow ECF from (b)(i) value of period if calculated.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>PE of water is converted to KE of moving water/turbine to electrical energy «in generator/turbine/dynamo»</p>
<p>idea of pumped storage, <em>ie:</em> pump water back during night/when energy cheap to buy/when energy not in demand/when there is a surplus of energy</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>specific energy available = «<em>gh</em> =» 9.81 x 270 «= 2650J kg<sup>–1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>mgh</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>mv</em><sup>2</sup></p>
<p><em><strong>OR</strong></em></p>
<p><em>v</em><sup>2</sup> = 2gh</p>
<p><em>v</em> = 73 «ms<sup>–1</sup>»</p>
<p> </p>
<p><em>Do not allow 72 as round from 72.8</em></p>
<p> </p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total energy = «<em>mgh</em> = 1.5 x 10<sup>10</sup> x 9.81 x 270=» 4.0 x 10<sup>13</sup> «J»</p>
<p><em><strong>OR</strong></em></p>
<p>total energy = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}m{v^2} = \frac{1}{2} \times 1.5 \times {10^{10}} \times ">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>1.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mn>10</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
</math></span> (answer (c)(ii))<sup>2</sup> =» 4.0 x 10<sup>13</sup> «J»</p>
<p>time = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.0 \times {{10}^{13}}}}{{4 \times 2.5 \times {{10}^8}}}">
<mfrac>
<mrow>
<mn>4.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>13</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>2.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>» 11.1h <em><strong>or</strong> </em>4.0 x 10<sup>4</sup> s</p>
<p> </p>
<p><em>Use of 3.97 x 10<sup>13</sup> «J» gives 11 h.</em></p>
<p><em>For MP2 the unit <strong>must</strong> be present.</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>friction/resistive losses in pipe/fluid resistance/turbulence/turbine or generator «bearings»<br><em><strong>OR</strong></em><br>sound energy losses from turbine/water in pipe </p>
<p>thermal energy/heat losses in wires/components<br><br>water requires kinetic energy to leave system so not all can be transferred</p>
<p> </p>
<p><em>Must see “seat of friction” to award the mark.</em></p>
<p><em>Do not allow “friction” bald.</em></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Two loudspeakers, A and B, are driven in phase and with the same amplitude at a frequency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>850</mn><mo> </mo><mi>Hz</mi></math>. Point P is located <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn><mo>.</mo><mn>5</mn><mo> </mo><mi mathvariant="normal">m</mi></math> from A and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>.</mo><mn>3</mn><mo> </mo><mi mathvariant="normal">m</mi></math> from B. The speed of sound is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>340</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="specification">
<p>In another experiment, loudspeaker A is stationary and emits sound with a frequency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>850</mn><mo> </mo><mi>Hz</mi></math>. The microphone is moving directly away from the loudspeaker with a constant speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>. The frequency of sound recorded by the microphone is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>845</mn><mo> </mo><mi>Hz</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that a minimum intensity of sound is heard at P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A microphone moves along the line from P to Q. PQ is normal to the line midway between the loudspeakers.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="370" height="161"></p>
<p>The intensity of sound is detected by the microphone. Predict the variation of detected intensity as the microphone moves from P to Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When both loudspeakers are operating, the intensity of sound recorded at Q is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>0</mn></msub></math>. Loudspeaker B is now disconnected. Loudspeaker A continues to emit sound with unchanged amplitude and frequency. The intensity of sound recorded at Q changes to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub></math>.</p>
<p>Estimate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub><msub><mi>I</mi><mn>0</mn></msub></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the frequency recorded by the microphone is lower than the frequency emitted by the loudspeaker.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>wavelength<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>340</mn><mn>850</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math> ✓<br><br></p>
<p><span class="fontstyle0">path difference </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math> <span class="fontstyle3">✓<br><br></span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn><mi>λ</mi></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>20</mn></mrow></mfrac><mo>=</mo><mn>9</mn><mo> </mo></math> </strong></em><span class="fontstyle2">«</span><span class="fontstyle0">half-wavelengths</span><span class="fontstyle2">» ✓<br><br></span></p>
<p><span class="fontstyle0">waves meet in antiphase </span><span class="fontstyle2">«</span><span class="fontstyle0">at P</span><span class="fontstyle2">»<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span><span class="fontstyle0">destructive interference/superposition </span><span class="fontstyle2">«</span><span class="fontstyle0">at P</span><span class="fontstyle2">» </span><span class="fontstyle4">✓</span></p>
<p> </p>
<p><em><span class="fontstyle0">Allow approach where path length is calculated in terms of number of wavelengths; along path A (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">56</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">25</mn></math>) and<br>path B (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">60</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">75</mn></math>) for MP2, hence path difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">4</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">5</mn></math> wavelengths for MP3</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«</span><span class="fontstyle1">equally spaced</span><span class="fontstyle0">» </span><span class="fontstyle1">maxima and minima </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle1">a maximum at Q </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle1">four </span><span class="fontstyle0">«</span><span class="fontstyle1">additional</span><span class="fontstyle0">» </span><span class="fontstyle1">maxima </span><span class="fontstyle0">«</span><span class="fontstyle1">between P and Q</span><span class="fontstyle0">» </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the amplitude of sound at Q is halved </span><span class="fontstyle2">✓<br></span><span class="fontstyle3">«</span><span class="fontstyle0">intensity is proportional to amplitude squared hence</span><span class="fontstyle3">» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub><msub><mi>I</mi><mn>0</mn></msub></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">speed of sound relative to the microphone is less </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle2"><br></span><span class="fontstyle0">wavelength unchanged </span><span class="fontstyle3">«</span><span class="fontstyle0">so frequency is lower</span><span class="fontstyle3">»<br></span><span class="fontstyle4"><em><strong>OR</strong></em><br></span><span class="fontstyle0">fewer waves recorded in unit time/per second </span><span class="fontstyle3">«</span><span class="fontstyle0">so frequency is lower</span><span class="fontstyle3">» </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>845</mn><mo>=</mo><mn>850</mn><mo>×</mo><mfrac><mrow><mn>340</mn><mo>-</mo><mi>v</mi></mrow><mn>340</mn></mfrac></math> ✓</span></p>
<p> </p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was answered very well, with those not scoring full marks able to, at least, calculate the wavelength.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to score at least one mark by referring to a maximum at Q.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates earned 2 marks or nothing. A common answer was that intensity was 1/2 the original.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HL only. The majority of candidates answered this by describing the Doppler Effect for a moving source. Others reworded the question without adding any explanation. Correct explanations were rare.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HL only. This was answered well with the majority of candidates able to identify the correct formula and the correct values to substitute.</p>
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A mass–spring system oscillates horizontally on a frictionless surface. The mass has an acceleration <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> when its displacement from its equilibrium position is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<p>The variation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is modelled in two different ways, A and B, by the graphs shown.</p>
<p><br><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> reasons why both models predict that the motion is simple harmonic when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is small.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time period of the system when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is small.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, without calculation, the change to the time period of the system for the model represented by graph B when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is large.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows for model A the variation with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> of elastic potential energy <em>E</em><sub>p</sub> stored in the spring.</p>
<p><img src=""></p>
<p>Describe the graph for model B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>For both models:</strong></em><br>displacement is ∝ to acceleration/force «because graph is straight and through origin» ✓</p>
<p>displacement and acceleration / force in opposite directions «because gradient is negative»<br><em><strong>OR</strong></em><br>acceleration/«restoring» force is always directed to equilibrium ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempted use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>2</mn></msup><mo>=</mo><mfenced><mo>-</mo></mfenced><mfrac><mi>a</mi><mi>x</mi></mfrac></math> ✓</p>
<p>suitable read-offs leading to gradient of line = 28 « s<sup>-2</sup>» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mi>ω</mi></mfrac></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><msqrt><mn>28</mn></msqrt></mfrac></math>» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn></math> s ✓</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>time period increases ✓</p>
<p> </p>
<p>because average ω «for whole cycle» is smaller</p>
<p><em><strong>OR</strong></em></p>
<p>slope / acceleration / force at large x is smaller</p>
<p><em><strong>OR</strong></em></p>
<p>area under graph B is smaller so average speed is smaller. ✓</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>same curve <em><strong>OR</strong> </em>shape for small amplitudes «to about 0.05 m» ✓</p>
<p>for large amplitudes «outside of 0.05 m» <em>E</em><sub>p</sub> smaller for model B / values are lower than original / spread will be wider ✓ <em><strong>OWTTE</strong></em></p>
<p> </p>
<p><em>Accept answers drawn on graph – e.g.</em></p>
<p><em><img src=""></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This item was essentially encouraging candidates to connect concepts about simple harmonic motion to a physical situation described by a graph. The marks were awarded for discussing the physical motion (such as "the acceleration is in the opposite direction of the displacement") and not just for describing the graph itself (such as "the slope of the graph is negative"). Most candidates were successful in recognizing that the acceleration was proportional to displacement for the first marking point, but many simply described the graph for the second marking point.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well done by many candidates. A common mistake was to select an incorrect gradient, but candidates who showed their work clearly still earned the majority of the marks.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates recognized that the time period would increase for B, and some were able to give a valid reason based on the difference between the motion of B and the motion of A. It should be noted that the prompt specified "without calculation", so candidates who simply attempted to calculate the time period of B did not receive marks.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates were generally successful in describing one of the two aspects of the graph of B compared to A, but few were able to describe both. It should be noted that this is a two mark question, so candidates should have considered the fact that there are two distinct statements to be made about the graphs. Examiners did accept clearly drawn graphs as well for full marks.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The diagram shows the direction of a sound wave travelling in a metal sheet.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The sound wave in air in (c) enters a pipe that is open at both ends. The diagram shows the displacement, at a particular time <em>T</em>, of the standing wave that is set up in the pipe.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A particular air molecule has its equilibrium position at the point labelled M.</span></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Sound of frequency <em>f</em> = 2500 Hz is emitted from an aircraft that moves with speed <em>v</em> = 280 m s<sup>–1 </sup>away from a stationary observer. The speed of sound in still air is <em>c</em> = 340 m s<sup>–1</sup>.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Particle P in the metal sheet performs simple harmonic oscillations. When the displacement of P is 3.2 μm the magnitude of its acceleration is 7.9 m s<sup>-2</sup>. Calculate the magnitude of the acceleration of P when its displacement is 2.3 μm.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The wave is incident at point Q on the metal–air boundary. The wave makes an angle of 54° with the normal at Q. The speed of sound in the metal is 6010 m s<sup>–1</sup> and the speed of sound in air is 340 m s<sup>–1</sup>. Calculate the angle between the normal at Q and the direction of the wave in air.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The frequency of the sound wave in the metal is 250 Hz. Determine the wavelength of the wave in air.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">On the diagram, at time <em>T</em>, draw an arrow to indicate the acceleration of this molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">On the diagram, at time <em>T</em>, label with the letter C a point in the pipe that is at the centre of a compression.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">dii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the frequency heard by the observer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ei.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the wavelength measured by the observer.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">eii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">Expression or statement showing acceleration is proportional to displacement ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">so </span><span style="background-color:#ffffff;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7.9 \times \frac{{2.3}}{{3.2}}">
<mn>7.9</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mn>2.3</mn>
</mrow>
<mrow>
<mn>3.2</mn>
</mrow>
</mfrac>
</math></span>» = 5.7«ms<sup>–2</sup>» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \theta = \frac{{340}}{{6010}} \times \sin {54^0}">
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>340</mn>
</mrow>
<mrow>
<mn>6010</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mi>sin</mi>
<mo></mo>
<mrow>
<msup>
<mn>54</mn>
<mn>0</mn>
</msup>
</mrow>
</math></span></span><span style="background-color:#ffffff;"> ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = {2.6^0}">
<mi>θ</mi>
<mo>=</mo>
<mrow>
<msup>
<mn>2.6</mn>
<mn>0</mn>
</msup>
</mrow>
</math></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = « \frac{{340}}{{250}} =» 1.36 \approx 1.4 «{\text{m}}»">
<mi>λ</mi>
<mo>=</mo>
<mrow>
<mo>«</mo>
</mrow>
<mfrac>
<mrow>
<mn>340</mn>
</mrow>
<mrow>
<mn>250</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mo>»</mo>
</mrow>
<mn>1.36</mn>
<mo>≈</mo>
<mn>1.4</mn>
<mrow>
<mo>«</mo>
</mrow>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>»</mo>
</mrow>
</math></span></span><span style="background-color:#ffffff;"> ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">horizontal arrow «at M» pointing left ✔</span></p>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">any point labelled C on the vertical line shown below ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em>eg</em>:</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><img src="" width="416" height="175"></span></p>
<div class="question_part_label">dii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = 2500 \times \frac{{340}}{{340 + 280}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>2500</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mn>340</mn>
</mrow>
<mrow>
<mn>340</mn>
<mo>+</mo>
<mn>280</mn>
</mrow>
</mfrac>
</math></span> ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = 1371 \approx 1400">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>1371</mn>
<mo>≈</mo>
<mn>1400</mn>
</math></span>«Hz» ✔</span></span></p>
<div class="question_part_label">ei.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ' = \frac{{340}}{{1371}} \approx 0.24/0.25">
<msup>
<mi>λ</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mfrac>
<mrow>
<mn>340</mn>
</mrow>
<mrow>
<mn>1371</mn>
</mrow>
</mfrac>
<mo>≈</mo>
<mn>0.24</mn>
<mrow>
<mo>/</mo>
</mrow>
<mn>0.25</mn>
</math></span>«m» ✔</span></p>
<div class="question_part_label">eii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was well answered at both levels.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many scored full marks on this question. Common errors were using the calculator in radian mode or getting the equation upside down.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was very well answered.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates could interpret this situation and most arrows were shown in a vertical plane.</p>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was answered well at both levels.</p>
<div class="question_part_label">dii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was answered well with the most common mistake being to swap the speed of sound and the speed of the aircraft.</p>
<div class="question_part_label">ei.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Answered well with ECF often being awarded to those who answered the previous part incorrectly.</p>
<div class="question_part_label">eii.</div>
</div>
<br><hr><br>