File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 7 HTML/markSceme-HL-paper2html
File size: 468 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A particular K meson has a quark structure <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{\bar u}}">
<mrow>
<mrow>
<mrow>
<mover>
<mi mathvariant="normal">u</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</mrow>
</math></span>s. State the charge, strangeness and baryon number for this meson.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Feynman diagram shows the changes that occur during beta minus (β<sup>–</sup>) decay.</p>
<p><img src=""></p>
<p>Label the diagram by inserting the <strong>four</strong> missing particle symbols <strong>and</strong> the direction of the arrows for the decay particles.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>C-14 decay is used to estimate the age of an old dead tree. The activity of C-14 in the dead tree is determined to have <strong>fallen to</strong> 21% of its original value. C-14 has a half-life of 5700 years.</p>
<p>(i) Explain why the activity of C-14 in the dead tree decreases with time.</p>
<p>(ii) Calculate, in years, the age of the dead tree. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>charge:</em> –1«e» <em><strong>or</strong></em> negative <em><strong>or</strong> K</em><sup>−</sup></p>
<p><em>strangeness:</em> –1 </p>
<p><em>baryon number:</em> 0</p>
<p>Negative signs required.<br>Award <strong>[2]</strong> for three correct answers, <strong>[1 max]</strong> for two correct answer and <strong>[0]</strong> for one correct answer.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct symbols for both missing quarks</p>
<p>exchange particle and electron labelled W <em><strong>or</strong></em> W<sup>–</sup> and e <em><strong>or</strong></em> e<sup>–</sup></p>
<p><em>Do not allow W<sup>+</sup> <strong>or</strong> e<sup>+</sup> <strong>or</strong> β<sup>+</sup>. Allow β <strong>or</strong> β<sup>–</sup>.</em></p>
<p>arrows for both electron and anti-neutrino correct</p>
<p><em>Allow ECF from previous marking point.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>number of C-14 atoms/nuclei are decreasing<br><em><strong>OR</strong></em><br>decreasing activity proportional to number of C-14 atoms/nuclei<br><em><strong>OR</strong></em><br><em>A </em>= <em>A</em><sub>0</sub>e<sup>–<em>λt</em></sup> so <em>A</em> decreases as <em>t</em> increases<br><em>Do not allow “particles”</em><br><em>Must see reference to atoms or nuclei or an equation, just “C-14 is decreasing” is not enough.</em></p>
<p><br>ii<br>0.21 = (0.5)<em><sup>n</sup></em><br><em><strong>OR</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.21 = {e^{ - \left( {\frac{{\ln 2 \times t}}{{5700}}} \right)}}">
<mn>0.21</mn>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
<mo>×</mo>
<mi>t</mi>
</mrow>
<mrow>
<mn>5700</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><em>n </em>= 2.252 half-lives or <em>t </em>=1 2834 «y»<br><em>Early rounding to 2.25 gives 12825 y</em></p>
<p>13000 y rounded correctly to two significant figures:<br><em>Both needed; answer must be in year for MP3.</em><br><em>Allow ECF from MP2.</em><br><em>Award <strong>[3]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Plutonium-238 (Pu) decays by alpha (α) decay into uranium (U).</p>
<p>The following data are available for binding energies per nucleon:</p>
<p style="padding-left: 30px;">plutonium 7.568 MeV</p>
<p style="padding-left: 30px;">uranium 7.600 MeV</p>
<p style="padding-left: 30px;">alpha particle 7.074 MeV</p>
</div>
<div class="specification">
<p>The energy in b(i) can be transferred into electrical energy to run the instruments of a spacecraft. A spacecraft carries 33 kg of pure plutonium-238 at launch. The decay constant of plutonium is 2.50 × 10<sup>−10</sup> s<sup>−1</sup>.</p>
</div>
<div class="specification">
<p>Solar radiation falls onto a metallic surface carried by the spacecraft causing the emission of photoelectrons. The radiation has passed through a filter so it is monochromatic. The spacecraft is moving away from the Sun.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some unstable nuclei have many more neutrons than protons. Suggest the likely decay for these nuclei.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in this decay is about 6 MeV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plutonium nucleus is at rest when it decays.</p>
<p>Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power, in kW, that is available from the plutonium at launch.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spacecraft will take 7.2 years (2.3 × 10<sup>8</sup> s) to reach a planet in the solar system. Estimate the power available to the spacecraft when it gets to the planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the kinetic energy of an emitted photoelectron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the rate at which charge leaves the metallic surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the energy needed to «completely» separate the nucleons of a nucleus</p>
<p><em><strong>OR</strong></em></p>
<p>the energy released when a nucleus is assembled from its constituent nucleons ✓</p>
<p> </p>
<p><em>Accept reference to protons and </em><em>neutrons.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve rising to a maximum between 50 and 100 ✓</p>
<p>curve continued and decreasing ✓</p>
<p> </p>
<p><em>Ignore starting point.<br></em></p>
<p><em>Ignore maximum at alpha particle.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>At a point on the peak of their graph ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>beta minus «decay» ✓</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct mass numbers for uranium (234) and alpha (4) ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>234</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>600</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>074</mn><mo>-</mo><mn>238</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>568</mn></math> «MeV» ✓</p>
<p>energy released 5.51 «MeV» ✓</p>
<p> </p>
<p><em>Ignore any negative sign.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>K</mi><msub><mi>E</mi><mi>α</mi></msub></mrow><mrow><mi>K</mi><msub><mi>E</mi><mi>U</mi></msub></mrow></mfrac><mo>=</mo></math>»<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>U</mi></msub></mrow></mfrac></mfrac></mstyle></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>m</mi><mi>U</mi></msub><msub><mi>m</mi><mi>α</mi></msub></mfrac></math> ✓</p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>234</mn><mn>4</mn></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn><mo>.</mo><mn>5</mn></math> ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>117</mn><mn>2</mn></mfrac></math> for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>number of nuclei present <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>33</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mn>238</mn></mfrac><mo>×</mo><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo>«</mo><mo>=</mo><mn>8</mn><mo>.</mo><mn>347</mn><mo>×</mo><msup><mn>10</mn><mn>25</mn></msup><mo>»</mo></math> ✓</p>
<p>initial activity is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><msub><mi>N</mi><mn>0</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>347</mn><mo>×</mo><msup><mn>10</mn><mn>25</mn></msup><mo>«</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>08</mn><mo>×</mo><msup><mn>10</mn><mn>16</mn></msup><mo> </mo><mtext>Bq</mtext><mo>»</mo></math> ✓</p>
<p>power is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>08</mn><mo>×</mo><msup><mn>10</mn><mn>16</mn></msup><mo>×</mo><mn>5</mn><mo>.</mo><mn>51</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>≈</mo><mn>18</mn></math> «kW» ✓</p>
<p> </p>
<p><em>Allow a final answer of 20 </em>kW<em> if 6 </em>MeV<em> used. </em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> and <strong>MP2</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>available power after time <em>t</em> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>t</mi></mrow></msup></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><msup><mi>e</mi><mrow><mo>−</mo><mn>2</mn><mo>.</mo><mn>50</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></msup><mo>=</mo><mn>17</mn><mo>.</mo><mn>0</mn></math> «kW» ✓</p>
<p> </p>
<p><em><strong>MP1</strong> may be implicit.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(c)(i)</strong>.</em></p>
<p><em>Allow 17.4 </em>kW<em> from unrounded power from <strong>(c)(i)</strong>.</em></p>
<p><em>Allow 18.8 </em>kW<em> from 6 </em>MeV<em>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stays the same ✓</p>
<p>as energy depends on the frequency of light ✓</p>
<p> </p>
<p><em>Allow reference to wavelength for <strong>MP2</strong>.</em></p>
<p><em>Award <strong>MP2</strong> only to answers stating that KE decreases due to Doppler effect.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases ✓</p>
<p>as number of photons incident decreases ✓</p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>One possible fission reaction of uranium-235 (U-235) is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">U</mi><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi mathvariant="normal">n</mi><mprescripts></mprescripts><mn>0</mn><mn>1</mn></mmultiscripts><mo>→</mo><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><mn>54</mn><mn>140</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Sr</mi><mprescripts></mprescripts><mn>38</mn><mn>94</mn></mmultiscripts><mo>+</mo><mn>2</mn><mmultiscripts><mi mathvariant="normal">n</mi><mprescripts></mprescripts><mn>0</mn><mn>1</mn></mmultiscripts></math></p>
<p style="text-align: left;">Mass of one atom of U-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>235</mn><mo> </mo><mi mathvariant="normal">u</mi></math><br>Binding energy per nucleon for U-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>7</mn><mo>.</mo><mn>59</mn><mo> </mo><mi>MeV</mi></math><br>Binding energy per nucleon for Xe-140 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>29</mn><mo> </mo><mi>MeV</mi></math><br>Binding energy per nucleon for Sr-94 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>59</mn><mo> </mo><mi>MeV</mi></math></p>
</div>
<div class="specification">
<p>A nuclear power station uses U-235 as fuel. Assume that every fission reaction of U-235 gives rise to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo> </mo><mi>MeV</mi></math> of energy.</p>
</div>
<div class="specification">
<p>A sample of waste produced by the reactor contains <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>kg</mi></math> of strontium-94 (Sr-94). Sr-94 is radioactive and undergoes beta-minus (<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">β</mi><mo>-</mo></msup></math>) decay into a daughter nuclide X. The reaction for this decay is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Sr</mi><mprescripts></mprescripts><mn>38</mn><mn>94</mn></mmultiscripts><mo>→</mo><mi mathvariant="normal">X</mi><mo>+</mo><msub><mover><mi mathvariant="normal">v</mi><mo>¯</mo></mover><mi>e</mi></msub><mo>+</mo><mi>e</mi></math>.</p>
<p> </p>
</div>
<div class="specification">
<p>The graph shows the variation with time of the mass of Sr-94 remaining in the sample.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="576" height="367"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why quantities such as atomic mass and nuclear binding energy are often expressed in non-SI units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in the reaction is about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo> </mo><mi>MeV</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, the specific energy of U-235.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The power station has a useful power output of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo> </mo><mi>GW</mi></math> and an efficiency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn><mo> </mo><mo>%</mo></math>. Determine the mass of U-235 that undergoes fission in one day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The specific energy of fossil fuel is typically <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo> </mo><mtext>MJ</mtext><mo> </mo><msup><mtext>kg</mtext><mrow><mo>–</mo><mn>1</mn></mrow></msup></math>. Suggest, with reference to your answer to (b)(i), <strong>one</strong> advantage of U-235 compared with fossil fuels in a power station.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the proton number of nuclide X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the half-life of Sr-94.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of Sr-94 remaining in the sample after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">energy required to </span><span class="fontstyle2">«</span><span class="fontstyle0">completely</span><span class="fontstyle2">» </span><span class="fontstyle0">separate the nucleons<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span><span class="fontstyle0">energy released when a nucleus is formed from its constituent nucleons </span><span class="fontstyle4">✓</span></p>
<p><em><span class="fontstyle5"><br>Allow protons </span><span class="fontstyle3"><strong>AND</strong> </span><span class="fontstyle5">neutrons.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the values </span><span class="fontstyle2">«</span><span class="fontstyle0">in SI units</span><span class="fontstyle2">» </span><span class="fontstyle0">would be very small </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>140</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>29</mn><mo>+</mo><mn>94</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>59</mn><mo>-</mo><mn>235</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>59</mn></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>184</mn><mo> </mo><mo>«</mo><mi>MeV</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle3">see <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>energy</mi><mo>=</mo><mo>»</mo><mo> </mo><mn>180</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>60</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>mass</mi><mo>=</mo><mo>»</mo><mo> </mo><mn>235</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>66</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>27</mn></mrow></msup></math> ✓</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>13</mn></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">energy produced in one day<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow></mfrac><mo>=</mo><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>14</mn></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> ✓</span></p>
<p><span class="fontstyle0">mass<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>14</mn></msup></mrow><mrow><mn>7</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>13</mn></msup></mrow></mfrac><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo> </mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«specific energy of uranium is much greater than that of coal, hence» more energy can be produced from the same mass of fuel / per <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>kg</mtext></math><br><em><strong>OR</strong></em><br>less fuel can be used to create the same amount of energy ✓</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>39</mn></math> </span><span class="fontstyle2">✓</span></p>
<p><em><span class="fontstyle3"><br>Do not allow <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">X</mi><mprescripts></mprescripts><mn>39</mn><mn>94</mn></mmultiscripts></math> unless the proton number is indicated.</span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">s</mi><mo>»</mo></math> <span class="fontstyle3">✓</span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mi>min</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo> </mo><msub><mi>t</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math> ✓</span></p>
<p><span class="fontstyle0">mass remaining<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mn>8</mn></msup><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><span class="fontstyle0">decay constant<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mo>«</mo><mfrac><mrow><mi>ln</mi><mn>2</mn></mrow><mn>75</mn></mfrac><mo>=</mo><mo>»</mo><mn>9</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>
<p><span class="fontstyle0">mass remaining<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mi>e</mi><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>600</mn></mrow></msup><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">c(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Generally, well answered but candidates did miss the mark by discussing the constituents of a nucleus rather than the nucleons, or protons and neutrons. There seemed to be fewer comments than usual about 'the energy required to bind the nucleus together'. </p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well answered with some candidates describing the values as too large or small.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well answered.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This caused problems for some with mass often correctly calculated but energy causing more difficulty with the eV conversion either being inaccurate or omitted. Candidates were allowed error carried forward for the second mark as long as they were dividing an energy by a mass.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates had the right idea, but common problems included forgetting the efficiency or not converting to days.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HL only. This was well answered.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates answered this correctly.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates answered this correctly.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was answered well with most candidates (even at HL) going down the number of half-lives route rather than the exponential calculation route.</p>
<div class="question_part_label">c(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Radioactive uranium-238 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>238</mn></mmultiscripts></mfenced></math> produces a series of decays ending with a stable nuclide of lead. The nuclides in the series decay by either alpha (α) or beta-minus (β<sup>−</sup>) processes.</p>
</div>
<div class="specification">
<p>The graph shows the variation with the nucleon number <em>A</em> of the binding energy per nucleon.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Uranium-238 decays into a nuclide of thorium-234 (Th).</p>
<p><br>Write down the complete equation for this radioactive decay.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thallium-206 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>206</mn></mmultiscripts></mfenced></math> decays into lead-206 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Pb</mtext><mprescripts></mprescripts><mn>82</mn><mn>206</mn></mmultiscripts></mfenced></math>.</p>
<p>Identify the quark changes for this decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of uranium-238 is about 4.5 × 10<sup>9</sup> years. The half-life of thallium-206 is about 4.2 minutes.</p>
<p>Compare and contrast the methods to measure these half-lives.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why high temperatures are required for fusion to occur.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the graph, why energy is released both in fusion and in fission.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Uranium-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts></mfenced></math> is used as a nuclear fuel. The fission of uranium-235 can produce krypton-89 and barium-144.</p>
<p>Determine, in MeV and using the graph, the energy released by this fission.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>U→«</mtext><mprescripts></mprescripts><mn>92</mn><mn>238</mn></mmultiscripts><mmultiscripts><mo>»</mo><mprescripts></mprescripts><mn>90</mn><mn>234</mn></mmultiscripts><mtext>Th+</mtext><mo>«</mo><mmultiscripts><mo>»</mo><mprescripts></mprescripts><mn>2</mn><mn>4</mn></mmultiscripts><mi>α</mi></math><strong> ✓</strong><strong> </strong></p>
<p><em>Allow He for alpha.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>udd→uud<strong><br><em>OR</em><br></strong>down quark changes to up quark <strong>✓</strong><strong> </strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>measure «radio»activity/«radioactive» decay/A for either<br><em><strong>OR</strong></em><br>take measurements with a Geiger counter. <strong>✓</strong></p>
<p>for Uranium measure number/N of radioactive atoms/<strong><em>OWTTE </em>✓</strong></p>
<p>for Thalium measure «rate of» change in activity over time. <strong>✓</strong></p>
<p>correct connection for either Uranium or Thalium to determine half life<strong> ✓</strong><strong> </strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>links temperature to kinetic energy/speed of particles <strong>✓</strong><strong> </strong></p>
<p>energy required to overcome «Coulomb» electrostatic repulsion <strong>✓</strong><strong> </strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«energy is released when» binding energy per nucleon increases</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any use of (value from graph) x (number of nucleons) <strong>✓</strong></p>
<p>«235 × 7.6 – (89 × 8.6 + 144 × 8.2) =» 160 «MeV» <strong>✓</strong> </p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The first scientists to identify alpha particles by a direct method were Rutherford and Royds. They knew that radium-226 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{226}{\text{Ra}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>86</mn>
</mrow>
<mrow>
<mn>226</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Ra</mtext>
</mrow>
</math></span>) decays by alpha emission to form a nuclide known as radon (Rn).</p>
</div>
<div class="specification">
<p>At the start of the experiment, Rutherford and Royds put 6.2 x 10<sup>–4</sup> mol of pure radium-226 in a small closed cylinder A. Cylinder A is fixed in the centre of a larger closed cylinder B.</p>
<p style="text-align: center;"><img src=""></p>
<p>The experiment lasted for 6 days. The decay constant of radium-226 is 1.4 x 10<sup>–11</sup> s<sup>–1</sup>.</p>
</div>
<div class="specification">
<p>At the start of the experiment, all the air was removed from cylinder B. The alpha particles combined with electrons as they moved through the wall of cylinder A to form helium gas in cylinder B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the nuclear equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the activity of the radium-226 is almost constant during the experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that about 3 x 10<sup>15</sup> alpha particles are emitted by the radium-226 in 6 days.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wall of cylinder A is made from glass. Outline why this glass wall had to be very thin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment was carried out at a temperature of 18 °C. The volume of cylinder B was 1.3 x 10<sup>–5</sup> m<sup>3</sup> and the volume of cylinder A was negligible. Calculate the pressure of the helium gas that was collected in cylinder B over the 6 day period. Helium is a monatomic gas.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2^4\alpha ">
<msubsup>
<mi></mi>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mi>α</mi>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_2^4{\text{He}}">
<msubsup>
<mrow>
</mrow>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mrow>
<mtext>He</mtext>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{222}{\text{Rn}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>86</mn>
</mrow>
<mrow>
<mn>222</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Rn</mtext>
</mrow>
</math></span></p>
<p> </p>
<p><em>These <strong>must</strong> be seen on the right-hand side of the equation.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>6 days is 5.18 x 10<sup>5</sup> s</p>
<p>activity after 6 days is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{A_0}{e^{ - 1.4 \times {{10}^{ - 11}} \times 5.8 \times {{10}^5}}} \approx {A_0}">
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mn>1.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>11</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>5.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
</msup>
</mrow>
<mo>≈</mo>
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
</mrow>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p>A = 0.9999927 <em>A</em><sub>0 </sub><em><strong>or</strong> </em>0.9999927 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span><em>N</em><sub>0</sub></p>
<p><em><strong>OR</strong></em></p>
<p>states that index of e is so small that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{A}{{{A_0}}}">
<mfrac>
<mi>A</mi>
<mrow>
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span> is ≈ 1</p>
<p><em><strong>OR</strong></em></p>
<p><em>A – A</em><sub>0</sub> ≈ 10<sup>–15</sup> «s<sup>–1</sup>»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>shows half-life of the order of 10<sup>11</sup> s or 5.0 x 10<sup>10</sup> s</p>
<p>converts this to year «1600 y» or days and states half-life much longer than experiment compared to experiment</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> if calculations/substitutions have numerical slips but would lead to correct deduction.</em></p>
<p><em>eg: failure to convert 6 days to seconds but correct substitution into equation will give MP2.</em></p>
<p><em>Allow working in days, but for MP1 must see conversion of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span> or half-life to day<sup>–1</sup>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1 </strong></em><br><br>use of <em>A</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span><em>N</em><sub>0</sub></p>
<p>conversion to number of molecules = <em>nN</em><sub>A</sub> = 3.7 x 10<sup>20</sup></p>
<p><em><strong>OR</strong></em></p>
<p>initial activity = 5.2 x 10<sup>9</sup> «s<sup>–1</sup>»</p>
<p>number emitted = (6 x 24 x 3600) x 1.4 x 10<sup>–11</sup> x 3.7 x 10<sup>20</sup> <em><strong>or</strong> </em>2.7 x 10<sup>15</sup> alpha particles</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>use of <em>N</em> = <em>N</em><sub>0</sub><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{ - \lambda t}}">
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><em>N</em><sub>0</sub> = <em>n</em> x <em>N</em><sub>A</sub> = 3.7 x 10<sup>20</sup></p>
<p>alpha particles emitted «= number of atoms disintegrated = <em>N</em> – <em>N</em><sub>0</sub> =» <em>N</em><sub>0</sub><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 - {e^{ - \lambda \times 6 \times 24 \times 3600}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
<mo>×</mo>
<mn>6</mn>
<mo>×</mo>
<mn>24</mn>
<mo>×</mo>
<mn>3600</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>or</strong> </em>2.7 x 10<sup>15</sup> alpha particles </p>
<p> </p>
<p><em>Must see correct substitution or answer to 2+ sf for MP3</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>alpha particles highly ionizing<br><em><strong>OR</strong></em><br>alpha particles have a low penetration power<br><em><strong>OR</strong></em><br>thin glass increases probability of alpha crossing glass<br><em><strong>OR</strong></em><br>decreases probability of alpha striking atom/nucleus/molecule</p>
<p> </p>
<p><em>Do not allow reference to tunnelling.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>conversion of temperature to 291 K</p>
<p><em>p</em> = 4.5 x 10<sup>–9</sup> x 8.31 x «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{291}}{{1.3 \times {{10}^{ - 5}}}}">
<mfrac>
<mrow>
<mn>291</mn>
</mrow>
<mrow>
<mn>1.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>p</em> = 2.7 x 10<sup>15</sup> x 1.3 x 10<sup>–23 </sup>x «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{291}}{{1.3 \times {{10}^{ - 5}}}}">
<mfrac>
<mrow>
<mn>291</mn>
</mrow>
<mrow>
<mn>1.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»<br><br>0.83 <em><strong>or</strong> </em>0.84 «Pa»</p>
<p> </p>
<p><em>Allow ECF for 2.7 x 10<sup>15</sup> from (b)(ii).</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Particles can be used in scattering experiments to estimate nuclear sizes.</p>
</div>
<div class="specification">
<p>Electron diffraction experiments indicate that the nuclear radius of carbon-12 is 2.7 x 10<sup>–15</sup> m. The graph shows the variation of nuclear radius with nucleon number. The nuclear radius of the carbon-12 is shown on the graph.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>The Feynman diagram shows electron capture.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the nature of the particle labelled X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how these experiments are carried out.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the particles must be accelerated to high energies in scattering experiments.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain <strong>one</strong> example of a scientific analogy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the position of magnesium-24 on the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a line on the graph, to show the variation of nuclear radius with nucleon number.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«electron» neutrino</p>
<p>it has a lepton number of 1 «as lepton number is conserved»</p>
<p>it has a charge of zero/is neutral «as charge is conserved»<br><em><strong>OR</strong></em><br>it has a baryon number of 0 «as baryon number is conserved»</p>
<p><em>Do not allow antineutrino </em></p>
<p><em>Do not credit answers referring to energy</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«high energy particles incident on» thin sample</p>
<p>detect angle/position of deflected particles</p>
<p>reference to interference/diffraction/minimum/maximum/numbers of particles</p>
<p><em>Allow “foil” instead of thin</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>λ </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \propto \frac{1}{{\sqrt E }}">
<mo>∝</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>E</mi>
</msqrt>
</mrow>
</mfrac>
</math></span> <em><strong>OR</strong></em> <em>λ </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \propto \frac{1}{E}">
<mo>∝</mo>
<mfrac>
<mn>1</mn>
<mi>E</mi>
</mfrac>
</math></span></p>
<p>so high energy gives small <em>λ</em></p>
<p>to match the small nuclear size</p>
<p><strong><em>Alternative 2</em></strong></p>
<p><em>E = hf</em>/energy is proportional to frequency</p>
<p>frequency is inversely proportional to wavelength/<em>c = fλ</em></p>
<p>to match the small nuclear size</p>
<p><em><strong>Alternative 3</strong></em></p>
<p>higher energy means closer approach to nucleus</p>
<p>to overcome the repulsive force from the nucleus</p>
<p>so greater precision in measurement of the size of the nucleus</p>
<p><em>Accept inversely proportional</em></p>
<p><em>Only allow marks awarded from <strong>one</strong> alternative</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two analogous situations stated</p>
<p>one element of the analogy equated to an element of physics</p>
<p><em>eg: moving away from Earth is like climbing a hill where the contours correspond to the equipotentials</em></p>
<p><em>Atoms in an ideal gas behave like pool balls</em></p>
<p><em>The forces between them only act during collisions</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correctly plotted</p>
<p><em>Allow ECF from (d)(i)</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>single smooth curve passing through both points with decreasing gradient</p>
<p>through origin</p>
<p><img src=""></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>During electron capture, an atomic electron is captured by a proton in the nucleus. The stable nuclide thallium-205 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>) can be formed when an unstable lead (Pb) nuclide captures an electron.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation to represent this decay.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The unstable lead nuclide has a half-life of 15 × 10<sup>6</sup> years. A sample initially contains 2.0 μmol of the lead nuclide. Calculate the number of thallium nuclei being formed each second 30 × 10<sup>6</sup> years later.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The neutron number <em>N</em> and the proton number <em>Z</em> are not equal for the nuclide <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>. Explain, with reference to the forces acting within the nucleus, the reason for this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thallium-205 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>) can also form from successive alpha (α) and beta-minus (β<sup>−</sup>) decays of an unstable nuclide. The decays follow the sequence α β<sup>−</sup> β<sup>−</sup> α. The diagram shows the position of <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math> on a chart of neutron number against proton number.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Draw <strong>four</strong> arrows to show the sequence of changes to <em>N</em> and <em>Z</em> that occur as the <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math> forms from the unstable nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Pb</mtext><mprescripts></mprescripts><mn>82</mn><mn>205</mn></mmultiscripts></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>e </mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mtext mathvariant="bold-italic">AND </mtext><mo> </mo><mmultiscripts><mi>ν</mi><mtext>e</mtext><none></none><mprescripts></mprescripts><mn>0</mn><mn>0</mn></mmultiscripts></math> <strong>✓</strong></p>
<p> </p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>calculates <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mrow><mn>15</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac><mo> </mo><mo>«</mo><mo>=</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>62</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>8</mn></mrow></msup><msup><mtext> year</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<p>calculates nuclei remaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>= </mtext><mn>0</mn><mo>.</mo><mn>50</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>×</mo><mn>6</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo> </mo><mo>«</mo><mo>=</mo><mn>3</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>17</mn></msup><mo>»</mo></math> <strong>✓</strong></p>
<p>activity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>«</mo><mi>λ</mi><mo> </mo><mi>N</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mo> </mo><mtext>nuclei per year</mtext><mo>»</mo><mo>=</mo><mn>440</mn><mo> </mo><mo>«</mo><mtext>nuclei per second</mtext><mo>»</mo></math><strong> ✓</strong></p>
<p><em><br>Accept conversion to seconds at any stage. </em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer. </em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> and <strong>MP2</strong> </em></p>
<p><em>Allow use of decay equation.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Reference to proton repulsion <em><strong>OR</strong> </em>nucleon attraction <strong>✓</strong></p>
<p>strong force is short range <em><strong>OR</strong> </em>electrostatic/electromagnetic force is long range <strong>✓</strong></p>
<p>more neutrons «than protons» needed «to hold nucleus together» <strong> ✓</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>any α change correct <strong>✓</strong></p>
<p>any β change correct <strong>✓</strong></p>
<p>diagram fully correct<strong> ✓</strong></p>
<p><em><br>Award <strong>[2] max</strong> for a correct diagram without arrows drawn. </em></p>
<p><em>For <strong>MP1</strong> accept a (−2, −2 ) line with direction indicated, drawn at any position in the graph. </em></p>
<p><em>For <strong>MP2</strong> accept a (1, −1) line with direction indicated, drawn at any position in the graph. </em></p>
<p><em>Award <strong>[1] max</strong> for a correct diagram with all arrows in the opposite direction.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The radioactive nuclide beryllium-10 (Be-10) undergoes beta minus (<em>β–</em>) decay to form a stable boron (B) nuclide.</p>
</div>
<div class="specification">
<p>The initial number of nuclei in a pure sample of beryllium-10 is N<sub>0</sub>. The graph shows how the number of remaining <strong>beryllium </strong>nuclei in the sample varies with time.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>An ice sample is moved to a laboratory for analysis. The temperature of the sample is –20 °C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing information for this decay.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph, sketch how the number of <strong>boron </strong>nuclei in the sample varies with time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After 4.3 × 10<sup>6</sup> years,</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{\text{number of produced boron nuclei}}}}{{{\text{number of remaining beryllium nuclei}}}} = 7.">
<mfrac>
<mrow>
<mrow>
<mtext>number of produced boron nuclei</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>number of remaining beryllium nuclei</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>7.</mn>
</math></span></p>
<p>Show that the half-life of beryllium-10 is 1.4 × 10<sup>6</sup> years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Beryllium-10 is used to investigate ice samples from Antarctica. A sample of ice initially contains 7.6 × 10<sup>11</sup> atoms of beryllium-10. The present activity of the sample is 8.0 × 10<sup>−3</sup> Bq.</p>
<p>Determine, in years, the age of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by thermal radiation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the peak wavelength in the intensity of the radiation emitted by the ice sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The temperature in the laboratory is higher than the temperature of the ice sample. Describe <strong>one </strong>other energy transfer that occurs between the ice sample and the laboratory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\mkern 1mu} {\mkern 1mu} 4}^{10}{\text{Be}} \to _{{\mkern 1mu} {\mkern 1mu} 5}^{10}{\text{B}} + _{ - 1}^{\,\,\,0}{\text{e}} + {\overline {\text{V}} _{\text{e}}}">
<msubsup>
<mi></mi>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>4</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Be</mtext>
</mrow>
<msubsup>
<mo stretchy="false">→</mo>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>5</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>B</mtext>
</mrow>
<msubsup>
<mo>+</mo>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
</msubsup>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mover>
<mtext>V</mtext>
<mo accent="false">¯</mo>
</mover>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
</math></span></p>
<p>antineutrino <em><strong>AND</strong> </em>charge <em><strong>AND</strong> </em>mass number of electron <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{ - 1}^{\,\,\,0}{\text{e}}">
<msubsup>
<mi></mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
</msubsup>
<mrow>
<mtext>e</mtext>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overline {\text{V}} ">
<mover>
<mtext>V</mtext>
<mo accent="false">¯</mo>
</mover>
</math></span></p>
<p>conservation of mass number <strong><em>AND </em></strong>charge <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,5}^{10}{\text{B}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>B</mtext>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\mkern 1mu} {\mkern 1mu} 4}^{10}{\text{Be}}">
<msubsup>
<mi></mi>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>4</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Be</mtext>
</mrow>
</math></span></p>
<p> </p>
<p><em>Do not accept V.</em></p>
<p><em>Accept </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar V}">
<mrow>
<mrow>
<mover>
<mi>V</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span><em> without subscript e.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct shape <em>ie </em>increasing from 0 to about 0.80 N<sub>0</sub></p>
<p>crosses given line at 0.50 N<sub>0</sub></p>
<p><img src="images/Schermafbeelding_2018-08-10_om_19.42.49.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/06.b.i/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>fraction of Be = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>, 12.5%, or 0.125</p>
<p>therefore 3 half lives have elapsed</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_{\frac{1}{2}}} = \frac{{4.3 \times {{10}^6}}}{3} = 1.43 \times {10^6}">
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>1.43</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
</math></span> <strong>«</strong>≈ 1.4 × 10<sup>6</sup><strong>»</strong> <strong>«</strong>y<strong>»</strong></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>fraction of Be = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>, 12.5%, or 0.125</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8} = {{\text{e}}^{ - \lambda }}(4.3 \times {10^6})">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>4.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> leading to <em>λ</em> = 4.836 × 10<sup>–7</sup> <strong>«</strong>y<strong>»</strong><sup>–1</sup></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{\lambda }">
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span> = 1.43 × 10<sup>6</sup> <strong>«</strong>y<strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Must see at least one extra sig fig in final answer.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>λ</em> <strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{{1.4 \times {{10}^6}}}">
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mrow>
<mn>1.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong> = 4.95 × 10<sup>–7</sup> <strong>«</strong>y<sup>–1</sup><strong>»</strong></p>
<p>rearranging of <em>A</em> = <em>λN</em><sub>0</sub>e<sup>–<em>λt</em></sup> to give –<em>λt</em> = ln <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{8.0 \times {{10}^{-3}} \times 365 \times 24 \times 60 \times 60}}{{4.95 \times {{10}^{-7}} \times 7.6 \times {{10}^{11}}}}">
<mfrac>
<mrow>
<mn>8.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>365</mn>
<mo>×</mo>
<mn>24</mn>
<mo>×</mo>
<mn>60</mn>
<mo>×</mo>
<mn>60</mn>
</mrow>
<mrow>
<mn>4.95</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>7.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>11</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <strong>«</strong>= –0.400<strong>»</strong></p>
<p><em>t</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 0.400}}{{ - 4.95 \times {{10}^{ - 7}}}} = 8.1 \times {10^5}">
<mfrac>
<mrow>
<mo>−</mo>
<mn>0.400</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4.95</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>8.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>5</mn>
</msup>
</mrow>
</math></span> <strong>«</strong>y<strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Allow ECF from MP1</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>emission of (infrared) electromagnetic/infrared energy/waves/radiation.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein’s Law</p>
<p>so frequency/color depends on temperature</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = \frac{{2.90 \times {{10}^{ - 3}}}}{{253}}">
<mi>λ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2.90</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>253</mn>
</mrow>
</mfrac>
</math></span></p>
<p>= 1.1 × 10<sup>–5</sup> <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from MP1 (incorrect temperature).</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from the laboratory to the sample</p>
<p>conduction – contact between ice and lab surface.</p>
<p><strong><em>OR</em></strong></p>
<p>convection – movement of air currents</p>
<p> </p>
<p><em>Must clearly see direction of energy transfer for MP1.</em></p>
<p><em>Must see more than just words “conduction” or “convection” for MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the position of the principal lines in the visible spectrum of atomic hydrogen and some of the corresponding energy levels of the hydrogen atom.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>A low-pressure hydrogen discharge lamp contains a small amount of deuterium gas in addition to the hydrogen gas. The deuterium spectrum contains a red line with a wavelength very close to that of the hydrogen red line. The wavelengths for the principal lines in the visible spectra of deuterium and hydrogen are given in the table.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Light from the discharge lamp is normally incident on a diffraction grating.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the energy of a photon of blue light (435nm) emitted in the hydrogen spectrum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with an arrow labelled B on the diagram, the transition in the hydrogen spectrum that gives rise to the photon with the energy in (a)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain your answer to (a)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The light illuminates a width of 3.5 mm of the grating. The deuterium and hydrogen red lines can just be resolved in the second-order spectrum of the diffraction grating. Show that the grating spacing of the diffraction grating is about 2 × 10<sup>–6 </sup>m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle between the first-order line of the red light in the hydrogen spectrum and the second-order line of the violet light in the hydrogen spectrum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The light source is changed so that white light is incident on the diffraction grating. Outline the appearance of the diffraction pattern formed with white light.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies λ = 435 nm ✔</p>
<p><em>E</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{\lambda }">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{4.35 \times {{10}^{ - 7}}}}">
<mfrac>
<mrow>
<mn>6.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4.35</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> ✔</p>
<p>4.6 ×10<sup>−19</sup> «J» ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–0.605 <em><strong>OR</strong> </em>–0.870 <em><strong>OR</strong></em> –1.36 to –5.44 <em><strong>AND</strong></em> arrow pointing downwards ✔</p>
<p><em>Arrow <strong>MUST</strong> match calculation in (a)(i)</em></p>
<p><em>Allow ECF from (a)(i)</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Difference in energy levels is equal to the energy of the photon ✔</p>
<p>Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one ✔</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{{2\Delta \lambda }} = \frac{{656.20}}{{0.181 \times 2}} = 1813">
<mfrac>
<mi>λ</mi>
<mrow>
<mn>2</mn>
<mi mathvariant="normal">Δ</mi>
<mi>λ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>656.20</mn>
</mrow>
<mrow>
<mn>0.181</mn>
<mo>×</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>1813</mn>
</math></span> «lines» ✔</p>
<p>so spacing is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.5 \times {{10}^{ - 3}}}}{{1813}}">
<mfrac>
<mrow>
<mn>3.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1813</mn>
</mrow>
</mfrac>
</math></span> «= 1.9 × 10<sup>−6</sup> m» ✔</p>
<p> </p>
<p><em>Allow use of either wavelength or the mean value</em></p>
<p><em>Must see at least 2 SF for a bald correct answer</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 × 4.1 × 10<sup>−7</sup> = 1.9 × 10<sup>−6</sup> sin <em>θ</em><sub>v</sub> seen</p>
<p><em><strong>OR</strong></em></p>
<p>6.6 × 10<sup>−7</sup> = 1.9 × 10<sup>−6</sup> sin <em>θ</em><sub>r</sub> seen ✔</p>
<p> </p>
<p><em>θ</em><sub>v</sub> = 24 − 26 «°»</p>
<p><em><strong>OR</strong></em></p>
<p><em>θ</em><sub>r</sub> = 19 − 20 «°» ✔</p>
<p> </p>
<p>Δ<em>θ</em> = 5 − 6 «°» ✔</p>
<p> </p>
<p><em>For MP3 answer must follow from answers in MP2</em></p>
<p><em>For MP3 do not allow ECF from incorrect angles</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>centre of pattern is white ✔</p>
<p>coloured fringes are formed ✔</p>
<p>blue/violet edge of order is closer to centre of pattern</p>
<p><em><strong>OR</strong></em></p>
<p>red edge of order is furthest from centre of pattern ✔</p>
<p>the greater the order the wider the pattern ✔</p>
<p>there are gaps between «first and second order» spectra ✔</p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> is formed when a nucleus of deuterium (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{1}^{2}{\text{H}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>1</mn>
</mrow>
<mrow>
<mn>2</mn>
</mrow>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
</math></span>) collides with a nucleus of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{31}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>31</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>. The radius of a deuterium nucleus is 1.5 fm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the density of a nucleus varies with the number of nucleons in the nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the nuclear radius of phosphorus-31 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{31}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>31</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>) is about 4 fm.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the maximum distance between the centres of the nuclei for which the production of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> is likely to occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in J, the minimum initial kinetic energy that the deuterium nucleus must have in order to produce <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>. Assume that the phosphorus nucleus is stationary throughout the interaction and that only electrostatic forces act.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> undergoes beta-minus (β<sup>–</sup>) decay. Explain why the energy gained by the emitted beta particles in this decay is not the same for every beta particle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by decay constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a fresh pure sample of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> the activity of the sample is 24 Bq. After one week the activity has become 17 Bq. Calculate, in s<sup>–1</sup>, the decay constant of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>it is constant ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>R</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{1}}{\text{.20}} \times {10^{ - 15}} \times {31^{\frac{1}{3}}} = 3.8 \times {10^{ - 15}}">
<mrow>
<mtext>1</mtext>
</mrow>
<mrow>
<mtext>.20</mtext>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>15</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>31</mn>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>3.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>15</mn>
</mrow>
</msup>
</mrow>
</math></span> «m» ✔</p>
<p><em>Must see working and answer to at least 2SF</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>separation for interaction = 5.3 <em><strong>or</strong></em> 5.5 «fm» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy required = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{15{e^2}}}{{4\pi {\varepsilon _0} \times 5.3 \times {{10}^{ - 15}}}}">
<mfrac>
<mrow>
<mn>15</mn>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mi>π</mi>
<mrow>
<msub>
<mi>ε</mi>
<mn>0</mn>
</msub>
</mrow>
<mo>×</mo>
<mn>5.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>15</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> ✔</p>
<p>= 6.5 / 6.6 ×10<sup>−13</sup> <em><strong>OR</strong></em> 6.3 ×10<sup>−13 </sup>«J» ✔</p>
<p> </p>
<p><em>Allow ecf from (b)(i)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electron» <span style="text-decoration: underline;">antineutrino</span> also emitted ✔</p>
<p>energy split between electron and «anti»neutrino ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>probability of decay of a nucleus ✔</p>
<p><em><strong>OR</strong></em></p>
<p>the fraction of the number of nuclei that decay</p>
<p>in one/the next second</p>
<p><strong>OR</strong></p>
<p>per unit time ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1 week = 6.05 × 10<sup>5</sup> «s»</p>
<p>17 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24{{\text{e}}^{ - \lambda \times 6.1 \times {{10}^5}}}">
<mn>24</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>λ</mi>
<mo>×</mo>
<mn>6.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
</msup>
</mrow>
</math></span> ✔</p>
<p>5.7 × 10<sup>−7 </sup>«s<sup>–1</sup>» ✔<br><br></p>
<p><em>Award<strong> [2 max]</strong> if answer is not in seconds</em></p>
<p><em>If answer <strong>not</strong> in seconds and <strong>no</strong> unit quoted award<strong> [1 max]</strong> for correct substitution into equation (MP2)</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Potassium-40 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>K</mtext><mprescripts></mprescripts><mn>19</mn><mn>40</mn></mmultiscripts></mfenced></math> decays by two processes.</p>
<p>The first process is that of beta-minus (β<sup>−</sup>) decay to form a calcium (Ca) nuclide.</p>
</div>
<div class="specification">
<p>Potassium-40 decays by a second process to argon-40. This decay accounts for 11 % of the total decay of the potassium-40.</p>
<p>Rocks can be dated by measuring the quantity of argon-40 gas trapped in them. One rock sample contains 340 µmol of potassium-40 and 12 µmol of argon-40.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the initial quantity of potassium-40 in the rock sample was about 450 µmol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of potassium-40 is 1.3 × 10<sup>9</sup> years. Estimate the age of the rock sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the decay constant of potassium-40 was determined in the laboratory for a pure sample of the nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Ca</mtext><mprescripts></mprescripts><mn>20</mn><mn>40</mn></mmultiscripts></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mmultiscripts><mtext>e</mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo></mrow><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math> <strong><em>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>β</mi><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math> ✓</em></strong></p>
<p> </p>
<p><em>Full equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>K</mtext><mprescripts></mprescripts><mn>19</mn><mn>40</mn></mmultiscripts><mo>→</mo><mmultiscripts><mtext>Ca</mtext><mprescripts></mprescripts><mn>20</mn><mn>40</mn></mmultiscripts><mo>+</mo><mrow><mmultiscripts><mtext>e</mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo></mrow><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total K-40 decayed = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>12 μmol</mtext><mrow><mn>0</mn><mo>.</mo><mn>11</mn></mrow></mfrac><mo>=</mo><mn>109</mn></math> «μmol» ✓</p>
<p>so total K-40 originally was 109 + 340 = 449 «μmol»✓ </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mtext>ln</mtext><mfenced><mn>2</mn></mfenced></mrow><msub><mi>t</mi><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></msub></mfrac></math> used to give 𝜆 = 5.3 x 10<sup>-10</sup> per year ✓</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>340</mn><mo>=</mo><mfenced><mn>449</mn></mfenced><mfenced><msup><mi>e</mi><mrow><mo>-</mo><mn>5</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mi>t</mi></mrow></msup></mfenced></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mn>340</mn><mn>449</mn></mfrac></mfenced><mo>=</mo><mo>-</mo><mn>5</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mi>t</mi></math> ✓</p>
<p><em><br>t </em>= 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>340</mn><mn>449</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>76</mn></math> </strong></em>«remaining» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mfenced><mi>p</mi></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>693</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>ln</mi><mfenced><mrow><mn>0</mn><mo>.</mo><mn>76</mn></mrow></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>693</mn></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn></math> ✓</p>
<p><em>t</em> = 0.40 x 1.3 x 10<sup>9</sup> = 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>340</mn><mn>449</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>76</mn></math> «remaining» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>76</mn><mo>=</mo><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mfrac><mi>t</mi><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></msup></math> ✓</p>
<p><em>t </em>= 0.40 x 1.3 x 10<sup>9 </sup>= 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em>Allow 5.3 x 10<sup>8</sup> years for final answer.</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP3</strong> for an incorrect number of half-lives.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«use the mass of the sample to» determine number of potassium-40 atoms / nuclei in sample ✓</p>
<p>«use a counter to» determine (radio)activity / A of sample ✓</p>
<p>use <em>A = λN</em> «to determine the decay constant / <em>λ</em>» ✓</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was very well done by candidates. The majority were able to identify the correct nuclide of Calcium and many correctly included an electron/beta particle and a properly written antineutrino.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" question that was generally well done by candidates.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a more challenging question for candidates. Many were able to calculate the decay constant and recognized that the ratio of initial and final quantities of the potassium-40 was important. A very common error was mixing the two common half-life equations up and using the wrong values in the exponent (using half life instead of the decay constant, or using the decay constant instead of the half life). Examiners were generous with ECF for candidates who clearly showed an incorrect number of half-lives multiplied by the time for one half-life.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Describing methods of determining half-life continues to be a struggle for candidates with very few earning all three marks. Many candidates described a method more appropriate to measuring a short half- life, but even those descriptions fell far short of being acceptable.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,45}^{106}{\text{Rh}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>45</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Rh</mtext>
</mrow>
</math></span>) decays into palladium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,46}^{106}{\text{Pd}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>46</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Pd</mtext>
</mrow>
</math></span>) by beta minus (<em>β</em><sup>–</sup>) decay. The diagram shows some of the nuclear energy levels of rhodium-106 and palladium-106. The arrow represents the <em>β</em><sup>–</sup> decay.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.42.36.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/09.d"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bohr modified the Rutherford model by introducing the condition <em>mvr </em>= <em>n</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
<mfrac>
<mi>h</mi>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span>. Outline the reason for this modification.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed <em>v </em>of an electron in the hydrogen atom is related to the radius <em>r </em>of the orbit by the expression</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="v = \sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} ">
<mi>v</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>where <em>k </em>is the Coulomb constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the answer in (b) and (c)(i), deduce that the radius <em>r </em>of the electron’s orbit in the ground state of hydrogen is given by the following expression.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="r = \frac{{{h^2}}}{{4{\pi ^2}k{m_{\text{e}}}{e^2}}}">
<mi>r</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>k</mi>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electron’s orbital radius in (c)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what may be deduced about the energy of the electron in the <em>β</em><sup>–</sup> decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the <em>β</em><sup>–</sup> decay is followed by the emission of a gamma ray photon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the gamma ray photon in (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the electrons accelerate and so radiate energy</p>
<p>they would therefore spiral into the nucleus/atoms would be unstable</p>
<p>electrons have discrete/only certain energy levels</p>
<p>the only orbits where electrons do not radiate are those that satisfy the Bohr condition <strong>«</strong><em>mvr</em> = <em>n</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
<mfrac>
<mi>h</mi>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span><strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{m_{\text{e}}}{v^2}}}{r} = \frac{{k{e^2}}}{{{r^2}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p>KE = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>PE hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>m</em><sub>e</sub><em>v</em><sup>2</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\frac{{k{e^2}}}{r}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span></p>
<p><strong>«</strong>solving for <em>v </em>to get answer<strong>»</strong></p>
<p> </p>
<p><em>Answer given – look for correct working</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>combining <em>v</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} ">
<msqrt>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span> with <em>m</em><sub>e</sub><em>vr</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
<mfrac>
<mi>h</mi>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span> using correct substitution</p>
<p><strong>«</strong><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_e}^2\frac{{k{e^2}}}{{{m_{\text{e}}}r}}{r^2} = \frac{{{h^2}}}{{4{\pi ^2}}}">
<msup>
<mrow>
<msub>
<mi>m</mi>
<mi>e</mi>
</msub>
</mrow>
<mn>2</mn>
</msup>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong></p>
<p>correct algebraic manipulation to gain the answer</p>
<p> </p>
<p><em>Answer given – look for correct working</em></p>
<p><em>Do not allow a bald statement of the answer for MP2. Some further working eg cancellation of m or r must be shown</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong> <em>r</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{(6.63 \times {{10}^{ - 34}})}^2}}}{{4{\pi ^2} \times 8.99 \times {{10}^9} \times 9.11 \times {{10}^{ - 31}} \times {{(1.6 \times {{10}^{ - 19}})}^2}}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mn>6.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>8.99</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>9</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>9.11</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>31</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mn>1.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong></p>
<p><em>r</em> = 5.3 × 10<sup>–11</sup> <strong>«</strong>m<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the energy released is 3.54 – 0.48 = 3.06 <strong>«</strong>MeV<strong>»</strong></p>
<p>this is shared by the electron and the antineutrino</p>
<p>so the electron’s energy varies from 0 to 3.06 <strong>«</strong>MeV<strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the palladium nucleus emits the photon when it decays into the ground state <strong>«</strong>from the excited state<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Photon energy</p>
<p><em>E</em> = 0.48 × 10<sup>6</sup> × 1.6 × 10<sup>–19</sup> = <strong>«</strong>7.68 × 10<sup>–14</sup> <em>J</em><strong>»</strong></p>
<p><em>λ</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{E} = \frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{7.68 \times {{10}^{ - 14}}}}">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mi>E</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>7.68</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>14</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =<strong>»</strong> 2.6 × 10<sup>–12</sup><strong> «</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow ECF from incorrect energy</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br>