File "markSceme-SL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 6 HTML/markSceme-SL-paper1html
File size: 357.68 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p><img src=""></p>
<p>What is a possible pulse shape when the pulses overlap?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An ion moves in a circle in a uniform magnetic field. Which single change would increase the radius of the circular path?</p>
<p><br>A. Decreasing the speed of the ion</p>
<p>B. Increasing the charge of the ion</p>
<p>C. Increasing the mass of the ion</p>
<p>D. Increasing the strength of the magnetic field</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object at the end of a wooden rod rotates in a vertical circle at a constant angular velocity. What is correct about the tension in the rod? </p>
<p>A. It is greatest when the object is at the bottom of the circle.<br>B. It is greatest when the object is halfway up the circle. <br>C. It is greatest when the object is at the top of the circle. <br>D. It is unchanged throughout the motion.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle of mass <em>m</em> and charge of magnitude <em>q</em> enters a region of uniform magnetic field <em>B</em> that is directed into the page. The particle follows a circular path of radius <em>R</em>. What are the sign of the charge of the particle and the speed of the particle?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Object P moves vertically with simple harmonic motion (shm). Object Q moves in a vertical circle with a uniform speed. P and Q have the same time period <em>T</em>. When P is at the top of its motion, Q is at the bottom of its motion.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the interval between successive times when the acceleration of P is equal and opposite to the acceleration of Q?<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{4}">
  <mfrac>
    <mi>T</mi>
    <mn>4</mn>
  </mfrac>
</math></span><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">B.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{2}">
  <mfrac>
    <mi>T</mi>
    <mn>2</mn>
  </mfrac>
</math></span><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">C.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3T}{4}">
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mi>T</mi>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span></span></span><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">D. T<br></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The mass at the end of a pendulum is made to move in a horizontal circle of radius <em>r</em> at constant speed. The magnitude of the net force on the mass is <em>F</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the direction of <em>F</em> and the work done by<em> F</em> during half a revolution?</p>
<p> </p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">An object hangs from a light string and moves in a horizontal circle of radius <em>r</em>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="194" height="205"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The string makes an angle <em>θ</em> with the vertical. The angular speed of the object is <em>ω</em>. What is tan <em>θ</em>?</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>ω</mi><mn>2</mn></msup><mi>r</mi></mrow><mi>g</mi></mfrac></math></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>g</mi><mrow><msup><mi>ω</mi><mn>2</mn></msup><mi>r</mi></mrow></mfrac></math></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ω</mi><msup><mi>r</mi><mn>2</mn></msup></mrow><mi>g</mi></mfrac></math></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>g</mi><mrow><mi>ω</mi><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></math></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">An object of mass <em>m</em> makes <em>n</em> revolutions per second around a circle of radius <em>r</em> at a constant speed. What is the kinetic energy of the object?</span></p>
<p><span style="background-color: #ffffff;">A. 0<br></span></p>
<p><span style="background-color: #ffffff;">B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>π</mi><mn>2</mn></msup><mi>m</mi><msup><mi>n</mi><mn>2</mn></msup><msup><mi>r</mi><mn>2</mn></msup></math><br></span></p>
<p><span style="background-color: #ffffff;">C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>π</mi><mn>2</mn></msup><mi>m</mi><msup><mi>n</mi><mn>2</mn></msup><msup><mi>r</mi><mn>2</mn></msup></math><br></span></p>
<p><span style="background-color: #ffffff;">D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>π</mi><mn>2</mn></msup><mi>m</mi><msup><mi>n</mi><mn>2</mn></msup><msup><mi>r</mi><mn>2</mn></msup></math><br></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>On Mars, the gravitational field strength is about <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span> of that on Earth. The mass of Earth is approximately ten times that of Mars.</p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{radius of Earth}}}}{{{\text{radius of Mars}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>radius of Earth</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>radius of Mars</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> ?</p>
<p>A. 0.4</p>
<p>B. 0.6 </p>
<p>C. 1.6 </p>
<p>D. 2.5</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two satellites of mass <em>m</em> and 2<em>m</em> orbit a planet at the same orbit radius. If <em>F</em> is the force exerted on the satellite of mass <em>m</em> by the planet and a is the centripetal acceleration of this satellite, what is the force and acceleration of the satellite with mass 2<em>m</em>?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The gravitational field strength at the surface of Earth is<em> g</em>. Another planet has double the&nbsp;radius of Earth and the same density as Earth. What is the gravitational field strength at the&nbsp;surface of this planet?</p>
<p>A. &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{g}{2}">
  <mfrac>
    <mi>g</mi>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p>B. &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{g}{4}">
  <mfrac>
    <mi>g</mi>
    <mn>4</mn>
  </mfrac>
</math></span></p>
<p>C. &nbsp;2<em>g</em></p>
<p>D. &nbsp;4<em>g</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object of constant mass is tied to the end of a rope of length <em>l</em> and made to move in a horizontal circle. The speed of the object is increased until the rope breaks at speed <em>v</em>. The length of the rope is then changed. At what other combination of rope length and speed will the rope break?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A horizontal disc rotates uniformly at a constant angular velocity about a central axis normal to the plane of the disc.</p>
<p><img src=""></p>
<p>Point X is a distance 2<em>L</em> from the centre of the disc. Point Y is a distance <em>L</em> from the centre of the disc. Point Y has a linear speed <em>v</em> and a centripetal acceleration <em>a</em>.</p>
<p>What is the linear speed and centripetal acceleration of point X?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is attached to one end of a string. The string is passed through a hollow tube and mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> is attached to the other end. Friction between the tube and string is negligible.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> travels at constant speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> in a horizontal circle of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>. What is mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>?</p>
<p>A.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math></p>
<p>B.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mi>r</mi><mi>g</mi></math></p>
<p>C.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>m</mi><mi>g</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math></p>
<p>D.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mrow><mi>g</mi><mi>r</mi></mrow></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Planet X has a gravitational field strength of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mi mathvariant="normal">N</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> at its surface. Planet Y has the same density as X but three times the radius of X. What is the gravitational field strength at the surface of Y?</p>
<p>A.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math></p>
<p>B.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math></p>
<p>C.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>54</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math></p>
<p>D.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>162</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A child stands on a horizontal rotating platform that is moving at constant angular speed. The centripetal force on the child is provided by </p>
<p>A. the gravitational force on the child.</p>
<p>B. the friction on the child’s feet.</p>
<p>C. the tension in the child’s muscles.</p>
<p>D. the normal reaction of the platform on the child.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is the definition of gravitational field strength at a point?</p>
<p>A. The sum of the gravitational fields created by all masses around the point</p>
<p>B. The gravitational force per unit mass experienced by a small point mass at that point</p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfrac><mi>M</mi><msup><mi>r</mi><mn>2</mn></msup></mfrac></math>, where <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math></em> is the mass of a planet and <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math></em> is the distance from the planet to the point</p>
<p>D. The resultant force of gravitational attraction on a mass at that point</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A sphere is suspended from the end of a string and rotates in a horizontal circle. Which freebody diagram, to the correct scale, shows the forces acting on the sphere? </p>
<p style="text-align:center;"><img src=""></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite is orbiting Earth in a circular path at constant speed. Three statements about the resultant force on the satellite are:</p>
<p style="padding-left:60px;">I.   It is equal to the gravitational force of attraction on the satellite.<br>II.  It is equal to the mass of the satellite multiplied by its acceleration.<br>III. It is equal to the centripetal force on the satellite.</p>
<p>Which combination of statements is correct?</p>
<p>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was a good discriminator at HL although many candidates chose option B (D correct). Option B was just the most popular choice at SL. Candidates appear not to realise that although this is circular motion<em> F = ma</em> still applies.</p>
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">Satellite X orbits a planet with orbital radius <em>R</em>. Satellite Y orbits the same planet with orbital radius 2<em>R</em>. Satellites X and Y have the same mass.</p>
<p style="text-align:left;">What is the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{centripetal acceleration of X}}}}{{{\text{centripetal acceleration of Y}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>centripetal acceleration of X</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>centripetal acceleration of Y</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>?</p>
<p style="text-align:left;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span></p>
<p style="text-align:left;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p style="text-align:left;">C. 2</p>
<p style="text-align:left;">D. 4</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass at the end of a string is swung in a horizontal circle at increasing speed until the string breaks.</p>
<p>                                                    <img src="images/Schermafbeelding_2018-08-12_om_10.12.50.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/23"></p>
<p>The subsequent path taken by the mass is a</p>
<p>A.     line along a radius of the circle.</p>
<p>B.     horizontal circle.</p>
<p>C.     curve in a horizontal plane.</p>
<p>D.     curve in a vertical plane.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite X of mass <em>m</em> orbits the Earth with a period <em>T</em>. What will be the orbital period of satellite Y of mass <em>2m </em>occupying the same orbit as X?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{2}">
  <mfrac>
    <mi>T</mi>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p>B. <em>T</em></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2T} ">
  <msqrt>
    <mn>2</mn>
    <mi>T</mi>
  </msqrt>
</math></span></p>
<p>D. 2<em>T</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A ball of mass 0.3 kg is attached to a light, inextensible string. It is rotated in a vertical circle. The length of the string is 0.6 m and the speed of rotation of the ball is 4 m s<sup>−1</sup>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the tension when the string is horizontal?</p>
<p>A.  5 N</p>
<p>B.  8 N</p>
<p>C.  11 N</p>
<p>D.  13 N</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by both HL and SL candidates with a high difficulty index for each paper.</p>
</div>
<br><hr><br><div class="question">
<p>An object of mass <em>m </em>at the end of a string of length <em>r </em>moves in a vertical circle at a constant angular speed <em>ω</em>.</p>
<p>What is the tension in the string when the object is at the bottom of the circle?</p>
<p>A. &nbsp; &nbsp;<em> m</em>(<em>ω</em><sup>2</sup><em>r </em>+ <em>g</em>)</p>
<p>B. &nbsp; &nbsp;<em> m</em>(<em>ω</em><sup>2</sup><em>r</em><em>&nbsp;–</em>&nbsp;<em>g</em>)</p>
<p>C. &nbsp; &nbsp;<em> mg</em>(<em>ω</em><sup>2</sup><em>r</em><em>&nbsp;</em>+ 1)</p>
<p>D. &nbsp; &nbsp;<em> mg</em>(<em>ω</em><sup>2</sup><em>r</em><em>&nbsp;–</em>&nbsp;1)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass attached to a string rotates in a gravitational field with a constant period in a vertical plane.</p>
<p><img src=""></p>
<p>How do the tension in the string and the kinetic energy of the mass compare at P and Q?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A particle of mass 0.02 kg moves in a horizontal circle of diameter 1 m with an angular velocity of 3<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\pi}">
  <mrow>
    <mi>π</mi>
  </mrow>
</math></span> rad s<sup>-1</sup>.&nbsp;<br></span></p>
<p><span style="background-color:#ffffff;">What is the magnitude and direction of the force responsible for this motion?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass at the end of a string is moving in a horizontal circle at constant speed. The string makes an angle <em>θ</em> to the vertical.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the magnitude of the acceleration of the mass?</p>
<p><br>A.  <em>g</em></p>
<p>B.  <em>g</em> sin <em>θ</em></p>
<p>C.  <em>g</em> cos <em>θ</em></p>
<p>D.  <em>g</em> tan <em>θ</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three statements about Newton’s law of gravitation are:</p>
<p style="padding-left:30px;">I.   It can be used to predict the motion of a satellite.<br>II.  It explains why gravity exists.<br>III. It is used to derive the expression for gravitational potential energy.</p>
<p>Which combination of statements is correct?</p>
<p>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Comments suggested that 'gravitational potential' is more suitable for an HL question. However, candidates should have realised that statement II is incorrect so option B is the only possibility and this proved the most popular answer. The wording will be altered to 'gravitational potential energy' for publication.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Which graph shows the relationship between gravitational force<em> F</em> between two point masses and their separation <em>r</em>?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Newton’s law of gravitation</p>
<p>A.     is equivalent to Newton’s second law of motion.</p>
<p>B.     explains the origin of gravitation.</p>
<p>C.     is used to make predictions.</p>
<p>D.     is not valid in a vacuum.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object moves in a circle of constant radius. Values of the centripetal force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> are measured&nbsp;for different values of angular velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math>. A graph is plotted with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. Which quantity&nbsp;plotted on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis will produce a straight-line graph?</p>
<p>A.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mi>F</mi></msqrt></math></p>
<p>B.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math></p>
<p>C.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>F</mi><mn>2</mn></msup></math></p>
<p>D.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>F</mi></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two isolated point particles of mass 4M and 9M are separated by a distance 1 m. A point particle of mass M is placed a distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> from the particle of mass 9M. The net gravitational force on M is zero.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>?</p>
<p> </p>
<p>A.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{{13}}">
  <mfrac>
    <mn>4</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
</math></span>m</p>
<p>B.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{{5}}">
  <mfrac>
    <mn>2</mn>
    <mrow>
      <mn>5</mn>
    </mrow>
  </mfrac>
</math></span>m</p>
<p>C.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{5}}">
  <mfrac>
    <mn>3</mn>
    <mrow>
      <mn>5</mn>
    </mrow>
  </mfrac>
</math></span>m</p>
<p>D.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{9}{{13}}">
  <mfrac>
    <mn>9</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
</math></span>m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">A motorcyclist is cornering on a curved race track.</p>
<p style="text-align:left;">Which combination of changes of banking angle <em>θ</em> and coefficient of friction <em>μ</em> between the tyres and road allows the motorcyclist to travel around the corner at greater speed?</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The gravitational field strength at the surface of a planet of radius <em>R</em> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>. A satellite is moving in a circular orbit a distance <em>R</em> above the surface of the planet. What is the magnitude of the acceleration of the satellite?</p>
<p><br>A.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math></p>
<p>B.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>g</mi><mn>4</mn></mfrac></math></p>
<p>C.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>g</mi><mn>2</mn></mfrac></math></p>
<p>D.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A satellite travels around the Earth in a circular orbit. What is true about the forces acting in this situation?</span></p>
<p><span style="background-color: #ffffff;">A. The resultant force is the same direction as the satellite’s acceleration.<br></span></p>
<p><span style="background-color: #ffffff;">B. The gravitational force acting on the satellite is negligible.<br></span></p>
<p><span style="background-color: #ffffff;">C. There is no resultant force on the satellite relative to the Earth.<br></span></p>
<p><span style="background-color: #ffffff;">D. The satellite does not exert any force on the Earth.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>