File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 5 HTML/markSceme-SL-paper1html
File size: 591.34 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="question">
<p>A wire carrying a current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="I">
<mi>I</mi>
</math></span><em> </em>is at right angles to a uniform magnetic field of strength <em>B</em>. A magnetic force <em>F </em>is exerted on the wire. Which force acts when the same wire is placed at right angles to a uniform magnetic field of strength 2<em>B </em>when the current is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{I}{4}">
<mfrac>
<mi>I</mi>
<mn>4</mn>
</mfrac>
</math></span>?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{F}{4}">
<mfrac>
<mi>F</mi>
<mn>4</mn>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{F}{2}">
<mfrac>
<mi>F</mi>
<mn>2</mn>
</mfrac>
</math></span></p>
<p>C. <em>F <br></em></p>
<p>D. 2<em>F</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p><img src=""></p>
<p>What is a possible pulse shape when the pulses overlap?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electric motor raises an object of weight <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mo> </mo><mi mathvariant="normal">N</mi></math> through a vertical distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>0</mn><mo> </mo><mi mathvariant="normal">m</mi></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi mathvariant="normal">s</mi></math>. The current in the electric motor is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mi mathvariant="normal">A</mi></math> at a potential difference of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn><mo> </mo><mi mathvariant="normal">V</mi></math>. What is the efficiency of the electric motor?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo> </mo><mo>%</mo></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>38</mn><mo> </mo><mo>%</mo></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mo>%</mo></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn><mo> </mo><mo>%</mo></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electric motor of efficiency 0.75 is connected to a power supply with an emf of 20 V and negligible internal resistance. The power output of the motor is 120 W. What is the average current drawn from the power supply?</p>
<p> </p>
<p>A. 3.1 A</p>
<p>B. 4.5 A</p>
<p>C. 6.0 A</p>
<p>D. 8.0 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two parallel wires are perpendicular to the page. The wires carry equal currents in opposite directions. Point S is at the same distance from both wires. What is the direction of the magnetic field at point S?</p>
<p style="text-align: center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cell of emf 4V and negligible internal resistance is connected to three resistors as shown. Two resistors of resistance 2Ω are connected in parallel and are in series with a resistor of resistance 1Ω.</p>
<p><img src="" alt></p>
<p>What power is dissipated in one of the 2Ω resistors and in the whole circuit?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A positively-charged particle moves parallel to a wire that carries a current upwards.</p>
<p><img src=""></p>
<p>What is the direction of the magnetic force on the particle?</p>
<p>A. To the left</p>
<p>B. To the right</p>
<p>C. Into the page</p>
<p>D. Out of the page</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electrical circuit is shown with loop X and junction Y.</p>
<p><img src="" alt></p>
<p>What is the correct expression of Kirchhoff’s circuit laws for loop X and junction Y?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron is accelerated through a potential difference of 2.5 MV. What is the change in kinetic energy of the electron?</p>
<p>A. 0.4μJ</p>
<p>B. 0.4 nJ</p>
<p>C. 0.4 pJ</p>
<p>D. 0.4 fJ</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of current with potential difference for a filament lamp.</p>
<p><img src=""></p>
<p>What is the resistance of the filament when the potential difference across it is 6.0 V?<br>A. 0.5 mΩ<br>B. 1.5 mΩ<br>C. 670 Ω<br>D. 2000 Ω</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A current in a wire lies between the poles of a magnet. What is the direction of the electromagnetic force on the wire?</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Many chose option C, the opposite of the correct response. As always in electromagnetism questions, students need to consider carefully which hand and which fingers to use. We do tend to say that there is little that needs to be memorised in physics, this is probably one of them.</p>
</div>
<br><hr><br><div class="question">
<p>A circuit contains a cell of electromotive force (emf) 9.0 V and internal resistance 1.0 Ω together with a resistor of resistance 4.0 Ω as shown. The ammeter is ideal. XY is a connecting wire.</p>
<p><img src=""></p>
<p>What is the reading of the ammeter?</p>
<p>A. 0 A</p>
<p>B. 1.8 A</p>
<p>C. 9.0 A</p>
<p>D. 11 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A metal wire has <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> free charge carriers per unit volume. The charge on the carrier is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>. What additional quantity is needed to determine the current per unit area in the wire?</p>
<p>A. Cross-sectional area of the wire</p>
<p>B. Drift speed of charge carriers</p>
<p>C. Potential difference across the wire</p>
<p>D. Resistivity of the metal</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows two current-carrying wires, P and Q, that both lie in the plane of the paper. The arrows show the conventional current direction in the wires.</p>
<p><img src=""></p>
<p>The electromagnetic force on Q is in the same plane as that of the wires. What is the direction of the electromagnetic force acting on Q?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Four resistors of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi mathvariant="normal">Ω</mi></math> each are connected as shown.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the effective resistance between P and Q?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mi mathvariant="normal">Ω</mi></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>4</mn><mo> </mo><mi mathvariant="normal">Ω</mi></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>4</mn><mo> </mo><mi mathvariant="normal">Ω</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>0</mn><mo> </mo><mi mathvariant="normal">Ω</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This has a very low discrimination index. It is suspected that students did not realise that PQ has 2 branches in parallel and many chose D, 4 ohm, the value of a single resistor.</p>
</div>
<br><hr><br><div class="question">
<p>For a real cell in a circuit, the terminal potential difference is at its closest to the emf when</p>
<p>A. the internal resistance is much smaller than the load resistance.</p>
<p>B. a large current flows in the circuit.</p>
<p>C. the cell is not completely discharged.</p>
<p>D. the cell is being recharged.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A liquid that contains negative charge carriers is flowing through a square pipe with sides A, B, C and D. A magnetic field acts in the direction shown across the pipe.</p>
<p>On which side of the pipe does negative charge accumulate?</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_16.46.44.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/19"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three identical resistors of resistance R are connected as shown to a battery with a potential difference of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo> </mo><mtext>V</mtext></math> and an internal resistance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>R</mtext><mn>2</mn></mfrac></math>. A voltmeter is connected across one of the resistors.</p>
<p style="text-align:center;"> <img src=""></p>
<p>What is the reading on the voltmeter?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo> </mo><mtext>V</mtext></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mtext>V</mtext></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mtext>V</mtext></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo> </mo><mtext>V</mtext></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In the circuits shown, the cells have the same emf and zero internal resistance. All resistors are identical.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the order of increasing power dissipated in each circuit?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows two cylindrical wires, X and Y. Wire X has a length <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math></em>, a diameter <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></em>, and a resistivity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi></math>. Wire Y has a length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>l</mi></math>, a diameter of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>d</mi><mn>2</mn></mfrac></math>and a resistivity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>ρ</mi><mn>2</mn></mfrac></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>resistance of X</mtext><mtext>resistance of Y</mtext></mfrac></math>?</p>
<p>A. 4</p>
<p>B. 2</p>
<p>C. 0.5</p>
<p>D. 0.25</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Five resistors of equal resistance are connected to a cell as shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_16.48.40.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/20"></p>
<p>What is correct about the power dissipated in the resistors?</p>
<p>A. The power dissipated is greatest in resistor X.</p>
<p>B. The power dissipated is greatest in resistor Y.</p>
<p>C. The power dissipated is greatest in resistor Z.</p>
<p>D. The power dissipated is the same in all resistors.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cell has an emf of 4.0 V and an internal resistance of 2.0 Ω. The ideal voltmeter reads 3.2 V.</p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_10.10.06.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/22"></p>
<p>What is the resistance of R?</p>
<p>A. 0.8 Ω</p>
<p>B. 2.0 Ω</p>
<p>C. 4.0 Ω</p>
<p>D. 8.0 Ω</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">What is the unit of electrical potential difference expressed in fundamental SI units?<br></span></p>
<p><span style="background-color:#ffffff;">A. kg m s<sup>-1</sup> C<sup>-1</sup><br></span></p>
<p><span style="background-color:#ffffff;">B. kg m<sup>2</sup> s<sup>-2</sup> C<sup>-1</sup><br></span></p>
<p><span style="background-color:#ffffff;">C. kg m<sup>2</sup> s<sup>-3</sup> A<sup>-1</sup><br></span></p>
<p><span style="background-color:#ffffff;">D. kg m<sup>2</sup> s<sup>-1</sup> A</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The most popular answer was B giving a low discrimination index for this question. It should be a relatively straightforward question provided the candidate can remember which of ‘C’ or ‘A’ is the fundamental unit.</p>
</div>
<br><hr><br><div class="question">
<p>An electron enters the region between two charged parallel plates initially moving parallel to the plates.</p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_10.07.01.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/20"></p>
<p>The electromagnetic force acting on the electron</p>
<p>A. causes the electron to decrease its horizontal speed.</p>
<p>B. causes the electron to increase its horizontal speed.</p>
<p>C. is parallel to the field lines and in the opposite direction to them.</p>
<p>D. is perpendicular to the field direction.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two resistors X and Y are made of uniform cylinders of the same material. X and Y are connected in series. X and Y are of equal length and the diameter of Y is twice the diameter of X.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_16.52.34.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/21"></p>
<p>The resistance of Y is <em>R</em>.</p>
<p>What is the resistance of this series combination?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5R}}{4}">
<mfrac>
<mrow>
<mn>5</mn>
<mi>R</mi>
</mrow>
<mn>4</mn>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3R}}{2}">
<mfrac>
<mrow>
<mn>3</mn>
<mi>R</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p>C. 3<em>R</em></p>
<p>D. 5<em>R</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cell with negligible internal resistance is connected as shown. The ammeter and the voltmeter are both ideal. </p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_09.33.11.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/19_01"></p>
<p>What changes occur in the ammeter reading and in the voltmeter reading when the resistance of the variable resistor is increased?</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_09.34.17.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/19_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle of mass <em>m</em> and charge of magnitude <em>q</em> enters a region of uniform magnetic field <em>B</em> that is directed into the page. The particle follows a circular path of radius <em>R</em>. What are the sign of the charge of the particle and the speed of the particle?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A combination of four identical resistors each of resistance <em>R</em> are connected to a source of emf <em>ε</em> of negligible internal resistance. What is the current in the resistor X?</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;"> </p>
<p style="text-align: left;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\varepsilon }{{5R}}">
<mfrac>
<mi>ε</mi>
<mrow>
<mn>5</mn>
<mi>R</mi>
</mrow>
</mfrac>
</math></span></p>
<p style="text-align: left;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\varepsilon }}{{10R}}">
<mfrac>
<mrow>
<mn>3</mn>
<mi>ε</mi>
</mrow>
<mrow>
<mn>10</mn>
<mi>R</mi>
</mrow>
</mfrac>
</math></span></p>
<p style="text-align: left;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\varepsilon }}{{5R}}">
<mfrac>
<mrow>
<mn>2</mn>
<mi>ε</mi>
</mrow>
<mrow>
<mn>5</mn>
<mi>R</mi>
</mrow>
</mfrac>
</math></span></p>
<p style="text-align: left;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\varepsilon }}{{5R}}">
<mfrac>
<mrow>
<mn>3</mn>
<mi>ε</mi>
</mrow>
<mrow>
<mn>5</mn>
<mi>R</mi>
</mrow>
</mfrac>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two copper wires X and Y are connected in series. The diameter of Y is double that of X. The drift speed in X is <em>v</em>. What is the drift speed in Y?</p>
<p> </p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{4}">
<mfrac>
<mi>v</mi>
<mn>4</mn>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{2}">
<mfrac>
<mi>v</mi>
<mn>2</mn>
</mfrac>
</math></span></p>
<p>C. 2<em>v</em></p>
<p>D. 4<em>v</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cell is connected in series with a resistor and supplies a current of 4.0 A for a time of 500 s. During this time, 1.5 kJ of energy is dissipated in the cell and 2.5 kJ of energy is dissipated in the resistor.</p>
<p>What is the emf of the cell?</p>
<p>A. 0.50 V</p>
<p>B. 0.75 V</p>
<p>C. 1.5 V</p>
<p>D. 2.0 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows two equal and opposite charges that are fixed in place.</p>
<p><img src=""></p>
<p>At which points is the net electric field directed to the right?</p>
<p>A. X and Y only</p>
<p>B. Z and Y only</p>
<p>C. X and Z only</p>
<p>D. X, Y and Z</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three identical resistors each of resistance <em>R</em> are connected with a variable resistor X as shown. X is initially set to <em>R</em>. The current in the cell is 0.60 A.</p>
<p>The cell has negligible internal resistance.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>X is now set to zero. What is the current in the cell?</p>
<p>A. 0.45 A</p>
<p>B. 0.60 A</p>
<p>C. 0.90 A</p>
<p>D. 1.80 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Option C was the most common (correct) answer, however option B was also a frequent response. This question had a relatively high discrimination index, suggesting that more able candidates had less difficulty managing resistance in this combination circuit.</p>
</div>
<br><hr><br><div class="question">
<p>With reference to internal energy conversion and ability to be recharged, what are the characteristics of a primary cell?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A –5µC charge and a +10µC charge are a fixed distance apart.</p>
<p><img src="" alt></p>
<p>Where can the electric field be zero? </p>
<p>A. position I only <br>B. position II only <br>C. position III only <br>D. positions I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A battery of negligible internal resistance is connected to a lamp. A second identical lamp is added in series. What is the change in potential difference across the first lamp and what is the change in the output power of the battery?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A circuit consists of a cell of emf <em>E</em> = 3.0 V and four resistors connected as shown. Resistors <em>R</em><sub>1</sub> and <em>R</em><sub>4</sub> are 1.0 Ω and resistors <em>R</em><sub>2</sub> and <em>R</em><sub>3</sub> are 2.0 Ω.</p>
<p>What is the voltmeter reading?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>A. 0.50 V</p>
<p>B. 1.0 V</p>
<p>C. 1.5 V</p>
<p>D. 2.0 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There were some comments from teachers that the circuit is unfamiliar, however it is basically a series and parallel circuit and can be solved by considering the parallel sections individually either by calculating the current through each and then the voltages across the individual resistors or by considering the resistors as a potential divider. It has a low discrimination index at HL with many choosing option C (B correct) and very poor discrimination at SL, again with option C the most popular choice.</p>
</div>
<br><hr><br><div class="question">
<p>Kirchhoff’s laws are applied to the circuit shown.</p>
<p><img src=""></p>
<p>What is the equation for the dotted loop?</p>
<p>A. 0 = 3<em>I</em><sub>2</sub> + 4<em>I</em><sub>3</sub></p>
<p>B. 0 = 4<em>I</em><sub>3</sub> − 3<em>I</em><sub>2</sub></p>
<p>C. 6 = 2<em>I</em><sub>1</sub> + 3<em>I</em><sub>2</sub> + 4<em>I</em><sub>3</sub></p>
<p>D. 6 = 3<em>I</em><sub>2</sub> + 4<em>I</em><sub>3</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A long straight vertical conductor carries a current <em>I</em> upwards. An electron moves with horizontal speed <em>v</em> to the right.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the direction of the magnetic force on the electron?</p>
<p>A. Downwards</p>
<p>B. Upwards</p>
<p>C. Into the page</p>
<p>D. Out of the page</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An ion moves in a circle in a uniform magnetic field. Which single change would increase the radius of the circular path?</p>
<p><br>A. Decreasing the speed of the ion</p>
<p>B. Increasing the charge of the ion</p>
<p>C. Increasing the mass of the ion</p>
<p>D. Increasing the strength of the magnetic field</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">A beam of negative ions flows in the plane of the page through the magnetic field due to two bar magnets.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">What is the direction in which the negative ions will be deflected?</p>
<p style="text-align:left;">A. Out of the page <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \odot ">
<mo>⊙</mo>
</math></span></span></p>
<p style="text-align:left;">B. Into the page X</p>
<p style="text-align:left;">C. Up the page ↑</p>
<p style="text-align:left;">D. Down the page ↓</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by candidates.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">The resistance of component X decreases when the intensity of light incident on it increases. X is connected in series with a cell of negligible internal resistance and a resistor of fixed resistance. The ammeter and voltmeter are ideal.</span><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><br></span></span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the change in the reading on the ammeter and the change in the reading on the voltmeter when the light incident on X is increased?</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><img src=""></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">Charge flows through a liquid. The charge flow is made up of positive and negative ions. In one second 0.10 C of negative ions flow in one direction and 0.10 C of positive ions flow in the opposite direction.</p>
<p style="text-align:left;">What is the magnitude of the electric current flowing through the liquid?</p>
<p style="text-align:left;">A. 0 A</p>
<p style="text-align:left;">B. 0.05 A</p>
<p style="text-align:left;">C. 0.10 A</p>
<p style="text-align:left;">D. 0.20 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A beam of electrons moves between the poles of a magnet.</p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_10.08.39.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/21"></p>
<p>What is the direction in which the electrons will be deflected?</p>
<p>A. Downwards</p>
<p>B. Towards the N pole of the magnet</p>
<p>C. Towards the S pole of the magnet</p>
<p>D. Upwards</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A particle with a charge <em>ne</em> is accelerated through a potential difference <em>V</em>.<br></span></p>
<p><span style="background-color:#ffffff;">What is the magnitude of the work done on the particle?</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="eV">
<mi>e</mi>
<mi>V</mi>
</math></span><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="neV">
<mi>n</mi>
<mi>e</mi>
<mi>V</mi>
</math></span><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{nV}}{e}">
<mfrac>
<mrow>
<mi>n</mi>
<mi>V</mi>
</mrow>
<mi>e</mi>
</mfrac>
</math></span><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{eV}}{n}">
<mfrac>
<mrow>
<mi>e</mi>
<mi>V</mi>
</mrow>
<mi>n</mi>
</mfrac>
</math></span></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Three resistors of resistance 1.0 Ω, 6.0 Ω and 6.0 Ω are connected as shown. The voltmeter is ideal and the cell has an emf of 12 V with negligible internal resistance.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the reading on the voltmeter?<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A. 3.0 V<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">B. 4.0 V<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">C. 8.0 V<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">D. 9.0 V</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Most candidates at both levels gave option A as the correct response instead of D. This would indicate that they have misread the diagram thinking the voltmeter was across the 1.0Ω resistor not the parallel combination.</p>
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">Two cells each of emf 9.0 V and internal resistance 3.0 Ω are connected in series. A 12.0 Ω resistor is connected in series to the cells. What is the current in the resistor?</p>
<p style="text-align:left;">A. 0.50 A</p>
<p style="text-align:left;">B. 0.75 A</p>
<p style="text-align:left;">C. 1.0 A</p>
<p style="text-align:left;">D. 1.5 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by candidates and had a higher discrimination index.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A thin copper wire and a thick copper wire are connected in series to an electric cell. Which quantity will be greater in the thin wire?</span></p>
<p><span style="background-color: #ffffff;">A. Current<br></span></p>
<p><span style="background-color: #ffffff;">B. Number of free charge carriers per unit volume<br></span></p>
<p><span style="background-color: #ffffff;">C. Net number of charge carriers crossing a section of a wire every second<br></span></p>
<p><span style="background-color: #ffffff;">D. Drift speed of the charge carriers</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A negatively charged particle in a uniform gravitational field is positioned mid-way between two charged conducting plates.</span></p>
<p><span style="background-color: #ffffff;"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="214" height="174"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The potential difference between the plates is adjusted until the particle is held at rest relative to the plates.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">What change will cause the particle to accelerate downwards relative to the plates?</span></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. Decreasing the charge on the particle<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. Decreasing the separation of the plates<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. Increasing the length of the plates<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. Increasing the potential difference between the plates</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron travelling at speed <em>v</em> perpendicular to a magnetic field of strength <em>B</em> experiences a force <em>F</em>.</p>
<p>What is the force acting on an alpha particle travelling at 2<em>v</em> parallel to a magnetic field of strength 2<em>B</em>?</p>
<p>A. 0</p>
<p>B. 2<em>F</em></p>
<p>C. 4<em>F</em></p>
<p>D. 8<em>F</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A wire has variable cross-sectional area. The cross-sectional area at Y is double that at X.</p>
<p><img src=""></p>
<p>At X, the current in the wire is <em>I</em> and the electron drift speed is <em>v</em>. What is the current and the electron drift speed at Y?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three point charges of equal magnitude are placed at the vertices of an equilateral triangle. The signs of the charges are shown. Point P is equidistant from the vertices of the triangle. What is the direction of the resultant electric field at P?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was very well answered by both HL and SL candidates, reflected in the high difficulty level for both papers.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The diagram shows a resistor network. The potential difference between X and Y is 8.0 V.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="394" height="190"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">What is the current in the 5Ω resistor?</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. 1.0A<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. 1.6A<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. 2.0A<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. 3.0A</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In the circuit shown, the fixed resistor has a value of 3 Ω and the variable resistor can be varied between 0 Ω and 9 Ω.</p>
<p><img src=""></p>
<p>The power supply has an emf of 12 V and negligible internal resistance. What is the difference between the maximum and minimum values of voltage <em>V</em> across the 3 Ω resistor?</p>
<p>A. 3 V</p>
<p>B. 6 V</p>
<p>C. 9 V</p>
<p>D. 12 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two conductors <em>S</em> and <em>T</em> have the <em>V</em>/<em>I</em> characteristic graphs shown below.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>When the conductors are placed in the circuit below, the reading of the ammeter is 6.0 A.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the emf of the cell?</p>
<p>A. 4.0 V</p>
<p>B. 5.0 V</p>
<p>C. 8.0 V</p>
<p>D. 13 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A variable resistor is connected in series to a cell with internal resistance <em>r</em> as shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The resistance of the variable resistor is increased. What happens to the power dissipated in the cell and to the terminal potential difference of the cell?</p>
<p><br><img src=""> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">When a wire with an electric current <em>I</em> is placed in a magnetic field of strength <em>B</em> it experiences a magnetic force <em>F</em>. What is the direction of <em>F</em>?</span></p>
<p><span style="background-color: #ffffff;">A. In a direction determined by <em>I</em> only<br></span></p>
<p><span style="background-color: #ffffff;">B. In a direction determined by <em>B</em> only<br></span></p>
<p><span style="background-color: #ffffff;">C. In the plane containing <em>I</em> and <em>B</em><br></span></p>
<p><span style="background-color: #ffffff;">D. At 90° to the plane containing <em>I</em> and <em>B</em></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A horizontal wire PQ lies perpendicular to a uniform horizontal magnetic field.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A length of 0.25 m of the wire is subject to a magnetic field strength of 40 mT. A downward magnetic force of 60 mN acts on the wire.</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the magnitude and direction of the current in the wire?</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><img src=""></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>P and Q are two opposite point charges. The force <em>F</em> acting on P due to Q and the electric field strength <em>E</em> at P are shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Which diagram shows the force on Q due to P and the electric field strength at Q?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Option A was the most frequent answer selected by both HL and SL candidates, suggesting that determining the direction of the electric field was more problematic than the direction of the force (Newton 3).</p>
</div>
<br><hr><br><div class="question">
<p>Magnetic field lines are an example of</p>
<p>A. a discovery that helps us understand magnetism.</p>
<p>B. a model to aid in visualization.</p>
<p>C. a pattern in data from experiments.</p>
<p>D. a theory to explain concepts in magnetism.<br><br></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two charges <em>Q</em><sub>1</sub> and <em>Q</em><sub>2</sub>, each equal to 2 nC, are separated by a distance 3 m in a vacuum. What is the electric force on <em>Q</em><sub>2</sub> and the electric field due to <em>Q</em><sub>1</sub> at the position of <em>Q</em><sub>2</sub>?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A wire of length <em>L</em> is used in an electric heater. When the potential difference across the wire is 200 V, the power dissipated in the wire is 1000 W. The same potential difference is applied across a second similar wire of length 2<em>L</em>. What is the power dissipated in the second wire?</p>
<p> </p>
<p>A. 250 W</p>
<p>B. 500 W</p>
<p>C. 2000 W</p>
<p>D. 4000 W</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three resistors are connected as shown. What is the value of the total resistance between X and Y?</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_16.44.55.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/18"></p>
<p>A. 1.5 Ω</p>
<p>B. 1.9 Ω</p>
<p>C. 6.0 Ω</p>
<p>D. 8.0 Ω</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A rectangular coil of wire RSTU is connected to a battery and placed in a magnetic field <em>Z</em> directed to the right. Both the plane of the coil and the magnetic field direction are in the same plane.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is true about the magnetic force acting on the sides RS and ST?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A charge <em>Q</em> is at a point between two electric charges <em>Q</em><sub>1</sub> and <em>Q</em><sub>2</sub>. The net electric force on Q is zero. Charge <em>Q</em><sub>1</sub> is further from <em>Q</em> than charge <em>Q</em><sub>2</sub>.</p>
<p>What is true about the signs of the charges <em>Q</em><sub>1</sub> and <em>Q</em><sub>2</sub> and their magnitudes?</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A charge +<em>Q</em> and a charge −2<em>Q</em> are a distance 3<em>x</em> apart. Point P is on the line joining the charges, at a distance <em>x</em> from +<em>Q</em>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The magnitude of the electric field produced at P by the charge +<em>Q</em> alone is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math>.</p>
<p>What is the total electric field at P?</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>E</mi><mn>2</mn></mfrac></math> to the right</p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>E</mi><mn>2</mn></mfrac></math> to the left</p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>E</mi></mrow><mn>2</mn></mfrac></math> to the right</p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>E</mi></mrow><mn>2</mn></mfrac></math> to the left</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two cylinders, X and Y, made from the same material, are connected in series.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The cross-sectional area of Y is twice that of X. The drift speed of the electrons in X is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mtext>X</mtext></msub></math> and in Y it is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mtext>Y</mtext></msub></math>.</p>
<p>What is the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>v</mi><mtext>X</mtext></msub><msub><mi>v</mi><mtext>Y</mtext></msub></mfrac></math>?</p>
<p>A. 4</p>
<p>B. 2</p>
<p>C. 1</p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Responses from SL candidates were split between options B and D. Candidates appeared to recognize the factor of two in the drift speed ratio, but were unclear as to whether it was 2:1 or 1:2. Candidates are encouraged to think if their answer makes sense given the context of the question; it is likely that common sense would help candidates in this instance. Practice manipulating ratios to compare changing variables is a useful skill, and this question could be put to good use in this regard.</p>
</div>
<br><hr><br><div class="question">
<p>Two wires, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math>, are made of the same material and have equal length. The diameter of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> is twice that of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math>.</p>
<p>What is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>resistance of X</mtext><mtext>resistance of Y</mtext></mfrac></math>?</p>
<p> </p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>4</mn></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>