File "markSceme-SL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 5 HTML/markSceme-SL-paper3html
File size: 111.15 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>The circuit shown may be used to measure the internal resistance of a cell.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_07.51.02.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/02"></p>
</div>

<div class="specification">
<p>The ammeter used in the experiment in (b) is an analogue meter. The student takes&nbsp;measurements without checking for a “zero error” on the ammeter.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An ammeter and a voltmeter are connected in the circuit. Label the ammeter with the&nbsp;letter A and the voltmeter with the letter V.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In one experiment a student obtains the following graph showing the variation with&nbsp;current <em>I</em> of the potential difference <em>V</em> across the cell.</p>
<p><img src="images/Schermafbeelding_2017-09-27_om_08.05.10.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/02b"></p>
<p>Using the graph, determine the best estimate of the internal resistance of the cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a zero error.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After taking measurements the student observes that the ammeter has a&nbsp;positive zero error. Explain what effect, if any, this zero error will have on the&nbsp;calculated value of the internal resistance in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct labelling of both instruments</p>
<p>&nbsp;</p>
<p><img src=""></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V =&nbsp;E – Ir</em></p>
<p>large triangle to find gradient and correct read-offs&nbsp;from the line<br><em><strong>OR</strong></em><br>use of intercept <em>E</em> =&nbsp;1.5 V and another correct data&nbsp;point</p>
<p>internal resistance =&nbsp;0.60 Ω</p>
<p><em>For MP1 – do not award if only <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R = \frac{V}{I}">
  <mi>R</mi>
  <mo>=</mo>
  <mfrac>
    <mi>V</mi>
    <mi>I</mi>
  </mfrac>
</math></span> is used.</em></p>
<p><em>For MP2 points at least 1A apart must be used.</em></p>
<p><em>For MP3 accept final answers in the range of 0.55 Ω to 0.65 Ω.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a non-zero reading when a zero reading is expected/no current is&nbsp;flowing<br><em><strong>OR</strong></em><br>a calibration error</p>
<p>&nbsp;</p>
<p><em>OWTTE</em><br><em>Do not accept just “systematic error”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the error causes «all» measurements to be high/different/incorrect</p>
<p>effect on calculations/gradient will cancel out<br><em><strong>OR</strong></em><br>effect is that value for <em>r</em> is unchanged</p>
<p><em>Award <strong>[1 max]</strong> for statement of “no effect” without&nbsp;valid argument.</em></p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An electrical circuit is used during an experiment to measure the current <em>I</em> in a variable&nbsp;resistor of resistance <em>R</em>. The emf of the cell is e and the cell has an internal resistance <em>r</em>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A graph shows the variation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{I}">
  <mfrac>
    <mn>1</mn>
    <mi>I</mi>
  </mfrac>
</math></span> with <em>R</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the gradient of the graph is equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{e}">
  <mfrac>
    <mn>1</mn>
    <mi>e</mi>
  </mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the value of the intercept on the <em>R</em> axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>ε</em> = <em>IR + Ir</em>»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{I} = \frac{R}{\varepsilon } + \frac{r}{\varepsilon }">
  <mfrac>
    <mn>1</mn>
    <mi>I</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mi>R</mi>
    <mi>ε</mi>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mi>r</mi>
    <mi>ε</mi>
  </mfrac>
</math></span></p>
<p>identifies equation with <em>y</em> = <em>mx + c</em></p>
<p><em>«</em>hence <em>m</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{\varepsilon }">
  <mfrac>
    <mn>1</mn>
    <mi>ε</mi>
  </mfrac>
</math></span><em>»</em></p>
<p><em>No mark for stating data booklet equation</em></p>
<p><em>Do not accept working where r is ignored or ε = IR is used</em></p>
<p><em>OWTTE</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«–» <em>r</em></p>
<p><em>Allow answer in words</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student investigates the electromotive force (emf) <em>ε</em> and internal resistance<em> r</em> of a cell.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="213" height="196"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The current <em>I</em> and the terminal potential difference <em>V</em> are measured.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">For this circuit <em>V = ε - Ir</em> .<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The table shows the data collected by the student. The uncertainties for each measurement<br>are shown.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src=""></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The graph shows the data plotted.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src=""></span></span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The student has plotted error bars for the potential difference. Outline why no error bars are shown for the current.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine, using the graph, the emf of the cell including the uncertainty for this value. Give your answer to the correct number of significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Outline, <strong>without</strong> calculation, how the internal resistance can be determined from this graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">Δ<em>I</em> is too small to be shown/seen<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">Error bar of negligible size compared to error bar in <em>V</em> ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">evidence that ε can be determined from the y-intercept of the line of best-fit or lines of min and max gradient ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">states ε=1.59 <em><strong>OR</strong></em> 1.60 <em><strong>OR</strong> </em>1.61V«» ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">states uncertainty in ε is 0.02 V«» <em><strong>OR</strong></em> 0.03«V» ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">determine the gradient «of the line of best-fit» ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em>r</em> is the negative of this gradient ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates realised that the uncertainty in I was too small to be shown. A common mistake was to mention that since I is the independent variable the uncertainty is negligible.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The number of candidates who realised that the V intercept was EMF was disappointing. Large numbers of candidates tried to calculate ε using points on the graph, often ending up with unrealistic values. Another common mistake was not giving values of ε and Δε to the correct number of digits - 2 decimal places on this occasion. Very few candidates drew maximum and minimum gradient lines as a way of determining Δε.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The resistance<em> R</em> of a wire of length <em>L</em> can be measured using the circuit shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">In one experiment the wire has a uniform diameter of <em>d</em> = 0.500 mm. The graph shows data obtained for the variation of <em>R</em> with <em>L</em>.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The gradient of the line of best fit is 6.30 Ω m<sup>–1</sup>.</span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Estimate the resistivity of the material of the wire. Give your answer to an appropriate number of significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain, by reference to the power dissipated in the wire, the advantage of the fixed resistor connected in series with the wire for the measurement of<em> R</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment is repeated using a wire made of the same material but of a larger diameter than the wire in part (a). On the axes in part (a), draw the graph for this second experiment.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">evidence of use of<em> ρ</em> = given gradient × wire area<br><em><strong>OR</strong></em><br>substitution of values from a single data point with wire area ✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>=</mo><mo>«</mo><mo>=</mo><mn>6</mn><mo>.</mo><mn>30</mn><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mfenced><mfrac><mrow><mn>0</mn><mo>.</mo><mn>500</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>Ω  m</mtext><mo>»</mo></math><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Check POT is correct. <br>MP2 must be correct to exactly 3 s.f.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">measurement should be performed at a constant temperature<br><em><strong>OR</strong></em><br>resistance of wire changes with temperature ✔</span></p>
<p><span style="background-color: #ffffff;">series resistance prevents the wire from overheating<br><em><strong>OR</strong></em><br>reduces power dissipated in the wire ✔</span></p>
<p><span style="background-color: #ffffff;">by reducing voltage across/current through the wire ✔</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ANY straight line going through the origin if extrapolated ✔<br>ANY straight line below existing line with smaller gradient ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>