File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 6 HTML/markSceme-SL-paper2html
File size: 457.29 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>The Rotor is an amusement park ride that can be modelled as a vertical cylinder of inner radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> rotating about its axis. When the cylinder rotates sufficiently fast, the floor drops out and the passengers stay motionless against the inner surface of the cylinder. The diagram shows a person taking the Rotor ride. The floor of the Rotor has been lowered away from the person.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="291" height="330"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw and label the free-body diagram for the person.</p>
<p> </p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The person must not slide down the wall. Show that the minimum angular velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> of the cylinder for this situation is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><msqrt><mfrac><mi>g</mi><mrow><mi>μ</mi><mi>R</mi></mrow></mfrac></msqrt></math></p>
<p style="text-align: left;">where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> is the coefficient of static friction between the person and the cylinder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coefficient of static friction between the person and the cylinder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>40</mn></math>. The radius of the cylinder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>5</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. The cylinder makes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>28</mn></math> revolutions per minute. Deduce whether the person will slide down the inner surface of the cylinder.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">arrow downwards labelled weight/W/</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>g</mi></math> </span><span class="fontstyle0">and arrow upwards labelled friction/</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle0">arrow horizontally to the left labelled </span><span class="fontstyle4">«</span><span class="fontstyle0">normal</span><span class="fontstyle4">» </span><span class="fontstyle0">reaction/</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> </span><span class="fontstyle3">✓</span></p>
<p><img src=""></p>
<p><em><span class="fontstyle0"><br>Ignore point of application of the forces but do not allow arrows that do not touch the object.</span></em></p>
<p><em><span class="fontstyle0">Do not allow horizontal force to be labelled ‘centripetal’ or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">See <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>μ</mi><mi>N</mi></math> </span><span class="fontstyle2"><em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mi>m</mi><mi>R</mi><msup><mi>ω</mi><mn>2</mn></msup></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle4">«</span><span class="fontstyle0">substituting for N</span><span class="fontstyle4">» <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mi>m</mi><msup><mi>ω</mi><mn>2</mn></msup><mi>R</mi><mo>=</mo><mi>m</mi><mi>g</mi></math> </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span class="fontstyle0">ALTERNATIVE 1</span></strong></em></p>
<p><span class="fontstyle0">minimum required angular velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><msqrt><mfrac><mrow><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>40</mn><mo>×</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfrac></msqrt><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>6</mn><mo>«</mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">actual angular velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mfenced><mstyle displaystyle="true"><mfrac><mn>60</mn><mn>28</mn></mfrac></mstyle></mfenced></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>9</mn><mo>«</mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math></span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">actual angular velocity is greater than the minimum, so the person does not slide </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><span class="fontstyle3"><em><strong>ALTERNATIVE 2</strong></em></span></p>
<p><span class="fontstyle0">Minimum friction force <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>m</mi><mi>g</mi><mo>=</mo><mo>«</mo><mn>9</mn><mo>.</mo><mn>81</mn><mo> </mo><mi mathvariant="normal">m</mi><mo>»</mo></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">Actual friction force <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mi>μ</mi><mi>m</mi><mi>R</mi><msup><mi>ω</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn><mo> </mo><mi mathvariant="normal">m</mi><mo>×</mo><mn>3</mn><mo>.</mo><mn>5</mn><msup><mfenced><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mfrac><mn>28</mn><mn>60</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>»</mo><mo>=</mo><mn>12</mn><mo>.</mo><mn>0</mn><mo> </mo><mi mathvariant="normal">m</mi></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">Actual friction force is greater than the minimum frictional force so the person does not slide </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><em><span class="fontstyle4">Allow <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">2</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">7</mn></math> from </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo mathvariant="italic">=</mo><mn mathvariant="italic">10</mn><mo mathvariant="italic"> </mo><mi>m</mi><msup><mi>s</mi><mrow><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn></mrow></msup></math>.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A football player kicks a stationary ball of mass 0.45 kg towards a wall. The initial speed of the ball after the kick is 19 m s<sup>−1</sup> and the ball does not rotate. Air resistance is negligible and there is no wind.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The player’s foot is in contact with the ball for 55 ms. Calculate the average force that acts on the ball due to the football player.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The ball leaves the ground at an angle of 22°. The horizontal distance from the initial position of the edge of the ball to the wall is 11 m. Calculate the time taken for the ball to reach the wall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The top of the wall is 2.4 m above the ground. Deduce whether the ball will hit the wall.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In practice, air resistance affects the ball. Outline the effect that air resistance has on the vertical acceleration of the ball. Take the direction of the acceleration due to gravity to be positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The player kicks the ball again. It rolls along the ground without sliding with a horizontal velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>40</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>. The radius of the ball is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>11</mn><mo> </mo><mtext>m</mtext></math>. Calculate the angular velocity of the ball. State an appropriate SI unit for your answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>19</mn><mo> </mo><mtext mathvariant="bold-italic">OR </mtext><mi>a</mi><mo> </mo><mo>=</mo><mfrac><mn>19</mn><mrow><mn>0</mn><mo>.</mo><mn>055</mn></mrow></mfrac></math> <strong>✓</strong> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>19</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>055</mn></mrow></mfrac><mo>»</mo><mn>160</mn><mo> </mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p><em>Allow <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong> if 19 sin22 <strong>OR</strong> 19 cos22 used.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>horizontal speed =</mtext><mo> </mo><mn>19</mn><mo>×</mo><mi>cos</mi><mo> </mo><mn>22</mn><mo> </mo><mo>«</mo><mo>=</mo><mn>17</mn><mo>.</mo><mn>6</mn><msup><mtext> m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>time</mtext><mo>=</mo><mo>«</mo><mfrac><mtext>distance</mtext><mtext>speed</mtext></mfrac><mo>=</mo><mfrac><mn>11</mn><mrow><mn>19</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>22</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>62</mn><mo> </mo><mo>«</mo><mtext>s</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>initial vertical speed</mtext><mo>=</mo><mn>19</mn><mo>×</mo><mi>sin</mi><mo> </mo><mn>22</mn><mo> </mo><mo>«</mo><mo>=</mo><mo> </mo><mn>7</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>7</mn><mo>.</mo><mn>12</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>624</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>624</mn><mn>2</mn></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>5</mn><mo> </mo><mo>«</mo><mtext>m</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p>ball does not hit wall <em><strong>OR</strong> </em>2.5 «m» > 2.4 «m» <strong>✓</strong></p>
<p><em><br>Allow <strong>ECF</strong> from (b)(i) and from <strong>MP1</strong> </em></p>
<p><em>Allow g = 10 m s<sup>−2</sup></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>air resistance opposes «direction of» motion<br><em><strong>OR</strong></em><br>air resistance opposes velocity <strong>✓</strong></p>
<p>on the way up «vertical» acceleration is increased <em><strong>OR</strong> </em>greater than g <strong>✓</strong></p>
<p>on the way down «vertical» acceleration is decreased <em><strong>OR</strong> </em>smaller than g <strong>✓</strong></p>
<p><em><br>Allow deceleration/acceleration but meaning must be clear</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mo>«</mo><mtext>rad</mtext><mo>»</mo><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><strong>✓</strong></p>
<p><em><br>Unit must be seen for mark</em></p>
<p><em>Accept Hz</em></p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi>π</mi><mo> </mo><mo>«</mo><mtext>rad</mtext><mo>»</mo><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton is moving in a region of uniform magnetic field. The magnetic field is directed into the plane of the paper. The arrow shows the velocity of the proton at one instant and the dotted circle gives the path followed by the proton.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The speed of the proton is 2.0 × 10<sup>6</sup> m s<sup>–1</sup> and the magnetic field strength <em>B</em> is 0.35 T.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the path of the proton is a circle.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the radius of the path is about 6 cm.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the time for <strong>one</strong> complete revolution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the kinetic energy of the proton is constant.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">magnetic force is to the left «at the instant shown»<br><em><strong>OR</strong></em><br>explains a rule to determine the direction of the magnetic force ✔</span></p>
<p><span style="background-color: #ffffff;">force is perpendicular to velocity/«direction of» motion<br><em><strong>OR</strong></em><br>force is constant in magnitude ✔</span></p>
<p><span style="background-color: #ffffff;">force is centripetal/towards the centre ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept reference to acceleration instead of force</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mi>v</mi><mi>B</mi><mo>=</mo><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mi>R</mi></mfrac></math><span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>27</mn></mrow></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>35</mn></mrow></mfrac></math> <em><strong>OR</strong></em> 0.060 « m »</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award MP2 for full replacement or correct answer to at least 2 significant figures</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mi>R</mi></mrow><mi>v</mi></mfrac></math><span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>06</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac><mo>=</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup></math> « s » ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award <strong>[2]</strong> for bald correct answer</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br>work done by force is change in kinetic energy ✔<br>work done is zero/force perpendicular to velocity ✔ <br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Award <strong>[2]</strong> for a reference to work done is zero hence E<sub>k</sub> remains constant</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br>proton moves at constant speed ✔<br>kinetic energy depends on speed ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Accept mention of speed or velocity indistinctly in MP2</em><br></span></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A student uses a load to pull a box up a ramp inclined at 30°. A string of constant length and negligible mass connects the box to the load that falls vertically. The string passes over a pulley that runs on a frictionless axle. Friction acts between the base of the box and the ramp. Air resistance is negligible.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The load has a mass of 3.5 kg and is initially 0.95 m above the floor. The mass of the box is 1.5 kg.</p>
<p>The load is released and accelerates downwards.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> differences between the momentum of the box and the momentum of the load at the same instant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The vertical acceleration of the load downwards is 2.4 m s<sup>−2</sup>.</p>
<p>Calculate the tension in the string.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the load when it hits the floor is about 2.1 m s<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the pulley is 2.5 cm. Calculate the angular speed of rotation of the pulley as the load hits the floor. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After the load has hit the floor, the box travels a further 0.35 m along the ramp before coming to rest. Determine the average frictional force between the box and the surface of the ramp.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student then makes the ramp horizontal and applies a constant horizontal force to the box. The force is just large enough to start the box moving. The force continues to be applied after the box begins to move.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Explain, with reference to the frictional force acting, why the box accelerates once it has started to move. </p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>direction of motion is different / <em><strong>OWTTE</strong> </em>✓</p>
<p><em>mv</em> / magnitude of momentum is different «even though <em>v</em> the same» ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>ma = mg − T</em> «3.5 x 2.4 = 3.5<em>g − T</em> »</p>
<p><em><strong>OR</strong></em></p>
<p><em>T </em>= 3.5(<em>g − </em>2.4) ✓</p>
<p>26 «N» ✓</p>
<p> </p>
<p><em>Accept 27 N from g = 10 m s<sup>−2</sup></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>proper use of kinematic equation ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfenced><mrow><mn>2</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>95</mn></mrow></mfenced></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>14</mn></math> «m s<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Must see either the substituted values <strong>OR</strong> a value for v to at least three s.f. for <strong>MP2</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><mfrac><mi>v</mi><mi>r</mi></mfrac></math> to give 84 «rad s<sup>−1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>/</mo><mn>0</mn><mo>.</mo><mn>025</mn></math> to give 84 «rad s<sup>−1</sup>» ✓</p>
<p> </p>
<p>quoted to 2sf only✓</p>
<p> </p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><msup><mi>u</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>s</mi><mo>⇒</mo><mn>0</mn><mo>=</mo><mn>2</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>35</mn></math>» leading to <em>a </em>= 6.3 «m s<sup>-2</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn><mfenced><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow></mfenced><mi>t</mi></math> » leading to <em>t</em> = 0.33 « s » ✓</p>
<p><em><br></em><em>F</em><sub>net</sub> = « <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>6</mn><mo>.</mo><mn>3</mn></math> = » 9.45 «N» ✓</p>
<p>Weight down ramp = 1.5 x 9.8 x sin(30) = 7.4 «N» ✓</p>
<p>friction force = net force – weight down ramp = 2.1 «N» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>kinetic energy initial = work done to stop 0.5 x 1.5 x (2.1)<sup>2</sup> = <em>F</em><sub>NET</sub> x 0.35 ✓</p>
<p><em>F</em><sub>net</sub> = 9.45 «N» ✓</p>
<p>Weight down ramp = 1.5 x 9.8 x sin(30) = 7.4 «N» ✓</p>
<p>friction force = net force – weight down ramp = 2.1 «N» ✓</p>
<p> </p>
<p><em>Accept 1.95 N from g = 10 </em>m s<sup>-2</sup><em>.</em><br><em>Accept 2.42 N from u = 2.14 </em>m s<sup>-1</sup><em>.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>static coefficient of friction > dynamic/kinetic coefficient of friction / μ<sub>s</sub> > μ<sub>k</sub> ✓</p>
<p>«therefore» force of dynamic/kinetic friction will be less than the force of static friction ✓</p>
<p><br>there will be a net / unbalanced forward force once in motion «which results in acceleration»</p>
<p><em><strong>OR</strong></em></p>
<p>reference to net F = ma ✓</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many students recognized the vector nature of momentum implied in the question, although some focused on the forces acting on each object rather than discussing the momentum.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some students simply calculated the net force acting on the load and did not recognize that this was not the tension force. Many set up a net force equation but had the direction of the forces backwards. This generally resulted from sloppy problem solving.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" questions, so examiners were looking for a clear equation leading to a clear substitution of values leading to an answer that had more significant digits than the given answer. Most candidates successfully selected the correct equation and showed a proper substitution. Some candidates started with an energy approach that needed modification as it clearly led to an incorrect solution. These responses did not receive full marks.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This SL only question was generally well done. Despite some power of 10 errors, many candidates correctly reported final answer to 2 sf.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates struggled with this question. Very few drew a clear free-body diagram and many simply calculated the acceleration of the box from the given information and used this to calculate the net force on the box, confusing this with the frictional force.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was an "explain" question, so examiners were looking for a clear line of discussion starting with a comparison of the coefficients of friction, leading to a comparison of the relative magnitudes of the forces of friction and ultimately the rise of a net force leading to an acceleration. Many candidates recognized that this was a question about the comparison between static and kinetic/dynamic friction but did not clearly specify which they were referring to in their responses. Some candidates clearly did not read the stem carefully as they referred to the mass being on an incline.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The Moon has no atmosphere and orbits the Earth. The diagram shows the Moon with rays of light from the Sun that are incident at 90° to the axis of rotation of the Moon.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A black body is on the Moon’s surface at point A. Show that the maximum temperature that this body can reach is 400 K. Assume that the Earth and the Moon are the same distance from the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another black body is on the Moon’s surface at point B.</p>
<p>Outline, without calculation, why the aximum temperature of the black body at point B is less than at point A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The albedo of the Earth’s atmosphere is 0.28. Outline why the maximum temperature of a black body on the Earth when the Sun is overhead is less than that at point A on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a force acts on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why this force does no work on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>T</em> = <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{{1360}}{\sigma }} \right)^{0.25}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1360</mn>
</mrow>
<mi>σ</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mn>0.25</mn>
</mrow>
</msup>
</mrow>
</math></span> </span>✔</p>
<p>390 «K» ✔</p>
<p><em>Must see 1360 (from data booklet) used for MP1.</em></p>
<p><em>Must see at least 2 s.f</em>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy/Power/Intensity lower at B ✔</p>
<p>connection made between energy/power/intensity and temperature of blackbody ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(28 %) of sun’s energy is scattered/reflected by earth’s atmosphere <em><strong>OR</strong></em> only 72 % of incident energy gets absorbed by blackbody ✔</p>
<p><em>Must be clear that the energy is being scattered by the atmosphere.</em></p>
<p><em>Award <strong>[0]</strong> for simple definition of “albedo”</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gravitational attraction/force/field «of the planet/Moon» ✔</p>
<p><em>Do not accept “gravity”</em>.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the force/field and the velocity/displacement are at 90° to each other<em><strong> OR</strong></em> there is no change in GPE of the moon ✔</p>
<p><em>Award <strong>[0]</strong> for any mention of no net force on the satellite.</em></p>
<p><em>Do not accept acceleration is perpendicular to velocity.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates struggled with this question. A significant portion attempted to apply Wein’s Law and simply stated that a particular wavelength was the peak and then used that to determine the temperature. Some did use the solar constant from the data booklet and were able to calculate the correct temperature. As part of their preparation for the exam candidates should thoroughly review the data booklet and be aware of what constants are given there. As with all “show that” questions candidates should be reminded to include an unrounded answer.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is question is another example of candidates not thinking beyond the obvious in the question. Many simply said that point B is farther away, or that it is at an angle. Some used vague terms like “the sunlight is more spread out” rather than using proper physics terms. Few candidates connected the lower intensity at B with the lower temperature of the blackbody.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was assessing the understanding of the concept of albedo. Many candidates were able to connect that an albedo of 0.28 meant that 28 % of the incident energy from the sun was being reflected or scattered by the atmosphere before reaching the black body.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered, although some candidates simply used the vague term “gravity” rather than specifying that it is a gravitational force or a gravitational field. Candidates need to be reminded about using proper physics terms and not more general, “every day” terms on the exam.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates connected the idea that the gravitational force is perpendicular to the velocity (and hence the displacement) for the mark. It was also allowed to discuss that there is no change in gravitational potential energy, so therefore no work was being done. It was not acceptable to simply state that the net displacement over one full orbit is zero. Unfortunately, some candidates suggested that there is no net force on the moon so there is no work done, or that the moon is so much smaller so no work could be done on it.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define<em> gravitational field strength.</em></p>
<p>(ii) State the SI unit for gravitational field strength.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A planet orbits the Sun in a circular orbit with orbital period <em>T</em> and orbital radius <em>R</em>. The mass of the Sun is <em>M</em>.</p>
<p>(i) Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = \sqrt {\frac{{4{\pi ^2}{R^3}}}{{GM}}} ">
<mi>T</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>G</mi>
<mi>M</mi>
</mrow>
</mfrac>
</msqrt>
</math></span>.</p>
<p>(ii) The Earth’s orbit around the Sun is almost circular with radius 1.5×10<sup>11</sup> m. Estimate the mass of the Sun.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) «gravitational» force per unit mass on a «small <strong>or</strong> test» mass </p>
<p> </p>
<p>(ii) N kg<sup>–1 </sup></p>
<p><em>Award mark if N kg<sup>-1</sup> is seen, treating any further work as neutral.<br>Do not accept bald m s<sup>–2</sup></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>clear evidence that <em>v</em> in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v^2} = \frac{{4{\pi ^2}{R^2}}}{{{T^2}}}">
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mi>T</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> is equated to orbital speed <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{GM}}{R}} ">
<msqrt>
<mfrac>
<mrow>
<mi>G</mi>
<mi>M</mi>
</mrow>
<mi>R</mi>
</mfrac>
</msqrt>
</math></span><br><em><strong>OR</strong></em><br>clear evidence that centripetal force is equated to gravitational force<br><em><strong>OR</strong></em><br>clear evidence that <em>a</em> in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{{v^2}}}{R}">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>R</mi>
</mfrac>
</math></span> etc is equated to <em>g</em> in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g = \frac{{GM}}{{{R^2}}}">
<mi>g</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>G</mi>
<mi>M</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> with consistent use of symbols<br><em>Minimum is a statement that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{GM}}{R}} ">
<msqrt>
<mfrac>
<mrow>
<mi>G</mi>
<mi>M</mi>
</mrow>
<mi>R</mi>
</mfrac>
</msqrt>
</math></span> is the orbital speed which is then used in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \frac{{2\pi R}}{T}">
<mi>v</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
<mi>R</mi>
</mrow>
<mi>T</mi>
</mfrac>
</math></span></em><br><em>Minimum is F<sub>c</sub> = F<sub>g</sub> ignore any signs.</em><br><em>Minimum is g = a.</em></p>
<p>substitutes and re-arranges to obtain result<br><em>Allow any legitimate method not identified here.</em><br><em>Do not allow spurious methods involving equations of shm etc</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \ll T = \sqrt {\frac{{4{\pi ^2}R}}{{\left( {\frac{{GM}}{{{R^2}}}} \right)}}} = \sqrt {\frac{{4{\pi ^2}{R^3}}}{{GM}}} \gg ">
<mo>≪</mo>
<mi>T</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>R</mi>
</mrow>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>G</mi>
<mi>M</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</msqrt>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>G</mi>
<mi>M</mi>
</mrow>
</mfrac>
</msqrt>
<mo>≫</mo>
</math></span></p>
<p>ii<br>«<em>T </em>= 365 × 24 × 60 × 60 = 3.15 × 10<sup>7 </sup>s»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M = \, \ll \frac{{4{\pi ^2}{R^3}}}{{G{T^2}}} = \gg \,\, = \frac{{4 \times {{3.14}^2} \times {{\left( {1.5 \times {{10}^{11}}} \right)}^3}}}{{6.67 \times {{10}^{ - 11}} \times {{\left( {3.15 \times {{10}^7}} \right)}^2}}}">
<mi>M</mi>
<mo>=</mo>
<mspace width="thinmathspace"></mspace>
<mo>≪</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>G</mi>
<mrow>
<msup>
<mi>T</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=≫</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>3.14</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>11</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>6.67</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>11</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3.15</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>7</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><br>2×10<sup>30</sup>«kg»</p>
<p><em>Allow use of 3.16 x 10<sup>7</sup> s for year length (quoted elsewhere in paper).</em><br><em>Condone error in power of ten in MP1.</em><br><em>Award<strong> [1 max]</strong> if incorrect time used (24 h is sometimes seen, leading to 2.66 x 10<sup>35</sup> kg).</em><br><em>Units are not required, but if not given assume kg and mark POT accordingly if power wrong.</em><br><em>Award <strong>[2]</strong> for a bald correct answer.</em><br><em>No sf penalty here.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A glider is an aircraft with no engine. To be launched, a glider is uniformly accelerated from rest by a cable pulled by a motor that exerts a horizontal force on the glider throughout the launch.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The glider reaches its launch speed of 27.0 m s<sup>–1</sup> after accelerating for 11.0 s. Assume that the glider moves horizontally until it leaves the ground. Calculate the total distance travelled by the glider before it leaves the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The glider and pilot have a total mass of 492 kg. During the acceleration the glider is subject to an average resistive force of 160 N. Determine the average tension in the cable as the glider accelerates.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable is pulled by an electric motor. The motor has an overall efficiency of 23 %. Determine the average power input to the motor.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable is wound onto a cylinder of diameter 1.2 m. Calculate the angular velocity of the cylinder at the instant when the glider has a speed of 27 m s<sup>–1</sup>. Include an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After takeoff the cable is released and the unpowered glider moves horizontally at constant speed. The wings of the glider provide a lift force. The diagram shows the lift force acting on the glider and the direction of motion of the glider.</p>
<p><img src=""></p>
<p>Draw the forces acting on the glider to complete the free-body diagram. The dotted lines show the horizontal and vertical directions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using appropriate laws of motion, how the forces acting on the glider maintain it in level flight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a particular instant in the flight the glider is losing 1.00 m of vertical height for every 6.00 m that it goes forward horizontally. At this instant, the horizontal speed of the glider is 12.5 m s<sup>–1</sup>. Calculate the <strong>velocity</strong> of the glider. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct use of kinematic equation/equations</p>
<p>148.5 <em><strong>or</strong> </em>149 <em><strong>or</strong> </em>150 «m»</p>
<p> </p>
<p><em>Substitution(s) must be correct.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>a</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27}}{{11}}">
<mfrac>
<mrow>
<mn>27</mn>
</mrow>
<mrow>
<mn>11</mn>
</mrow>
</mfrac>
</math></span> <em><strong>or</strong></em> 2.45 «m s<sup>–2</sup>»</p>
<p><em>F</em> – 160 = 492 × 2.45</p>
<p>1370 «N»</p>
<p> </p>
<p><em>Could be seen in part (a).</em><br><em>Award <strong>[0]</strong> for solution that uses a = 9.81 m s<sup>–2</sup></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«work done to launch glider» = 1370 x 149 «= 204 kJ»</p>
<p>«work done by motor» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{204 \times 100}}{{23}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>204</mn>
<mo>×</mo>
<mn>100</mn>
</mrow>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
</math></span></p>
<p>«power input to motor» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{204 \times 100}}{{23}} \times \frac{1}{{11}} = 80">
<mo>=</mo>
<mfrac>
<mrow>
<mn>204</mn>
<mo>×</mo>
<mn>100</mn>
</mrow>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>11</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>80</mn>
</math></span> <em><strong>or</strong> </em>80.4 <em><strong>or</strong> </em>81 k«W»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>use of average speed 13.5 m s<sup>–1</sup></p>
<p>«useful power output» = force x average speed «= 1370 x 13.5»</p>
<p>power input = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1370 \times 13.5 \times \frac{{100}}{{23}} = ">
<mn>1370</mn>
<mo>×</mo>
<mn>13.5</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mn>100</mn>
</mrow>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 80 <em><strong>or</strong> </em>80.4 <em><strong>or</strong> </em>81 k«W»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p>work required from motor = KE + work done against friction «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.5 \times 492 \times {27^2} + \left( {160 \times 148.5} \right)">
<mo>=</mo>
<mn>0.5</mn>
<mo>×</mo>
<mn>492</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>27</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>160</mn>
<mo>×</mo>
<mn>148.5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>» = 204 «kJ»</p>
<p>«energy input» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{work required from motor}} \times 100}}{{23}}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>work required from motor</mtext>
</mrow>
<mo>×</mo>
<mn>100</mn>
</mrow>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
</math></span></p>
<p>power input <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{883000}}{{11}} = 80.3">
<mo>=</mo>
<mfrac>
<mrow>
<mn>883000</mn>
</mrow>
<mrow>
<mn>11</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>80.3</mn>
</math></span> k«W»</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> for an answer of 160 k«W».</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega = ">
<mi>ω</mi>
<mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{r} = ">
<mfrac>
<mi>v</mi>
<mi>r</mi>
</mfrac>
<mo>=</mo>
</math></span>» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27}}{{0.6}} = 45">
<mfrac>
<mrow>
<mn>27</mn>
</mrow>
<mrow>
<mn>0.6</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>45</mn>
</math></span></p>
<p>rad s<sup>–1</sup></p>
<p> </p>
<p><em>Do not accept Hz.</em><br><em>Award <strong>[1 max]</strong> if unit is missing.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>drag correctly labelled and in correct direction</p>
<p>weight correctly labelled and in correct direction <em><strong>AND</strong></em> no other incorrect force shown</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> if forces do not touch the dot, but are otherwise OK.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>name Newton's first law</p>
<p>vertical/all forces are in equilibrium/balanced/add to zero<br><em><strong>OR</strong></em><br>vertical component of lift mentioned</p>
<p>as equal to weight</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any speed and any direction quoted together as the answer</p>
<p>quotes their answer(s) to 3 significant figures</p>
<p>speed = 12.7 m s<sup>–1</sup> <em><strong>or</strong></em> direction = 9.46<sup>º</sup> <em><strong>or</strong></em> 0.165 rad «below the horizontal» <em><strong>or </strong></em>gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{1}{6}">
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
</math></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram below shows part of a downhill ski course which starts at point A, 50 m above level ground. Point B is 20 m above level ground.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A skier of mass 65 kg starts from rest at point A and during the ski course some of the gravitational potential energy transferred to kinetic energy.</p>
</div>
<div class="specification">
<p>At the side of the course flexible safety nets are used. Another skier of mass 76 kg falls normally into the safety net with speed 9.6 m s<sup>–1</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From A to B, 24 % of the gravitational potential energy transferred to kinetic energy. Show that the velocity at B is 12 m s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some of the gravitational potential energy transferred into internal energy of the skis, slightly increasing their temperature. Distinguish between internal energy and temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The dot on the following diagram represents the skier as she passes point B.<br>Draw and label the vertical forces acting on the skier.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hill at point B has a circular shape with a radius of 20 m. Determine whether the skier will lose contact with the ground at point B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The skier reaches point C with a speed of 8.2 m s<sup>–1</sup>. She stops after a distance of 24 m at point D.</p>
<p>Determine the coefficient of dynamic friction between the base of the skis and the snow. Assume that the frictional force is constant and that air resistance can be neglected.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the impulse required from the net to stop the skier and state an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to change in momentum, why a flexible safety net is less likely to harm the skier than a rigid barrier.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{v^2} = 0.24\,{\text{gh}}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0.24</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>gh</mtext>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 11.9">
<mi>v</mi>
<mo>=</mo>
<mn>11.9</mn>
</math></span> «m s<sup>–1</sup>»</p>
<p> </p>
<p><em>Award GPE lost = 65 × 9.81 × 30 = «19130 J»</em></p>
<p><em>Must see the 11.9 value for MP2, not simply 12.</em></p>
<p><em>Allow g = 9.8 ms<sup>–2</sup>.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>internal energy is the total KE «and PE» of the molecules/particles/atoms in an object</p>
<p>temperature is a measure of the average KE of the molecules/particles/atoms</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> if there is no mention of molecules/particles/atoms.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>arrow vertically downwards from dot labelled weight/W/mg/gravitational force/F<sub>g</sub>/F<sub>gravitational</sub> <strong><em>AND</em></strong> arrow vertically upwards from dot labelled reaction force/R/normal contact force/N/F<sub>N</sub></p>
<p>W > R</p>
<p> </p>
<p><em>Do not allow gravity.</em><br><em>Do not award MP1 if additional ‘centripetal’ force arrow is added.</em><br><em>Arrows must connect to dot.</em><br><em>Ignore any horizontal arrow labelled friction.</em><br><em>Judge by eye for MP2. Arrows do not have to be correctly labelled or connect to dot for MP2.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>recognition that centripetal force is required / <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{m{v^2}}}{r}">
<mfrac>
<mrow>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span> seen</p>
<p>= 468 «N»</p>
<p>W/640 N (weight) is larger than the centripetal force required, so the skier does not lose contact with the ground</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>recognition that centripetal acceleration is required / <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span> seen</p>
<p>a = 7.2 «ms<sup>–2</sup>»</p>
<p><em>g</em> is larger than the centripetal acceleration required, so the skier does not lose contact with the ground</p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p>recognition that to lose contact with the ground centripetal force ≥ weight</p>
<p>calculation that v ≥ 14 «ms<sup>–1</sup>»</p>
<p>comment that 12 «ms<sup>–1</sup>» is less than 14 «ms<sup>–1</sup>» so the skier does not lose contact with the ground</p>
<p> </p>
<p><em><strong>ALTERNATIVE 4</strong></em></p>
<p>recognition that centripetal force is required / <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{m{v^2}}}{r}">
<mfrac>
<mrow>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span> seen</p>
<p>calculation that reaction force = 172 «N»</p>
<p>reaction force > 0 so the skier does not lose contact with the ground</p>
<p> </p>
<p> </p>
<p><em>Do not award a mark for the bald statement that the skier does not lose contact with the ground.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>0 = 8.2<sup>2 </sup>+ 2 × <em>a</em> × 24 therefore <em>a</em> = «−»1.40 «m s<sup>−2</sup>»</p>
<p>friction force = <em>ma </em>= 65 × 1.4 = 91 «N»</p>
<p>coefficient of friction = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{91}}{{65 \times 9.81}}">
<mfrac>
<mrow>
<mn>91</mn>
</mrow>
<mrow>
<mn>65</mn>
<mo>×</mo>
<mn>9.81</mn>
</mrow>
</mfrac>
</math></span> = 0.14</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em><br><em>KE</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>mv</em><sup>2</sup> = 0.5 x 65 x 8.2<sup>2</sup> = 2185 «J»</p>
<p>friction force = KE/distance = 2185/24 = 91 «N»</p>
<p>coefficient of friction = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{91}}{{65 \times 9.81}}">
<mfrac>
<mrow>
<mn>91</mn>
</mrow>
<mrow>
<mn>65</mn>
<mo>×</mo>
<mn>9.81</mn>
</mrow>
</mfrac>
</math></span> = 0.14</p>
<p> </p>
<p><em>Allow ECF from MP1.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«76 × 9.6»= 730<br>Ns <em><strong>OR</strong></em> kg ms<sup>–1</sup></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>safety net extends stopping time</p>
<p><em>F</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta p}}{{\Delta t}}">
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>p</mi>
</mrow>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> therefore <em>F</em> is smaller «with safety net»</p>
<p><em><strong>OR</strong></em></p>
<p>force is proportional to rate of change of momentum therefore <em>F</em> is smaller «with safety net»</p>
<p> </p>
<p><em>Accept reverse argument.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A planet is in a circular orbit around a star. The speed of the planet is constant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why a centripetal force is needed for the planet to be in a circular orbit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the nature of this centripetal force.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the gravitational field of the planet.</p>
<p>The following data are given:</p>
<p style="padding-left:180px;">Mass of planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup></math> kg<br>Radius of the planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math> m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«circular motion» involves a changing velocity <strong>✓</strong></p>
<p>«Tangential velocity» is «always» perpendicular to centripetal force/acceleration <strong>✓</strong></p>
<p>there must be a force/acceleration towards centre/star <strong>✓</strong></p>
<p>without a centripetal force the planet will move in a straight line <strong>✓</strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gravitational force/force of gravity ✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><msup><mi>R</mi><mn>2</mn></msup></mfrac></math> ✓</p>
<p>6.4 «Nkg<sup>−1</sup> or ms<sup>−2</sup>» ✓</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An electron moves in circular motion in a uniform magnetic field.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_18.05.11.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/05"></p>
<p>The velocity of the electron at point P is 6.8 × 10<sup>5</sup> m s<sup>–1</sup> in the direction shown.</p>
<p>The magnitude of the magnetic field is 8.5 T.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the magnetic field.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in N, the magnitude of the magnetic force acting on the electron.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electron moves at constant speed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electron moves on a circular path.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>out of the page plane / ⊙</p>
<p> </p>
<p><em>Do not accept just “up” or “outwards”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.60 × 10<sup>–19</sup> × 6.8 × 10<sup>5</sup> × 8.5 = 9.2 × 10<sup>–13</sup> <strong>«</strong>N<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the magnetic force does not do work on the electron hence does not change the electron’s kinetic energy</p>
<p><strong><em>OR</em></strong></p>
<p>the magnetic force/acceleration is at right angles to velocity</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the velocity of the electron is at right angles to the magnetic field</p>
<p>(therefore) there is a centripetal acceleration / force acting on the charge</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the Earth-Sun distance.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of the solar radiation at the location of Titan is 16 W m<sup>−2</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1 W m<sup>−2</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equilibrium surface temperature of Titan is about 90 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and the period of revolution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo> </mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is 1.2 × 10<sup>9 </sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>incident intensity <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1360</mn><mrow><mn>9</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn><mo>≈</mo><mn>16</mn></math> «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow the use of 1400 for the solar constant.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>exposed surface is ¼ of the total surface ✓</p>
<p>absorbed intensity = (1−0.22) × incident intensity ✓</p>
<p>0.78 × 0.25 × 15.7 <em><strong>OR </strong> </em>3.07 «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow 3.06 from rounding and 3.12 if they use 16</em> W m<sup>−2</sup>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>σT </em><sup>4</sup> = 3.07</p>
<p><em><strong>OR</strong></em></p>
<p><em>T</em> = 86 «K» ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct equating of gravitational force / acceleration to centripetal force / acceleration ✓</p>
<p>correct rearrangement to reach the expression given ✓</p>
<p> </p>
<p><em>Allow use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mi>R</mi></mrow><mi>T</mi></mfrac></math> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></math> «s» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mn>3</mn></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mfenced><mrow><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>26</mn></msup><mo> </mo></math>«kg» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Ion-thrust engines can power spacecraft. In this type of engine, ions are created in a chamber and expelled from the spacecraft. The spacecraft is in outer space when the propulsion system is turned on. The spacecraft starts from rest.</p>
<p style="text-align: center;"><img src=""></p>
<p>The mass of ions ejected each second is 6.6 × 10<sup>–6 </sup>kg and the speed of each ion is 5.2 × 10<sup>4</sup> m s<sup>–1</sup>. The initial total mass of the spacecraft and its fuel is 740 kg. Assume that the ions travel away from the spacecraft parallel to its direction of motion.</p>
</div>
<div class="specification">
<p>An initial mass of 60 kg of fuel is in the spacecraft for a journey to a planet. Half of the fuel will be required to slow down the spacecraft before arrival at the destination planet.</p>
</div>
<div class="specification">
<p>In practice, the ions leave the spacecraft at a range of angles as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>On arrival at the planet, the spacecraft goes into orbit as it comes into the gravitational field of the planet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the maximum speed of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why scientists sometimes use estimates in making calculations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ions are likely to spread out.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what effect, if any, this spreading of the ions has on the acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by the gravitational field strength at a point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Newton’s law of gravitation applies to point masses. Suggest why the law can be applied to a satellite orbiting a spherical planet of uniform density.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>change in momentum each second = 6.6 × 10<sup>−6</sup> × 5.2 × 10<sup>4</sup> «= 3.4 × 10<sup>−1 </sup>kg m s<sup>−1</sup>» ✔</p>
<p>acceleration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.4 \times {{10}^{ - 1}}}}{{740}}">
<mfrac>
<mrow>
<mn>3.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>740</mn>
</mrow>
</mfrac>
</math></span> =» 4.6 × 10<sup>−4</sup> «m s<sup>−2</sup>» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>(considering the acceleration of the spacecraft)</p>
<p>time for acceleration = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30}}{{6.6 \times {{10}^{ - 6}}}}">
<mfrac>
<mrow>
<mn>30</mn>
</mrow>
<mrow>
<mn>6.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = «4.6 × 10<sup>6</sup>» «s» ✔</p>
<p>max speed = «answer to (a) × 4.6 × 10<sup>6</sup> =» 2.1 × 10<sup>3</sup> «m s<sup>−1</sup>» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>(considering the conservation of momentum)</p>
<p>(momentum of 30 kg of fuel ions = change of momentum of spacecraft)</p>
<p>30 × 5.2 × 10<sup>4 </sup>= 710 × max speed ✔</p>
<p>max speed = 2.2 × 10<sup>3 </sup>«m s<sup>−1</sup>» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>problem may be too complicated for exact treatment ✔</p>
<p>to make equations/calculations simpler ✔</p>
<p>when precision of the calculations is not important ✔</p>
<p>some quantities in the problem may not be known exactly ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ions have same (sign of) charge ✔</p>
<p>ions repel each other ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the forces between the ions do not affect the force on the spacecraft. ✔</p>
<p>there is no effect on the acceleration of the spacecraft. ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force per unit mass ✔</p>
<p>acting on a small/test/point mass «placed at the point in the field» ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>satellite has a much smaller mass/diameter/size than the planet «so approximates to a point mass» ✔ </p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>θ</em> to the horizontal.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following equation.</p>
<p> <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="F = \frac{{mg}}{{\tan \theta }}">
<mi>F</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced so that its height from the horizontal is equal to 8.0 m.</p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>towards the centre <strong>«</strong>of the circle<strong>» </strong>/ horizontally to the right</p>
<p> </p>
<p><em>Do not accept towards the centre of the bowl</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward vertical arrow of any length</p>
<p>arrow of correct length</p>
<p> </p>
<p><em>Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required</em></p>
<p><em>eg</em>: <img src="images/Schermafbeelding_2018-08-12_om_13.22.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>F</em> = <em>N</em> cos <em>θ</em></p>
<p><em>mg</em> = <em>N</em> sin <em>θ</em></p>
<p>dividing/substituting to get result</p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>right angle triangle drawn with <em>F</em>, <em>N </em>and <em>W/mg </em>labelled</p>
<p>angle correctly labelled and arrows on forces in correct directions</p>
<p>correct use of trigonometry leading to the required relationship</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-12_om_13.28.39.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em>tan θ</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{O}}}{A} = \frac{{mg}}{F}">
<mfrac>
<mrow>
<mtext>O</mtext>
</mrow>
<mi>A</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mi>F</mi>
</mfrac>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg}}{{\tan \theta }}">
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span> = <em>m</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span></p>
<p><em>r</em> = <em>R</em> cos <em>θ</em></p>
<p><em>v</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{gR{{\cos }^2}\theta }}{{\sin \theta }}} /\sqrt {\frac{{gR\cos \theta }}{{\tan \theta }}} /\sqrt {\frac{{9.81 \times 8.0\cos 22}}{{\tan 22}}} ">
<msqrt>
<mfrac>
<mrow>
<mi>g</mi>
<mi>R</mi>
<mrow>
<msup>
<mrow>
<mi>cos</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</msqrt>
<mrow>
<mo>/</mo>
</mrow>
<msqrt>
<mfrac>
<mrow>
<mi>g</mi>
<mi>R</mi>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</msqrt>
<mrow>
<mo>/</mo>
</mrow>
<msqrt>
<mfrac>
<mrow>
<mn>9.81</mn>
<mo>×</mo>
<mn>8.0</mn>
<mi>cos</mi>
<mo></mo>
<mn>22</mn>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mn>22</mn>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p><em>v</em> = 13.4/13 <strong>«</strong><em>ms <sup>–</sup></em><em><sup>1</sup></em><strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for a bald correct answer </em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for an answer of 13.9/14 </em><strong>«</strong><em>ms <sup>–</sup></em><em><sup>1</sup></em><strong>»</strong><em>. MP2 omitted</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is no force to balance the weight/N is horizontal</p>
<p>so no / it is not possible</p>
<p> </p>
<p><em>Must see correct justification to award MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed before collision <em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gR} ">
<msqrt>
<mn>2</mn>
<mi>g</mi>
<mi>R</mi>
</msqrt>
</math></span> =<strong>»</strong> 12.5 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>from conservation of momentum<strong>» </strong>common speed after collision is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> initial speed <strong>«</strong><em>v<sub>c</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12.5}}{2}">
<mfrac>
<mrow>
<mn>12.5</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> = 6.25 ms<sup>–1</sup><strong>»</strong></p>
<p><em>h = </em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_c}^2}}{{2g}} = \frac{{{{6.25}^2}}}{{2 \times 9.81}}">
<mfrac>
<mrow>
<msup>
<mrow>
<msub>
<mi>v</mi>
<mi>c</mi>
</msub>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mn>2</mn>
<mi>g</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mn>6.25</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>9.81</mn>
</mrow>
</mfrac>
</math></span><strong>»</strong> 2.0 <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Allow 12.5 from incorrect use of kinematics equations</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for mg(8) = 2mgh leading to h = 4 m if done in one step.</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Allow ECF from MP2</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton moves along a circular path in a region of a uniform magnetic field. The magnetic field is directed into the plane of the page.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the diagram the magnetic force <em>F</em> on the proton. </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the velocity vector <em>v</em> of the proton.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The speed of the proton is 2.16 × 10<sup>6</sup> m s<sup>-1</sup> and the magnetic field strength is 0.042 T. For this proton, determine, in m, the radius of the circular path. Give your answer to an appropriate number of significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em>F</em> towards centre ✔</span></p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em>v</em> tangent to circle and in the direction shown in the diagram ✔</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="qvB = \frac{{m{v^2}}}{R} \Rightarrow » R = \frac{{mv}}{{qB}}/\frac{{1.673 \times {{10}^{ - 27}} \times 2.16 \times {{10}^6}}}{{1.60 \times {{10}^{ - 19}} \times 0.042}}">
<mi>q</mi>
<mi>v</mi>
<mi>B</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>R</mi>
</mfrac>
<mo stretchy="false">⇒</mo>
<mrow>
<mo>»</mo>
</mrow>
<mi>R</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>v</mi>
</mrow>
<mrow>
<mi>q</mi>
<mi>B</mi>
</mrow>
</mfrac>
<mrow>
<mo>/</mo>
</mrow>
<mfrac>
<mrow>
<mn>1.673</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>27</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>2.16</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.60</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>0.042</mn>
</mrow>
</mfrac>
</math></span> </span> <span style="background-color:#ffffff;">✔<br></span></p>
<p><span style="background-color:#ffffff;"><em>R</em> = 0.538 «m»✔<br></span></p>
<p><span style="background-color:#ffffff;"><em>R</em> = 0.54 «m» ✔<br></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Examiners were requested to be lenient here and as a result most candidates scored both marks. Had we insisted on <em>e.g.</em> straight lines drawn with a ruler or a force arrow passing exactly through the centre of the circle very few marks would have been scored. For those who didn’t know which way the arrows were supposed to be the common guesses were to the left and up the page. Some candidates neglected to label the arrows.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Examiners were requested to be lenient here and as a result most candidates scored both marks. Had we insisted on <em>e.g.</em> straight lines drawn with a ruler or a force arrow passing exactly through the centre of the circle very few marks would have been scored. For those who didn’t know which way the arrows were supposed to be the common guesses were to the left and up the page. Some candidates neglected to label the arrows.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered although usually to 3 sf. Common mistakes were to substitute 0.042 for F and 1 for q. Also some candidates tried to answer in terms of electric fields.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Airboats are used for transport across a river. To move the boat forward, air is propelled from the back of the boat by a fan blade.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>An airboat has a fan blade of radius 1.8 m. This fan can propel air with a maximum speed relative to the boat of 20 m s<sup>−1</sup>. The density of air is 1.2 kg m<sup>−3</sup>.</p>
</div>
<div class="specification">
<p>In a test the airboat is tied to the river bank with a rope normal to the bank. The fan propels the air at its maximum speed. There is no wind.</p>
</div>
<div class="specification">
<p>The rope is untied and the airboat moves away from the bank. The variation with time <em>t</em> of the speed <em>v</em> of the airboat is shown for the motion.<br><br></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a force acts on the airboat due to the fan blade.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that a mass of about 240 kg of air moves through the fan every second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the tension in the rope is about 5 kN.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the distance the airboat travels to reach its maximum speed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the mass of the airboat.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The fan is rotating at 120 revolutions every minute. Calculate the centripetal acceleration of the tip of a fan blade.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>there is a force «by the fan» on the air / air is accelerated «to the rear» ✓</p>
<p>by Newton 3 ✓</p>
<p>there is an «equal and» opposite force on the boat ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>air gains momentum «backward» ✓</p>
<p>by conservation of momentum / force is rate of change in momentum ✓</p>
<p>boat gains momentum in the opposite direction ✓</p>
<p> </p>
<p><em>Accept a reference to Newton’s third law, e.g. N’3, or any correct statement of it for <strong>MP2</strong> in <strong>ALT 1</strong>.</em></p>
<p><em>Allow any reasonable choice of object where the force of the air is acting on, e.g., fan or blades.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><msup><mi>R</mi><mn>2</mn></msup></math> <em><strong>OR</strong></em> «mass of air through system per unit time =» <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>v</mi><mi>ρ</mi></math> seen ✓</p>
<p>244 «kg s<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Accept use of Energy of air per second = 0.5 ρΑv<sup>3</sup> = 0.5 mv<sup>2</sup> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«force = Momentum change per sec = <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><msup><mi>v</mi><mn>2</mn></msup><mi>ρ</mi></math> = » 244 x 20 <em><strong>OR</strong> </em>4.9 «kN» ✓</p>
<p> </p>
<p><em>Allow use of 240</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that area under the graph is distance covered ✓</p>
<p>«Distance =» 480 - 560 «m» ✓</p>
<p> </p>
<p><em>Accept graphical evidence or calculation of correct geometric areas for <strong>MP1</strong>.</em></p>
<p><em><strong>MP2</strong> is numerical value within range.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>calculation of acceleration as gradient at <em>t</em> = 0 «= 1 m s<sup>-2</sup>» ✓</p>
<p>use of <em>F=ma <strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4900</mn><mn>1</mn></mfrac></math> </strong></em>seen ✓</p>
<p>4900 «kg» ✓</p>
<p> </p>
<p><em><strong>MP1</strong> can be shown on the graph.</em></p>
<p><em>Allow an acceleration in the range 1 – 1.1 for <strong>MP2</strong> and consistent answer for <strong>MP3</strong></em></p>
<p><em>Allow ECF from <strong>MP1</strong>.</em></p>
<p><em>Allow use of average acceleration = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>18</mn><mn>40</mn></mfrac></math></em></p>
<p><em>or assumption of constant force to obtain 11000 «kg» for <strong>[2]</strong></em></p>
<p><em>Allow use of 4800 or 5000 for <strong>MP2</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATE 1</em></strong></p>
<p>« <em>ω</em> = » 4<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math> rad s<sup>−1</sup> ✓</p>
<p>« <em>a = r ω</em><sup>2</sup>= » 280 « m s<sup>−2</sup> » ✓</p>
<p> </p>
<p><em><strong>ALTERNATE 2</strong></em></p>
<p>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi><mi>r</mi></mrow><mi>T</mi></mfrac></math> » = 22.6 m s<sup>−1</sup> ✓</p>
<p>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><msup><mi>v</mi><mn>2</mn></msup><mi>r</mi></mfrac></math>»= 280 « m s<sup>−2</sup> » ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> for wrong ω (120 gives 2.6 x 10<sup>4 </sup></em>« m s<sup>−2</sup> »<em>)</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> for wrong T (2 s gives 18 </em>« m s<sup>−2</sup> »<em>)</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The majority succeeded in making use of Newton's third law to explain the force on the boat. The question was quite well answered but sequencing of answers was not always ideal. There were some confusions about the air hitting the bank and bouncing off to hit the boat. A small number thought that the wind blowing the fan caused the force on the boat.</p>
<p>bi) This was generally well answered with candidates either starting from the wind turbine formula given in the data booklet or with the mass of the air being found using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mi>A</mi><mi>v</mi></math>.</p>
<p>1bii) Well answered by most candidates. Some creative work to end up with 240 was found in scripts.</p>
<p>1ci) Many candidates gained credit here for recognising that the resistive force eventually equalled the drag force and most were able to go on to link this to e.g. zero acceleration. Some had not read the question properly and assumed that the rope was still tied. There was one group of answers that stated something along the lines of "as there is no rope there is nothing to stop the boat so it can go at max speed.</p>
<p>1cii) A slight majority did not realise that they had to find the area under the velocity-time graph, trying equations of motion for non-linear acceleration. Those that attempted to calculate the area under the graph always succeeded in answering within the range.</p>
<p>1ciii) Use of the average gradient was common here for the acceleration. However, there also were answers that attempted to calculate the mass via a kinetic energy calculation that made all sorts of incorrect assumptions. Use of average acceleration taken from the gradient of the secant was also common.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A satellite powered by solar cells directed towards the Sun is in a polar orbit about the Earth.</p>
<p style="text-align: center;"><img src=""></p>
<p>The satellite is orbiting the Earth at a distance of 6600 km from the centre of the Earth.</p>
</div>
<div class="specification">
<p>The satellite carries an experiment that measures the peak wavelength emitted by different objects. The Sun emits radiation that has a peak wavelength <em>λ</em><sub>S</sub> of 509 nm. The peak wavelength <em>λ</em><sub>E</sub> of the radiation emitted by the Earth is 10.1 μm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the orbital period for the satellite.</p>
<p>Mass of Earth = 6.0 x 10<sup>24</sup> kg</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mean temperature of the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the difference between <em>λ</em><sub>S</sub> and <em>λ</em><sub>E</sub> helps to account for the greenhouse effect.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Not all scientists agree that global warming is caused by the activities of man.</p>
<p>Outline how scientists try to ensure agreement on a scientific issue.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{m{v^2}}}{r} = G\frac{{Mm}}{{{r^2}}}">
<mfrac>
<mrow>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
<mo>=</mo>
<mi>G</mi>
<mfrac>
<mrow>
<mi>M</mi>
<mi>m</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>leading to <em>T</em><sup>2</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4{\pi ^2}{r^3}}}{{GM}}">
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>G</mi>
<mi>M</mi>
</mrow>
</mfrac>
</math></span></p>
<p><em>T</em> = 5320 «s»</p>
<p><em><strong>Alternative 2</strong></em></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {\frac{{G{M_E}}}{r}} ">
<mi>v</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mi>G</mi>
<mrow>
<msub>
<mi>M</mi>
<mi>E</mi>
</msub>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</msqrt>
</math></span>» = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{6.67 \times {{10}^{ - 11}} \times 6.0 \times {{10}^{24}}}}{{6600 \times {{10}^3}}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>6.67</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>11</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>6.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>24</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>6600</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</msqrt>
</math></span> <em><strong>or </strong></em>7800 «ms<sup>–1</sup>»</p>
<p>distance = 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span><em>r</em> = 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> x 6600 x 10<sup>3</sup> «m» or 4.15 x 10<sup>7</sup> «m»</p>
<p>«<em>T</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{d}{v} = \frac{{4.15 \times {{10}^7}}}{{7800}}">
<mfrac>
<mi>d</mi>
<mi>v</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.15</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>7</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>7800</mn>
</mrow>
</mfrac>
</math></span>» = 5300 «s»</p>
<p><em>Accept use of ω instead of v</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>T</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.90 \times {{10}^{ - 3}}}}{{{\lambda _{{\text{max}}}}}} = ">
<mfrac>
<mrow>
<mn>2.90</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>λ</mi>
<mrow>
<mrow>
<mtext>max</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.90 \times {{10}^{ - 3}}}}{{10.1 \times {{10}^{ - 6}}}}">
<mfrac>
<mrow>
<mn>2.90</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>10.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>= 287 «K» <em><strong>or</strong> </em>14 «°C»</p>
<p><em>Award <strong>[0]</strong> for any use of wavelength from Sun </em></p>
<p><em>Do not accept 287 °C</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength of radiation from the Sun is shorter than that emitted from Earth «and is not absorbed by the atmosphere»</p>
<p>infrared radiation emitted from Earth is absorbed by greenhouse gases in the atmosphere</p>
<p>this radiation is re-emitted in all directions «including back to Earth»</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>peer review</p>
<p>international collaboration</p>
<p>full details of experiments published so that experiments can repeated</p>
<p><em><strong>[Max 1 Mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>