File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 7 HTML/markSceme-SL-paper2html
File size: 525.33 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>Plutonium-238 (Pu) decays by alpha (α) decay into uranium (U).</p>
<p>The following data are available for binding energies per nucleon:</p>
<p style="padding-left: 30px;">plutonium 7.568 MeV</p>
<p style="padding-left: 30px;">uranium 7.600 MeV</p>
<p style="padding-left: 30px;">alpha particle 7.074 MeV</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in this decay is about 6 MeV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plutonium nucleus is at rest when it decays.</p>
<p>Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the energy needed to «completely» separate the nucleons of a nucleus</p>
<p><em><strong>OR</strong></em></p>
<p>the energy released when a nucleus is assembled from its constituent nucleons ✓</p>
<p> </p>
<p><em>Accept reference to protons <strong>AND</strong> neutrons.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve rising to a maximum between 50 and 100 ✓</p>
<p>curve continued and decreasing ✓</p>
<p> </p>
<p><em>Ignore starting point.<br></em></p>
<p><em>Ignore maximum at alpha particle</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>At a point on the peak of their graph ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct mass numbers for uranium (234) and alpha (4) ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>234</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>600</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>074</mn><mo>-</mo><mn>238</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>568</mn></math> «MeV» ✓</p>
<p>energy released 5.51 «MeV» ✓</p>
<p> </p>
<p><em>Ignore any negative sign.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>K</mi><msub><mi>E</mi><mi>α</mi></msub></mrow><mrow><mi>K</mi><msub><mi>E</mi><mi>U</mi></msub></mrow></mfrac><mo>=</mo></math>»<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>U</mi></msub></mrow></mfrac></mfrac></mstyle></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>m</mi><mi>U</mi></msub><msub><mi>m</mi><mi>α</mi></msub></mfrac></math> ✓</p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>234</mn><mn>4</mn></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn><mo>.</mo><mn>5</mn></math> ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>117</mn><mn>2</mn></mfrac></math> for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A particular K meson has a quark structure <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{\bar u}}">
<mrow>
<mrow>
<mrow>
<mover>
<mi mathvariant="normal">u</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</mrow>
</math></span>s. State the charge on this meson.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Feynman diagram shows the changes that occur during beta minus (β<sup>–</sup>) decay.</p>
<p><img src="" alt></p>
<p>Label the diagram by inserting the <strong>four</strong> missing particle symbols.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carbon-14 (C-14) is a radioactive isotope which undergoes beta minus (β<sup>–</sup>) decay to the stable isotope nitrogen-14 (N-14). Energy is released during this decay. Explain why the mass of a C-14 nucleus and the mass of a N-14 nucleus are slightly different even though they have the same nucleon number.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>charge: –1«e» <em><strong>or</strong></em> negative <em><strong>or</strong></em> K<sup>−</sup></p>
<p><em>Negative signs required.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>correct symbols for both missing quarks</p>
<p>exchange particle and electron labelled W <em><strong>or</strong></em> W<sup>–</sup> and e <em><strong>or</strong></em> e<sup>–</sup><br><em>Do not allow W<sup>+</sup> or e<sup>+</sup> or β<sup>+</sup> Allow β or β<sup>–</sup></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decay products include an electron that has mass<br><em><strong>OR <br></strong></em>products have energy that has a mass equivalent<br><em><strong>OR<br></strong></em>mass/mass defect/binding energy converted to mass/energy of decay products</p>
<p><strong> «so»</strong></p>
<p>mass C-14 > mass N-14<br><em><strong>OR<br></strong></em>mass of <em>n</em> > mass of <em>p<br><strong>OR<br></strong></em>mass of <em>d</em> > mass of <em>u</em></p>
<p><em>Accept reference to “lighter” and “heavier” in mass.<br>Do not accept implied comparison, eg “C-14 has greater mass”. Comparison must be explicit as stated in scheme.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A possible decay of a lambda particle (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Lambda ^0}">
<mrow>
<msup>
<mi mathvariant="normal">Λ<!-- Λ --></mi>
<mn>0</mn>
</msup>
</mrow>
</math></span>) is shown by the Feynman diagram.</p>
<p style="text-align: left;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the quark structures of a meson and a baryon.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain which interaction is responsible for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw arrow heads on the lines representing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar u}">
<mrow>
<mrow>
<mover>
<mi>u</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span> and d in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\pi ^ - }">
<mrow>
<msup>
<mi>π</mi>
<mo>−</mo>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the exchange particle in this decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> benefit of international cooperation in the construction or use of high-energy particle accelerators.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Meson:</em> quark-antiquark pair<br><em>Baryon:</em> 3 quarks</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1</strong></em></p>
<p>strange quark changes «flavour» to an up quark</p>
<p>changes in quarks/strangeness happen only by the weak interaction</p>
<p> </p>
<p><em><strong>Alternative 2</strong></em></p>
<p>Strangeness is not conserved in this decay «because the strange quark changes to an up quark»</p>
<p>Strangeness is not conserved during the weak interaction</p>
<p> </p>
<p><em>Do not allow a bald answer of weak interaction.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>arrows drawn in the direction shown</p>
<p><img src=""></p>
<p> </p>
<p><em>Both needed for <strong>[1]</strong> mark.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>W <sup>−</sup></em></p>
<p> </p>
<p><em>Do not allow W or W<sup>+</sup>.</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>it lowers the cost to individual nations, as the costs are shared</p>
<p>international co-operation leads to international understanding <em><strong>OR</strong> </em>historical example of co-operation <strong><em>OR</em> </strong>co-operation always allows science to proceed</p>
<p>large quantities of data are produced that are more than one institution/research group can handle co-operation allows effective analysis</p>
<p> </p>
<p><em>Any one.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>One possible fission reaction of uranium-235 (U-235) is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">U</mi><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi mathvariant="normal">n</mi><mprescripts></mprescripts><mn>0</mn><mn>1</mn></mmultiscripts><mo>→</mo><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><mn>54</mn><mn>140</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Sr</mi><mprescripts></mprescripts><mn>38</mn><mn>94</mn></mmultiscripts><mo>+</mo><mn>2</mn><mmultiscripts><mi mathvariant="normal">n</mi><mprescripts></mprescripts><mn>0</mn><mn>1</mn></mmultiscripts></math></p>
<p style="text-align: left;">Mass of one atom of U-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>235</mn><mo> </mo><mi mathvariant="normal">u</mi></math><br>Binding energy per nucleon for U-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>7</mn><mo>.</mo><mn>59</mn><mo> </mo><mi>MeV</mi></math><br>Binding energy per nucleon for Xe-140 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>29</mn><mo> </mo><mi>MeV</mi></math><br>Binding energy per nucleon for Sr-94 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>59</mn><mo> </mo><mi>MeV</mi></math></p>
</div>
<div class="specification">
<p>A nuclear power station uses U-235 as fuel. Assume that every fission reaction of U-235 gives rise to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo> </mo><mi>MeV</mi></math> of energy.</p>
</div>
<div class="specification">
<p>A sample of waste produced by the reactor contains <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>kg</mi></math> of strontium-94 (Sr-94). Sr-94 is radioactive and undergoes beta-minus (<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">β</mi><mo>-</mo></msup></math>) decay into a daughter nuclide X. The reaction for this decay is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Sr</mi><mprescripts></mprescripts><mn>38</mn><mn>94</mn></mmultiscripts><mo>→</mo><mi mathvariant="normal">X</mi><mo>+</mo><msub><mover><mi mathvariant="normal">v</mi><mo>¯</mo></mover><mi>e</mi></msub><mo>+</mo><mi>e</mi></math>.</p>
<p> </p>
</div>
<div class="specification">
<p>The graph shows the variation with time of the mass of Sr-94 remaining in the sample.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="576" height="367"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why quantities such as atomic mass and nuclear binding energy are often expressed in non-SI units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in the reaction is about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo> </mo><mi>MeV</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, the specific energy of U-235.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The power station has a useful power output of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo> </mo><mi>GW</mi></math> and an efficiency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn><mo> </mo><mo>%</mo></math>. Determine the mass of U-235 that undergoes fission in one day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the proton number of nuclide X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the half-life of Sr-94.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of Sr-94 remaining in the sample after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">energy required to </span><span class="fontstyle2">«</span><span class="fontstyle0">completely</span><span class="fontstyle2">» </span><span class="fontstyle0">separate the nucleons<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span><span class="fontstyle0">energy released when a nucleus is formed from its constituent nucleons </span><span class="fontstyle4">✓</span></p>
<p><em><span class="fontstyle5"><br>Allow protons </span><span class="fontstyle3"><strong>AND</strong> </span><span class="fontstyle5">neutrons.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the values </span><span class="fontstyle2">«</span><span class="fontstyle0">in SI units</span><span class="fontstyle2">» </span><span class="fontstyle0">would be very small </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>140</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>29</mn><mo>+</mo><mn>94</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>59</mn><mo>-</mo><mn>235</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>59</mn></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>184</mn><mo> </mo><mo>«</mo><mi>MeV</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle3">see <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>energy</mi><mo>=</mo><mo>»</mo><mo> </mo><mn>180</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>60</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>mass</mi><mo>=</mo><mo>»</mo><mo> </mo><mn>235</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>66</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>27</mn></mrow></msup></math> ✓</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>13</mn></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">energy produced in one day<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow></mfrac><mo>=</mo><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>14</mn></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> ✓</span></p>
<p><span class="fontstyle0">mass<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>14</mn></msup></mrow><mrow><mn>7</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>13</mn></msup></mrow></mfrac><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo> </mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>39</mn></math> </span><span class="fontstyle2">✓</span></p>
<p><em><span class="fontstyle3"><br>Do not allow <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">X</mi><mprescripts></mprescripts><mn>39</mn><mn>94</mn></mmultiscripts></math> unless the proton number is indicated.</span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">s</mi><mo>»</mo></math> <span class="fontstyle3">✓</span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mi>min</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo> </mo><msub><mi>t</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math> ✓</span></p>
<p><span class="fontstyle0">mass remaining<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mn>8</mn></msup><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><span class="fontstyle0">decay constant<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mo>«</mo><mfrac><mrow><mi>ln</mi><mn>2</mn></mrow><mn>75</mn></mfrac><mo>=</mo><mo>»</mo><mn>9</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>
<p><span class="fontstyle0">mass remaining<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mi>e</mi><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>600</mn></mrow></msup><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">c(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>The first scientists to identify alpha particles by a direct method were Rutherford and Royds. They knew that radium-226 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{226}{\text{Ra}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>86</mn>
</mrow>
<mrow>
<mn>226</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Ra</mtext>
</mrow>
</math></span>) decays by alpha emission to form a nuclide known as radon (Rn).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the missing values in the nuclear equation for this decay.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rutherford and Royds put some pure radium-226 in a small closed cylinder A. Cylinder A is fixed in the centre of a larger closed cylinder B.</p>
<p><img src=""></p>
<p>At the start of the experiment all the air was removed from cylinder B. The alpha particles combined with electrons as they moved through the wall of cylinder A to form helium gas in cylinder B.</p>
<p>The wall of cylinder A is made from glass. Outline why this glass wall had to be very thin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rutherford and Royds expected 2.7 x 10<sup>15</sup> alpha particles to be emitted during the experiment. The experiment was carried out at a temperature of 18 °C. The volume of cylinder B was 1.3 x 10<sup>–5</sup> m<sup>3</sup> and the volume of cylinder A was negligible. Calculate the pressure of the helium gas that was collected in cylinder B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rutherford and Royds identified the helium gas in cylinder B by observing its emission spectrum. Outline, with reference to atomic energy levels, how an emission spectrum is formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The work was first reported in a peer-reviewed scientific journal. Outline why Rutherford and Royds chose to publish their work in this way.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>222 <em><strong>AND</strong> </em>4</p>
<p> </p>
<p><em>Both needed.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>alpha particles highly ionizing<br><em><strong>OR</strong></em><br>alpha particles have a low penetration power<br><em><strong>OR</strong></em><br>thin glass increases probability of alpha crossing glass<br><em><strong>OR</strong></em><br>decreases probability of alpha striking atom/nucleus/molecule</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>conversion of temperature to 291 K</p>
<p><em>p</em> = 4.5 x 10<sup>–9</sup> x 8.31 x «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.91}}{{1.3 \times {{10}^{ - 5}}}}">
<mfrac>
<mrow>
<mn>2.91</mn>
</mrow>
<mrow>
<mn>1.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>p</em> = 2.7 x 10<sup>15</sup> x 1.38 x 10<sup>–23</sup> x «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.91}}{{1.3 \times {{10}^{ - 5}}}}">
<mfrac>
<mrow>
<mn>2.91</mn>
</mrow>
<mrow>
<mn>1.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»</p>
<p>0.83 or 0.84 «Pa»</p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electron/atom drops from high energy state/level to low state</p>
<p>energy levels are discrete</p>
<p>wavelength/frequency of photon is related to energy change <em><strong>or</strong> </em>quotes <em>E</em> = <em>hf <strong>or</strong> E</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{\lambda }">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span></p>
<p>and is therefore also discrete</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>peer review guarantees the validity of the work<br><em><strong>OR</strong></em><br>means that readers have confidence in the validity of work</p>
<p> </p>
<p><em>OWTTE</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A stationary nucleus of uranium-238 undergoes alpha decay to form thorium-234.</span></p>
<p><span style="background-color: #ffffff;">The following data are available.</span></p>
<p style="text-align: left; padding-left: 30px;"><span style="background-color: #ffffff;">Energy released in decay 4.27 MeV<br>Binding energy per nucleon for helium 7.07 MeV<br>Binding energy per nucleon for thorium 7.60 MeV</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Radioactive decay is said to be “random” and “spontaneous”. Outline what is meant by each of these terms.</span></p>
<p><span style="background-color: #ffffff;">Random: </span></p>
<p><span style="background-color: #ffffff;">Spontaneous:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the binding energy per nucleon for uranium-238.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>kinetic</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>of</mi><mo> </mo><mi>alpha</mi><mo> </mo><mi>particle</mi></mrow><mrow><mi>kinetic</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>of</mi><mo> </mo><mi>thorium</mi><mo> </mo><mi>nucleus</mi></mrow></mfrac></math>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>random:</em><br>it cannot be predicted which nucleus will decay<br><em><strong>OR</strong></em><br>it cannot be predicted when a nucleus will decay ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: OWTTE</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>spontaneous:</em><br>the decay cannot be influenced/modified in any way ✔<br></span></p>
<p><span style="background-color: #ffffff;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">NOTE: </span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">OWTTE</span><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">234 × 7.6 <em><strong>OR </strong></em> 4 × 7.07 ✔</span></p>
<p><em>BE</em><sub>U </sub>=<span style="background-color: #ffffff;"><span style="background-color: #ffffff;">« 234<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> ×</span> 7.6<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> + 4 × 7.07 – 4.27 =</span>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1802</mn></math> « MeV » ✔</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>B</mi><msub><mi>E</mi><mi mathvariant="normal">U</mi></msub></mrow><mi>A</mi></mfrac><mo>=</mo><mo>«</mo><mfrac><mn>1802</mn><mn>238</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>7</mn><mo>.</mo><mn>57</mn></math> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">« MeV » ✔</span></span></span></p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;"> NOTE: Allow ECF from MP2<br>Award <strong>[3]</strong> for bald correct answer<br>Allow conversion to J, final answer is 1.2 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 10<sup>–12</sup></span></span></span></em></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">states or applies conservation of momentum ✔</span></p>
<p><span style="background-color: #ffffff;">ratio is «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>E</mi><mrow><mi mathvariant="normal">k</mi><mi>α</mi></mrow></msub><msub><mi>E</mi><mi>kTh</mi></msub></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>Th</mi></msub></mrow></mfrac></mstyle></mfrac><mo>=</mo><mfrac><mn>234</mn><mn>4</mn></mfrac></math>» 58.5 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span><br></span></p>
<p><em> NOTE: Award<strong> [2]</strong> for bald correct answer</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Radioactive uranium-238 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>238</mn></mmultiscripts></mfenced></math> produces a series of decays ending with a stable nuclide of lead. The nuclides in the series decay by either alpha (α) or beta-minus (β<sup>−</sup>) processes.</p>
</div>
<div class="specification">
<p>The graph shows the variation with the nucleon number <em>A</em> of the binding energy per nucleon.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Uranium-238 decays into a nuclide of thorium-234 (Th).</p>
<p><br>Write down the complete equation for this radioactive decay.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thallium-206 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>206</mn></mmultiscripts></mfenced></math> decays into lead-206 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Pb</mtext><mprescripts></mprescripts><mn>82</mn><mn>206</mn></mmultiscripts></mfenced></math>.</p>
<p>Identify the quark changes for this decay.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why high temperatures are required for fusion to occur</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the graph, why energy is released both in fusion and in fission.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Uranium-235 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts></math>) is used as a nuclear fuel. The fission of uranium-235 can produce krypton-89 and barium-144.</p>
<p>Determine, in MeV and using the graph, the energy released by this fission.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>U→«</mtext><mprescripts></mprescripts><mn>92</mn><mn>238</mn></mmultiscripts><mmultiscripts><mo>»</mo><mprescripts></mprescripts><mn>90</mn><mn>234</mn></mmultiscripts><mtext>Th+</mtext><mo>«</mo><mmultiscripts><mo>»</mo><mprescripts></mprescripts><mn>2</mn><mn>4</mn></mmultiscripts><mi>α</mi></math> ✓ </p>
<p><em>Allow He for alpha.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>udd→uud<strong><br><em>OR</em><br></strong>down quark changes to up quark <strong>✓</strong><strong> </strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>links temperature to kinetic energy/speed of particles <strong>✓</strong></p>
<p>energy required to overcome «Coulomb» electrostatic repulsion <strong>✓</strong><strong> </strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«energy is released when» binding energy per nucleon increases</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any use of (value from graph) x (number of nucleons) <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>235</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>6</mn><mo>-</mo><mfenced><mrow><mn>89</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>6</mn><mo>+</mo><mn>144</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mo>»</mo><mo> </mo><mn>160</mn><mo> </mo><mo>«</mo><mtext>MeV</mtext><mo>»</mo></math> <strong>✓</strong><strong> </strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,45}^{106}{\text{Rh}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>45</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Rh</mtext>
</mrow>
</math></span>) decays into palladium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,46}^{106}{\text{Pd}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>46</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Pd</mtext>
</mrow>
</math></span>) by beta minus (<em>β</em><sup>–</sup>) decay.</p>
<p>The binding energy per nucleon of rhodium is 8.521 MeV and that of palladium is 8.550 MeV.</p>
</div>
<div class="specification">
<p><em>β</em><sup>–</sup> decay is described by the following incomplete Feynman diagram.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rutherford constructed a model of the atom based on the results of the alpha particle scattering experiment. Describe this model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in the <em>β</em><sup>–</sup> decay of rhodium is about 3 MeV.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a labelled arrow to complete the Feynman diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify particle V.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>most of<strong>» </strong>the mass of the atom is confined within a very small volume/nucleus</p>
<p><strong>«</strong>all<strong>» </strong>the positive charge is confined within a very small volume/nucleus</p>
<p>electrons orbit the nucleus <strong>«</strong>in circular orbits<strong>»</strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the energy needed to separate the nucleons of a nucleus</p>
<p><strong><em>OR</em></strong></p>
<p>energy released when a nucleus is formed from its nucleons</p>
<p> </p>
<p><em>Allow neutrons </em><strong><em>AND </em></strong><em>protons for nucleons</em></p>
<p><em>Don’t allow constituent parts</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Q</em> = 106 × 8.550 − 106 × 8.521 = 3.07 <strong>«</strong>MeV<strong>»</strong></p>
<p><strong>«</strong><em>Q </em>≈ 3 Me V<strong>»</strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line with arrow as shown labelled anti-neutrino/<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar v">
<mrow>
<mover>
<mi>v</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span></p>
<p> </p>
<p><em>Correct direction of the “arrow” is essential</em></p>
<p><em>The line drawn must be “upwards” from the vertex in the time direction i.e. above the horizontal</em></p>
<p><em><img src="images/Schermafbeelding_2018-08-12_om_15.34.15.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/06.c.i/M"></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>V = W<sup>–</sup></p>
<p><em><strong><sup>[1 mark]</sup></strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The radioactive nuclide beryllium-10 (Be-10) undergoes beta minus (<em>β–</em>) decay to form a stable boron (B) nuclide.</p>
</div>
<div class="specification">
<p>The initial number of nuclei in a pure sample of beryllium-10 is N<sub>0</sub>. The graph shows how the number of remaining <strong>beryllium </strong>nuclei in the sample varies with time.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>An ice sample is moved to a laboratory for analysis. The temperature of the sample is –20 °C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing information for this decay.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph, sketch how the number of <strong>boron </strong>nuclei in the sample varies with time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After 4.3 × 10<sup>6</sup> years,</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{\text{number of produced boron nuclei}}}}{{{\text{number of remaining beryllium nuclei}}}} = 7.">
<mfrac>
<mrow>
<mrow>
<mtext>number of produced boron nuclei</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>number of remaining beryllium nuclei</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>7.</mn>
</math></span></p>
<p>Show that the half-life of beryllium-10 is 1.4 × 10<sup>6</sup> years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Beryllium-10 is used to investigate ice samples from Antarctica. A sample of ice initially contains 7.6 × 10<sup>11</sup> atoms of beryllium-10. State the number of remaining beryllium-10 nuclei in the sample after 2.8 × 10<sup>6</sup> years.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by thermal radiation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the peak wavelength in the intensity of the radiation emitted by the ice sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Derive the units of intensity in terms of fundamental SI units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\mkern 1mu} {\mkern 1mu} 4}^{10}{\text{Be}} \to _{{\mkern 1mu} {\mkern 1mu} 5}^{10}{\text{B}} + \beta + {\overline {\text{V}} _{\text{e}}}">
<msubsup>
<mi></mi>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>4</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Be</mtext>
</mrow>
<msubsup>
<mo stretchy="false">→</mo>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>5</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>B</mtext>
</mrow>
<mo>+</mo>
<mi>β</mi>
<mo>+</mo>
<mrow>
<msub>
<mover>
<mtext>V</mtext>
<mo accent="false">¯</mo>
</mover>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
</math></span></p>
<p>conservation of mass number <strong><em>AND </em></strong>charge <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,5}^{10}{\text{B}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>B</mtext>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\mkern 1mu} {\mkern 1mu} 4}^{10}{\text{Be}}">
<msubsup>
<mi></mi>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>4</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Be</mtext>
</mrow>
</math></span></p>
<p> </p>
<p><em>Correct identification of both missing values required for </em><strong><em>[1]</em></strong><em>.</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct shape <em>ie </em>increasing from 0 to about 0.80 N<sub>0</sub></p>
<p>crosses given line at 0.50 N<sub>0</sub></p>
<p><img src="images/Schermafbeelding_2018-08-10_om_19.42.49.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/06.b.i/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>fraction of Be = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>, 12.5%, or 0.125</p>
<p>therefore 3 half lives have elapsed</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_{\frac{1}{2}}} = \frac{{4.3 \times {{10}^6}}}{3} = 1.43 \times {10^6}">
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>1.43</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
</math></span> <strong>«</strong>≈ 1.4 × 10<sup>6</sup><strong>»</strong> <strong>«</strong>y<strong>»</strong></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>fraction of Be = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>, 12.5%, or 0.125</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8} = {{\text{e}}^{ - \lambda }}(4.3 \times {10^6})">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>4.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> leading to <em>λ</em> = 4.836 × 10<sup>–7</sup> <strong>«</strong>y<strong>»</strong><sup>–1</sup></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{\lambda }">
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span> = 1.43 × 10<sup>6</sup> <strong>«</strong>y<strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Must see at least one extra sig fig in final answer.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.9 × 10<sup>11</sup></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>emission of (infrared) electromagnetic/infrared energy/waves/radiation.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein’s Law</p>
<p>so frequency/color depends on temperature</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = \frac{{2.90 \times {{10}^{ - 3}}}}{{253}}">
<mi>λ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2.90</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>253</mn>
</mrow>
</mfrac>
</math></span></p>
<p>= 1.1 × 10<sup>–5</sup> <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from MP1 (incorrect temperature).</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct units for Intensity (allow <em>W, Nms<sup>–</sup></em><sup><em>1 </em></sup><em>OR Js<sup>–</sup></em><sup><em>1 </em></sup><em>in numerator)</em></p>
<p>rearrangement into proper SI units = kgs<sup>–3</sup></p>
<p> </p>
<p><em>Allow ECF for MP2 if final answer is in fundamental units.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>During electron capture, an atomic electron is captured by a proton in the nucleus. The stable nuclide thallium-205 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>) can be formed when an unstable lead (Pb) nuclide captures an electron.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation to represent this decay.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The neutron number <em>N</em> and the proton number <em>Z</em> are not equal for the nuclide <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>. Explain, with reference to the forces acting within the nucleus, the reason for this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thallium-205 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>) can also form from successive alpha (α) and beta-minus (β<sup>−</sup>) decays of an unstable nuclide. The decays follow the sequence α β<sup>−</sup> β<sup>−</sup> α. The diagram shows the position of <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math> on a chart of neutron number against proton number.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Draw <strong>four</strong> arrows to show the sequence of changes to <em>N</em> and <em>Z</em> that occur as the <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math> forms from the unstable nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Pb</mtext><mprescripts></mprescripts><mn>82</mn><mn>205</mn></mmultiscripts></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>e </mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mtext mathvariant="bold-italic">AND </mtext><mo> </mo><mmultiscripts><mi>ν</mi><mtext>e</mtext><none></none><mprescripts></mprescripts><mn>0</mn><mn>0</mn></mmultiscripts></math> <strong>✓</strong></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Reference to proton repulsion <em><strong>OR</strong> </em>nucleon attraction <strong>✓</strong></p>
<p>strong force is short range <em><strong>OR</strong> </em>electrostatic/electromagnetic force is long range <strong>✓</strong></p>
<p>more neutrons «than protons» needed «to hold nucleus together» <strong> ✓</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>any α change correct <strong>✓</strong></p>
<p>any β change correct <strong>✓</strong></p>
<p>diagram fully correct<strong> ✓</strong></p>
<p><em><br>Award <strong>[2] max</strong> for a correct diagram without arrows drawn. </em></p>
<p><em>For <strong>MP1</strong> accept a (−2, −2 ) line with direction indicated, drawn at any position in the graph. </em></p>
<p><em>For <strong>MP2</strong> accept a (1, −1) line with direction indicated, drawn at any position in the graph. </em></p>
<p><em>Award <strong>[1] max</strong> for a correct diagram</em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the position of the principal lines in the visible spectrum of atomic hydrogen and some of the corresponding energy levels of the hydrogen atom.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the energy of a photon of blue light (435nm) emitted in the hydrogen spectrum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with an arrow labelled B on the diagram, the transition in the hydrogen spectrum that gives rise to the photon with the energy in (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain your answer to (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies λ = 435 nm ✔</p>
<p><em>E</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{\lambda }">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{4.35 \times {{10}^{ - 7}}}}">
<mfrac>
<mrow>
<mn>6.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4.35</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> ✔</p>
<p>4.6 ×10<sup>−19</sup> «J» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–0.605 <em><strong>OR</strong> </em>–0.870 <em><strong>OR</strong></em> –1.36 to –5.44 <em><strong>AND</strong></em> arrow pointing downwards ✔</p>
<p><em>Arrow <strong>MUST</strong> match calculation in (a)(i)</em></p>
<p><em>Allow ECF from (a)(i)</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Difference in energy levels is equal to the energy of the photon ✔</p>
<p>Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one ✔</p>
<p><em>Allow ECF from (a)(i)</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Silicon-30 <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{(}}{}_{14}^{30}{\text{Si)}}">
<mrow>
<mtext>(</mtext>
</mrow>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>30</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Si)</mtext>
</mrow>
</math></span></span> can be formed from phosphorus-30 <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({}_{15}^{30}{\text{P)}}">
<mo stretchy="false">(</mo>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>30</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P)</mtext>
</mrow>
</math></span></span> by a process of beta-plus decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the nuclear equation that represents this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the Feynman diagram that represents this reaction. The diagram has been started for you.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">Energy is transferred to a hadron in an attempt to separate its quarks. Describe the implications of quark confinement for this situation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">The Standard Model was accepted by many scientists before the observation of the Higgs boson was made.</p>
<p style="text-align:left;">Outline why it is important to continue research into a topic once a scientific model has been accepted by the scientific community.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{30}{\text{P}} \to {\text{(}}{}_{14}^{30}{\text{Si)}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>30</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">→</mo>
<mrow>
<mtext>(</mtext>
</mrow>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>30</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Si)</mtext>
</mrow>
</math></span> ✔</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ + }}{}_{ + 1}^0{\text{e}} + {v_{\text{e}}}">
<mrow>
<mtext> + </mtext>
</mrow>
<msubsup>
<mrow>
</mrow>
<mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mn>0</mn>
</msubsup>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>v</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
</math></span> ✔</span></span></p>
<p> </p>
<p><em>Subscript on neutrino not necessary to award MP2.</em></p>
<p><em>Allow the use of β for e.</em></p>
<p><em>Do not allow an anti-neutrino for MP2.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct change of either u to d ✔</p>
<p>W<sup>+</sup> shown ✔</p>
<p>correct arrow directions for positron and electron neutrino ✔</p>
<p><em>Allow ECF from MP2 in ai for MP3</em>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>quarks cannot be directly observed as free particles/must remain bound to other quarks/quarks cannot be isolated ✔</p>
<p>because energy given to nucleon creates other particles rather than freeing quarks/<em><strong>OWTTE</strong></em> ✔</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>models need testing/new information may change models/new technology may bring new information/Models can be revised/<em><strong>OWTTE</strong></em> ✔</p>
<p><em>Look for responses that suggest changes/improvements to models.</em></p>
<p><em>Don’t accept answers specifically about the Standard Model.</em></p>
<p><em>Don’t accept answers about simply proving the model correct.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few candidates were awarded full marks for a variety of reasons for the Feynman diagram they drew, and many left this question blank. It should be noted that on the exam the time axis can either be vertical or horizontal, so candidates should be familiar with both methods of drawing Feynman diagrams. Candidates should be able to draw Feynman diagrams from scratch either way. The examiners were looking for the basics of drawing a diagram (proper change in quark structure, proper exchange particle, and proper arrow directions for the positron and neutrino).</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few candidates recognized that quarks cannot exist in isolation, and fewer still could discuss the effect of adding energy to attempt to separate quarks. Some recognized that the added energy would ultimately be converted into mass, but few clearly specified that this would form new particles (such as mesons) rather than just new quarks.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a “nature of science” question. The examiners were looking for the idea that models can be improved on and revised by new data rather than just proven right or wrong.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the quark structure of a baryon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Feynman diagram shows a possible decay of the K<sup>+</sup> meson.</p>
<p style="text-align:center;"><img src=""></p>
<p>Identify the interactions that are involved at points A and B in this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The K<sup>+</sup> meson can decay as</p>
<p style="text-align:center;">K<sup>+ </sup>→ μ<sup>+</sup> + v<sub>μ</sub>.</p>
<p>State and explain the interaction that is responsible for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>3 quarks / example with three quarks «e.g. up up down» ✓</p>
<p>integer / zero / 1 / no fractional «electron» charge<br><em><strong>OR</strong></em><br>held together by the strong force / gluons<br><em><strong>OR</strong></em><br>half integer spin<br><em><strong>OR</strong></em><br>baryon number = 1<br><em><strong>OR</strong></em><br>colour neutral ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A «Decay of the strange antiquark is a» weak «interaction» ✓</p>
<p>B «Decay of the u to a gluon and eventually to d and anti-d is a» strong «interaction» ✓</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>weak «interaction» ✓</p>
<p>strangeness is not conserved and this is possible only in weak interactions<br><em><strong>OR<br></strong></em>the weak interaction allows change of quark flavour<br><em><strong>OR<br></strong></em>only the weak interaction has a boson / an exchange particle / a W+ to conserve the charge<br><em><strong>OR</strong></em><br>neutrinos are only produced via the weak interaction ✓</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A significant number of candidates recognized that baryons are composed of three quarks. The second mark was for a statement concerning baryons as a result of the quark composition, and not for a general statement about the quarks (e.g. "the baryon number is 1" rather than "each quark has a baryon number of ⅓). It is worth noting that the information about individual quarks is given in the data booklet which is why no marks were awarded for simply copying this information over.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to successfully identify the two interactions in the diagram. Some candidates only described what was happening in the diagram without identifying the actual interaction. A common mistake was identifying the gluon at B as a graviton, and/or suggesting that this was a gravitational interaction. Many candidates also did not make the connection between the term "interaction" in the stem and the concept of force.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was another item where some candidates simply described the particles without specifying the weak interaction. The second marking point was for a justification based on an aspect of this decay that could only be true of the weak nuclear force. A commonly incorrect answer was that this was the only force that acted on quarks and leptons, which was not accepted due to the fact that the gravitational force also acts on these particles as well. Another common incorrect answer among SL candidates was to assume that this was an example of beta negative decay due to the presence of a neutrino.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Deuterium, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_1^2{\text{H}}">
<msubsup>
<mrow>
</mrow>
<mn>1</mn>
<mn>2</mn>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
</math></span>, undergoes fusion according to the following reaction.</span></p>
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_1^2{\text{H}} + {}_1^2{\text{H}} \to {}_1^3{\text{H}} + {\text{X}}">
<msubsup>
<mrow>
</mrow>
<mn>1</mn>
<mn>2</mn>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>+</mo>
<msubsup>
<mrow>
</mrow>
<mn>1</mn>
<mn>2</mn>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo stretchy="false">→<!-- → --></mo>
<msubsup>
<mrow>
</mrow>
<mn>1</mn>
<mn>3</mn>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>X</mtext>
</mrow>
</math></span></span></p>
<p> </p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The following data are available for binding energies per nucleon.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_1^2{\text{H}} = 1.12{\text{MeV}}">
<msubsup>
<mrow>
</mrow>
<mn>1</mn>
<mn>2</mn>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>=</mo>
<mn>1.12</mn>
<mrow>
<mtext>MeV</mtext>
</mrow>
</math></span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_1^3{\text{H}} = 2.78{\text{MeV}}">
<msubsup>
<mrow>
</mrow>
<mn>1</mn>
<mn>3</mn>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>=</mo>
<mn>2.78</mn>
<mrow>
<mtext>MeV</mtext>
</mrow>
</math></span></span></span></span></p>
<p> </p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Particle Y is produced in the collision of a proton with a K- in the following reaction.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The quark content of some of the particles involved are</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src=""></span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Identify particle X.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine, in MeV, the energy released.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest why, for the fusion reaction above to take place, the temperature of deuterium must be very high.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Identify, for particle Y, the charge.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Identify, for particle Y, the strangeness.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">cii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">proton / <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_1^1{\text{H}}">
<msubsup>
<mrow>
</mrow>
<mn>1</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
</math></span> / p ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«3 x 2.78 − 2 × 2 × 1.12»<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">See 3 × 2.78/8.34 <em><strong>OR</strong> </em>2 × 2 × 1.12/4.48✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">3.86 «MeV» ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"> </p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">the deuterium nuclei are positively charged/repel ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">high KE/energy is required to overcome «Coulomb/electrostatic» repulsion /potential barrier</span></p>
<p style="color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;text-decoration:none;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">high KE/energy is required to bring the nuclei within range of the strong nuclear force ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">high temperatures are required to give high KEs/energies ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"> </p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">−1 / -e ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"> </p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">−3 ✔</span></p>
<div class="question_part_label">cii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>At HL this was well answered with the most common wrong answer being ‘neutron’. At SL however, this was surprisingly wrongly answered by many. Suggestions given included most smallish particles, alpha, positron, beta, antineutrino and even helium.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates missed the fact that the figures given were the binding energies per nucleon. Many complicated calculations were also seen, particularly at SL, that involved E = mc<sup>2</sup>.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The most common mark to be awarded here was the one for linking high temperature to high KE. A large number of candidates talked about having to overcome the strong nuclear force before fusion could happen.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>At SL many answers of just ‘negative’ were seen.</p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was poorly answered at both levels with the most common answer being zero.</p>
<div class="question_part_label">cii.</div>
</div>
<br><hr><br><div class="specification">
<p>An experiment is carried out to determine the count rate, corrected for background radiation, when different thicknesses of copper are placed between a radioactive source and a detector. The graph shows the variation of corrected count rate with copper thickness.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the count rate was corrected for background radiation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When a single piece of thin copper foil is placed between the source and detector, the count rate is 810 count minute<sup>−1</sup>. The foil is replaced with one that has three times the thickness. Estimate the new count rate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Further results were obtained in this experiment with copper and lead absorbers.</p>
<p style="text-align:center;"><img src=""></p>
<p>Comment on the radiation detected from this radioactive source.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another radioactive source consists of a nuclide of caesium <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Cs</mtext><mprescripts></mprescripts><mn>55</mn><mn>137</mn></mmultiscripts></mfenced></math> that decays to barium <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Ba</mtext><mprescripts></mprescripts><mn>56</mn><mn>137</mn></mmultiscripts></mfenced></math>.</p>
<p>Write down the reaction for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>background count rate is subtracted «from each reading» ✓</p>
<p> </p>
<p><em><strong>OWTTE</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>thickness is 0.25 «mm» ✓</p>
<p>380 «count min<sup>−1</sup>» ✓</p>
<p> </p>
<p><em><strong>MP1</strong> and <strong>MP2</strong> can be shown on the graph</em></p>
<p><em>Allow a range of 0.23 to 0.27 mm for <strong>MP1</strong></em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<p><em>Accept a final answer in the range 350 – 420</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lead better absorber than copper ✓</p>
<p>not alpha ✓</p>
<p>as it does not go through the foil / it is easily stopped / it is stopped by paper ✓</p>
<p>there is gamma ✓</p>
<p>as it goes through lead ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>can be beta ✓</p>
<p>as it is attenuated by «thin» metal / can go through «thin» metal ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>not beta ✓</p>
<p>it is stopped by «thin» metal ✓</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Cs </mtext><mprescripts></mprescripts><mn>55</mn><mn>137</mn></mmultiscripts><mo>→</mo><mtext> </mtext><mmultiscripts><mtext>Ba</mtext><mprescripts></mprescripts><mn>56</mn><mn>137</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>β</mi><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><msub><mover><mi>v</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math> ✓</p>
<p> </p>
<p><em>Accept β or e in <strong>MP1</strong>.</em></p>
<p><em>Do <strong>not</strong> penalize if proton / nucleon numbers or electron subscript in antineutrino are missing.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>a) A majority of candidates were able to say that background radiation count was subtracted from all readings.</p>
<p>b) A fairly easy question with most candidates being able to take readings from the graph to get a final count rate of approximately 380 counts per second. Many did not seem to have used a ruler to help their reading.</p>
<p>c) This was a bit chaotic with candidates showing all sorts of misconceptions. The first marking point was the one most commonly awarded. The 2 big misconceptions were that the copper and lead were radioactive themselves and produced the radiation, or that the higher the figures the better absorbers they were. Far too many candidates thought that the question was only about the radiation passing through the 3.5 mm of lead and copper. Most of these candidates realised that there must be some gamma radiation in the radiation detected. Far fewer stated that there could not be any alpha. Opinions varied as to whether there was beta, but any sensible answers were given credit.</p>
<p>d) This question was generally well answered, with most candidates getting</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Conservation of energy and conservation of momentum are two examples of conservation laws.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the significance of conservation laws for physics.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When a pi meson π- (du̅) and a proton (uud) collide, a possible outcome is a sigma baryon Σ<sup>0</sup> (uds) and a kaon meson Κ<sup>0</sup> (ds̅).</p>
<p><br>Apply <strong>three</strong> conservation laws to show that this interaction is possible.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>they express fundamental principles of nature <strong>✓</strong></p>
<p>allow to model situations <strong>✓</strong></p>
<p>allow to calculate unknown variables <strong>✓</strong></p>
<p>allow to predict possible outcomes <strong>✓</strong></p>
<p>allow to predict missing quantities/particles <strong>✓</strong></p>
<p>allow comparison of different system states <strong>✓</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>three correct conservation laws listed <strong>✓</strong></p>
<p>at least one conservation law correctly demonstrated <strong>✓</strong></p>
<p>all three conservation laws correctly demonstrated <strong>✓</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The Feynman diagram shows electron capture.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that X must be an electron neutrino.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between hadrons and leptons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>it has a lepton number of 1 «as lepton number is conserved»</p>
<p>it has a charge of zero/is neutral «as charge is conserved»</p>
<p><em><strong>OR</strong></em></p>
<p>it has a baryon number of 0 «as baryon number is conserved»</p>
<p><em>Do not credit answers referring to energy</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hadrons experience strong force</p>
<p><em><strong>OR</strong></em></p>
<p>leptons do not experience the strong force<br><br>hadrons made of quarks/not fundamental</p>
<p><em><strong>OR</strong></em></p>
<p>leptons are not made of quarks/are fundamental</p>
<p>hadrons decay «eventually» into protons</p>
<p><em><strong>OR</strong></em></p>
<p>leptons do not decay into protons</p>
<p><em>Accept leptons experience the weak force</em></p>
<p><em>Allow “interaction” for “force”</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>