File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 5 HTML/markSceme-SL-paper2html
File size: 561.81 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A vertical wall carries a uniform positive charge on its surface. This produces a uniform horizontal electric field perpendicular to the wall. A small, positively-charged ball is suspended in equilibrium from the vertical wall by a thread of negligible mass.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge per unit area on the surface of the wall is<em> σ</em>. It can be shown that the electric field strength <em>E</em> due to the charge on the wall is given by the equation</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ε</mi><mn>0</mn></msub></mrow></mfrac></math>.</p>
<p>Demonstrate that the units of the quantities in this equation are consistent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread makes an angle of 30° with the vertical wall. The ball has a mass of 0.025 kg.</p>
<p>Determine the horizontal force that acts on the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge on the ball is 1.2 × 10<sup>−6 </sup>C. Determine <em>σ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The centre of the ball, still carrying a charge of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mtext>C</mtext></math>, is now placed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>40</mn><mo> </mo><mtext>m</mtext></math> from a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.</p>
<p>P is the point on the line joining the charges where the electric field strength is zero.<br>The distance PQ is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>22</mn><mo> </mo><mtext>m</mtext></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Calculate the charge on Q. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies units of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>C</mi><msup><mi>m</mi><mn>2</mn></msup></mfrac><mo>×</mo><mfrac><mrow><mi>N</mi><msup><mi>m</mi><mn>2</mn></msup></mrow><msup><mi>C</mi><mn>2</mn></msup></mfrac></math> seen and reduced to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>N C</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <strong>✓</strong></p>
<p> </p>
<p><em>Accept any analysis (eg dimensional) that yields answer correctly</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> on the ball<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>T</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>30</mn></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mi>m</mi><mi>g</mi></mrow><mrow><mi>cos</mi><mo> </mo><mn>30</mn></mrow></mfrac></math><strong> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>«</mo><mo>=</mo><mi>m</mi><mi>g</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>×</mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo> </mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p><em><br>Allow g = 10 N kg<sup>−1</sup></em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer.</em></p>
<p><em>Award <strong>[1max]</strong> for an answer of zero, interpreting that the horizontal force refers to the horizontal component of the net force.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>»</mo></math><strong> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>85</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>12</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<p><em> <br>Allow <strong>ECF</strong> from the calculated F in (b)(i)</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>Q</mi><mrow><mn>0</mn><mo>.</mo><msup><mn>22</mn><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>18</mn><mn>2</mn></msup></mrow></mfrac></math> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>+</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>C</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p>2sf <strong>✓</strong></p>
<p><em><br>Do not award <strong>MP2</strong> if charge is negative </em></p>
<p><em>Any answer given to 2 sig figs scores <strong>MP3</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A charged particle, P, of charge +68 μC is fixed in space. A second particle, Q, of charge +0.25 μC is held at a distance of 48 cm from P and is then released.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The diagram shows two parallel wires X and Y that carry equal currents into the page.</p>
<p><img src=""></p>
<p>Point Q is equidistant from the two wires. The magnetic field at Q due to wire X <strong>alone </strong>is 15 mT.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The work done to move a particle of charge 0.25 μC from one point in an electric field to another is 4.5 μJ. Calculate the magnitude of the potential difference between the two points.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the force on Q at the instant it is released.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the motion of Q after release.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram draw an arrow to show the direction of the magnetic field at Q due to wire X <strong>alone</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the magnitude and direction of the resultant magnetic field at Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></mfrac><mo>=</mo></math>» 18 «V» ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>68</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>25</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>48</mn><mn>2</mn></msup></mrow></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>66</mn></math> «N» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer. </em></p>
<p><em>Allow symbolic k in substitutions for <strong>MP1</strong>. </em></p>
<p><em>Do <strong>not</strong> allow <strong>ECF</strong> from incorrect or not squared distance.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Q moves to the right/away from P «along a straight line»</p>
<p><em><strong>OR</strong></em></p>
<p>Q is repelled from P ✓</p>
<p><br>with increasing speed/Q accelerates ✓</p>
<p>acceleration decreases ✓</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><img src=""></p>
<p>arrow of any length as shown ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«using components or Pythagoras to get» <em>B</em> = 21 «mT» ✓</p>
<p>directed «horizontally» to the right ✓</p>
<p> </p>
<p><em>If no unit seen, assume</em> mT.</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows how current <em>I</em> varies with potential difference <em>V</em> for a resistor R and a non-ohmic component T.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State how the resistance of T varies with the current going through T.</p>
<p>(ii) Deduce, without a numerical calculation, whether R <strong>or</strong> T has the greater resistance at <em>I</em>=0.40 A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Components R and T are placed in a circuit. Both meters are ideal.</p>
<p><img src=""></p>
<p>Slider Z of the potentiometer is moved from Y to X.</p>
<p>(i) State what happens to the magnitude of the current in the ammeter.</p>
<p>(ii) Estimate, with an explanation, the voltmeter reading when the ammeter reads 0.20 A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><em>R</em><sub><em>T</em></sub> decreases with increasing <em>I</em></p>
<p><em><strong>OR </strong></em></p>
<p><em>R</em><sub><em>T</em></sub> and<em> I</em> are negatively correlated</p>
<p><em>Must see reference to direction of change of current in first alternative.<br>Do not allow “inverse proportionality”. <br>May be worth noting any marks on graph relating to 7bii</em></p>
<p> </p>
<p>ii</p>
<p>at 0.4 A: <em>V</em><sub>R</sub> > <em>V</em><sub>T</sub> <em><strong>or</strong></em> <em>V</em><sub>R</sub>= 5.6 V and <em>V</em><sub>T</sub> = 5.3 V</p>
<p><em>Award <strong>[0]</strong> for a bald correct answer without deduction or with incorrect reasoning. </em></p>
<p><em>Ignore any references to graph gradients.</em></p>
<p>so R<sub>R</sub> >R<sub>T</sub> because <em>V = IR</em> / <em>V</em>∝ R «and <em>I</em> same for both»</p>
<p><em>Both elements must be present for MP2 to be awarded.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>decreases<br><em><strong>OR<br></strong></em>becomes zero at X</p>
<p> </p>
<p>ii</p>
<p>realization that <em>V</em> is the same for R and T<br><em><strong>OR<br></strong></em>identifies that currents are 0.14 A and 0.06 A</p>
<p><em>Award <strong>[0]</strong> if pds 2.8 V and 3.7 V or 1.4 V and 2.6V are used in any way. Otherwise award <strong>[1 max]</strong> for a bald correct answer. Explanation expected.</em></p>
<p>2 V = 2 V OR 2.0 V</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A lighting system consists of two long metal rods with a potential difference maintained between them. Identical lamps can be connected between the rods as required.</p>
<p style="text-align: center;"><img src=""></p>
<p>The following data are available for the lamps when at their working temperature.</p>
<p> </p>
<p style="padding-left: 90px;">Lamp specifications 24 V, 5.0 W</p>
<p style="padding-left: 90px;">Power supply emf 24 V</p>
<p style="padding-left: 90px;">Power supply maximum current 8.0 A</p>
<p style="padding-left: 90px;">Length of each rod 12.5 m</p>
<p style="padding-left: 90px;">Resistivity of rod metal 7.2 × 10<sup>–7</sup> Ω m</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum number of lamps that can be connected between the rods. Neglect the resistance of the rods.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One advantage of this system is that if one lamp fails then the other lamps in the circuit remain lit. Outline <strong>one</strong> other electrical advantage of this system compared to one in which the lamps are connected in series.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt {\frac{{\rho l}}{{\pi {\text{R}}}}} ">
<mi>r</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mi>ρ</mi>
<mi>l</mi>
</mrow>
<mrow>
<mi>π</mi>
<mrow>
<mtext>R</mtext>
</mrow>
</mrow>
</mfrac>
</msqrt>
</math></span> <em><strong>OR </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{7.2 \times {{10}^{ - 7}} \times 12.5}}{{\pi \times 0.1}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>7.2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>12.5</mn>
</mrow>
<mrow>
<mi>π</mi>
<mo>×</mo>
<mn>0.1</mn>
</mrow>
</mfrac>
</msqrt>
</math></span> ✔</p>
<p><em>r</em> = 5.352 × 10<sup>−3</sup> ✔</p>
<p>5.4 × 10<sup>−3 </sup>«m» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \frac{{7.2 \times {{10}^{ - 7}} \times 12.5}}{{0.1}}">
<mi>A</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>7.2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>12.5</mn>
</mrow>
<mrow>
<mn>0.1</mn>
</mrow>
</mfrac>
</math></span> ✔</p>
<p><em>r</em> = 5.352 × 10<sup>−3</sup> ✔</p>
<p>5.4 × 10<sup>−3 </sup>«m» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>current in lamp = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{24}}">
<mfrac>
<mn>5</mn>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span> «= 0.21» «A»</p>
<p><em><strong>OR</strong></em></p>
<p><em>n</em> = 24 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{8}{{5}}">
<mfrac>
<mn>8</mn>
<mrow>
<mn>5</mn>
</mrow>
</mfrac>
</math></span> ✔</p>
<p> </p>
<p>so «38.4 and therefore» 38 lamps ✔</p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when adding more lamps in parallel the brightness stays the same ✔</p>
<p>when adding more lamps in parallel the pd across each remains the same/at the operating value/24 V ✔</p>
<p>when adding more lamps in parallel the current through each remains the same ✔</p>
<p>lamps can be controlled independently ✔</p>
<p>the pd across each bulb is larger in parallel ✔</p>
<p>the current in each bulb is greater in parallel ✔</p>
<p>lamps will be brighter in parallel than in series ✔</p>
<p>In parallel the pd across the lamps will be the operating value/24 V ✔</p>
<p> </p>
<p><em>Accept converse arguments for adding lamps in series:</em></p>
<p><em>when adding more lamps in series the brightness decreases</em></p>
<p><em>when adding more lamps in series the pd decreases</em></p>
<p><em>when adding more lamps in series the current decreases</em></p>
<p><em>lamps can’t be controlled independently</em></p>
<p><em>the pd across each bulb is smaller in series</em></p>
<p><em>the current in each bulb is smaller in series</em></p>
<p> </p>
<p><em>in series the pd across the lamps will less than the operating value/24 V</em></p>
<p><em>Do not accept statements that only compare the overall resistance of the combination of bulbs.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A possible decay of a lambda particle (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Lambda ^0}">
<mrow>
<msup>
<mi mathvariant="normal">Λ<!-- Λ --></mi>
<mn>0</mn>
</msup>
</mrow>
</math></span>) is shown by the Feynman diagram.</p>
<p style="text-align: left;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the quark structures of a meson and a baryon.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain which interaction is responsible for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw arrow heads on the lines representing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar u}">
<mrow>
<mrow>
<mover>
<mi>u</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span> and d in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\pi ^ - }">
<mrow>
<msup>
<mi>π</mi>
<mo>−</mo>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the exchange particle in this decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> benefit of international cooperation in the construction or use of high-energy particle accelerators.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Meson:</em> quark-antiquark pair<br><em>Baryon:</em> 3 quarks</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1</strong></em></p>
<p>strange quark changes «flavour» to an up quark</p>
<p>changes in quarks/strangeness happen only by the weak interaction</p>
<p> </p>
<p><em><strong>Alternative 2</strong></em></p>
<p>Strangeness is not conserved in this decay «because the strange quark changes to an up quark»</p>
<p>Strangeness is not conserved during the weak interaction</p>
<p> </p>
<p><em>Do not allow a bald answer of weak interaction.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>arrows drawn in the direction shown</p>
<p><img src=""></p>
<p> </p>
<p><em>Both needed for <strong>[1]</strong> mark.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>W <sup>−</sup></em></p>
<p> </p>
<p><em>Do not allow W or W<sup>+</sup>.</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>it lowers the cost to individual nations, as the costs are shared</p>
<p>international co-operation leads to international understanding <em><strong>OR</strong> </em>historical example of co-operation <strong><em>OR</em> </strong>co-operation always allows science to proceed</p>
<p>large quantities of data are produced that are more than one institution/research group can handle co-operation allows effective analysis</p>
<p> </p>
<p><em>Any one.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A heater in an electric shower has a power of 8.5 kW when connected to a 240 V electrical supply. It is connected to the electrical supply by a copper cable.</p>
<p>The following data are available:</p>
<p style="padding-left: 120px;">Length of cable = 10 m<br>Cross-sectional area of cable = 6.0 mm<sup>2</sup><br>Resistivity of copper = 1.7 × 10<sup>–8</sup> Ω m</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the current in the copper cable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the resistance of the cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, in terms of electrons, what happens to the resistance of the cable as the temperature of the cable increases.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The heater changes the temperature of the water by 35 K. The specific heat capacity of water is 4200 J kg<sup>–1</sup> K<sup>–1</sup>.</p>
<p>Determine the rate at which water flows through the shower. State an appropriate unit for your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>I</em> «=<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{8.5 \times {{10}^3}}}{{240}}">
<mfrac>
<mrow>
<mn>8.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>240</mn>
</mrow>
</mfrac>
</math></span>» =35«A»</p>
<p> </p>
<p> </p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>R </em>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.7 \times {{10}^{ - 8}} \times 10}}{{6.0 \times {{10}^{ - 6}}}}">
<mfrac>
<mrow>
<mn>1.7</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>8</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>10</mn>
</mrow>
<mrow>
<mn>6.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>= 0.028 «Ω»</p>
<p> </p>
<p><em>Allow missed powers of 10 for MP1.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«as temperature increases» there is greater vibration of the metal atoms/lattice/lattice ions</p>
<p><em><strong>OR</strong></em></p>
<p>increased collisions of electrons</p>
<p> </p>
<p>drift velocity decreases «so current decreases»</p>
<p>«as V constant so» <em>R</em> increases</p>
<p> </p>
<p><em>Award <strong>[0]</strong> for suggestions that the speed of electrons increases so resistance decreases.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that power = flow rate × cΔ<em>T</em></p>
<p>flow rate «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{power}}}}{{c\Delta T}}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>power</mtext>
</mrow>
</mrow>
<mrow>
<mi>c</mi>
<mi mathvariant="normal">Δ</mi>
<mi>T</mi>
</mrow>
</mfrac>
</math></span>» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{8.5 \times {{10}^3}}}{{4200 \times 35}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>8.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4200</mn>
<mo>×</mo>
<mn>35</mn>
</mrow>
</mfrac>
</math></span></p>
<p>= 0.058 «kg s<sup>–1</sup>»</p>
<p>kg s<sup>−1</sup> / g s<sup>−1</sup> / l s<sup>−1</sup> / ml s<sup>−1</sup> / m<sup>3</sup> s<sup>−1</sup></p>
<p> </p>
<p><em>Allow MP4 if a bald flow rate unit is stated. Do not allow imperial units.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows how current <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> varies with potential difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> across a component X.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="532" height="357"></p>
</div>
<div class="specification">
<p>Component X and a cell of negligible internal resistance are placed in a circuit.</p>
<p>A variable resistor R is connected in series with component X. The ammeter reads <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mi>mA</mi></math>.</p>
<p style="text-align: center;"><img src="" width="187" height="157"></p>
</div>
<div class="specification">
<p>Component X and the cell are now placed in a potential divider circuit.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="241" height="131"></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why component X is considered non-ohmic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the resistance of the variable resistor.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the power dissipated in the circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">current is not «directly» proportional to the potential difference<br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">resistance of X is not constant<br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">resistance of X changes «with current/voltage» </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span class="fontstyle0">voltage across X<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math> ✓</span></p>
<p><span class="fontstyle0">voltage across R<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>»</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>7</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math> ✓</span></p>
<p><span class="fontstyle0">resistance of variable resistor <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>7</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>85</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">Ω</mi><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>overall resistance <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>0</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>200</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">Ω</mi><mo>»</mo></math> ✓</p>
<p>resistance of X <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>115</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">Ω</mi><mo>»</mo></math> ✓</p>
<p>resistance of variable resistor <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mn>200</mn><mo>-</mo><mn>115</mn><mo>»</mo><mo>=</mo><mn>85</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">Ω</mi><mo>»</mo></math> ✓</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>power <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>020</mn><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>080</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">W</mi><mo>»</mo></math> <span class="fontstyle0">✓</span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><mi>mA</mi></math> </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">allows zero current through component X / potential divider arrangement </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">provides greater range </span><span class="fontstyle3">«</span><span class="fontstyle0">of current through component X</span><span class="fontstyle3">» </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Electrical resistors can be made by forming a thin film of carbon on a layer of an insulating material.</p>
</div>
<div class="specification">
<p>A carbon film resistor is made from a film of width 8.0 mm and of thickness 2.0 μm. The diagram shows the direction of charge flow through the resistor.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the carbon film is 82 Ω. The resistivity of carbon is 4.1 x 10<sup>–5</sup> Ω m. Calculate the length <em>l</em> of the film.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The film must dissipate a power less than 1500 W from each square metre of its surface to avoid damage. Calculate the maximum allowable current for the resistor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why knowledge of quantities such as resistivity is useful to scientists.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The current direction is now changed so that charge flows vertically through the film.</p>
<p><img src=""></p>
<p>Deduce, without calculation, the change in the resistance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a circuit diagram to show how you could measure the resistance of the carbon-film resistor using a potential divider arrangement to limit the potential difference across the resistor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>l</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{RA}}{\rho } = \frac{{82 \times 8 \times {{10}^{ - 3}} \times 2 \times {{10}^{ - 6}}}}{{4.1 \times {{10}^{ - 5}}}}">
<mfrac>
<mrow>
<mi>R</mi>
<mi>A</mi>
</mrow>
<mi>ρ</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>82</mn>
<mo>×</mo>
<mn>8</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»</p>
<p>0.032 «m»</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>power = 1500 × 8 × 10<sup>–3</sup> × 0.032 «= 0.384»</p>
<p>«current ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{{\text{power}}}}{{{\text{resistance}}}}} = \sqrt {\frac{{0.384}}{{82}}} ">
<msqrt>
<mfrac>
<mrow>
<mrow>
<mtext>power</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>resistance</mtext>
</mrow>
</mrow>
</mfrac>
</msqrt>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mn>0.384</mn>
</mrow>
<mrow>
<mn>82</mn>
</mrow>
</mfrac>
</msqrt>
</math></span>»</p>
<p>0.068 «A»</p>
<p> </p>
<p><em>Be aware of ECF from (a)(i)</em></p>
<p><em>Award <strong>[1]</strong> for 4.3 «A» where candidate has not calculated area</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>quantities such as resistivity depend on the material</p>
<p><em><strong>OR</strong></em></p>
<p>they allow the selection of the correct material</p>
<p><em><strong>OR</strong></em></p>
<p>they allow scientists to compare properties of materials</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>as area is larger <strong>and</strong> length is smaller</p>
<p>resistance is «very much» smaller</p>
<p><em>Award <strong>[1 max]</strong> for answers that involve a calculation</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>complete functional circuit with ammeter in series with resistor and voltmeter across it</p>
<p>potential divider arrangement correct</p>
<p><em>eg:</em></p>
<p><em><img src=""></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A mass of 1.0 kg of water is brought to its boiling point of 100 °C using an electric heater of power 1.6 kW.</p>
</div>
<div class="specification">
<p>A mass of 0.86 kg of water remains after it has boiled for 200 s.</p>
</div>
<div class="specification">
<p>The electric heater has two identical resistors connected in parallel.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The circuit transfers 1.6 kW when switch A only is closed. The external voltage is 220 V.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The molar mass of water is 18 g mol<sup>−1</sup>. Estimate the average speed of the water molecules in the vapor produced. Assume the vapor behaves as an ideal gas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> assumption of the kinetic model of an ideal gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the specific latent heat of vaporization of water. State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the temperature of water remains at 100 °C during this time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The heater is removed and a mass of 0.30 kg of pasta at −10 °C is added to the boiling water.</p>
<p>Determine the equilibrium temperature of the pasta and water after the pasta is added. Other heat transfers are negligible.</p>
<p style="padding-left:180px;">Specific heat capacity of pasta = 1.8 kJ kg<sup>−1</sup> K<sup>−1</sup><br>Specific heat capacity of water = 4.2 kJ kg<sup>−1</sup> K<sup>−1</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that each resistor has a resistance of about 30 Ω.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the power transferred by the heater when both switches are closed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>k</sub> = « <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>(</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>373</mn><mo>)</mo></math>» = <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>21</mn></mrow></msup></math> «J» <strong>✓</strong></p>
<p><em>v = </em>«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>3</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>×</mo><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo>×</mo><mn>373</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>018</mn></mrow></mfrac></msqrt></math></em>»<em> = </em>720 «m s<sup>−1</sup>» <strong>✓</strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>particles can be considered points «without dimensions» <strong>✓</strong></p>
<p>no intermolecular forces/no forces between particles «except during collisions»<strong>✓</strong></p>
<p>the volume of a particle is negligible compared to volume of gas <strong>✓</strong></p>
<p>collisions between particles are elastic <strong>✓</strong></p>
<p>time between particle collisions are greater than time of collision <strong>✓</strong></p>
<p>no intermolecular PE/no PE between particles <strong>✓</strong></p>
<p> </p>
<p><em>Accept reference to atoms/molecules for “particle”</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>mL = P</em> t» so «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mfrac><mrow><mn>1600</mn><mo>×</mo><mn>200</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow></mfrac></math>» = 2.3 x 10<sup>6</sup> «J kg<sup>-1</sup>» <strong>✓</strong></p>
<p>J kg<sup>−1 </sup><strong>✓</strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«all» of the energy added is used to increase the «intermolecular» potential energy of the particles/break «intermolecular» bonds/<strong>OWTTE</strong> <strong>✓</strong></p>
<p><em>Accept reference to atoms/molecules for “particle”</em> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of mcΔT <strong>✓</strong></p>
<p>0.86 × 4200 × (100 – <em>T</em>) = 0.3 × 1800 × (<em>T</em> +10) <strong>✓</strong></p>
<p><em>T</em><sub>eq</sub> = 85.69«°C» ≅ 86«°C» <strong>✓</strong></p>
<p><em>Accept T<sub>eq</sub> in Kelvin (359 K).</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><msup><mi>v</mi><mn>2</mn></msup><mi>R</mi></mfrac><mo> </mo><mi>so</mi><mo> </mo><mfrac><msup><mn>220</mn><mn>2</mn></msup><mn>1600</mn></mfrac><mo> </mo><mi>so</mi><mo> </mo><mi>R</mi><mo>=</mo><mn>30</mn><mo>.</mo><mn>25</mn></math> «Ω» <strong>✓</strong></p>
<p><em>Must see either the substituted values <strong>OR</strong> a value for R to at least three s.f.</em></p>
<p> </p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of parallel resistors addition so <em>R</em><sub>eq</sub> = 15 «Ω» <strong>✓</strong></p>
<p><em>P</em> = 3200 «W» <strong>✓</strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An electron moves in circular motion in a uniform magnetic field.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_18.05.11.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/05"></p>
<p>The velocity of the electron at point P is 6.8 × 10<sup>5</sup> m s<sup>–1</sup> in the direction shown.</p>
<p>The magnitude of the magnetic field is 8.5 T.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the magnetic field.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in N, the magnitude of the magnetic force acting on the electron.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electron moves at constant speed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electron moves on a circular path.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>out of the page plane / ⊙</p>
<p> </p>
<p><em>Do not accept just “up” or “outwards”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.60 × 10<sup>–19</sup> × 6.8 × 10<sup>5</sup> × 8.5 = 9.2 × 10<sup>–13</sup> <strong>«</strong>N<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the magnetic force does not do work on the electron hence does not change the electron’s kinetic energy</p>
<p><strong><em>OR</em></strong></p>
<p>the magnetic force/acceleration is at right angles to velocity</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the velocity of the electron is at right angles to the magnetic field</p>
<p>(therefore) there is a centripetal acceleration / force acting on the charge</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An ohmic conductor is connected to an ideal ammeter and to a power supply of output voltage V.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.57.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/04"></p>
<p>The following data are available for the conductor:</p>
<p> density of free electrons = 8.5 × 10<sup>22</sup> cm<sup>−3</sup></p>
<p> resistivity ρ = 1.7 × 10<sup>−8</sup> Ωm</p>
<p> dimensions w × h × l = 0.020 cm × 0.020 cm × 10 cm.</p>
<p> </p>
<p>The ammeter reading is 2.0 A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the resistance of the conductor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the drift speed <em>v </em>of the electrons in the conductor in cm s<sup>–1</sup>. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1.7 × 10<sup>–8</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.10}}{{{{(0.02 \times {{10}^{ - 2}})}^2}}}">
<mfrac>
<mrow>
<mn>0.10</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mn>0.02</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>0.043 <strong>«</strong>Ω<strong>»</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>v</em> <strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{I}{{neA}}">
<mfrac>
<mi>I</mi>
<mrow>
<mi>n</mi>
<mi>e</mi>
<mi>A</mi>
</mrow>
</mfrac>
</math></span><strong>»</strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{{8.5 \times {{10}^{22}} \times 1.60 \times {{10}^{ - 19}} \times {{0.02}^2}}}">
<mfrac>
<mn>2</mn>
<mrow>
<mn>8.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>22</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>1.60</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>0.02</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>0.368 <strong>«</strong>cms<sup>–1</sup><strong>»</strong></p>
<p>0.37 <strong>«</strong>cms<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2 max] </em></strong><em>if answer is not expressed to 2 sf.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a potential divider circuit used to measure the emf <em>E </em>of a cell X. Both cells have negligible internal resistance.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_13.01.10.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/04"></p>
</div>
<div class="specification">
<p>AB is a wire of uniform cross-section and length 1.0 m. The resistance of wire AB is 80 Ω. When the length of AC is 0.35 m the current in cell X is zero.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the emf of a cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the resistance of the wire AC is 28 Ω.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <em>E</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the work done per unit charge</p>
<p>in moving charge from one terminal of a cell to the other / all the way round the circuit</p>
<p> </p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for “energy per unit charge provided by the cell”/“power per unit current”</em></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for “potential difference across the terminals of the cell when no current is flowing” </em></p>
<p><em>Do not accept “potential difference across terminals of cell”</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the resistance is proportional to length / see 0.35 <strong><em>AND </em></strong>1«.00»</p>
<p>so it equals 0.35 × 80</p>
<p><strong>«</strong>= 28 Ω<strong>»</strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>current leaving 12 V cell is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12}}{{80}}">
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>80</mn>
</mrow>
</mfrac>
</math></span> = 0.15 <strong>«</strong>A<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><em>E</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12}}{{80}}">
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>80</mn>
</mrow>
</mfrac>
</math></span> × 28</p>
<p><em>E</em> = <strong>«</strong>0.15 × 28 =<strong>»</strong> 4.2 <strong>«</strong>V<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow a 1sf answer of 4 if it comes from a calculation.</em></p>
<p><em>Do not allow a bald answer of 4 </em><strong>«</strong><em>V</em><strong>»</strong></p>
<p><em>Allow ECF from incorrect current</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton moves along a circular path in a region of a uniform magnetic field. The magnetic field is directed into the plane of the page.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the diagram the magnetic force <em>F</em> on the proton. </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the velocity vector <em>v</em> of the proton.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The speed of the proton is 2.16 × 10<sup>6</sup> m s<sup>-1</sup> and the magnetic field strength is 0.042 T. For this proton, determine, in m, the radius of the circular path. Give your answer to an appropriate number of significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em>F</em> towards centre ✔</span></p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em>v</em> tangent to circle and in the direction shown in the diagram ✔</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="qvB = \frac{{m{v^2}}}{R} \Rightarrow » R = \frac{{mv}}{{qB}}/\frac{{1.673 \times {{10}^{ - 27}} \times 2.16 \times {{10}^6}}}{{1.60 \times {{10}^{ - 19}} \times 0.042}}">
<mi>q</mi>
<mi>v</mi>
<mi>B</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>R</mi>
</mfrac>
<mo stretchy="false">⇒</mo>
<mrow>
<mo>»</mo>
</mrow>
<mi>R</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>v</mi>
</mrow>
<mrow>
<mi>q</mi>
<mi>B</mi>
</mrow>
</mfrac>
<mrow>
<mo>/</mo>
</mrow>
<mfrac>
<mrow>
<mn>1.673</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>27</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>2.16</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.60</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>0.042</mn>
</mrow>
</mfrac>
</math></span> </span> <span style="background-color:#ffffff;">✔<br></span></p>
<p><span style="background-color:#ffffff;"><em>R</em> = 0.538 «m»✔<br></span></p>
<p><span style="background-color:#ffffff;"><em>R</em> = 0.54 «m» ✔<br></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Examiners were requested to be lenient here and as a result most candidates scored both marks. Had we insisted on <em>e.g.</em> straight lines drawn with a ruler or a force arrow passing exactly through the centre of the circle very few marks would have been scored. For those who didn’t know which way the arrows were supposed to be the common guesses were to the left and up the page. Some candidates neglected to label the arrows.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Examiners were requested to be lenient here and as a result most candidates scored both marks. Had we insisted on <em>e.g.</em> straight lines drawn with a ruler or a force arrow passing exactly through the centre of the circle very few marks would have been scored. For those who didn’t know which way the arrows were supposed to be the common guesses were to the left and up the page. Some candidates neglected to label the arrows.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered although usually to 3 sf. Common mistakes were to substitute 0.042 for F and 1 for q. Also some candidates tried to answer in terms of electric fields.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton is moving in a region of uniform magnetic field. The magnetic field is directed into the plane of the paper. The arrow shows the velocity of the proton at one instant and the dotted circle gives the path followed by the proton.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The speed of the proton is 2.0 × 10<sup>6</sup> m s<sup>–1</sup> and the magnetic field strength <em>B</em> is 0.35 T.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the path of the proton is a circle.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the radius of the path is about 6 cm.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the time for <strong>one</strong> complete revolution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the kinetic energy of the proton is constant.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">magnetic force is to the left «at the instant shown»<br><em><strong>OR</strong></em><br>explains a rule to determine the direction of the magnetic force ✔</span></p>
<p><span style="background-color: #ffffff;">force is perpendicular to velocity/«direction of» motion<br><em><strong>OR</strong></em><br>force is constant in magnitude ✔</span></p>
<p><span style="background-color: #ffffff;">force is centripetal/towards the centre ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept reference to acceleration instead of force</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mi>v</mi><mi>B</mi><mo>=</mo><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mi>R</mi></mfrac></math><span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>27</mn></mrow></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>35</mn></mrow></mfrac></math> <em><strong>OR</strong></em> 0.060 « m »</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award MP2 for full replacement or correct answer to at least 2 significant figures</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mi>R</mi></mrow><mi>v</mi></mfrac></math><span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>06</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac><mo>=</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup></math> « s » ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award <strong>[2]</strong> for bald correct answer</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br>work done by force is change in kinetic energy ✔<br>work done is zero/force perpendicular to velocity ✔ <br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Award <strong>[2]</strong> for a reference to work done is zero hence E<sub>k</sub> remains constant</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br>proton moves at constant speed ✔<br>kinetic energy depends on speed ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Accept mention of speed or velocity indistinctly in MP2</em><br></span></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">An electron is placed at a distance of 0.40 m from a fixed point charge of –6.0 mC.</span></p>
<p style="text-align: center;"> </p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the electric field strength due to the point charge at the position of the electron is 3.4 × 10<sup>8</sup> N C<sup>–1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the magnitude of the initial acceleration of the electron.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the subsequent motion of the electron.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mi>k</mi><mo>×</mo><mi>q</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac></math> <span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>6</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>4</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>37</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo> </mo><msup><mi mathvariant="normal">C</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> </strong></em><strong><span style="background-color: #ffffff;">✔</span></strong></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Ignore any negative sign.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>q</mi><mo>×</mo><mi>E</mi><mo> </mo></math><em><strong> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo>»</mo></math> </strong></em><strong><span style="background-color: #ffffff;">✔</span></strong></p>
<p><strong><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow><mrow><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>5</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>19</mn></msup><mo>«</mo><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></strong></p>
<p><em><span style="background-color: #ffffff;">NOTE: Ignore any negative sign. <br>Award <strong>[1]</strong> for a calculation leading to </span></em><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>«</mo><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math></span><em><span style="background-color: #ffffff;"><br>Award <strong>[2]</strong> for bald correct answer</span></em></p>
<p> </p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">the electron moves away from the point charge/to the right «along the line joining them» ✔<br>decreasing acceleration ✔<br>increasing speed ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Allow ECF from MP1 if a candidate mistakenly evaluates the force as attractive so concludes that the acceleration will increase</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The cable consists of 32 copper wires each of length 35 km. Each wire has a resistance of 64 Ω. The resistivity of copper is 1.7 x 10<sup>–8</sup> Ω m.</p>
</div>
<div class="specification">
<p>A cable consisting of many copper wires is used to transfer electrical energy from a generator to an electrical load. The copper wires are protected by an insulator.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The copper wires and insulator are both exposed to an electric field. Discuss, with reference to charge carriers, why there is a significant electric current only in the copper wires.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of each <strong>wire</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There is a current of 730 A in the cable. Show that the power loss in 1 m of the cable is about 30 W.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the current is switched on in the cable the initial rate of rise of temperature of the cable is 35 mK s<sup>–1</sup>. The specific heat capacity of copper is 390 J kg<sup>–1</sup> K<sup>–1</sup>. Determine the mass of a length of one metre of the cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>when an electric field is applied to any material «using a cell etc» it acts to accelerate any free electrons</p>
<p>electrons are the charge carriers «in copper»</p>
<p><em>Accept “free/valence/delocalised electrons”.</em></p>
<p>metals/copper have many free electrons whereas insulators have few/no free electrons/charge carriers</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.7 \times {{10}^{ - 3}} \times 35 \times {{10}^3}}}{{64}}">
<mfrac>
<mrow>
<mn>1.7</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>35</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>64</mn>
</mrow>
</mfrac>
</math></span> «= 9.3 x 10<sup>–6</sup> m<sup>2</sup>»</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«resistance of cable = 2Ω»</p>
<p>power dissipated in cable = 730<sup>2</sup> x 2 «= 1.07 MW»</p>
<p>power loss per meter <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{1.07 \times {{10}^{ - 6}}}}{{35 \times {{10}^3}}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>1.07</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>35</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>or</strong> </em>30.6 «W m<sup>–1</sup>»</p>
<p> </p>
<p><em>Allow <strong>[2]</strong> for a solution where the resistance per unit metre is calculated using resistivity and answer to (b)(i) (resistance per unit length of cable =5.7 x 10<sup>–5</sup> m)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>30 = <em>m</em> x 390 x 3.5 x 10<sup>–2</sup></p>
<p>2.2 k«g»</p>
<p> </p>
<p><em>Correct answer only.</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A power supply is connected to three resistors P, Q and R of fixed value and to an ideal voltmeter. A variable resistor S, formed from a solid cylinder of conducting putty, is also connected in the circuit. Conducting putty is a material that can be moulded so that the resistance of S can be changed by re-shaping it.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The resistance values of P, Q and R are 40 Ω, 16 Ω and 60 Ω respectively. The emf of the power supply is 6.0 V and its internal resistance is negligible.</p>
</div>
<div class="specification">
<p>All the putty is reshaped into a solid cylinder that is four times longer than the original length.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the potential difference across P. </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The voltmeter reads zero. Determine the resistance of S.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the resistance of this new cylinder when it has been reshaped.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, without calculation, the change in the total power dissipated in Q and the new cylinder after it has been reshaped.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>attempt to use potential divider equation or similar method ✓<br>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>0</mn><mo>×</mo><mfrac><mn>40</mn><mfenced><mrow><mn>40</mn><mo>+</mo><mn>60</mn></mrow></mfenced></mfrac></math>»= 2.4 «V» ✓</p>
<p><em><strong><br>ALTERNATIVE 2</strong></em></p>
<p>«current = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mrow><mn>60</mn><mo>+</mo><mn>40</mn></mrow></mfrac></math>» = 0.06 «A» ✓</p>
<p>40 x 0.06 = 2.4 «V» ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>Pd across Q = 2.4 V so <em>I</em> = 0.15 « A » ✓</p>
<p>and pd across S is 6.0 – 2.4 = 3.6 « V » ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><mfrac><mi>V</mi><mi>I</mi></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mo>.</mo><mn>6</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>15</mn></mrow></mfrac><mo>=</mo><mn>24</mn></math> «Ω» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>pd at PR junction = pd at QS junction ✓</p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>S</mi><mi>Q</mi></mfrac><mo>=</mo><mfrac><mi>R</mi><mi>P</mi></mfrac></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mfrac><mrow><mn>16</mn><mo>×</mo><mn>60</mn></mrow><mn>40</mn></mfrac></math></strong></em>✓</p>
<p>24 «Ω» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mfrac><mrow><mn>40</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>06</mn></mrow><mn>16</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>15</mn></math> «A» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>0</mn><mo>=</mo><mfenced><mrow><mn>16</mn><mo>+</mo><mtext>S</mtext></mrow></mfenced><mfenced><mrow><mn>0</mn><mo>.</mo><mn>15</mn></mrow></mfenced></math> <em><strong>OR</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>4</mn><mo>=</mo><mfenced><mn>6</mn></mfenced><mfenced><mfrac><mn>16</mn><mrow><mi>S</mi><mo>+</mo><mn>16</mn></mrow></mfrac></mfenced></math> ✓</p>
<p><em>R </em>= 24 «Ω» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> for <strong>MP3</strong> from incorrect <strong>MP1 </strong>or <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>L</mi></math> leads to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>R</mi></math> / «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ρ</mi><mn>4</mn><mi>L</mi></mrow><mi>A</mi></mfrac></math>» = <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>R</mi></math> ✓</p>
<p>«because the volume of S is constant new area is» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>A</mi><mn>4</mn></mfrac></math>✓</p>
<p>16 x 24 = 384 «Ω» ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«total» power has decreased ✓</p>
<p><br>Because current in the branch has decreased «and <em>P=I</em><sup>2</sup><em>R</em> »</p>
<p><em><strong>OR</strong></em></p>
<p>Because resistance has increased in branch «and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><msup><mi>V</mi><mn>2</mn></msup><mi>R</mi></mfrac></math>» ✓</p>
<p> </p>
<p><em>Allow opposite argument as <strong>ECF</strong> from <strong>(c)(i)</strong> (if candidate deduces a lower resistance).</em></p>
<p><em>Allow “power doesn’t change” if candidate has no change of resistance from <strong>(b)</strong> to <strong>(c)(i)</strong>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was generally well done at the higher level. Some SL candidates struggled to calculate the correct current but earned the second marking point through ECF.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates struggled with this question. A very common mistake was to assume the current was the same in each branch, leading to a resistance of 84 Ohms. The placement of the voltmeter may have caused some confusion for candidates, and they may not have understood what the zero reading was indicating. It is important that candidates understand what voltmeters are actually reading and are familiar with different placements in circuits.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates recognized that increasing the length of the conductive putty would increase the resistance by a factor of four, but very few considered that if the volume of the putty remained constant that the cross-sectional surface area would decrease as well.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was an item that caused a bit of confusion for candidates. The prompt asks for a comparison of the power in the branch before and after changing the length of the conductive putty. Many candidates correctly identified that the power in Q would decrease, but either did not discuss the power in the whole branch or were not clear that the power in the putty would decrease as well.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A cell is connected to an ideal voltmeter, a switch S and a resistor R. The resistance of R is 4.0 Ω.</p>
<p style="text-align: center;"><img src=""></p>
<p>When S is open the reading on the voltmeter is 12 V. When S is closed the voltmeter reads 8.0 V.</p>
</div>
<div class="specification">
<p>Electricity can be generated using renewable resources.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the laws of conservation that are represented by Kirchhoff’s circuit laws.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the emf of the cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the internal resistance of the cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The voltmeter is used in another circuit that contains two secondary cells.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Cell A has an emf of 10 V and an internal resistance of 1.0 Ω. Cell B has an emf of 4.0 V and an internal resistance of 2.0 Ω.</p>
<p>Calculate the reading on the voltmeter.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why electricity is a secondary energy source.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some fuel sources are renewable. Outline what is meant by renewable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A fully charged cell of emf 6.0 V delivers a constant current of 5.0 A for a time of 0.25 hour until it is completely discharged.</p>
<p>The cell is then re-charged by a rectangular solar panel of dimensions 0.40 m × 0.15 m at a place where the maximum intensity of sunlight is 380 W m<sup>−2</sup>.</p>
<p>The overall efficiency of the re-charging process is 18 %.</p>
<p>Calculate the minimum time required to re-charge the cell fully.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why research into solar cell technology is important to society.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>« conservation of » charge ✓</p>
<p>« conservation of » energy ✓</p>
<p> </p>
<p><em>Allow <strong>[1]</strong> max if they explicitly refer to Kirchhoff’ laws linking them to the conservation laws incorrectly.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>12 V ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>I</em> = 2.0 A <em><strong>OR</strong> </em>12 = <em>I</em> (<em>r</em> +4) <em><strong>OR</strong> </em>4 = <em>Ir <strong>OR</strong> </em>8 = 4<em>I</em> ✓</p>
<p>«Correct working to get » <em>r</em> = 2.0 «Ω» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>(b)(i)</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Loop equation showing <em><strong>EITHER</strong> </em>correct voltages, i.e., 10 – 4 on one side or both emfs positive on different sides of the equation <em><strong>OR</strong> </em>correct resistances, i.e.<em> I</em> (1 + 2) ✓</p>
<p>10−4 = <em>I</em> (1 + 2) <em><strong>OR</strong> I</em> = 2.0 «A» seen✓</p>
<p><em>V</em> = 8.0 «V» ✓</p>
<p> </p>
<p><em>Allow any valid method</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>is generated from primary/other sources ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«a fuel » that can be replenished/replaced within a reasonable time span</p>
<p><em><strong>OR</strong></em></p>
<p>«a fuel» that can be replaced faster than the rate at which it is consumed</p>
<p><em><strong>OR</strong></em></p>
<p>renewables are limitless/never run out</p>
<p><em><strong>OR</strong></em></p>
<p>«a fuel» produced from renewable sources</p>
<p><em><strong>OR</strong></em></p>
<p>gives an example of a renewable (biofuel, hydrogen, wood, wind, solar, tidal, hydro etc..) ✓</p>
<p> </p>
<p><em><strong>OWTTE</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE</strong> </em>1</p>
<p>«energy output of the panel =» <em>VIt <strong>OR</strong> </em>6 x 5 x 0.25 x 3600 <em><strong>OR</strong> </em>27000 «J» ✓</p>
<p>«available power =» 380 x 0.4 x 0.15 x 0.18 <em><strong>OR</strong> </em>4.1 «W» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo></math> «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>27000</mn><mrow><mn>4</mn><mo>.</mo><mn>1</mn></mrow></mfrac></math>=» 6600 «s» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>«energy needed from Sun =» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>V</mi><mi>l</mi><mi>t</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></mfrac></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>×</mo><mn>5</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>25</mn><mo>×</mo><mn>3600</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>18</mn></mrow></mfrac></math> </strong><strong>OR</strong> </em>150000 «J» ✓</p>
<p>« incident power=» 380 x 0.4 x 0.15 <em><strong>OR</strong> </em>22.8 «W» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo></math> «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>150000</mn><mrow><mn>22</mn><mo>.</mo><mn>8</mn></mrow></mfrac></math>=» 6600 «s» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> for <strong>MP3</strong></em></p>
<p><em>Accept final answer in minutes (110) or hours (1.8).</em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>coherent reason ✓</p>
<p><em>e.g.</em>, to improve efficiency, is non-polluting, is renewable, does not produce greenhouse gases, reduce use of fossil fuels</p>
<p> </p>
<p><em>Do <strong>not</strong> allow economic reasons</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>a) Most just stated Kirchhoff's laws rather than the underlying laws of conservation of energy and charge, basically describing the equations from the data booklet. When it came to guesses, energy and momentum were often the two, although even a baryon and lepton number conservation was found. It cannot be emphasised enough the importance of correctly identifying the command verb used to introduce the question. In this case, identify, with the specific reference to conservation laws, seem to have been explicit tips not picked up by some candidates.</p>
<p>bi) This was probably the easiest question on the paper and almost everybody got it right. 12V. Some calculations were seen, though, that contradict the command verb used. State a value somehow implies that the value is right in front to be read or interpreted suitably.</p>
<p>bii) In the end a lot of the answers here were correct. Some obtained 2 ohms and were able to provide an explanation that worked. A very few negative answers were found, suggesting that some candidates work mechanically without properly reflecting in the nature of the value obtained.</p>
<p>ci) A lot of candidates figured out they had to do some sort of loop here but most had large currents in the voltmeter. Currents of 2 A and 10 A simultaneously were common. Some very good and concise work was seen though, leading to correct steps to show a reading of 8V.</p>
<p>cii) This question was cancelled due to an internal reference error. The paper total was adjusted in grade award. This is corrected for publication and future teaching use.</p>
<p>di) The vast majority of candidates could explain why electricity was a secondary energy source.</p>
<p>dii) An ideal answer was that renewable fuels can be replenished faster than they are consumed. However, many imaginative alternatives were accepted.</p>
<p>ei) This question was often very difficult to mark. Working was often scattered all over the answer box. Full marks were not that common, most candidates achieved partial marks. The commonest problem was determining the energy required to charge the battery. It was also common to see a final calculation involving a power divided by a power to calculate the time.</p>
<p>eii) Almost everybody could give a valid reason why research into solar cells was important. Most answers stated that solar is renewable. There were very few that didn't get a mark due to discussing economic reasons.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Ion-thrust engines can power spacecraft. In this type of engine, ions are created in a chamber and expelled from the spacecraft. The spacecraft is in outer space when the propulsion system is turned on. The spacecraft starts from rest.</p>
<p style="text-align: center;"><img src=""></p>
<p>The mass of ions ejected each second is 6.6 × 10<sup>–6 </sup>kg and the speed of each ion is 5.2 × 10<sup>4</sup> m s<sup>–1</sup>. The initial total mass of the spacecraft and its fuel is 740 kg. Assume that the ions travel away from the spacecraft parallel to its direction of motion.</p>
</div>
<div class="specification">
<p>An initial mass of 60 kg of fuel is in the spacecraft for a journey to a planet. Half of the fuel will be required to slow down the spacecraft before arrival at the destination planet.</p>
</div>
<div class="specification">
<p>In practice, the ions leave the spacecraft at a range of angles as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>On arrival at the planet, the spacecraft goes into orbit as it comes into the gravitational field of the planet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the maximum speed of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why scientists sometimes use estimates in making calculations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ions are likely to spread out.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what effect, if any, this spreading of the ions has on the acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by the gravitational field strength at a point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Newton’s law of gravitation applies to point masses. Suggest why the law can be applied to a satellite orbiting a spherical planet of uniform density.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>change in momentum each second = 6.6 × 10<sup>−6</sup> × 5.2 × 10<sup>4</sup> «= 3.4 × 10<sup>−1 </sup>kg m s<sup>−1</sup>» ✔</p>
<p>acceleration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.4 \times {{10}^{ - 1}}}}{{740}}">
<mfrac>
<mrow>
<mn>3.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>740</mn>
</mrow>
</mfrac>
</math></span> =» 4.6 × 10<sup>−4</sup> «m s<sup>−2</sup>» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>(considering the acceleration of the spacecraft)</p>
<p>time for acceleration = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30}}{{6.6 \times {{10}^{ - 6}}}}">
<mfrac>
<mrow>
<mn>30</mn>
</mrow>
<mrow>
<mn>6.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = «4.6 × 10<sup>6</sup>» «s» ✔</p>
<p>max speed = «answer to (a) × 4.6 × 10<sup>6</sup> =» 2.1 × 10<sup>3</sup> «m s<sup>−1</sup>» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>(considering the conservation of momentum)</p>
<p>(momentum of 30 kg of fuel ions = change of momentum of spacecraft)</p>
<p>30 × 5.2 × 10<sup>4 </sup>= 710 × max speed ✔</p>
<p>max speed = 2.2 × 10<sup>3 </sup>«m s<sup>−1</sup>» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>problem may be too complicated for exact treatment ✔</p>
<p>to make equations/calculations simpler ✔</p>
<p>when precision of the calculations is not important ✔</p>
<p>some quantities in the problem may not be known exactly ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ions have same (sign of) charge ✔</p>
<p>ions repel each other ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the forces between the ions do not affect the force on the spacecraft. ✔</p>
<p>there is no effect on the acceleration of the spacecraft. ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force per unit mass ✔</p>
<p>acting on a small/test/point mass «placed at the point in the field» ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>satellite has a much smaller mass/diameter/size than the planet «so approximates to a point mass» ✔ </p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Three identical light bulbs, X, Y and Z, each of resistance 4.0 Ω are connected to a cell of emf 12 V. The cell has negligible internal resistance.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch S is initially open. Calculate the total power dissipated in the circuit.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. State, without calculation, why the current in the cell will increase. </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. Deduce the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{power dissipated in Y with S open}}}}{{{\text{power dissipated in Y with S closed}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>power dissipated in Y with S open</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>power dissipated in Y with S closed</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>.</span></p>
<p> </p>
<p><span style="background-color:#ffffff;"> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">total resistance of circuit is 8.0 «Ω» ✔<br></span></p>
<p><span style="background-color:#ffffff;">P = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{12}^2}}}{{8.0}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mn>12</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>8.0</mn>
</mrow>
</mfrac>
</math></span> =18 «W» ✔</span></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">«a resistor is now connected in parallel» reducing the total resistance<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">current through YZ unchanged and additional current flows through X ✔</span></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">evidence in calculation or statement that pd across Y/current in Y is the same as before ✔<br></span></p>
<p><span style="background-color:#ffffff;">so ratio is 1 ✔</span></p>
<div class="question_part_label">bii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates scored both marks. ECF was awarded for those who didn’t calculate the new resistance correctly. Candidates showing clearly that they were attempting to calculate the new total resistance helped examiners to award ECF marks.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most recognised that this decreased the total resistance of the circuit. Answers scoring via the second alternative were rare as the statements were often far too vague.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few gained any credit for this at both levels. Most performed complicated calculations involving the total circuit and using 12V – they had not realised that the question refers to Y only.</p>
<div class="question_part_label">bii.</div>
</div>
<br><hr><br><div class="specification">
<p>A photovoltaic cell is supplying energy to an external circuit. The photovoltaic cell can be modelled as a practical electrical cell with internal resistance.</p>
<p>The intensity of solar radiation incident on the photovoltaic cell at a particular time is at a maximum for the place where the cell is positioned.</p>
<p>The following data are available for this particular time:</p>
<p style="text-align: left; padding-left: 150px;"> Operating current = 0.90 A<br>Output potential difference to external circuit = 14.5 V<br> Output emf of photovoltaic cell = 21.0 V<br> Area of panel = 350 mm × 450 mm</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the output potential difference to the external circuit and the output emf of the photovoltaic cell are different.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the internal resistance of the photovoltaic cell for the maximum intensity condition using the model for the cell.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The maximum intensity of sunlight incident on the photovoltaic cell at the place on the Earth’s surface is 680 W m<sup>−2</sup>.</p>
<p>A measure of the efficiency of a photovoltaic cell is the ratio</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>energy available every second to the external circuit</mtext><mtext>energy arriving every second at the photovoltaic cell surface</mtext></mfrac><mo>.</mo></math></p>
<p>Determine the efficiency of this photovoltaic cell when the intensity incident upon it is at a maximum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> reasons why future energy demands will be increasingly reliant on sources such as photovoltaic cells.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>there is a potential difference across the internal resistance<br><em><strong>OR</strong></em><br>there is energy/power dissipated in the internal resistance <strong>✓</strong></p>
<p>when there is current «in the cell»/as charge flows «through the cell»<strong> ✓</strong></p>
<p><em><br>Allow full credit for answer based on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi>ε</mi><mo>-</mo><mi>I</mi><mi>r</mi></math></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>pd dropped across cell <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mo>«</mo><mtext>V</mtext><mo>»</mo></math>✓</p>
<p>internal resistance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">=</mi><mfrac><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>9</mn></mrow></mfrac></math> ✓</p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn><mo> </mo><mo>«</mo><mtext>Ω</mtext><mo>»</mo></math>✓</strong></p>
<p><em><strong><br>ALTERNATIVE 2</strong></em></p>
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ε</mi><mo>=</mo><mi>I</mi><mo>(</mo><mi>R</mi><mo>+</mo><mi>r</mi><mo>)</mo></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ε</mi><mo>=</mo><mi>V</mi><mo>+</mo><mi>I</mi><mi>r</mi></math> <strong>✓</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn><mo>.</mo><mn>0</mn><mo>=</mo><mn>14</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>9</mn><mo>×</mo><mi>r</mi></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn><mo> </mo><mo>«</mo><mtext>Ω</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p><em><br>Alternative solutions are possible</em></p>
<p><em>Award <strong>[3]</strong> marks for a bald correct answer</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>power arriving at cell = 680 x 0.35 x 0.45 = «107 W» <strong>✓</strong></p>
<p>power in external circuit = 14.5 x 0.9 = «13.1 W» <strong>✓</strong></p>
<p>efficiency = 0.12 <em><strong>OR</strong></em> 12 % <strong>✓</strong></p>
<p><em><br>Award <strong>[3] marks</strong> for a bald correct answer</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP3</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«energy from Sun/photovoltaic cells» is renewable<br><em><strong>OR</strong></em><br>non-renewable are running out <strong>✓</strong></p>
<p>non-polluting/clean <strong>✓</strong></p>
<p>no greenhouse gases<br><em><strong>OR</strong></em><br>does not contribute to global warming/climate change <strong>✓</strong></p>
<p><em><strong><br>OWTTE </strong></em></p>
<p><em>Do not allow economic aspects (e.g. free energy)</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A girl rides a bicycle that is powered by an electric motor. A battery transfers energy to the electric motor. The emf of the battery is 16 V and it can deliver a charge of 43 kC when discharging completely from a full charge.</p>
<p>The maximum speed of the girl on a horizontal road is 7.0 m s<sup>–1</sup> with energy from the battery alone. The maximum distance that the girl can travel under these conditions is 20 km.</p>
</div>
<div class="specification">
<p>The bicycle and the girl have a total mass of 66 kg. The girl rides up a slope that is at an angle of 3.0° to the horizontal.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The bicycle has a meter that displays the current and the terminal potential difference (pd) for the battery when the motor is running. The diagram shows the meter readings at one instant. The emf of the cell is 16 V.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The battery is made from an arrangement of 10 identical cells as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the time taken for the battery to discharge is about 3 × 10<sup>3</sup> s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the average power output of the battery is about 240 W.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Friction and air resistance act on the bicycle and the girl when they move. Assume that all the energy is transferred from the battery to the electric motor. Determine the total average resistive force that acts on the bicycle and the girl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the component of weight for the bicycle and girl acting down the slope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The battery continues to give an output power of 240 W. Assume that the resistive forces are the same as in (a)(iii).</p>
<p>Calculate the maximum speed of the bicycle and the girl up the slope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On another journey up the slope, the girl carries an additional mass. Explain whether carrying this mass will change the maximum distance that the bicycle can travel along the slope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the internal resistance of the battery.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the emf of <strong>one</strong> cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the internal resistance of <strong>one</strong> cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>time taken <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.0 \times {{10}^4}}}{7}">
<mfrac>
<mrow>
<mn>2.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mn>7</mn>
</mfrac>
</math></span></span>«= 2860 s» = 2900«s» ✔</p>
<p><em>Must see at least two s.f.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of E = qV <em><strong>OR</strong></em> energy = 4.3 × 10<sup>3</sup> × 16 «= 6.88 × 10<sup>5</sup> J» ✔</p>
<p>power = 241 «W» ✔</p>
<p><em>Accept 229 W − 241 W depending on the exact value of t used from ai.</em></p>
<p><em>Must see at least three s.f</em>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of power = force × speed <em><strong>OR</strong></em> <em>force × distance</em> = <em>power × time</em> ✔</p>
<p>«34N» ✔</p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p><em>Accept 34 N – 36 N.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>66 g sin(3°) = 34 «N» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total force 34 + 34 = 68 «N» ✔<br>3.5 «ms<sup>-1</sup>»✔</p>
<p><em>If you suspect that the incorrect reference in this question caused confusion for a particular candidate, please refer the response to the PE.</em></p>
<p><em>Look for ECF from aiii and bi.</em></p>
<p><em>Accept 3.4 − 3.5 «ms<sup>-1</sup>».</em></p>
<p><em>Award <strong>[0]</strong> for solutions involving use of KE.</em></p>
<p><em>Award <strong>[0]</strong> for v = 7 ms<sup>-1</sup>.</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«maximum» distance will decrease <em><strong>OWTTE</strong></em> ✔</p>
<p>because opposing/resistive force has increased<br><em><strong>OR</strong></em><br>because more energy is transferred to GPE<br><em><strong>OR</strong></em><br>because velocity has decreased<br><em><strong>OR</strong></em><br>increased mass means more work required «to move up the hill» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>V dropped across battery <em><strong>OR</strong></em> R<sub>circuit</sub> = 1.85 Ω ✔</p>
<p>so internal resistance = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4.0}{6.5}">
<mfrac>
<mn>4.0</mn>
<mn>6.5</mn>
</mfrac>
</math></span> = 0.62«Ω» ✔</p>
<p><em>For MP1 allow use of internal resistance equations that leads to 16V − 12V (=4V).</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{16}{5}">
<mfrac>
<mn>16</mn>
<mn>5</mn>
</mfrac>
</math></span> = 3.2 «V» ✔</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em>:</p>
<p>2.5<em>r</em> = 0.62 ✔</p>
<p><em>r</em> = 0.25 «Ω» ✔</p>
<p><em><strong>ALTERNATIVE 2</strong></em>:</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{0.62}{5}">
<mfrac>
<mn>0.62</mn>
<mn>5</mn>
</mfrac>
</math></span> = 0.124 «Ω» ✔</p>
<p><em>r</em> = 2(0.124)= 0.248 «Ω» ✔</p>
<p><em>Allow ECF from (d) and/or e(i)</em>.</p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was generally well answered. Candidates should be reminded on questions where a given value is being calculated that they should include an unrounded answer. This whole question set was a blend of electricity and mechanics concepts, and it was clear that some candidates struggled with applying the correct concepts in the various sub-questions.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates struggled with this question. They either simply calculated the weight, used the cosine rather than the sine function, or failed to multiply by the acceleration due to gravity. Candidates need to be able to apply free-body diagram skills in a variety of “real world” situations.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered in general, with the vast majority of candidates specifying that the maximum distance would decrease. This is an “explain” command term, so the examiners were looking for a detailed reason why the distance would decrease for the second marking point. Unfortunately, some candidates simply wrote that because the mass increased so did the weight without making it clear why this would change the maximum distance.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br>