File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 7 HTML/markSceme-HL-paper1html
File size: 264.97 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>What is the charge on an electron antineutrino and during what process is an electron antineutrino produced?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following lists the particles emitted during radioactive decay in order of increasing ionizing power? </p>
<p>A. γ, β, α<br>B. β, α, γ <br>C. α, γ, β<br>D. α, β, γ</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The mass of nuclear fuel in a nuclear reactor decreases at the rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo> </mo><mi>mg</mi></math> every hour. The overall reaction process has an efficiency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mo>%</mo></math>. What is the maximum power output of the reactor?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mi>MW</mi></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn><mo> </mo><mi>MW</mi></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mi>GW</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn><mo> </mo><mi>GW</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The discrimination index was below the desired 0.2 with a high number of blank responses and many candidates choosing each of the options. This is a question requiring consideration of units using 10<sup>-6</sup> for mg to kg and also remembering to allow for efficiency.</p>
</div>
<br><hr><br><div class="question">
<p>A pure sample of nuclide A and a pure sample of nuclide B have the same activity at time <em>t</em> = 0. Nuclide A has a half-life of <em>T</em>, nuclide B has a half-life of <em>2T</em>.</p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{activity of A}}}}{{{\text{activity of B}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>activity of A</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>activity of B</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> when <em>t</em> = 4<em>T</em>?</p>
<p>A. 4</p>
<p>B. 2</p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which Feynman diagram describes the annihilation of an electron and its antiparticle?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A detector measures the count rate from a sample of a radioactive nuclide. The graph shows the variation with time of the count rate.</p>
<p>The nuclide has a half-life of 20 s. The average background count rate is constant.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the average background count rate?</p>
<p><br>A. 1 s<sup>−1</sup></p>
<p>B. 2 s<sup>−1</sup></p>
<p>C. 3 s<sup>−1</sup></p>
<p>D. 4 s<sup>−1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is the correct Feynman diagram for pair annihilation and pair production?</p>
<p> </p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The Feynman diagram shows an interaction between a proton and an electron.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the charge of the exchange particle and what is the lepton number of particle X?</p>
<p><br><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In the Rutherford-Geiger-Marsden scattering experiment it was observed that a small percentage of alpha particles are deflected through large angles.</p>
<p>Three features of the atom are</p>
<p style="padding-left:90px;">I. the nucleus is positively charged</p>
<p style="padding-left:90px;">II. the nucleus contains neutrons</p>
<p style="padding-left:90px;">III. the nucleus is much smaller than the atom.</p>
<p>Which features can be inferred from the observation?</p>
<p> </p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A radioactive nuclide X decays into a nuclide Y. The graph shows the variation with time of the activity <em>A </em>of X. X and Y have the same nucleon number.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is true about nuclide X?</p>
<p>A. alpha (α) emitter with a half-life of <em>t</em></p>
<p>B. alpha (α) emitter with a half-life of 2<em>t</em></p>
<p>C. beta-minus (β<sup>−</sup>) emitter with a half-life of <em>t</em></p>
<p>D. beta-minus (β<sup>−</sup>) emitter with a half-life of 2<em>t</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">The carbon isotope <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{14}{6}">
<mfrac>
<mn>14</mn>
<mn>6</mn>
</mfrac>
</math></span>C is radioactive. It decays according to the equation</p>
<p style="text-align:center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{14}{6}">
<mfrac>
<mn>14</mn>
<mn>6</mn>
</mfrac>
</math></span>C → <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{14}{7}">
<mfrac>
<mn>14</mn>
<mn>7</mn>
</mfrac>
</math></span>N + X + Y</p>
<p style="text-align:left;"> </p>
<p style="text-align:left;">What are X and Y?</p>
<p style="text-align:left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by candidates, with a high discrimination index.</p>
</div>
<br><hr><br><div class="question">
<p>A pure sample of iodine-131 decays into xenon with a half-life of 8 days.</p>
<p>What is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>number of iodine atoms remaining</mtext><mtext>number of xenon atoms formed</mtext></mfrac></math> after 24 days?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>8</mn></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>7</mn></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>8</mn></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>8</mn><mn>7</mn></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The majority of candidates correctly selected option B. This question had the highest discrimination index on the HL paper.</p>
</div>
<br><hr><br><div class="question">
<p>A neutron is absorbed by a nucleus of uranium-235<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts></mfenced></math>. One possible outcome is the production of two nuclides, barium-144<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Ba</mtext><mprescripts></mprescripts><mn>56</mn><mn>144</mn></mmultiscripts></mfenced></math> and krypton-89<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Kr</mtext><mprescripts></mprescripts><mn>36</mn><mn>89</mn></mmultiscripts></mfenced></math>.</p>
<p>How many neutrons are released in this reaction?</p>
<p>A. 0</p>
<p>B. 1</p>
<p>C. 2</p>
<p>D. 3</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Answer C 2 neutrons, was the most popular choice suggesting that candidates failed to read the question properly and missed 'a neutron is adsorbed' at the beginning.</p>
</div>
<br><hr><br><div class="question">
<p>The diagram shows atomic transitions E<sub>1</sub>, E<sub>2</sub> and E<sub>3</sub> when a particular atom changes its energy state. The wavelengths of the photons that correspond to these transitions are <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>3</mn></msub></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is correct for these wavelengths?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub><mo>></mo><msub><mi>λ</mi><mn>2</mn></msub><mo>></mo><msub><mi>λ</mi><mn>3</mn></msub></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub><mo>=</mo><msub><mi>λ</mi><mn>2</mn></msub><mo>+</mo><msub><mi>λ</mi><mn>3</mn></msub></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msub><mi>λ</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><msub><mi>λ</mi><mn>2</mn></msub><mo>+</mo><msub><mi>λ</mi><mn>3</mn></msub></mrow></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msub><mi>λ</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><mn>1</mn><msub><mi>λ</mi><mn>2</mn></msub></mfrac><mo>+</mo><mfrac><mn>1</mn><msub><mi>λ</mi><mn>3</mn></msub></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In a hydrogen atom, the sum of the masses of a proton and of an electron is larger than the mass of the atom. Which interaction is mainly responsible for this difference?</p>
<p>A. Electromagnetic</p>
<p>B. Strong nuclear</p>
<p>C. Weak nuclear</p>
<p>D. Gravitational</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">The <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\pi ^ + }">
<mrow>
<msup>
<mi>π</mi>
<mo>+</mo>
</msup>
</mrow>
</math></span> meson contains an up (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span>) quark. What is the quark structure of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\pi ^ - }">
<mrow>
<msup>
<mi>π</mi>
<mo>−</mo>
</msup>
</mrow>
</math></span> meson?<br></span></p>
<p><span style="background-color:#ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ud">
<mi>u</mi>
<mi>d</mi>
</math></span><br></span></p>
<p><span style="background-color:#ffffff;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u\bar d">
<mi>u</mi>
<mrow>
<mover>
<mi>d</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span><br></span></p>
<p><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar ud">
<mrow>
<mover>
<mi>u</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mi>d</mi>
</math></span><br></span></p>
<p><span style="background-color:#ffffff;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar u\bar d">
<mrow>
<mover>
<mi>u</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mrow>
<mover>
<mi>d</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Nuclide X can decay by two routes. In Route 1 alpha (<em>α</em>) decay is followed by beta-minus (<em>β<sup>–</sup></em>) decay. In Route 2 <em>β<sup>–</sup></em> decay is followed by <em>α</em> decay. P and R are the intermediate products and Q and S are the final products.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Which statement is correct?</span></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. Q and S are different isotopes of the same element.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. The mass numbers of X and R are the same.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. The atomic numbers of P and R are the same.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. X and R are different isotopes of the same element.</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The following decay is observed.</p>
<p style="text-align: center;"><em>μ</em><sup>−</sup> → e<sup>−</sup> + <em>v</em><sub>μ</sub> + X</p>
<p>What is particle <em>X</em>?</p>
<p> </p>
<p>A. <em>γ</em></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar v}">
<mrow>
<mrow>
<mover>
<mi>v</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span><sub>e</sub></p>
<p>C. <em>Z</em><sup>0</sup></p>
<p>D. <em>v</em><sub>e</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Carbon (C-12) and hydrogen (H-1) undergo nuclear fusion to form nitrogen.</p>
<p style="padding-left:120px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>C+</mtext><mprescripts></mprescripts><mn>6</mn><mn>12</mn></mmultiscripts><mmultiscripts><mtext>H →N+</mtext><mprescripts></mprescripts><mn>1</mn><mn>1</mn></mmultiscripts></math> photon</p>
<p>What is the number of neutrons and number of nucleons in the nitrogen nuclide?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by HL candidates, although a significant number of candidates incorrectly identified the number of neutrons present in the nitrogen nuclide.</p>
</div>
<br><hr><br><div class="question">
<p>White light is emitted from a hot filament. The light passes through hydrogen gas at low pressure and then through a diffraction grating onto a screen. A pattern of lines against a background appears on the screen.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the appearance of the lines and background on the screen?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">The diagram shows the emission spectrum of an atom.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Which of the following atomic energy level models can produce this spectrum?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>With a low difficulty index, most candidate responses were divided between (incorrect) responses C and D. Students appeared to select more familiar energy level diagrams rather than the diagram that best correlated with the emission spectrum given.</p>
</div>
<br><hr><br><div class="question">
<p>What is correct about the Higgs Boson?</p>
<p>A. It was predicted before it was observed.</p>
<p>B. It was difficult to detect because it is charged.</p>
<p>C. It is not part of the Standard Model.</p>
<p>D. It was difficult to detect because it has no mass.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Gamma (<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math></em>) radiation</span></p>
<p><span style="background-color: #ffffff;">A. is deflected by a magnetic field.<br></span></p>
<p><span style="background-color: #ffffff;">B. affects a photographic plate.<br></span></p>
<p><span style="background-color: #ffffff;">C. originates in the electron cloud outside a nucleus.<br></span></p>
<p><span style="background-color: #ffffff;">D. is deflected by an electric field.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Identify the conservation law violated in the proposed reaction.</p>
<p><em> </em>p<sup>+</sup> + p<sup>+</sup> → p<sup>+</sup> + n<sup>0</sup> + <em>μ</em><sup>+</sup></p>
<p>A. Strangeness</p>
<p>B. Lepton number</p>
<p>C. Charge</p>
<p>D. Baryon number</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In the nuclear reaction X + Y → Z + W, involving nuclides X, Y, Z and W, energy is released. Which is correct about the masses (<em>M</em>) and the binding energies (<em>BE</em>) of the nuclides?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following leads to a paradigm shift?</p>
<p>A. Multi-loop circuits</p>
<p>B. Standing waves</p>
<p>C. Total internal reflection</p>
<p>D. Atomic spectra</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>During the nuclear fission of nucleus X into nucleus Y and nucleus Z, energy is released. The binding energies per nucleon of X, Y and Z are <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>X</mtext></msub></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Y</mtext></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Z</mtext></msub></math> respectively. What is true about the binding energy per nucleon of X, Y and Z?</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Y</mtext></msub></math> > <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>X</mtext></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Z</mtext></msub></math> > <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>X</mtext></msub></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>X</mtext></msub></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Y</mtext></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>X</mtext></msub></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Z</mtext></msub></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>X</mtext></msub></math> > <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Y</mtext></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>X</mtext></msub></math> > <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Z</mtext></msub></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>X</mtext></msub></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Y</mtext></msub></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>B</mi><mtext>Z</mtext></msub></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A sample of a pure radioactive nuclide initially contains <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>0</mn></msub></math> atoms. The initial activity of the sample is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>0</mn></msub></math>.</p>
<p>A second sample of the same nuclide initially contains <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msub><mi>N</mi><mn>0</mn></msub></math> atoms.</p>
<p>What is the activity of the second sample after three half lives?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>A</mi><mn>0</mn></msub><mn>2</mn></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>A</mi><mn>0</mn></msub><mn>4</mn></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>A</mi><mn>0</mn></msub><mn>6</mn></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>A</mi><mn>0</mn></msub><mn>8</mn></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>