File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 7 HTML/markSceme-SL-paper1html
File size: 395.9 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="question">
<p>The mass defect for deuterium is 4×10<sup>–30 </sup>kg. What is the binding energy of deuterium? </p>
<p>A. 4×10<sup>–7 </sup>eV </p>
<p>B. 8×10<sup>–2 </sup>eV </p>
<p>C. 2×10<sup>6 </sup>eV </p>
<p>D. 2×10<sup>12 </sup>eV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>As quarks separate from each other within a hadron, the interaction between them becomes larger. What is the nature of this interaction? </p>
<p>A. Electrostatic<br>B. Gravitational <br>C. Strong nuclear <br>D. Weak nuclear</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p><img src=""></p>
<p>What is a possible pulse shape when the pulses overlap?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the relation between the value of the unified atomic mass unit in grams and the value of Avogadro’s constant in mol<sup>−1</sup>?</p>
<p>A. Their ratio is 1.</p>
<p>B. Their product is 1.</p>
<p>C. Their sum is 1.</p>
<p>D. Their difference is 0.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Photons of energy 2.3eV are incident on a low-pressure vapour. The energy levels of the atoms in the vapour are shown</p>
<p><img src="" alt></p>
<p>What energy transition will occur when a photon is absorbed by the vapour? </p>
<p>A. –3.9eV to –1.6eV</p>
<p>B. –1.6eV to 0eV </p>
<p>C. –1.6eV to –3.9eV </p>
<p>D. 0eV to –1.6eV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>When an alpha particle collides with a nucleus of nitrogen-14 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{}_7^{14}{\rm{N}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mrow>
</mrow>
<mn>7</mn>
<mrow>
<mn>14</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">N</mi>
</mrow>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, a nucleus X can be produced together with a proton. What is X?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_8^{18}{\rm{X}}">
<msubsup>
<mrow>
</mrow>
<mn>8</mn>
<mrow>
<mn>18</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">X</mi>
</mrow>
</mrow>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_8^{17}{\rm{X}}">
<msubsup>
<mrow>
</mrow>
<mn>8</mn>
<mrow>
<mn>17</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">X</mi>
</mrow>
</mrow>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_9^{18}{\rm{X}}">
<msubsup>
<mrow>
</mrow>
<mn>9</mn>
<mrow>
<mn>18</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">X</mi>
</mrow>
</mrow>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_9^{17}{\rm{X}}">
<msubsup>
<mrow>
</mrow>
<mn>9</mn>
<mrow>
<mn>17</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">X</mi>
</mrow>
</mrow>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The binding energy per nucleon of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_4^{11}Be">
<msubsup>
<mrow>
</mrow>
<mn>4</mn>
<mrow>
<mn>11</mn>
</mrow>
</msubsup>
<mi>B</mi>
<mi>e</mi>
</math></span> is 6 MeV. What is the energy required to separate the nucleons of this nucleus?</p>
<p>A. 24 MeV</p>
<p>B. 42 MeV</p>
<p>C. 66 MeV</p>
<p>D. 90 MeV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In nuclear fission, a nucleus of element X absorbs a neutron (n) to give a nucleus of element Y and a nucleus of element Z.</p>
<p>X + n → Y + Z + 2n</p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{magnitude of the binding energy per nucleon of Y}}}}{{{\text{magnitude of the binding energy per nucleon of X}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>magnitude of the binding energy per nucleon of Y</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>magnitude of the binding energy per nucleon of X</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{total binding energy of Y and Z}}}}{{{\text{total binding energy of X}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>total binding energy of Y and Z</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>total binding energy of X</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the energy equivalent to the mass of one proton?</p>
<p>A. 9.38 × (3 × 10<sup>8</sup>)<sup>2</sup> × 10<sup>6</sup> J</p>
<p>B. 9.38 × (3 × 10<sup>8</sup>)<sup>2</sup> × 1.6 × 10<sup>–19</sup> J</p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{9.38 \times {{10}^8}}}{{1.6 \times {{10}^{ - 19}}}}">
<mfrac>
<mrow>
<mn>9.38</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>J</p>
<p>D. 9.38 × 10<sup>8</sup> × 1.6 × 10<sup>–19</sup> J</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A nucleus of phosphorus (P) decays to a nucleus of silicon (Si) with the emission of particle X and particle Y.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{}_{15}^{30}{\text{P}} \to {}_{14}^{30}{\text{Si}} + {\text{X}} + {\text{Y}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>30</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">→</mo>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>30</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Si</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>X</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>Y</mtext>
</mrow>
</math></span></p>
<p>What are X and Y?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What statement about alpha particles, beta particles and gamma radiation is true?</p>
<p>A. Gamma radiation always travels faster than beta particles in a vacuum.</p>
<p>B. In air, beta particles produce more ions per unit length travelled than alpha particles.</p>
<p>C. Alpha particles are always emitted when beta particles are emitted.</p>
<p>D. Alpha particles are deflected in the same direction as beta particles in a magnetic field.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The Feynman diagram shows a particle interaction involving a W<sup>–</sup> boson.</p>
<p><img src=""></p>
<p>Which particles are interacting?</p>
<p>A. U and Y</p>
<p>B. W<sup>–</sup> boson and Y</p>
<p>C. X and Y</p>
<p>D. U and X</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The Feynman diagram shows some of the changes in a proton–proton collision.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="360" height="423">What is the equation for this collision?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">p</mi><mo>+</mo><mi mathvariant="normal">p</mi><mo>→</mo><mi mathvariant="normal">p</mi><mo>+</mo><mi mathvariant="normal">n</mi><mo>+</mo><msup><mi mathvariant="normal">π</mi><mo>+</mo></msup></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">p</mi><mo>+</mo><mi mathvariant="normal">p</mi><mo>→</mo><mi mathvariant="normal">p</mi><mo>+</mo><mi mathvariant="normal">n</mi><mo>+</mo><msup><mi mathvariant="normal">π</mi><mo>-</mo></msup></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">p</mi><mo>+</mo><mi mathvariant="normal">p</mi><mo>→</mo><mi mathvariant="normal">p</mi><mo>+</mo><mover><mi mathvariant="normal">n</mi><mo>¯</mo></mover><mo>+</mo><msup><mi mathvariant="normal">π</mi><mo>+</mo></msup></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">p</mi><mo>+</mo><mi mathvariant="normal">p</mi><mo>→</mo><mi mathvariant="normal">p</mi><mo>+</mo><mover><mi mathvariant="normal">n</mi><mo>¯</mo></mover><mo>+</mo><msup><mi mathvariant="normal">π</mi><mo>-</mo></msup></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There were some teacher comments that this was not a complete Feynman diagram however the stem does say that the diagram shows some of the changes and is intended to make the question easier by not complicating with particles that do not change. Students should be made aware that they can expect to see diagrams like this in the future as partial diagrams do tend to make the situation simpler for students to solve.</p>
</div>
<br><hr><br><div class="question">
<p>Consider the Feynman diagram below.</p>
<p style="text-align:center;"> <img src=""></p>
<p>What is the exchange particle X?</p>
<p>A. Lepton</p>
<p>B. Gluon</p>
<p>C. Meson</p>
<p>D. Photon</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>When a high-energy <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math>-particle collides with a beryllium-9 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Be</mtext><mprescripts></mprescripts><mn>4</mn><mn>9</mn></mmultiscripts></math>) nucleus, a nucleus of carbon <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>Z</mtext><mo>=</mo><mn>6</mn></mrow></mfenced></math> may be produced. What are the products of this reaction?</p>
<p><br><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The half-life of a radioactive element is 5.0 days. A freshly-prepared sample contains 128 g of this element. After how many days will there be 16 g of this element left behind in the sample?</p>
<p>A. 5.0 days</p>
<p>B. 10 days</p>
<p>C. 15 days</p>
<p>D. 20 days</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The energy-level diagram for an atom that has four energy states is shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_17.05.37.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/27"></p>
<p>What is the number of different wavelengths in the emission spectrum of this atom?</p>
<p>A. 1</p>
<p>B. 3</p>
<p>C. 6</p>
<p>D. 7</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A simple model of an atom has three energy levels. The differences between adjacent energy levels are shown below.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What are the two smallest frequencies in the emission spectrum of this atom?</p>
<p>A. 0.5 × 10<sup>15 </sup>Hz and 1.0 × 10<sup>15 </sup>Hz</p>
<p>B. 0.5 × 10<sup>15 </sup>Hz and 1.5 × 10<sup>15 </sup>Hz</p>
<p>C. 1.0 × 10<sup>15 </sup>Hz and 2.0 × 10<sup>15 </sup>Hz</p>
<p>D. 1.0 × 10<sup>15 </sup>Hz and 3.0 × 10<sup>15 </sup>Hz</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A graph of the variation of average binding energy per nucleon with nucleon number has a maximum. What is indicated by the region around the maximum?</p>
<p>A. The position below which radioactive decay cannot occur</p>
<p>B. The region in which fission is most likely to occur</p>
<p>C. The position where the most stable nuclides are found</p>
<p>D. The region in which fusion is most likely to occur</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A proton collides with an electron. What are the possible products of the collision?</p>
<p> </p>
<p>A. Two neutrons</p>
<p>B. Neutron and positron</p>
<p>C. Neutron and antineutrino</p>
<p>D. Neutron and neutrino</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The mass of a nucleus of iron-56 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Fe</mtext><mprescripts></mprescripts><mn>26</mn><mn>56</mn></mmultiscripts></math>) is <em>M</em>.</p>
<p>What is the mass defect of the nucleus of iron-56?</p>
<p> </p>
<p>A. <em>M</em> − 26<em>m</em><sub>p</sub> − 56<em>m</em><sub>n</sub></p>
<p>B. 26<em>m</em><sub>p</sub> + 30<em>m</em><sub>n</sub> − <em>M</em></p>
<p>C. M − 26<em>m</em><sub>p</sub> − 56<em>m</em><sub>n</sub> − 26<em>m</em><sub>e</sub></p>
<p>D. 26<em>m</em><sub>p</sub> + 30<em>m</em><sub>n</sub> + 26<em>m</em><sub>e</sub> − <em>M</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three particles are produced when the nuclide <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Mg</mtext><mprescripts></mprescripts><mn>12</mn><mn>23</mn></mmultiscripts></math> undergoes beta-plus (<em>β</em><sup>+</sup>) decay. What are two of these particles?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Na</mtext><mprescripts></mprescripts><mn>11</mn><mn>23</mn></mmultiscripts></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>v</mtext><mtext>e</mtext><mprescripts></mprescripts><mn>0</mn><mn>0</mn></mmultiscripts></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>e</mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>v</mtext><mtext>e</mtext><mprescripts></mprescripts><mn>0</mn><mn>0</mn></mmultiscripts></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Na</mtext><mprescripts></mprescripts><mn>11</mn><mn>23</mn></mmultiscripts></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><menclose notation="top"><mtext>v</mtext></menclose><mtext>e</mtext><mprescripts></mprescripts><mn>0</mn><mn>0</mn></mmultiscripts></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>e</mtext><mprescripts></mprescripts><mn>1</mn><mn>0</mn></mmultiscripts></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><menclose notation="top"><mtext>v</mtext></menclose><mtext>e</mtext><mprescripts></mprescripts><mn>0</mn><mn>0</mn></mmultiscripts></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram below shows four energy levels for the atoms of a gas. The diagram is drawn to scale. The wavelengths of the photons emitted by the energy transitions between levels are shown.</p>
<p style="text-align:center;"> <img src=""></p>
<p>What are the wavelengths of spectral lines, emitted by the gas, in order of decreasing frequency?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>3</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>4</mn></msub></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>4</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>3</mn></msub></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>4</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>3</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>1</mn></msub></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>4</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>λ</mi><mn>3</mn></msub></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two pure samples of radioactive nuclides X and Y have the same initial number of atoms. The half-life of X is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_{\frac{1}{2}}}">
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</math></span>.</p>
<p>After a time equal to 4 half-lives of X the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{number of atoms of X}}}}{{{\text{number of atoms of Y}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>number of atoms of X</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>number of atoms of Y</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>.</p>
<p>What is the half-life of Y?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.25{T_{\frac{1}{2}}}">
<mn>0.25</mn>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{T_{\frac{1}{2}}}">
<mn>0.5</mn>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{T_{\frac{1}{2}}}">
<mn>3</mn>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4{T_{\frac{1}{2}}}">
<mn>4</mn>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation with time of the activity of a pure sample of a radioactive nuclide.</p>
<p>What percentage of the nuclide remains after 200 s?</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;"> </p>
<p style="text-align: left;">A. 3.1 %</p>
<p style="text-align: left;">B. 6.3 %</p>
<p style="text-align: left;">C. 13 %</p>
<p style="text-align: left;">D. 25 %</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>238</mn></mmultiscripts></math> undergoes an alpha decay, followed by a beta-minus decay. What is the number of protons and neutrons in the resulting nuclide?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was generally well answered by candidates, however a significant number selected option A (incorrectly) perhaps due to confusion between nuclear mass and the number of neutrons. This question had a relatively high discrimination index.</p>
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of the number of neutrons <em>N</em> with the atomic number <em>Z</em> for stable nuclei. The same scale is used in the <em>N</em> and <em>Z</em> axes.</p>
<p style="text-align: center;"><img src=""></p>
<p>Which information can be inferred from the graph?</p>
<p style="padding-left:60px;">I. For stable nuclei with high <em>Z</em>, <em>N</em> is larger than <em>Z</em>.</p>
<p style="padding-left:60px;">II. For stable nuclei with small <em>Z</em>, <em>N</em> = <em>Z</em>.</p>
<p style="padding-left:60px;">III. All stable nuclei have more neutrons than protons.</p>
<p> </p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The following interaction is proposed between a proton and a pion.</p>
<p style="text-align: center;">p<sup>+</sup> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span><sup>–</sup> → K<sup>–</sup> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span><sup>+</sup></p>
<p>The quark content of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span><sup>–</sup> is ūd and the quark content of the K<sup>–</sup> is ūs.</p>
<p>Three conservation rules are considered</p>
<p style="padding-left:90px;">I. baryon number</p>
<p style="padding-left:90px;">II. charge</p>
<p style="padding-left:90px;">III. strangeness.</p>
<p>Which conservation rules are violated in this interaction?</p>
<p> </p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Copper (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{29}^{64}{\text{Cu}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>29</mn>
</mrow>
<mrow>
<mn>64</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Cu</mtext>
</mrow>
</math></span>) decays to nickel (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{28}^{64}{\text{Ni}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>28</mn>
</mrow>
<mrow>
<mn>64</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Ni</mtext>
</mrow>
</math></span>). What are the particles emitted and the particle that mediates the interaction?</p>
<p> </p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Which Feynman diagram shows the emission of a photon by a charged antiparticle?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following atomic energy level transitions corresponds to photons of the shortest wavelength?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The most common (incorrect) response was A, where students apparently assumed energy difference was proportional to the wavelength of the emitted photon.</p>
</div>
<br><hr><br><div class="question">
<p>Four of the energy states for an atom are shown. Transition between any two states is possible.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the shortest wavelength of radiation that can be emitted from these four states?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mrow><msub><mi>E</mi><mn>4</mn></msub><mo>-</mo><msub><mi>E</mi><mn>1</mn></msub></mrow></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><msub><mi>E</mi><mn>4</mn></msub></mfrac><mo>-</mo><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><msub><mi>E</mi><mn>1</mn></msub></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mrow><msub><mi>E</mi><mn>4</mn></msub><mo>-</mo><msub><mi>E</mi><mn>3</mn></msub></mrow></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><msub><mi>E</mi><mn>4</mn></msub></mfrac><mo>-</mo><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><msub><mi>E</mi><mn>3</mn></msub></mfrac></math> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three statements about radioactive decay are:</p>
<p style="padding-left:30px;">I. The rate of decay is exponential.<br>II. It is unaffected by temperature and pressure.<br>III. The decay of individual nuclei cannot be predicted.</p>
<p>Which statements are correct?</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Option B was the most frequent answer by candidates, suggesting that many candidates are unclear about the basic characteristics of radioactive decay.</p>
</div>
<br><hr><br><div class="question">
<p>Which statement about atomic spectra is <strong>not</strong> true?</p>
<p>A. They provide evidence for discrete energy levels in atoms.</p>
<p>B. Emission and absorption lines of equal frequency correspond to transitions between the same two energy levels.</p>
<p>C. Absorption lines arise when electrons gain energy.</p>
<p>D. Emission lines always correspond to the visible part of the electromagnetic spectrum.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three statements about electrons are:</p>
<p style="padding-left:60px;">I. Electrons interact through virtual photons.<br>II. Electrons interact through gluons.<br>III. Electrons interact through particles W and Z.</p>
<p>Which statements identify the particles mediating the forces experienced by electrons?</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the definition of the unified atomic mass unit?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{12}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> the mass of a neutral atom of carbon-12</p>
<p>B. The mass of a neutral atom of hydrogen-1</p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{12}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> the mass of a nucleus of carbon-12</p>
<p>D. The mass of a nucleus of hydrogen-1</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle reaction is</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><msup><mi>e</mi><mo>-</mo></msup><mo>+</mo><msub><mover><mi>V</mi><mo>¯</mo></mover><mi>μ</mi></msub><mo>→</mo><mi>n</mi><mo>+</mo><msup><mi>μ</mi><mo>+</mo></msup><mo>+</mo><msub><mi>v</mi><mi>e</mi></msub></math>.</p>
<p>Which conservation law is violated by the reaction?</p>
<p>A. Baryon number</p>
<p>B. Charge</p>
<p>C. Lepton number</p>
<p>D. Momentum</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The age of the Earth is about 4.5 × 10<sup>9</sup> years.</p>
<p>What area of physics provides experimental evidence for this conclusion?</p>
<p>A. Newtonian mechanics</p>
<p>B. Optics</p>
<p>C. Radioactivity</p>
<p>D. Electromagnetism</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which property of a nuclide does <strong>not</strong> change as a result of beta decay?</p>
<p>A. Nucleon number</p>
<p>B. Neutron number</p>
<p>C. Proton number</p>
<p>D. Charge</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Response A was the most common (correct) response from a minority of candidates (38 %). Incorrect responses were evenly divided among the remaining options.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A radioactive nuclide with atomic number <em>Z</em> undergoes a process of beta-plus (β<sup>+</sup>) decay. What is the atomic number for the nuclide produced and what is another particle emitted during the decay?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Element X decays through a series of alpha (<em>α</em>) and beta minus (<em>β</em><sup>–</sup>) emissions. Which series of emissions results in an isotope of X?</p>
<p>A. 1<em>α</em> and 2<em>β</em><sup>–</sup></p>
<p>B. 1<em>α</em> and 4<em>β</em><sup>–</sup></p>
<p>C. 2<em>α</em> and 2<em>β</em><sup>–</sup></p>
<p>D. 2<em>α</em> and 3<em>β</em><sup>–</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which Feynman diagram shows beta-plus (β<sup>+</sup>) decay?</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_16.58.22.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/24"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three of the fundamental forces between particles are</p>
<p> I. strong nuclear</p>
<p> II. weak nuclear</p>
<p> III. electromagnetic.</p>
<p>What forces are experienced by an electron?</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A pure sample of radioactive nuclide <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> decays into a stable nuclide <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math>.</p>
<p>What is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>number of atoms of Y</mtext><mtext>number of atoms of X</mtext></mfrac></math> after two half-lives?</p>
<p><br>A. 1</p>
<p>B. 2</p>
<p>C. 3</p>
<p>D. 4</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The reaction <em>p</em><sup>+</sup> + <em>n</em><sup>0</sup> → <em>p</em><sup>+</sup> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span><sup>0</sup> does not occur because it violates the conservation law of</p>
<p>A. electric charge.</p>
<p>B. baryon number.</p>
<p>C. lepton number.</p>
<p>D. strangeness.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which graph shows the variation of activity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> for a radioactive nuclide?</p>
<p style="text-align: center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The energy levels for an atom are shown to scale.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="185" height="250">A photon of wavelength <em>λ</em> is emitted because of a transition from E<sub>3</sub> to E<sub>2</sub>. Which transition leads to the emission of a photon of longer wavelength?</span></p>
<p><span style="background-color: #ffffff;">A. E<sub>4</sub> to E<sub>1</sub><br></span></p>
<p><span style="background-color: #ffffff;">B. E<sub>4</sub> to E<sub>3</sub><br></span></p>
<p><span style="background-color: #ffffff;">C. E<sub>3</sub> to E<sub>1</sub><br></span></p>
<p><span style="background-color: #ffffff;">D. E2 to E<sub>1</sub></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The average binding energy per nucleon of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_8^{15}{\text{O}}">
<msubsup>
<mi></mi>
<mn>8</mn>
<mrow>
<mn>15</mn>
</mrow>
</msubsup>
<mrow>
<mtext>O</mtext>
</mrow>
</math></span> nucleus is 7.5 MeV. What is the total energy required to separate the nucleons of one nucleus of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_8^{15}{\text{O}}">
<msubsup>
<mi></mi>
<mn>8</mn>
<mrow>
<mn>15</mn>
</mrow>
</msubsup>
<mrow>
<mtext>O</mtext>
</mrow>
</math></span>?</p>
<p>A. 53 MeV</p>
<p>B. 60 MeV</p>
<p>C. 113 MeV</p>
<p>D. 173 MeV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Three conservation laws in nuclear reactions are<br></span></p>
<p style="padding-left:30px;"><span style="background-color:#ffffff;">I. conservation of charge</span></p>
<p style="padding-left:30px;"><span style="background-color:#ffffff;">II. conservation of baryon number</span></p>
<p style="padding-left:30px;"><span style="background-color:#ffffff;">III. conservation of lepton number.</span></p>
<p><span style="background-color:#ffffff;">The reaction</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \to {\pi ^ - } + {e^ + } + {\bar v_e}">
<mi>n</mi>
<mo stretchy="false">→</mo>
<mrow>
<msup>
<mi>π</mi>
<mo>−</mo>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>e</mi>
<mo>+</mo>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mrow>
<mover>
<mi>v</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mi>e</mi>
</msub>
</mrow>
</math></span></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">is proposed.</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Which conservation laws are violated in the proposed reaction?<br></span></span></p>
<p style="padding-left:30px;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A. I and II only<br></span></span></p>
<p style="padding-left:30px;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">B. I and III only<br></span></span></p>
<p style="padding-left:30px;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">C. II and III only<br></span></span></p>
<p style="padding-left:30px;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">D. I, II and III</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Atomic spectra are caused when a certain particle makes transitions between energy levels.<br>What is this particle?</p>
<p>A. Electron</p>
<p>B. Proton</p>
<p>C. Neutron</p>
<p>D. Alpha particle</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">X is a radioactive nuclide that decays to a stable nuclide. The activity of X falls to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>16</mn></mfrac></math>th of its original value in 32 s.<br>What is the half-life of X?</span></p>
<p><span style="background-color: #ffffff;">A. 2 s<br></span></p>
<p><span style="background-color: #ffffff;">B. 4 s<br></span></p>
<p><span style="background-color: #ffffff;">C. 8 s<br></span></p>
<p><span style="background-color: #ffffff;">D. 16 s</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A proton, an electron and an alpha particle are at rest. Which particle has the smallest magnitude of ratio of charge to mass and which particle has the largest magnitude of ratio of charge to mass?</span></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is correct about the nature and range of the strong interaction between nuclear particles?</span></p>
<p><span style="background-color: #ffffff;">A. It is attractive at all particle separations.<br></span></p>
<p><span style="background-color: #ffffff;">B. It is attractive for particle separations between 0.7 fm and 3 fm.<br></span></p>
<p><span style="background-color: #ffffff;">C. It is repulsive for particle separations greater than 3 fm.<br></span></p>
<p><span style="background-color: #ffffff;">D. It is repulsive at all particle separations.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The energy levels of an atom are shown. How many photons of energy <strong>greater</strong> than 1.9 eV can be emitted by this atom?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p><br>A. 1</p>
<p>B. 2</p>
<p>C. 3</p>
<p>D. 4</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The background count in a laboratory is 20 counts per second. The initial observed count rate of a pure sample of nitrogen-13 in this laboratory is 180 counts per second. The half-life of nitrogen-13 is 10 minutes. What is the expected count rate of the sample after 30 minutes?</p>
<p>A. 20 counts per second</p>
<p>B. 23 counts per second</p>
<p>C. 40 counts per second</p>
<p>D. 60 counts per second</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Option B was the most frequent answer, incorrectly selected by candidates who did not consider the background count in the laboratory.</p>
</div>
<br><hr><br><div class="question">
<p>A kaon is made up of two quarks. What is the particle classification of a kaon?</p>
<p>A. Exchange boson</p>
<p>B. Baryon</p>
<p>C. Lepton</p>
<p>D. Meson</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">The positions of stable nuclei are plotted by neutron number<em> n</em> and proton number <em>p</em>. The graph indicates a dotted line for which <em>n = p</em>. Which graph shows the line of stable nuclides and the shaded region where unstable nuclei emit beta minus (β<sup>-</sup>) particles?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question proved challenging, a low discrimination index and a relatively even spread of answers suggests that maybe guesswork was responsible for the candidates choice.</p>
</div>
<br><hr><br><div class="question">
<p>The rest mass of the helium isotope <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_2^3{\text{He}}">
<msubsup>
<mrow>
</mrow>
<mn>2</mn>
<mn>3</mn>
</msubsup>
<mrow>
<mtext>He</mtext>
</mrow>
</math></span></span> is <em>m</em>.</p>
<p>Which expression gives the binding energy per nucleon for <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_2^3{\text{He}}">
<msubsup>
<mrow>
</mrow>
<mn>2</mn>
<mn>3</mn>
</msubsup>
<mrow>
<mtext>He</mtext>
</mrow>
</math></span></span>?</p>
<p>A. <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(2{m_p} + {m_n} + m){c^2}}}{3}">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mrow>
<msub>
<mi>m</mi>
<mi>p</mi>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>m</mi>
<mi>n</mi>
</msub>
</mrow>
<mo>+</mo>
<mi>m</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(2{m_p} + {m_n} - m){c^2}}}{3}">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mrow>
<msub>
<mi>m</mi>
<mi>p</mi>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>m</mi>
<mi>n</mi>
</msub>
</mrow>
<mo>−</mo>
<mi>m</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(2{m_p} + {m_n} + m){c^2}}">
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mrow>
<msub>
<mi>m</mi>
<mi>p</mi>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>m</mi>
<mi>n</mi>
</msub>
</mrow>
<mo>+</mo>
<mi>m</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">D. <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(2{m_p} + {m_n} - m){c^2}}">
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mrow>
<msub>
<mi>m</mi>
<mi>p</mi>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>m</mi>
<mi>n</mi>
</msub>
</mrow>
<mo>−</mo>
<mi>m</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</math></span></span></span></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What gives the total change in nuclear mass and the change in nuclear binding energy as a result of a nuclear fusion reaction?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Some transitions between the energy states of a particular atom are shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Energy transition E<sub>3</sub> gives rise to a photon of green light. Which transition will give rise to a photon of longer wavelength?</p>
<p>A. E<sub>1</sub></p>
<p>B. E<sub>2</sub></p>
<p>C. E<sub>4</sub></p>
<p>D. E<sub>5</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by SL candidates, although answer A was a distractor for many. This question had the highest discrimination index on this SL paper.</p>
</div>
<br><hr><br><div class="question">
<p>The Higgs boson was discovered in the Large Hadron Collider at CERN. Which statements are correct about the discovery of the Higgs boson?</p>
<p style="padding-left:60px;">I. It was independent of previous theoretical work.<br>II. It involved analysing large amounts of experimental data.<br>III. It was consistent with the standard model of particle physics.</p>
<p> </p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What statement is <strong>not</strong> true about radioactive decay?</p>
<p><br>A. The percentage of radioactive nuclei of an isotope in a sample of that isotope after 7 half-lives is smaller than 1 %.</p>
<p>B. The half-life of a radioactive isotope is the time taken for half the nuclei in a sample of that isotope to decay.</p>
<p>C. The whole-life of a radioactive isotope is the time taken for all the nuclei in a sample of that isotope to decay.</p>
<p>D. The half-life of radioactive isotopes range between extremely short intervals to thousands of millions of years.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There was some questioning about the use of the term 'whole-life' from teacher comments. As that option (C) was the correct answer and the most popular it did not confuse the candidates. The statement is clearly incorrect and the use of a non physics specific term that might be used in a general discussion was felt to be acceptable.</p>
</div>
<br><hr><br><div class="question">
<p>A detector, placed close to a radioactive source, detects an activity of 260 Bq. The average background activity at this location is 20 Bq. The radioactive nuclide has a half-life of 9 hours.</p>
<p>What activity is detected after 36 hours?</p>
<p>A. 15 Bq</p>
<p>B. 16 Bq</p>
<p>C. 20 Bq</p>
<p>D. 35 Bq</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>