File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 8 HTML/markSceme-HL-paper1html
File size: 39.38 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>The Sankey diagram shows the energy input from fuel that is eventually converted to useful domestic energy in the form of light in a filament lamp.</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_18.42.25.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/22"></p>
<p>What is true for this Sankey diagram?</p>
<p>A.     The overall efficiency of the process is 10%.</p>
<p>B.     Generation and transmission losses account for 55% of the energy input.</p>
<p>C.     Useful energy accounts for half of the transmission losses.</p>
<p>D.     The energy loss in the power station equals the energy that leaves it.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>X and Y are two spherical black-body radiators that emit the same total power. The absolute temperature of X is half that of Y. </p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{radius of X}}}}{{{\text{radius of Y}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>radius of X</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>radius of Y</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>?</p>
<p>A. 4</p>
<p>B. 8 </p>
<p>C. 16 </p>
<p>D. 32</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The solar constant is the intensity of the Sun’s radiation at </p>
<p>A. the surface of the Earth. <br>B. the mean distance from the Sun of the Earth’s orbit around the Sun. <br>C. the surface of the Sun. <br>D. 10km above the surface of the Earth.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object can lose energy through</p>
<p>I.    conduction<br>II.   convection<br>III.  radiation</p>
<p>What are the principal means for losing energy for a hot rock resting on the surface of the Moon?</p>
<p>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A nuclear particle has an energy of 10<sup>8</sup> eV. A grain of sand has a mass of 32 mg. What speed must the grain of sand have for its kinetic energy to equal the energy of the nuclear particle?</span></p>
<p><span style="background-color: #ffffff;">A.  1 mm s<sup>–1</sup><br></span></p>
<p><span style="background-color: #ffffff;">B.  3 mm s<sup>–1</sup><br></span></p>
<p><span style="background-color: #ffffff;">C.  10 mm s<sup>–1</sup><br></span></p>
<p><span style="background-color: #ffffff;">D.  16 mm s<sup>–1</sup></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The average albedo of glacier ice is 0.25.</p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{power absorbed by glacier ice}}}}{{{\text{power reflected by glacier ice}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>power absorbed by glacier ice</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>power reflected by glacier ice</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>?</p>
<p>A. &nbsp;0.25</p>
<p>B. &nbsp;0.33</p>
<p>C. &nbsp;2.5</p>
<p>D. &nbsp;3.0</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Burning one litre of gasoline produces more energy than burning one kilogram of coal, and the density of gasoline is smaller than 1 g cm<sup>−3</sup>. What can be deduced from this information?</p>
<p>A. Energy density is greater for gasoline.</p>
<p>B. Specific energy is greater for gasoline.</p>
<p>C. Energy density is greater for coal.</p>
<p>D. Specific energy is greater for coal.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A model of an ideal wind turbine with blade length <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>0</mn></msub></math> is designed to produce a power <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> when&nbsp;the average wind speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>. A second ideal wind turbine is designed to produce a power <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>P</mi><mn>2</mn></mfrac></math>&nbsp;when the average wind speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>v</mi><mn>2</mn></mfrac></math>. What is the blade length for the second wind turbine?</p>
<p>A.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>l</mi><mn>0</mn></msub><mn>2</mn></mfrac></math></p>
<p>B.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>0</mn></msub></math></p>
<p>C.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msub><mi>l</mi><mn>0</mn></msub></math>&nbsp;</p>
<p>D.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><msub><mi>l</mi><mn>0</mn></msub></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The dashed line on the graph shows the variation with wavelength of the intensity of solar radiation before passing through the Earth’s atmosphere.</p>
<p>The solid line on the graph shows the variation with wavelength of the intensity of solar radiation after it has passed through the Earth’s atmosphere.</p>
<p>                                        <img src="images/Schermafbeelding_2018-08-13_om_10.49.37.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/24"></p>
<p>Which feature of the graph helps explain the greenhouse effect?</p>
<p>A.     Infrared radiation is absorbed at specific wavelengths.</p>
<p>B.     There is little absorption at infrared wavelengths.</p>
<p>C.     There is substantial absorption at visible wavelengths.</p>
<p>D.     There is little absorption at UV wavelengths.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three statements about fossil fuels are:</p>
<p style="padding-left:30px;">I.   There is a finite amount of fossil fuels on Earth.<br>II.  The transfer of energy from fossil fuels increases the concentration of CO<sub>2 </sub>in the atmosphere.<br>III. The geographic distribution of fossil fuels is uneven and has led to economic inequalities.</p>
<p>Which statements justify the development of alternative energy sources?</p>
<p>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A nuclear reactor contains atoms that are used for moderation and atoms that are used for control.</p>
<p>What are the ideal properties of the moderator atoms and the control atoms in terms of neutron absorption?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_10.48.15.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/23"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What part of a nuclear power station is principally responsible for increasing the chance that a neutron will cause fission?</p>
<p>A.     Moderator</p>
<p>B.     Control rod</p>
<p>C.     Pressure vessel</p>
<p>D.     Heat exchanger</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows a simple model of the energy balance in the Earth surface-atmosphere system. The intensities of the radiations are given.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the average intensity radiated by the atmosphere towards the surface?</p>
<p><br>A.  100 W m<sup>−2</sup></p>
<p>B.  150 W m<sup>−2</sup></p>
<p>C.  240 W m<sup>−2</sup></p>
<p>D.  390 W m<sup>−2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>