File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 5 HTML/markSceme-HL-paper2html
File size: 748.7 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>A non-uniform electric field, with field lines as shown, exists in a region where there is&nbsp;no gravitational field. X is a point in the electric field. The field lines and X lie in the&nbsp;plane of the paper.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by electric field strength.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is placed at X and released from rest. Draw, on the diagram, the direction of the force acting on the electron due to the field.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The electron is replaced by a proton which is also released from rest at X. Compare, without calculation, the motion of the electron with the motion of the proton after release. You may assume that no frictional forces act on the electron or the proton.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>force per unit charge</p>
<p>acting on a small/test positive charge</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontally to the left</p>
<p><em>Arrow does not need to touch X</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>proton moves to the right/they move in opposite directions</p>
<p>force on each is initially the same</p>
<p>proton accelerates less than electron initially «because mass is greater»</p>
<p>field is stronger on right than left «as lines closer»</p>
<p>proton acceleration increases «as it is moving into stronger field»</p>
<p><em><strong>OR</strong></em></p>
<p>electron acceleration decreases «as it is moving into weaker field»</p>
<p><em>Allow ECF from (b)</em></p>
<p><em>Accept converse argument for electron</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen atoms in an ultraviolet (UV) lamp make transitions from the first excited state to the ground state. Photons are emitted and are incident on a photoelectric surface as shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_12.49.40.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08"></p>
</div>

<div class="specification">
<p>The photons cause the emission of electrons from the photoelectric surface. The work function of the photoelectric surface is 5.1 eV.</p>
</div>

<div class="specification">
<p>The electric potential of the photoelectric surface is 0 V. The variable voltage is adjusted so that the collecting plate is at –1.2 V.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy of photons from the UV lamp is about 10 eV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the maximum kinetic energy of the emitted electrons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with reference to conservation of energy, how the variable voltage source can be used to stop all emitted electrons from reaching the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The variable voltage can be adjusted so that no electrons reach the collecting plate. Write down the minimum value of the voltage for which no electrons reach the collecting plate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label the equipotential lines at –0.4 V and –0.8 V.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is emitted from the photoelectric surface with kinetic energy 2.1 eV. Calculate the speed of the electron at the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>1</sub> = –13.6&nbsp;<strong>«</strong>eV<strong>»</strong>&nbsp;E<sub>2</sub> = –&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{13.6}}{4}">
  <mfrac>
    <mrow>
      <mn>13.6</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span> = –3.4&nbsp;<strong>«</strong>eV<strong>»</strong></p>
<p>energy of photon is difference&nbsp;<em>E</em><sub>2</sub> – <em>E</em><sub>1</sub>&nbsp;=&nbsp;10.2&nbsp;<strong>«</strong>≈ 10 eV<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Must see at least 10.2 eV.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>10 – 5.1 = 4.9 <strong>«</strong>eV<strong>»</strong></p>
<p>4.9 × 1.6 × 10<sup>–19</sup> = 7.8 × 10<sup>–19</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Allow </em>5.1 <em>if </em>10.2 <em>is used to give</em> 8.2×10<sup>−19</sup> <strong>«</strong>J<strong>»</strong>.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>EPE produced by battery</p>
<p>exceeds maximum KE of electrons / electrons don’t have enough KE</p>
<p>&nbsp;</p>
<p><em>For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4.9&nbsp;<strong>«</strong>V<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow 5.1 if 10.2 is used in (b)(i).</em></p>
<p><em>Ignore sign on answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two equally spaced vertical lines (judge by eye) at approximately 1/3 and 2/3</p>
<p>labelled correctly</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_14.47.13.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08.c.i/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>kinetic energy at collecting plate =&nbsp;0.9&nbsp;<strong>«</strong>eV<strong>»</strong></p>
<p>speed =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{2 \times 0.9 \times 1.6 \times {{10}^{ - 19}}}}{{9.11 \times {{10}^{ - 31}}}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>2</mn>
        <mo>×</mo>
        <mn>0.9</mn>
        <mo>×</mo>
        <mn>1.6</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>19</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mn>9.11</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>31</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span><strong>»</strong>&nbsp;= 5.6 × 10<sup>5</sup>&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A lighting system consists of two long metal rods with a potential difference maintained&nbsp;between them. Identical lamps can be connected between the rods as required.</p>
<p style="text-align: center;"><img src=""></p>
<p>The following data are available for the lamps when at their working temperature.</p>
<p>&nbsp;</p>
<p style="padding-left: 90px;">Lamp specifications&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 24 V, 5.0 W</p>
<p style="padding-left: 90px;">Power supply emf&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;24 V</p>
<p style="padding-left: 90px;">Power supply maximum current&nbsp; &nbsp;8.0 A</p>
<p style="padding-left: 90px;">Length of each rod&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;12.5 m</p>
<p style="padding-left: 90px;">Resistivity of rod metal&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;7.2 × 10<sup>–7</sup> Ω m</p>
</div>

<div class="specification">
<p>A step-down transformer is used to transfer energy to the two rods. The primary coil&nbsp;of this transformer is connected to an alternating mains supply that has an emf of&nbsp;root mean square (rms) magnitude 240 V. The transformer is 95 % efficient.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum number of lamps that can be connected between the rods. Neglect the resistance of the rods.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One advantage of this system is that if one lamp fails then the other lamps in the circuit remain lit. Outline <strong>one</strong> other electrical advantage of this system compared to one in which the lamps are connected in series.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how eddy currents reduce transformer efficiency.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the peak current in the primary coil when operating with the maximum number of lamps.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt {\frac{{\rho l}}{{\pi {\text{R}}}}} ">
  <mi>r</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>ρ</mi>
        <mi>l</mi>
      </mrow>
      <mrow>
        <mi>π</mi>
        <mrow>
          <mtext>R</mtext>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span> <em><strong>OR </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{7.2 \times {{10}^{ - 7}} \times 12.5}}{{\pi  \times 0.1}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>7.2</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>7</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>×</mo>
        <mn>12.5</mn>
      </mrow>
      <mrow>
        <mi>π</mi>
        <mo>×</mo>
        <mn>0.1</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span> ✔</p>
<p><em>r</em> = 5.352 × 10<sup>−3</sup> ✔</p>
<p>5.4 × 10<sup>−3 </sup>«m» ✔</p>
<p> </p>
<p><em>For MP2 accept any SF </em></p>
<p><em>For MP3 accept only 2 SF </em></p>
<p><em>For MP3 accept <strong>ANY</strong> answer given to 2 SF</em></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \frac{{7.2 \times {{10}^{ - 7}} \times 12.5}}{{0.1}}">
  <mi>A</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>7.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>12.5</mn>
    </mrow>
    <mrow>
      <mn>0.1</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p><em>r</em> = 5.352 × 10<sup>−3</sup> ✔</p>
<p>5.4 × 10<sup>−3 </sup>«m» ✔</p>
<p> </p>
<p><em>For MP2 accept any SF </em></p>
<p><em>For MP3 accept only 2 SF </em></p>
<p><em>For MP3 accept <strong>ANY</strong> answer given to 2 SF</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>current in lamp = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{24}}">
  <mfrac>
    <mn>5</mn>
    <mrow>
      <mn>24</mn>
    </mrow>
  </mfrac>
</math></span> «= 0.21» «A»</p>
<p><em><strong>OR</strong></em></p>
<p><em>n</em> = 24 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{8}{{5}}">
  <mfrac>
    <mn>8</mn>
    <mrow>
      <mn>5</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p> </p>
<p>so «38.4 and therefore» 38 lamps ✔</p>
<p> </p>
<p><em>Do not award ECF from MP1</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when adding more lamps in parallel the brightness stays the same ✔</p>
<p>when adding more lamps in parallel the pd across each remains the same/at the operating value/24 V ✔</p>
<p>when adding more lamps in parallel the current through each remains the same ✔</p>
<p>lamps can be controlled independently ✔</p>
<p>the pd across each bulb is larger in parallel ✔</p>
<p>the current in each bulb is greater in parallel ✔</p>
<p>lamps will be brighter in parallel than in series ✔</p>
<p>In parallel the pd across the lamps will be the operating value/24 V ✔</p>
<p> </p>
<p><em>Accept converse arguments for adding lamps in series:</em></p>
<p><em>when adding more lamps in series the brightness decreases</em></p>
<p><em>when adding more lamps in series the pd decreases</em></p>
<p><em>when adding more lamps in series the current decreases</em></p>
<p><em>lamps can’t be controlled independently</em></p>
<p><em>the pd across each bulb is smaller in series</em></p>
<p><em>the current in each bulb is smaller in series</em></p>
<p> </p>
<p><em>in series the pd across the lamps will less than the operating value/24 V</em></p>
<p><em>Do not accept statements that only compare the overall resistance of the combination of bulbs.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«as flux linkage change occurs in core, induced emfs appear so» <span style="text-decoration: underline;">current</span> is <span style="text-decoration: underline;">induced</span> ✔</p>
<p>induced currents give rise to resistive forces ✔</p>
<p>eddy currents cause thermal energy losses «in conducting core» ✔</p>
<p>power dissipated by eddy currents is drawn from the primary coil/reduces power delivered to the secondary ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>power = 190 <em><strong>OR</strong> </em>192 «W» ✔</p>
<p>required power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 190 \times \frac{{100}}{{95}}">
  <mo>=</mo>
  <mn>190</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>95</mn>
    </mrow>
  </mfrac>
</math></span> «200 <em><strong>or</strong> </em>202 W» ✔</p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{200}}{{240}} = 0.83">
  <mfrac>
    <mrow>
      <mn>200</mn>
    </mrow>
    <mrow>
      <mn>240</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.83</mn>
</math></span> <em><strong>OR</strong> </em>0.84 «A rms» ✔</p>
<p>peak current = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.83 \times \sqrt 2 ">
  <mn>0.83</mn>
  <mo>×</mo>
  <msqrt>
    <mn>2</mn>
  </msqrt>
</math></span> <em><strong>OR</strong> </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.84 \times \sqrt 2 ">
  <mn>0.84</mn>
  <mo>×</mo>
  <msqrt>
    <mn>2</mn>
  </msqrt>
</math></span>» = 1.2/1.3 «A» ✔</p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of electrons e<sup>–</sup> enters a uniform electric field between parallel conducting plates RS. RS are connected to a direct current (dc) power supply. A uniform magnetic field B is directed into the plane of the page and is perpendicular to the direction of motion of the electrons.</p>
<p style="text-align: center;"><img src=""></p>
<p>The magnetic field is adjusted until the electron beam is <strong>undeflected</strong> as shown.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, on the diagram, the direction of the electric field between the plates.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following data are available.</p>



Separation of the plates RS
= 4.0 cm


Potential difference between the plates
= 2.2 kV


Velocity of the electrons
= 5.0×10<sup>5</sup> m s<sup>–1</sup>



<p>&nbsp;</p>
<p>Determine the strength of the magnetic field B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The velocity of the electrons is now increased. Explain the effect that this will have on the path of the electron beam.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>direction indicated downwards, perpendicular to plates</p>
<p><em>Arrows must be between plates but allow edge effects if shown. Only one arrow is required.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = \frac{V}{d} = 55\,000">
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mi>V</mi>
    <mi>d</mi>
  </mfrac>
  <mo>=</mo>
  <mn>55</mn>
  <mspace width="thinmathspace"></mspace>
  <mn>000</mn>
</math></span>&nbsp;«Vm<sup>–1</sup>»</p>
<p>B = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{55\,000}}{{5 \times {{10}^5}}} = ">
  <mfrac>
    <mrow>
      <mn>55</mn>
      <mspace width="thinmathspace"></mspace>
      <mn>000</mn>
    </mrow>
    <mrow>
      <mn>5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>5</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 0.11&nbsp;«T»</p>
<p><em>ECF applies from MP1 to MP2 due to math error.</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong> </em></p>
<p>magnetic force increases<br><em><strong>OR<br></strong></em>magnetic force becomes greater than electric force</p>
<p>&nbsp;</p>
<p>electron beam deflects “downwards” / towards S<br><em><strong>OR <br></strong></em>path of beam is downwards</p>
<p><em><strong>ALTERNATIVE 2</strong> </em></p>
<p>when <em>v</em> increases, the <em>B</em> required to maintain horizontal path decreases<br>«but B is constant» so path of beam is downwards</p>
<p><em>Do <strong>not</strong> apply an ecf from (a). </em></p>
<p><em>Award <strong>[1 max]</strong> if answer states that magnetic force decreases and therefore path is upwards. </em></p>
<p><em>Ignore any statement about shape of path<br></em></p>
<p><em>Do not allow “path deviates in direction of magnetic force” without qualification.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A cable consisting of many copper wires is used to transfer electrical energy from an&nbsp;alternating current (ac) generator to an electrical load. The copper wires are protected by&nbsp;an insulator.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><img src="blob:https://questionbank.ibo.org/bd73db7f-3f45-4a7f-b356-67d8fed5fa2a"></p>
</div>

<div class="specification">
<p>The cable consists of 32 copper wires each of length 35 km. Each wire has a&nbsp;resistance of 64 Ω. The cable is connected to the ac generator which has an&nbsp;output power of 110 MW when the peak potential difference is 150 kV. The resistivity&nbsp;of copper is 1.7 x&nbsp;10<sup>–8</sup> Ω m.</p>
<p>output power = 110 MW&nbsp;</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>To ensure that the power supply cannot be interrupted, two identical cables are&nbsp;connected in parallel.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The energy output of the ac generator is at a much lower voltage than the 150 kV used&nbsp;for transmission. A step-up transformer is used between the generator and the cables.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of each <strong>wire</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the peak current in the <strong>cable</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the power dissipated in the cable per unit length.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the root mean square (rms) current in each cable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The two cables in part (c) are suspended a constant distance apart. Explain how the&nbsp;magnetic forces acting between the cables vary during the course of one cycle of the&nbsp;alternating current (ac).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the advantage of using a step-up transformer in this way.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The use of alternating current (ac) in a transformer gives rise to energy losses.&nbsp;State how eddy current loss is minimized in the transformer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>area =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.7 \times {{10}^{ - 3}} \times 35 \times {{10}^3}}}{{64}}">
  <mfrac>
    <mrow>
      <mn>1.7</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>35</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>64</mn>
    </mrow>
  </mfrac>
</math></span> «= 9.3 x 10<sup>–6</sup> m<sup>2</sup>»</p>
<p>radius =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{9.3 \times {{10}^{ - 6}}}}{\pi }} &nbsp;= ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>9.3</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>6</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mi>π</mi>
    </mfrac>
  </msqrt>
  <mo>=</mo>
</math></span>» 0.00172 m</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>I</em><sub>peak</sub> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{P_{peak}}}}{{{V_{peak}}}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>P</mi>
          <mrow>
            <mi>p</mi>
            <mi>e</mi>
            <mi>a</mi>
            <mi>k</mi>
          </mrow>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>V</mi>
          <mrow>
            <mi>p</mi>
            <mi>e</mi>
            <mi>a</mi>
            <mi>k</mi>
          </mrow>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 730&nbsp;« A »</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>resistance of cable identified as&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{64}}{{32}} = ">
  <mfrac>
    <mrow>
      <mn>64</mn>
    </mrow>
    <mrow>
      <mn>32</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 2 Ω</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{a power}}}}{{35000}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>a power</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>35000</mn>
    </mrow>
  </mfrac>
</math></span> seen in solution</p>
<p>plausible answer calculated using&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{2}}{{\text{I}}^{\text{2}}}}}{{35000}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>I</mtext>
          </mrow>
          <mrow>
            <mtext>2</mtext>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>35000</mn>
    </mrow>
  </mfrac>
</math></span> «plausible if in&nbsp;range 10 W m<sup>–1</sup> to 150 W m<sup>–1</sup> when quoted answers in&nbsp;(b)(ii) used» 31 «W m<sup>–1</sup>»</p>
<p>&nbsp;</p>
<p><em>Allow <strong>[3]</strong> for a solution where the resistance per unit metre is&nbsp;calculated using resistivity and answer to (a) (resistance per unit&nbsp;length of cable = 5.7 x 10<sup>–5</sup> m )</em></p>
<p><em>Award <strong>[2 max]</strong> if 64 Ω used for resistance (answer x32).</em></p>
<p><em>An approach from&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{V^2}}}{R}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>V</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>R</mi>
  </mfrac>
</math></span> or VI using 150 kV is incorrect (award <strong>[0]</strong>), however allow this approach if the pd across the cable has&nbsp;been calculated (pd dropped across cable is 1.47 kV).</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{response to (b)(ii)}}}}{{2\sqrt 2 }}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>response to (b)(ii)</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>2</mn>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>» = 260 «A»</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wires/cable attract whenever current is in same direction</p>
<p>charge flow/current direction in both wires is always same «but reverses every half cycle»</p>
<p>force varies from 0 to maximum</p>
<p>force is a maximum twice in each cycle</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> if response suggests that there is&nbsp;repulsion between cables at any stage in cycle.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>higher voltage gives lower current</p>
<p>«energy losses depend on current» hence thermal/heating/power losses reduced</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>laminated core</p>
<p>&nbsp;</p>
<p><em>Do not allow “wires are laminated”.</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows how current <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> varies with potential difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> across a component X.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="532" height="357"></p>
</div>

<div class="specification">
<p>Component X and a cell of negligible internal resistance are placed in a circuit.</p>
<p>A variable resistor R is connected in series with component X. The ammeter reads <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mi>mA</mi></math>.</p>
<p style="text-align: center;"><img src="" width="187" height="157"></p>
</div>

<div class="specification">
<p>Component X and the cell are now placed in a potential divider circuit.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="241" height="131"></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why component X is considered non-ohmic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the resistance of the variable resistor.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the power dissipated in the circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Slider S of the potential divider is positioned so that the ammeter reads <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>mA</mtext></math>. Explain, without further calculation, any difference in the power transferred by the potential divider arrangement over the arrangement in (b).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">current is not «directly» proportional to the potential difference<br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">resistance of X is not constant<br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">resistance of X changes «with current/voltage» </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span class="fontstyle0">voltage across X<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math> ✓</span></p>
<p><span class="fontstyle0">voltage across R<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>»</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>7</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math> ✓</span></p>
<p><span class="fontstyle0">resistance of variable resistor <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>7</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>85</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">Ω</mi><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>overall resistance <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>0</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>200</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">Ω</mi><mo>»</mo></math> ✓</p>
<p>resistance of X <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>115</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">Ω</mi><mo>»</mo></math> ✓</p>
<p>resistance of variable resistor <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mn>200</mn><mo>-</mo><mn>115</mn><mo>»</mo><mo>=</mo><mn>85</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">Ω</mi><mo>»</mo></math> ✓</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>power <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>020</mn><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>080</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">W</mi><mo>»</mo></math> <span class="fontstyle0">✓</span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><mi>mA</mi></math> </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>current from the cell is greater «than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>mA</mtext></math>» ✓</p>
<p>because some of the current must flow through section SQ of the potentiometer ✓</p>
<p>overall power greater «than in part (b)» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>total/overall resistance decreases ✓</p>
<p>because SQ and X are in parallel ✓</p>
<p>overall power greater «than in part (b)» ✓</p>
<p><br><em>Allow the reverse argument.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most answers that didn't score simply referred to the shape of the graph without any explanation as to what this meant to the relationship between the variables.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question produced a mixture of answers from the 2 alternatives given in the markscheme. As a minimum, many candidates were able to score a mark for the overall resistance of the circuit.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A straightforward calculation question that most candidates answered correctly.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly a significant number of candidates had difficulty with this. Answers of 20 mA and 4 V were often seen.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HL only. This question challenged candidate's ability to describe clearly the changes in an electrical circuit. It revealed many misconceptions about the nature of electrical current and potential difference, of those who did have a grasp of what was going on the explanations often missed the second point in each of the markscheme alternatives as detail was missed about where the current was flowing or what was in parallel with what.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>There is a proposal to power a space satellite X as it orbits the Earth. In this model,&nbsp;X is connected by an electronically-conducting cable to another smaller satellite Y.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Satellite Y orbits closer to the centre of Earth than satellite X. Outline why</p>
</div>

<div class="specification">
<p>The cable acts as a spring. Satellite Y has a mass <em>m</em> of 3.5&nbsp;x 10<sup>2</sup> kg. Under certain&nbsp;circumstances, satellite Y will perform simple harmonic motion (SHM) with a period <em>T</em>&nbsp;of 5.2 s.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Satellite X orbits 6600 km from the centre of the Earth.</p>
<p>Mass of the Earth = 6.0 x 10<sup>24</sup> kg</p>
<p>Show that the orbital speed of satellite X is about 8 km s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the orbital times for X and Y are different.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>satellite Y requires a propulsion system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable between the satellites cuts the magnetic field lines of the Earth at right angles.</p>
<p><img src=""></p>
<p>Explain why satellite X becomes positively charged.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Satellite X must release ions into the space between the satellites. Explain why the current in the cable will become zero unless there is a method for transferring charge from X to Y.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The magnetic field strength of the Earth is 31 μT at the orbital radius of the satellites. The cable is 15 km in length. Calculate the emf induced in the cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the value of <em>k</em> in the following expression.</p>
<p><em>T</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi \sqrt {\frac{m}{k}} ">
  <mn>2</mn>
  <mi>π</mi>
  <msqrt>
    <mfrac>
      <mi>m</mi>
      <mi>k</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p>Give an appropriate unit for your answer. Ignore the mass of the cable and any oscillation of satellite X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the energy changes in the satellite Y-cable system during one cycle of the oscillation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {\frac{{G{M_E}}}{r}} ">
  <mi>v</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>G</mi>
        <mrow>
          <msub>
            <mi>M</mi>
            <mi>E</mi>
          </msub>
        </mrow>
      </mrow>
      <mi>r</mi>
    </mfrac>
  </msqrt>
</math></span>» = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{6.67 \times {{10}^{ - 11}} \times 6.0 \times {{10}^{24}}}}{{6600 \times {{10}^3}}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>6.67</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>11</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>×</mo>
        <mn>6.0</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mn>24</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mn>6600</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span></p>
<p>7800 «m s<sup>–1</sup>»</p>
<p><em>Full substitution required</em></p>
<p><em>Must see 2+ significant figures.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Y has smaller orbit/orbital speed is greater so time period is less</p>
<p><em>Allow answer from appropriate equation</em></p>
<p><em>Allow converse argument for X</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to stop Y from getting ahead</p>
<p>to remain stationary with respect to X</p>
<p>otherwise will add tension to cable/damage satellite/pull X out of its orbit</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>cable is a conductor and contains electrons</p>
<p>electrons/charges experience a force when moving in a magnetic field</p>
<p>use of a suitable hand rule to show that satellite Y becomes negative «so X becomes positive»</p>
<p><em><strong>Alternative 2</strong></em></p>
<p>cable is a conductor</p>
<p>so current will flow by induction flow when it moves through a B field</p>
<p>use of a suitable hand rule to show current to right so «X becomes positive»</p>
<p><em>Marks should be awarded from either one alternative or the other.</em></p>
<p><em>Do not allow discussion of positive charges moving towards X</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons would build up at satellite Y/positive charge at X</p>
<p>preventing further charge flow</p>
<p>by electrostatic repulsion</p>
<p>unless a complete circuit exists</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>ε</em> = <em>Blv =</em>» 31 x 10<sup>–6</sup> x 7990 x 15000</p>
<p>3600 «V»</p>
<p><em>Allow 3700 «V» from v = 8000 m s<sup>–1</sup>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>k</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4{\pi ^2}m}}{{{T^2}}} = ">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>T</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times {\pi ^2} \times 350}}{{{{5.2}^2}}}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>350</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>5.2</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>510</p>
<p>N m<sup>–1</sup> <em><strong>or</strong> </em>kg s<sup>–2</sup></p>
<p><em>Allow MP1 and MP2 for a bald correct answer</em></p>
<p><em>Allow 500</em></p>
<p><em>Allow N/m etc.</em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>p</sub> in the cable/system transfers to <em>E</em><sub>k</sub> of Y</p>
<p>and back again twice in each cycle</p>
<p><em>Exclusive use of gravitational potential energy negates MP1</em></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The primary coil of a transformer is connected to a 110 V alternating current (ac) supply.&nbsp;The secondary coil of the transformer is connected to a 15 V garden lighting system that&nbsp;consists of 8 lamps connected in parallel. Each lamp is rated at 35 W when working at&nbsp;its normal brightness. Root mean square (rms) values are used throughout this question.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The primary coil has 3300 turns. Calculate the number of turns on the secondary coil.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the total resistance of the lamps when they are working normally.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the current in the primary of the transformer assuming that it is ideal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Flux leakage is one reason why a transformer may not be ideal. Explain the effect&nbsp;of flux leakage on the transformer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A pendulum with a metal bob comes to rest after 200 swings. The same pendulum, released from the same position, now swings at 90° to the direction of a strong magnetic field and comes to rest after 20 swings.</p>
<p style="text-align:center;"> <img src=""></p>
<p>Explain why the pendulum comes to rest after a smaller number of swings.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mn>15</mn><mn>110</mn></mfrac><mo>×</mo><mn>3300</mn><mo>=</mo><mo>»</mo><mo>&nbsp;</mo><mn>450</mn><mo>&nbsp;</mo><mo>«</mo><mtext>turns</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p>&nbsp;</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>calculates total current&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">=</mi><mfrac><mn>35</mn><mn>15</mn></mfrac><mo>×</mo><mn>8</mn><mo>«</mo><mo>=</mo><mn>18</mn><mo>.</mo><mn>7</mn><mtext> A</mtext><mo>»</mo></math>✓</p>
<p>resistance&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>«</mo><mfrac><mn>15</mn><mrow><mn>18</mn><mo>.</mo><mn>7</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo> </mo><mo>«</mo><mtext>Ω</mtext><mo>»</mo></math> ✓</p>
<p><em><strong><br>ALTERNATIVE 2</strong></em></p>
<p>calculates total power&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=&nbsp;35</mo><mo>×</mo><mn>8</mn><mo>&nbsp;</mo><mtext>«&nbsp;=&nbsp;280 W»</mtext></math>&nbsp;✓</p>
<p>resistance&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>«</mo><mfrac><msup><mn>15</mn><mn>2</mn></msup><mn>280</mn></mfrac><mo>=</mo><mo>»</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo> </mo><mo>«</mo><mtext>Ω</mtext><mo>»</mo></math>✓</p>
<p><em><strong><br>ALTERNATIVE 3</strong></em></p>
<p>calculates individual resistance<em>&nbsp;</em><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><msup><mn>15</mn><mn>2</mn></msup><mn>35</mn></mfrac><mo>«</mo><mo>=</mo><mn>6</mn><mo>.</mo><mn>43</mn><mo> </mo><mtext>Ω</mtext><mo>»</mo></math>✓</p>
<p>resistance&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>«</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>43</mn></mrow><mn>8</mn></mfrac><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo> </mo><mo>«</mo><mtext>Ω</mtext><mo>»</mo></math>✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total power required = 280 «W»<em><strong><br>OR<br></strong></em>uses factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3300</mn><mn>450</mn></mfrac></math><em><strong><br>OR<br></strong></em>total current = 18.7 « A» <strong>✓</strong><em><strong><br></strong></em></p>
<p>current = 2.5 <em><strong>OR</strong> </em>2.6 «A»&nbsp;<strong>✓</strong></p>
<p><em><br>Award <strong>[2] marks</strong> for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> from (a)(ii).</em></p>
<p>&nbsp;</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the secondary coil does not enclose all flux «lines from core» <strong>✓</strong></p>
<p>induced emf in secondary<br><em><strong>OR</strong></em><br>power transferred to the secondary<br><em><strong>OR</strong></em><br>efficiency is less than expected <strong>✓</strong></p>
<p><em><br>Award <strong>[0]</strong> for references to eddy currents/heating of the core as the reason.</em></p>
<p><em>Award <strong>MP2</strong> if no reason stated.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bob cuts mag field lines<br><em><strong>OR</strong></em><br>there is a change in flux linkage <strong>✓</strong></p>
<p>induced emf across bob <strong>✓</strong></p>
<p>leading to eddy/induced current in bob <strong>✓</strong></p>
<p>eddy/induced current produces a magnetic field that opposes «direction of» motion <strong>✓</strong></p>
<p>force due to the induced magnetic field decelerates bob <strong>✓</strong></p>
<p>damping of pendulum increases/there is additional «magnetic» damping <strong>✓</strong></p>
<p><em><strong><br>MP4</strong> and <strong>MP5</strong> can be expressed in terms of energy transfer from kinetic energy of bob to electrical/thermal energy in bob</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,45}^{106}{\text{Rh}}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>45</mn>
    </mrow>
    <mrow>
      <mn>106</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Rh</mtext>
  </mrow>
</math></span>)&nbsp;decays into palladium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,46}^{106}{\text{Pd}}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>46</mn>
    </mrow>
    <mrow>
      <mn>106</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Pd</mtext>
  </mrow>
</math></span>)&nbsp;by beta minus (<em>β</em><sup>–</sup>) decay.&nbsp;The diagram shows some of the nuclear energy levels of rhodium-106 and palladium-106.&nbsp;The arrow represents the <em>β</em><sup>–</sup> decay.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.42.36.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/09.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bohr modified the Rutherford model by introducing the condition&nbsp;<em>mvr </em>= <em>n</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
  <mfrac>
    <mi>h</mi>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
  </mfrac>
</math></span>.&nbsp;Outline the reason for this modification.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed <em>v </em>of an electron in the hydrogen atom is related to the&nbsp;radius <em>r </em>of the orbit by the expression</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="v = \sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} ">
  <mi>v</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>k</mi>
        <mrow>
          <msup>
            <mi>e</mi>
            <mn>2</mn>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mrow>
          <msub>
            <mi>m</mi>
            <mrow>
              <mtext>e</mtext>
            </mrow>
          </msub>
        </mrow>
        <mi>r</mi>
      </mrow>
    </mfrac>
  </msqrt>
</math></span></p>
<p>where <em>k </em>is the Coulomb constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the answer in (b) and (c)(i), deduce that the radius <em>r </em>of the electron’s orbit&nbsp;in the ground state of hydrogen is given by the following expression.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="r = \frac{{{h^2}}}{{4{\pi ^2}k{m_{\text{e}}}{e^2}}}">
  <mi>r</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>h</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>k</mi>
      <mrow>
        <msub>
          <mi>m</mi>
          <mrow>
            <mtext>e</mtext>
          </mrow>
        </msub>
      </mrow>
      <mrow>
        <msup>
          <mi>e</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electron’s orbital radius in (c)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what may be deduced about the energy of the electron in the <em>β</em><sup>–</sup> decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the <em>β</em><sup>–</sup> decay is followed by the emission of a gamma ray photon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the gamma ray photon in (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the electrons accelerate and so radiate energy</p>
<p>they would therefore spiral into the nucleus/atoms would be unstable</p>
<p>electrons have discrete/only certain energy levels</p>
<p>the only orbits where electrons do not radiate are those that satisfy the Bohr condition&nbsp;<strong>«</strong><em>mvr</em> =&nbsp;<em>n</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
  <mfrac>
    <mi>h</mi>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
  </mfrac>
</math></span><strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{m_{\text{e}}}{v^2}}}{r} = \frac{{k{e^2}}}{{{r^2}}}">
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mrow>
            <mtext>e</mtext>
          </mrow>
        </msub>
      </mrow>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>r</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>k</mi>
      <mrow>
        <msup>
          <mi>e</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>r</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p>KE =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>PE hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>m</em><sub>e</sub><em>v</em><sup>2</sup> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\frac{{k{e^2}}}{r}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mfrac>
    <mrow>
      <mi>k</mi>
      <mrow>
        <msup>
          <mi>e</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span></p>
<p><strong>«</strong>solving for <em>v </em>to get answer<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Answer given – look for correct working</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>combining <em>v</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mi>k</mi>
        <mrow>
          <msup>
            <mi>e</mi>
            <mn>2</mn>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mrow>
          <msub>
            <mi>m</mi>
            <mrow>
              <mtext>e</mtext>
            </mrow>
          </msub>
        </mrow>
        <mi>r</mi>
      </mrow>
    </mfrac>
  </msqrt>
</math></span>&nbsp;with <em>m</em><sub>e</sub><em>vr</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
  <mfrac>
    <mi>h</mi>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
  </mfrac>
</math></span>&nbsp;using correct substitution</p>
<p><strong>«</strong><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_e}^2\frac{{k{e^2}}}{{{m_{\text{e}}}r}}{r^2} = \frac{{{h^2}}}{{4{\pi ^2}}}">
  <msup>
    <mrow>
      <msub>
        <mi>m</mi>
        <mi>e</mi>
      </msub>
    </mrow>
    <mn>2</mn>
  </msup>
  <mfrac>
    <mrow>
      <mi>k</mi>
      <mrow>
        <msup>
          <mi>e</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mrow>
            <mtext>e</mtext>
          </mrow>
        </msub>
      </mrow>
      <mi>r</mi>
    </mrow>
  </mfrac>
  <mrow>
    <msup>
      <mi>r</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>h</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong></p>
<p>correct algebraic manipulation to gain the answer</p>
<p>&nbsp;</p>
<p><em>Answer given – look for correct working</em></p>
<p><em>Do not allow a bald statement of the answer for MP2. Some further working eg cancellation of m or r must be shown</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>&nbsp;<em>r</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{(6.63 \times {{10}^{ - 34}})}^2}}}{{4{\pi ^2} \times 8.99 \times {{10}^9} \times 9.11 \times {{10}^{ - 31}} \times {{(1.6 \times {{10}^{ - 19}})}^2}}}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mn>6.63</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mrow>
                  <mo>−</mo>
                  <mn>34</mn>
                </mrow>
              </msup>
            </mrow>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>8.99</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>9</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>9.11</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>31</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mn>1.6</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mrow>
                  <mo>−</mo>
                  <mn>19</mn>
                </mrow>
              </msup>
            </mrow>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong></p>
<p><em>r</em> = 5.3&nbsp;× 10<sup>–11</sup>&nbsp;<strong>«</strong>m<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the energy released is 3.54 – 0.48 = 3.06 <strong>«</strong>MeV<strong>»</strong></p>
<p>this is shared by the electron and the antineutrino</p>
<p>so the electron’s energy varies from 0 to 3.06 <strong>«</strong>MeV<strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the palladium nucleus emits the photon when it decays into the ground state <strong>«</strong>from the excited state<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Photon energy</p>
<p><em>E</em> = 0.48&nbsp;×&nbsp;10<sup>6</sup>&nbsp;× 1.6&nbsp;× 10<sup>–19</sup> =&nbsp;<strong>«</strong>7.68 × 10<sup>–14</sup>&nbsp;<em>J</em><strong>»</strong></p>
<p><em>λ</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{E} = \frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{7.68 \times {{10}^{ - 14}}}}">
  <mfrac>
    <mrow>
      <mi>h</mi>
      <mi>c</mi>
    </mrow>
    <mi>E</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>6.63</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>34</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>7.68</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =<strong>»</strong> 2.6&nbsp;× 10<sup>–12</sup><strong>&nbsp;«</strong>m<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow ECF from incorrect energy</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>An ohmic conductor is connected to an ideal ammeter and to a power supply of output voltage V.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.57.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/04"></p>
<p>The following data are available for the conductor:</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; density of free electrons&nbsp; &nbsp; &nbsp;= 8.5 × 10<sup>22</sup>&nbsp;cm<sup>−3</sup></p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; resistivity&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ρ =&nbsp;1.7 × 10<sup>−8</sup>&nbsp;Ωm</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; dimensions&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;w&nbsp;× h&nbsp;× l = 0.020 cm × 0.020 cm × 10 cm.</p>
<p>&nbsp;</p>
<p>The ammeter reading is 2.0 A.</p>
</div>

<div class="specification">
<p>The electric field <em>E </em>inside the sample can be approximated as the uniform electric field between two parallel plates.</p>
</div>

<div class="specification">
<p>An ohmic conductor is connected to an ideal ammeter and to a power supply of output voltage V.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.57.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/04"></p>
<p>The following data are available for the conductor:</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; density of free electrons&nbsp; &nbsp; &nbsp;= 8.5 × 10<sup>22</sup> cm<sup>−3</sup></p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; resistivity&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ρ =&nbsp;1.7 × 10<sup>−8</sup>&nbsp;Ωm</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; dimensions&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;w&nbsp;× h&nbsp;× l = 0.020 cm × 0.020 cm × 10 cm.</p>
<p>&nbsp;</p>
<p>The ammeter reading is 2.0 A.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the resistance of the conductor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the drift speed <em>v </em>of the electrons in the conductor in cm s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the electric field strength <em>E</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{E} = \frac{1}{{ne\rho }}">
  <mfrac>
    <mi>v</mi>
    <mi>E</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mi>n</mi>
      <mi>e</mi>
      <mi>ρ</mi>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1.7 × 10<sup>–8</sup> ×&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.10}}{{{{(0.02 \times {{10}^{ - 2}})}^2}}}">
  <mfrac>
    <mrow>
      <mn>0.10</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mn>0.02</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mrow>
                  <mo>−</mo>
                  <mn>2</mn>
                </mrow>
              </msup>
            </mrow>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.043 <strong>«</strong>Ω<strong>»</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>v</em> <strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{I}{{neA}}">
  <mfrac>
    <mi>I</mi>
    <mrow>
      <mi>n</mi>
      <mi>e</mi>
      <mi>A</mi>
    </mrow>
  </mfrac>
</math></span><strong>»</strong> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{{8.5 \times {{10}^{22}} \times 1.60 \times {{10}^{ - 19}} \times {{0.02}^2}}}">
  <mfrac>
    <mn>2</mn>
    <mrow>
      <mn>8.5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>22</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>1.60</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>19</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>0.02</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.37 <strong>«</strong>cms<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V</em> =&nbsp;<em>RI</em> = 0.086&nbsp;<strong>«</strong><em>V</em><strong>»</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{V}{d} = \frac{{0.086}}{{0.10}} = ">
  <mfrac>
    <mi>V</mi>
    <mi>d</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.086</mn>
    </mrow>
    <mrow>
      <mn>0.10</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 0.86&nbsp;<strong>«</strong>V m<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow ECF from 4(a).</em></p>
<p><em>Allow ECF from MP1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>clear use of Ohm’s Law (<em>V&nbsp;</em>=&nbsp;<em>IR</em>)</p>
<p>clear use of <em>R</em>&nbsp;= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\rho L}}{A}">
  <mfrac>
    <mrow>
      <mi>ρ</mi>
      <mi>L</mi>
    </mrow>
    <mi>A</mi>
  </mfrac>
</math></span></p>
<p>combining with <em>I </em>= <em>nAve </em>and <em>V </em>= <em>EL </em>to reach result.</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>attempts to substitute values into equation.</p>
<p>correctly calculates LHS as 4.3 × 10<sup>9</sup>.</p>
<p>correctly calculates RHS as 4.3 × 10<sup>9</sup>.</p>
<p>&nbsp;</p>
<p><strong><em>For ALTERNATIVE 1 look for:</em></strong></p>
<p><em>V</em> =&nbsp;<em>IR</em></p>
<p><em>R</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\rho L}}{A}">
  <mfrac>
    <mrow>
      <mi>ρ</mi>
      <mi>L</mi>
    </mrow>
    <mi>A</mi>
  </mfrac>
</math></span></p>
<p><em>V</em> =&nbsp;<em>EL</em></p>
<p><em>I</em> =&nbsp;<em>nAve</em></p>
<p><em>V</em> =&nbsp;<em>I</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\rho L}}{A}">
  <mfrac>
    <mrow>
      <mi>ρ</mi>
      <mi>L</mi>
    </mrow>
    <mi>A</mi>
  </mfrac>
</math></span></p>
<p><em>EL</em> = <em>I</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\rho L}}{A}">
  <mfrac>
    <mrow>
      <mi>ρ</mi>
      <mi>L</mi>
    </mrow>
    <mi>A</mi>
  </mfrac>
</math></span></p>
<p><em>E</em> =&nbsp;<em>I</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\rho }{A}">
  <mfrac>
    <mi>ρ</mi>
    <mi>A</mi>
  </mfrac>
</math></span></p>
<p><em>E</em> =&nbsp;<em>nAve</em><em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\rho }{A}">
  <mfrac>
    <mi>ρ</mi>
    <mi>A</mi>
  </mfrac>
</math></span> = nveρ</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{E} = \frac{1}{{ne\rho }}">
  <mfrac>
    <mi>v</mi>
    <mi>E</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mi>n</mi>
      <mi>e</mi>
      <mi>ρ</mi>
    </mrow>
  </mfrac>
</math></span></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a potential divider circuit used to measure the emf <em>E </em>of a cell X.&nbsp;Both cells have negligible internal resistance.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_13.01.10.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/04"></p>
</div>

<div class="specification">
<p>AB is a wire of uniform cross-section and length 1.0 m. The resistance of wire AB&nbsp;is 80 Ω. When the length of AC is 0.35 m the current in cell X is zero.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the emf of a cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the resistance of the wire AC is 28 Ω.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <em>E</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Cell X is replaced by a second cell of identical emf <em>E </em>but with internal resistance 2.0 Ω.&nbsp;Comment on the length of AC for which the current in the second cell is zero.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the work done per unit charge</p>
<p>in moving charge from one terminal of a cell to the other / all the way round the circuit</p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for “energy per unit charge provided by the cell”/“power per unit current”</em></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for “potential difference across the terminals of the cell when no current is flowing”&nbsp;</em></p>
<p><em>Do not accept “potential difference across terminals of cell”</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the resistance is proportional to length / see 0.35 <strong><em>AND&nbsp;</em></strong>1«.00»</p>
<p>so it equals 0.35 ×&nbsp;80</p>
<p><strong>«</strong>=&nbsp;28 Ω<strong>»</strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>current leaving 12 V cell is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12}}{{80}}">
  <mfrac>
    <mrow>
      <mn>12</mn>
    </mrow>
    <mrow>
      <mn>80</mn>
    </mrow>
  </mfrac>
</math></span> =&nbsp;0.15 <strong>«</strong>A<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><em>E</em>&nbsp;= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12}}{{80}}">
  <mfrac>
    <mrow>
      <mn>12</mn>
    </mrow>
    <mrow>
      <mn>80</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp;× 28</p>
<p><em>E</em> =&nbsp;<strong>«</strong>0.15 × 28 =<strong>»</strong>&nbsp;4.2 <strong>«</strong>V<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow a 1sf answer of 4 if it comes from a calculation.</em></p>
<p><em>Do not allow a bald answer of 4 </em><strong>«</strong><em>V</em><strong>»</strong></p>
<p><em>Allow ECF from incorrect current</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>since the current in the cell is still zero there is no potential drop across the internal resistance</p>
<p>and so the length would be the same</p>
<p>&nbsp;</p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two equal positive fixed point charges <em>Q</em> = +44&thinsp;&mu;C and point P are at the vertices of an&nbsp;equilateral triangle of side 0.48&thinsp;m.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Point P is now moved closer to the charges.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A point charge <em>q</em> = &minus;2.0&thinsp;&mu;C and mass 0.25&thinsp;kg is placed at P. When <em>x</em> is small&nbsp;compared to <em>d</em>, the magnitude of the net force on <em>q</em> is <em>F</em> &asymp; 115<em>x</em>.</p>
</div>

<div class="specification">
<p>An uncharged parallel plate capacitor C is connected to a cell of emf 12&thinsp;V, a resistor R&nbsp;and another resistor of resistance 20&thinsp;M&Omega;.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the resultant electric field at P is 3 MN C<sup>−1</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant electric field at P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <em>q</em> will perform simple harmonic oscillations when it is released.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the period of oscillations of <em>q</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At <em>t</em> = 0, the switch is connected to X. On the axes, draw a sketch graph to show the variation with time of the voltage <em>V</em><sub>R</sub> across R.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The switch is then connected to Y and C discharges through the 20 MΩ resistor. The voltage <em>V</em><sub>c</sub> drops to 50 % of its initial value in 5.0 s. Determine the capacitance of C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«electric field at P from one charge is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>k</mi><mi>Q</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>44</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>48</mn><mn>2</mn></msup></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>7168</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math> «NC<sup>−1</sup>» ✓</p>
<p><br>« net field is » <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>7168</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mi>cos</mi><mo> </mo><mn>30</mn><mo>°</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>97</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math> «NC<sup>−1</sup>» ✓</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>directed vertically up «on plane of the page» ✓</p>
<p> </p>
<p><em>Allow an arrow pointing up on the diagram.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force «on <em>q</em>» is proportional to the displacement ✓</p>
<p>and opposite to the displacement / directed towards equilibrium ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>a</mi><mo>=</mo><mfrac><mi>F</mi><mi>m</mi></mfrac><mo>=</mo><mo>»</mo><msup><mi>ω</mi><mn>2</mn></msup><mi>x</mi><mo>=</mo><mfrac><mrow><mn>115</mn><mi>x</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>ω</mi></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>29</mn><mo> </mo><mo>«</mo><mtext>s</mtext><mo>»</mo></math> ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreasing from 12 ✓</p>
<p>correct shape as shown ✓</p>
<p><img src=""></p>
<p> </p>
<p><em>Do not penalize if the graph does not touch the t axis.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mrow><mn>5</mn><mo>.</mo><mn>0</mn></mrow><mrow><mn>20</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo> </mo><mi>C</mi></mrow></mfrac></mrow></msup></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup></math> «F» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Ion-thrust engines can power spacecraft. In this type of engine, ions are created in a&nbsp;chamber and expelled from the spacecraft. The spacecraft is in outer space when the&nbsp;propulsion system is turned on. The spacecraft starts from rest.</p>
<p style="text-align: center;"><img src=""></p>
<p>The mass of ions ejected each second is 6.6 × 10<sup><span style="font-size: small;">–6 </span></sup>kg and the speed of each ion is&nbsp;5.2 × 10<sup><span style="font-size: small;">4</span></sup> m s<sup><span style="font-size: small;">–1</span></sup>. The initial total mass of the spacecraft and its fuel is 740 kg. Assume that&nbsp;the ions travel away from the spacecraft parallel to its direction of motion.</p>
</div>

<div class="specification">
<p>An initial mass of 60 kg of fuel is in the spacecraft for a journey to a planet. Half of the&nbsp;fuel will be required to slow down the spacecraft before arrival at the destination planet.</p>
</div>

<div class="specification">
<p>In practice, the ions leave the spacecraft at a range of angles as shown.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Estimate the maximum speed of the spacecraft.</p>
<p>(ii) Outline why the answer to (i) is an estimate.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why scientists sometimes use estimates in making calculations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ions are likely to spread out.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what effect, if any, this spreading of the ions has on the acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>change in momentum each second = 6.6 × 10<sup>−6</sup> × 5.2 × 10<sup>4</sup> «= 3.4 × 10<sup>−1 </sup>kg m s<sup>−1</sup>» ✔</p>
<p>acceleration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.4 \times {{10}^{ - 1}}}}{{740}}">
  <mfrac>
    <mrow>
      <mn>3.4</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>740</mn>
    </mrow>
  </mfrac>
</math></span> =» 4.6 × 10<sup>−4</sup> «m s<sup>−2</sup>» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <strong>ALTERNATIVE</strong><em><strong> 1:</strong></em></p>
<p>(considering the acceleration of the spacecraft)</p>
<p>time for acceleration = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30}}{{6.6 \times {{10}^{ - 6}}}}">
  <mfrac>
    <mrow>
      <mn>30</mn>
    </mrow>
    <mrow>
      <mn>6.6</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = «4.6 × 10<sup>6</sup>» «s» ✔</p>
<p>max speed = «answer to (a) × 4.6 × 10<sup>6</sup> =» 2.1 × 10<sup>3</sup> «m s<sup>−1</sup>» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>(considering the conservation of momentum)</p>
<p>(momentum of 30 kg of fuel ions = change of momentum of spacecraft)</p>
<p>30 × 5.2 × 10<sup>4 </sup>= 710 × max speed ✔</p>
<p>max speed = 2.2 × 10<sup>3 </sup>«m s<sup>−1</sup>» ✔</p>
<p> </p>
<p>(ii) as fuel is consumed total mass changes/decreases so acceleration changes/increases<br><em><strong>OR</strong></em><br>external forces (such as gravitational) can act on the spacecraft so acceleration isn’t constant ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>problem may be too complicated for exact treatment ✔</p>
<p>to make equations/calculations simpler ✔</p>
<p>when precision of the calculations is not important ✔</p>
<p>some quantities in the problem may not be known exactly ✔</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ions have same (sign of) charge ✔</p>
<p>ions repel each other ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the forces between the ions do not affect the force on the spacecraft. ✔</p>
<p>there is no effect on the acceleration of the spacecraft. ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A square loop of side 5.0&thinsp;cm enters a region of uniform magnetic field at <em>t</em> = 0. The loop exits&nbsp;the region of magnetic field at <em>t</em> = 3.5&thinsp;s. The magnetic field strength is 0.94&thinsp;T and is directed&nbsp;into the plane of the paper. The magnetic field extends over a length 65&thinsp;cm. The speed of the&nbsp;loop is constant.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the loop is 20 cm s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation with time of the magnetic flux linkage <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Φ</mi></math> in the loop.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation with time of the magnitude of the emf induced in the loop.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are 85 turns of wire in the loop. Calculate the maximum induced emf in the loop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the loop is 2.4 Ω. Calculate the magnitude of the magnetic force on the loop as it enters the region of magnetic field.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy dissipated in the loop from <em>t </em>= 0 to <em>t </em>= 3.5 s is 0.13 J.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the wire is 18 g. The specific heat capacity of copper is 385 J kg<sup>−1</sup> K<sup>−1</sup>. Estimate the increase in temperature of the wire.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>70</mn><mrow><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfrac></math> ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>shape as above ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>shape as above ✓</p>
<p> </p>
<p><em>Vertical lines not necessary to score.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(b)(i)</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>maximum flux at «<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup><mo>×</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>94</mn></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>19975</mn><mo>≈</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo> </mo></math>«Wb» ✓</p>
<p>emf = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>20</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>80</mn><mo> </mo></math>«V» ✓</p>
<p><em><strong><br>ALTERNATIVE 2</strong></em></p>
<p>emf induced in one turn = <em>BvL</em> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>0094</mn><mo> </mo></math>«V» ✓</p>
<p>emf <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0094</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo> </mo></math>«V» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mo>«</mo><mfrac><mi>V</mi><mi>R</mi></mfrac><mo>=</mo><mo>»</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>4</mn></mrow></mfrac></math>  <em><strong>OR  </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>33</mn></math> «A» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mo>«</mo><mi>N</mi><mi>B</mi><mi>I</mi><mi>L</mi><mo>=</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>33</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>=</mo><mo>»</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn></math> «N» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>(c)(i)</strong>.</em></p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Energy is being dissipated for 0.50 s ✓</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mi>F</mi><mi>v</mi><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>50</mn><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>13</mn></math> J»</p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mi>V</mi><mi>l</mi><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>33</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>50</mn><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>13</mn></math> J» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>(b)</strong> and <strong>(c)</strong>. </em></p>
<p><em>Watch for candidates who do not justify somehow the use of 0.5 s and just divide by 2 their answer.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>T</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>018</mn><mo>×</mo><mn>385</mn></mrow></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>T</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> «K» ✓</p>
<p> </p>
<p><em>Allow <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Award <strong>[1]</strong> for a <strong>POT</strong> error in <strong>MP1</strong>.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the electric field lines of a positively charged conducting sphere of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and charge <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="352" height="213"></p>
<p>Points A and B are located on the same field line.</p>
</div>

<div class="specification">
<p>A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>16</mn></mrow></msup><mo> </mo><mi mathvariant="normal">J</mi></math>. Point A is at a distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo> </mo><mi mathvariant="normal">m</mi></math> from the centre of the sphere. Point B is at a distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><mi mathvariant="normal">m</mi></math> from the centre of the sphere.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electric potential decreases from A to B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, the variation of electric potential <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> with distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> from the centre of the sphere.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="336" height="236"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electric potential difference between points A and B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the charge <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi></math> of the sphere.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><em><strong>ALTERNATIVE 1</strong></em><br></span><span class="fontstyle2">work done on moving a positive test charge in any outward direction is negative </span><span class="fontstyle3">✓<br></span><span class="fontstyle2">potential difference is proportional to this work </span><span class="fontstyle4">«</span><span class="fontstyle2">so </span><span class="fontstyle5"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle2">decreases from A to B</span><span class="fontstyle4">» </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><span class="fontstyle0"><em><strong>ALTERNATIVE 2</strong></em><br></span><span class="fontstyle2">potential gradient is directed opposite to the field so inwards </span><span class="fontstyle3">✓<br></span><span class="fontstyle2">the gradient indicates the direction of increase of </span><span class="fontstyle4"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle5">«</span><span class="fontstyle2">hence </span><span class="fontstyle4"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle2">increases towards the centre/decreases from A to B</span><span class="fontstyle5">» </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><span class="fontstyle0"><em><strong>ALTERNATIVE 3</strong></em><br></span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mi>k</mi><mi>Q</mi></mrow><mi>R</mi></mfrac></math> </span><span class="fontstyle3">so as </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> </span><span class="fontstyle3">increases </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle3">decreases </span><span class="fontstyle4">✓<br></span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle3">is positive as </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi></math> </span><span class="fontstyle3">is positive </span><span class="fontstyle4">✓</span></p>
<p><span class="fontstyle2"> </span></p>
<p><span class="fontstyle0"><em><strong>ALTERNATIVE 4</strong></em><br></span><span class="fontstyle2">the work done per unit charge in bringing a positive charge from infinity </span><span class="fontstyle3">✓<br></span><span class="fontstyle2">to point B is less than point A </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">curve decreasing asymptotically for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>&gt;</mo><mi>R</mi></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">non <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> zero constant between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and </span><span class="fontstyle3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> </span><span class="fontstyle2">✓</span></p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mi>W</mi><mi>q</mi></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>16</mn></mrow></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>60</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math> <span class="fontstyle0">✓</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mi>Q</mi><mo>×</mo><mfenced><mrow><mfrac><mn>1</mn><mrow><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></mrow></mfenced><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></math> ✓</span></p>
<p><span class="fontstyle0"><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>8</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">C</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">to highlight similarities between </span><span class="fontstyle2">«</span><span class="fontstyle0">different</span><span class="fontstyle2">» </span><span class="fontstyle0">fields </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The majority who answered in terms of potential gained one mark. Often the answers were in terms of work done rather than work done per unit charge or missed the fact that the potential is positive.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most didn't realise that the key to the answer is the definition of potential or potential difference and tried to answer using one of the formulae in the data booklet, but incorrectly.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Even though many were able to choose the appropriate formula from the data booklet they were often hampered in their use of the formula by incorrect techniques when using fractions.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered with only a small number of answers suggesting greater international cooperation.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A cell is connected to an ideal voltmeter, a switch S and a resistor R. The resistance&nbsp;of R is 4.0&thinsp;&Omega;.</p>
<p style="text-align: center;"><img src=""></p>
<p>When S is open the reading on the voltmeter is 12&thinsp;V. When S is closed the voltmeter&nbsp;reads 8.0&thinsp;V.</p>
</div>

<div class="specification">
<p>Electricity can be generated using renewable resources.</p>
</div>

<div class="specification">
<p>The voltmeter is used in another circuit that contains two secondary cells.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Cell A has an emf of 10&thinsp;V and an internal resistance of 1.0&thinsp;&Omega;. Cell B has an emf of 4.0&thinsp;V&nbsp;and an internal resistance of 2.0&thinsp;&Omega;.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the laws of conservation that are represented by Kirchhoff’s circuit laws.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the emf of the cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the internal resistance of the cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the reading on the voltmeter.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the implications of your answer to (c)(i) for cell B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why electricity is a secondary energy source.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some fuel sources are renewable. Outline what is meant by renewable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A fully charged cell of emf 6.0 V delivers a constant current of 5.0 A for a time of 0.25 hour until it is completely discharged.</p>
<p>The cell is then re-charged by a rectangular solar panel of dimensions 0.40 m × 0.15 m at a place where the maximum intensity of sunlight is 380 W m<sup>−2</sup>.</p>
<p>The overall efficiency of the re-charging process is 18 %.</p>
<p>Calculate the minimum time required to re-charge the cell fully.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why research into solar cell technology is important to society.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>« conservation of » charge ✓</p>
<p>« conservation of » energy ✓</p>
<p> </p>
<p><em>Allow <strong>[1]</strong> max if they explicitly refer to Kirchhoff’ laws linking them to the conservation laws incorrectly.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>12 V ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>I</em> = 2.0 A <em><strong>OR</strong> </em>12 = <em>I</em> (<em>r</em> + 4) <em><strong>OR</strong> </em>4 = <em>Ir <strong>OR</strong> </em>8 = 4<em>I</em> ✓</p>
<p>«Correct working to get » <em>r</em> = 2.0 «Ω» ✓</p>
<p> </p>
<p><em>Allow any valid method.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(b)(i)</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Loop equation showing <em><strong>EITHER</strong> </em>correct voltages, i.e., 10 – 4 on one side or both emf’s positive on different sides of the equation <em><strong>OR</strong> </em>correct resistances, i.e. I (1 + 2) ✓</p>
<p>10−4 = I (1 + 2) <em><strong>OR</strong> </em>I = 2.0 «A» seen ✓</p>
<p><em>V</em> = 8.0 «V» ✓</p>
<p> </p>
<p><em>Allow any valid method</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Charge is being driven through the 4.0 V cell <em><strong>OR</strong> </em>it is being (re-)charged ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>is generated from primary/other sources ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«a fuel » that can be replenished/replaced within a reasonable time span</p>
<p><em><strong>OR</strong></em></p>
<p>«a fuel» that can be replaced faster than the rate at which it is consumed</p>
<p><em><strong>OR</strong></em></p>
<p>renewables are limitless/never run out</p>
<p><em><strong>OR</strong></em></p>
<p>«a fuel» produced from renewable sources</p>
<p><em><strong>OR</strong></em></p>
<p>gives an example of a renewable (biofuel, hydrogen, wood, wind, solar, tidal, hydro etc..) ✓</p>
<p> </p>
<p><em><strong>OWTTE</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE</strong> <strong>1</strong></em></p>
<p>«energy output of the panel =» <em>Vlt <strong>OR</strong> </em>6 x 5 x 0.25 x 3600 <em><strong>OR</strong> </em>27000 «J» ✓</p>
<p>«available power =» 380 x 0.4 x 0.15 x 0.18 <em><strong>OR</strong> </em>4.1 «W» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo></math> «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>27000</mn><mrow><mn>4</mn><mo>.</mo><mn>1</mn></mrow></mfrac></math>=» 6600 «s» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>«energy needed from Sun =» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>v</mi><mi>l</mi><mi>t</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></mfrac></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>×</mo><mn>5</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>25</mn><mo>×</mo><mn>3600</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>18</mn></mrow></mfrac></math> </strong><strong>OR</strong> </em>150000 «J» ✓</p>
<p>« incident power=» 380 x 0.4 x 0.15 <em><strong>OR</strong> </em>22.8 «W» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo></math> «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>150000</mn><mrow><mn>22</mn><mo>.</mo><mn>8</mn></mrow></mfrac></math>=» 6600 «s» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> for <strong>MP3</strong></em></p>
<p><em>Accept final answer in minutes (110) or hours (1.8).</em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>coherent reason ✓</p>
<p>e.g., to improve efficiency, is non-polluting, is renewable, does not produce greenhouse gases, reduce use of fossil fuels</p>
<p> </p>
<p><em>Do <strong>not</strong> allow economic reasons</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>a) Most just stated Kirchhoff's laws rather than the underlying laws of conservation of energy and charge, basically describing the equations from the data booklet. When it came to guesses, energy and momentum were often the two, although even a baryon and lepton number conservation was found. It cannot be emphasised enough the importance of correctly identifying the command verb used to introduce the question. In this case, identify, with the specific reference to conservation laws, seem to have been explicit tips not picked up by some candidates.</p>
<p>bi) This was probably the easiest question on the paper and almost everybody got it right. 12V. Some calculations were seen, though, that contradict the command verb used. State a value somehow implies that the value is right in front to be read or interpreted suitably.</p>
<p>bii) In the end a lot of the answers here were correct. Some obtained 2 ohms and were able to provide an explanation that worked. A very few negative answers were found, suggesting that some candidates work mechanically without properly reflecting in the nature of the value obtained.</p>
<p>ci) A lot of candidates figured out they had to do some sort of loop here but most had large currents in the voltmeter. Currents of 2 A and 10 A simultaneously were common. Some very good and concise work was seen though, leading to correct steps to show a reading of 8V.</p>
<p>cii) This question was cancelled due to an internal reference error. The paper total was adjusted in grade award. This is corrected for publication and future teaching use.</p>
<p>di) The vast majority of candidates could explain why electricity was a secondary energy source.</p>
<p>dii) An ideal answer was that renewable fuels can be replenished faster than they are consumed. However, many imaginative alternatives were accepted.</p>
<p>ei) This question was often very difficult to mark. Working was often scattered all over the answer box. Full marks were not that common, most candidates achieved partial marks. The commonest problem was determining the energy required to charge the battery. It was also common to see a final calculation involving a power divided by a power to calculate the time.</p>
<p>eii) Almost everybody could give a valid reason why research into solar cells was important. Most answers stated that solar is renewable. There were very few that didn't get a mark due to discussing economic reasons.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton moves along a circular path in a region of a uniform magnetic field. The magnetic field is directed into the plane of the page.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The speed of the proton is 2.16 × 10<sup>6</sup> m s<sup>-1</sup> and the magnetic field strength is 0.042 T.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the diagram the magnetic force <em>F</em> on the proton.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the diagram the velocity vector <em>v</em> of the proton.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">For this proton, determine, in m, the radius of the circular path. Give your answer to an appropriate number of significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">For this proton, calculate, in s, the time for one full revolution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em>F</em> towards centre ✔</span><span style="background-color:#ffffff;"><br></span></p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em>v</em> tangent to circle and in the direction shown in the diagram ✔<br></span><span style="background-color:#ffffff;"><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><img src="" width="305" height="248"></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"> </p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="qvB = \frac{{m{v^2}}}{R} \Rightarrow » R = \frac{{mv}}{{qB}}/\frac{{1.673 \times {{10}^{ - 27}} \times 2.16 \times {{10}^6}}}{{1.60 \times {{10}^{ - 19}} \times 0.042}}">
  <mi>q</mi>
  <mi>v</mi>
  <mi>B</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>R</mi>
  </mfrac>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mi>R</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mi>q</mi>
      <mi>B</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>1.673</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>27</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>2.16</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>6</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.60</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>19</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>0.042</mn>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><em><span style="background-color:#ffffff;">R = </span></em><span style="background-color:#ffffff;">0.538«m» &nbsp;✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em>R</em> = 0.54«m» &nbsp;&nbsp;✔</span></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = \frac{{2\pi R}}{v}/\frac{{2\pi&nbsp; \times 0.54}}{{2.16 \times {{10}^6}}}">
  <mi>T</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
      <mi>R</mi>
    </mrow>
    <mi>v</mi>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
      <mo>×</mo>
      <mn>0.54</mn>
    </mrow>
    <mrow>
      <mn>2.16</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>6</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = 1.6 \times {10^{ - 6}}">
  <mi>T</mi>
  <mo>=</mo>
  <mn>1.6</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>6</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>«s» &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<div class="question_part_label">bii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Examiners were requested to be lenient here and as a result most candidates scored both marks. Had we insisted on <em>e.g.</em> straight lines drawn with a ruler or a force arrow passing exactly through the centre of the circle very few marks would have been scored. For those who didn’t know which way the arrows were supposed to be the common guesses were to the left and up the page. Some candidates neglected to label the arrows.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Examiners were requested to be lenient here and as a result most candidates scored both marks. Had we insisted on <em>e.g.</em> straight lines drawn with a ruler or a force arrow passing exactly through the centre of the circle very few marks would have been scored. For those who didn’t know which way the arrows were supposed to be the common guesses were to the left and up the page. Some candidates neglected to label the arrows.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered although usually to 3 sf. Common mistakes were to substitute 0.042 for F and 1 for q. Also some candidates tried to answer in terms of electric fields.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered with many candidates scoring ECF from the previous part.</p>
<div class="question_part_label">bii.</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical wall carries a uniform positive charge on its surface. This produces a uniform&nbsp;horizontal electric field perpendicular to the wall. A small, positively-charged ball is&nbsp;suspended in equilibrium from the vertical wall by a thread of negligible mass.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>The centre of the ball, still carrying a charge of 1.2 × 10<sup>−6 </sup>C, is now placed 0.40 m from&nbsp;a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.</p>
<p>P is the point on the line joining the charges where the electric field strength is zero.&nbsp;The distance PQ is 0.22 m.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge per unit area on the surface of the wall is<em> σ</em>. It can be shown that the&nbsp;electric field strength <em>E</em> due to the charge on the wall is given by the equation</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ε</mi><mn>0</mn></msub></mrow></mfrac></math>.</p>
<p>Demonstrate that the units of the quantities in this equation are consistent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread makes an angle of 30° with the vertical wall. The ball has a mass&nbsp;of 0.025 kg.</p>
<p>Determine the horizontal force that acts on the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge on the ball is 1.2 × 10<sup>−6 </sup>C. Determine <em>σ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread breaks. Explain the initial subsequent motion of the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the charge on Q. State your answer to an appropriate number of&nbsp;significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, without calculation, whether or not the electric potential at P is zero.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies units of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>C</mi><msup><mi>m</mi><mn>2</mn></msup></mfrac><mo>×</mo><mfrac><mrow><mi>N</mi><msup><mi>m</mi><mn>2</mn></msup></mrow><msup><mi>C</mi><mn>2</mn></msup></mfrac></math>&nbsp;seen and reduced to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>N C</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p>&nbsp;</p>
<p><em>Accept any analysis (eg dimensional) that yields answer correctly</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> on ball&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>T</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>30</mn></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mi>m</mi><mi>g</mi></mrow><mrow><mi>cos</mi><mo> </mo><mn>30</mn></mrow></mfrac></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>&nbsp;</mo><mo>«</mo><mo>=</mo><mi>m</mi><mi>g</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>025</mn><mo>×</mo><mo>&nbsp;</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>&nbsp;</mo><mo>×</mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>»</mo><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo>&nbsp;</mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em><br>Allow g = 10 N kg<sup>−1</sup></em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer.</em></p>
<p><em>Award <strong>[1max]</strong> for an answer of zero, interpreting that the horizontal force refers to the horizontal component of the net force.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>»</mo></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>85</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>12</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em> <br>Allow <strong>ECF</strong> from the calculated F in (b)(i)</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal/repulsive force and vertical force/pull of gravity act on the ball <strong>✓</strong></p>
<p>so ball has constant acceleration/constant net force <strong>✓</strong></p>
<p>motion is in a straight line <strong>✓</strong></p>
<p>at 30° to vertical away from wall/along original line of thread <strong>✓</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>Q</mi><mrow><mn>0</mn><mo>.</mo><msup><mn>22</mn><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>18</mn><mn>2</mn></msup></mrow></mfrac></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>+</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>C</mtext><mo>»</mo></math><strong>✓</strong></p>
<p>2sf<strong> ✓</strong></p>
<p><em><br>Do not award <strong>MP2</strong> if charge is negative </em></p>
<p><em>Any answer given to 2 sig figs scores <strong>MP3</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>work must be done to move a «positive» charge from infinity to P «as both charges are positive»<br><em><strong>OR</strong></em><br>reference to both potentials positive and added<br><em><strong>OR</strong></em><br>identifies field as gradient of potential and with zero value <strong>✓</strong></p>
<p>therefore, point P is at a positive / non-zero potential<strong>&nbsp;✓</strong></p>
<p><em><br>Award <strong>[0]</strong> for bald answer that P has non-zero potential</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Three identical light bulbs, X, Y and Z, each of resistance 4.0 Ω are connected to a cell of emf 12 V. The cell has negligible internal resistance.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">When fully charged the space between the plates of the capacitor is filled with a dielectric with double the permittivity of a vacuum.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch S is initially open. Calculate the total power dissipated in the circuit.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. State, without calculation, why the current in the cell will increase.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Deduce the ratio }}\frac{{{\text{power dissipated in Y with S open}}}}{{{\text{power dissipated in Y with S closed}}}}">
  <mrow>
    <mtext>Deduce the ratio&nbsp;</mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>power dissipated in Y with S open</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>power dissipated in Y with S closed</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</span></p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The cell is used to charge a parallel-plate capacitor in a vacuum. The fully charged capacitor is then connected to an ideal voltmeter.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">The capacitance of the capacitor is 6.0 μF and the reading of the voltmeter is 12 V.</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Calculate the energy stored in the capacitor.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the change in the energy stored in the capacitor.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest, in terms of conservation of energy, the cause for the above change.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">dii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">total resistance of circuit is 8.0 «Ω» ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = \frac{{{{12}^2}}}{{8.0}} = 18">
  <mi>P</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>12</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>8.0</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>18</mn>
</math></span>«W»&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«a resistor is now connected in parallel» reducing the total resistance<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">current through YZ unchanged and additional current flows through X ✔</span></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">evidence in calculation or statement that pd across Y/current in Y is the same as before ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">so ratio is 1 ✔</span></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = «\frac{1}{2}C{V^2} = \frac{1}{2} \times 6 \times {10^{ - 6}} \times {12^2} =»&nbsp; 4.3 \times {10^{ - 4}}">
  <mi>E</mi>
  <mo>=</mo>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>C</mi>
  <mrow>
    <msup>
      <mi>V</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>6</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>6</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>12</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mn>4.3</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>4</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{J}}">
  <mrow>
    <mtext>J</mtext>
  </mrow>
</math></span>»&nbsp;✔</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><em><strong><span style="background-color:#ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">capacitance doubles and voltage halves ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">since&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = \frac{1}{2}C{V^2}">
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>C</mi>
  <mrow>
    <msup>
      <mi>V</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> energy halves &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">so change is «–»2.2×10<sup>–4 </sup>«J» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">&nbsp;</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = \frac{1}{2}C{V^2}{\text{ and }}Q = CV{\text{ so }}E = \frac{{{Q^2}}}{{2C}}">
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>C</mi>
  <mrow>
    <msup>
      <mi>V</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext>&nbsp;and&nbsp;</mtext>
  </mrow>
  <mi>Q</mi>
  <mo>=</mo>
  <mi>C</mi>
  <mi>V</mi>
  <mrow>
    <mtext>&nbsp;so&nbsp;</mtext>
  </mrow>
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>Q</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mi>C</mi>
    </mrow>
  </mfrac>
</math></span> &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span>&nbsp;</span><span style="background-color:#ffffff;"><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">capacitance doubles and charge unchanged so energy halves ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">so change is <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">−</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">»</span>2.2 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 10<sup><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">−</span>4 </sup>«<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">J</span>» ✔</span></p>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">it is the work done when inserting the dielectric into the capacitor ✔<br></span></p>
<div class="question_part_label">dii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates scored both marks. ECF was awarded for those who didn’t calculate the new resistance correctly. Candidates showing clearly that they were attempting to calculate the new total resistance helped examiners to award ECF marks.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most recognised that this decreased the total resistance of the circuit. Answers scoring via the second alternative were rare as the statements were often far too vague.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few gained any credit for this at both levels. Most performed complicated calculations involving the total circuit and using 12V – they had not realised that the question refers to Y only.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most answered this correctly.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>By far the most common answer involved doubling the capacitance without considering the change in p.d. Almost all candidates who did this calculated a change in energy that scored 1 mark.</p>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few scored on this question.</p>
<div class="question_part_label">dii.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment a beam of electrons with energy 440&thinsp;MeV are incident on oxygen-16 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>O</mtext><mprescripts></mprescripts><mn>8</mn><mn>16</mn></mmultiscripts></mfenced></math>&nbsp;nuclei. The variation with scattering angle of the relative intensity of the scattered electrons&nbsp;is shown.<br><br></p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a property of electrons demonstrated by this experiment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy <em>E</em> of each electron in the beam is about 7 × 10<sup>−11 </sup>J.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The de Broglie wavelength for an electron is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>E</mi></mfrac></math>. Show that the diameter of an oxygen-16 nucleus is about 4 fm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the result in (a)(iii), the volume of a tin-118 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Sn</mtext><mprescripts></mprescripts><mn>50</mn><mn>118</mn></mmultiscripts></mfenced></math> nucleus. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>wave properties ✓</p>
<p><em><br>Accept reference to diffraction or interference.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>440 x 10<sup>6</sup> x 1.6 x 10<sup>-19</sup>  <em><strong>OR</strong>  </em>7.0 × 10<sup>-11</sup> «J» ✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow><mrow><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow></mfrac></math>  <em><strong>OR </strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>440</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math>  <em><strong>OR </strong> </em>2.8 × 10<sup>-15 </sup>«m» seen ✓</p>
<p>read off graph as 46° ✓</p>
<p>«Use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>=</mo><mfrac><mi>λ</mi><mrow><mi>sin</mi><mi>θ</mi></mrow></mfrac></math>=» 3.9 × 10<sup>-15</sup> m ✓</p>
<p> </p>
<p><em>Accept an angle between 45 and 47 degrees.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP2</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>∝</mo><msup><mi>A</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></math>   <em><strong>OR  </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>∝</mo><mi>A</mi></math> ✓</p>
<p>volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Sn</mtext><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>π</mi><mfenced><mfrac><msub><mi>A</mi><mrow><mi>S</mi><mi>n</mi></mrow></msub><msub><mi>A</mi><mi>O</mi></msub></mfrac></mfenced><msubsup><mi>r</mi><mi>O</mi><mrow><mo> </mo><mn>3</mn></mrow></msubsup></math> or equivalent working ✓</p>
<p>2.3 to 2.5 × 10<sup>-43 </sup>«m<sup>3</sup>»✓</p>
<p>answer to 1 or 2sf ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><msub><mi>R</mi><mtext>o</mtext></msub><mo>×</mo><msup><mi>A</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></math> ✓</p>
<p>volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Sn</mtext><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>π</mi><msup><mi>R</mi><mn>3</mn></msup></math>  <em><strong>OR</strong>  </em>5.9 x 10<sup>-15</sup> seen ✓</p>
<p>8.5 × 10<sup>-43</sup> «m<sup>3</sup>»✓</p>
<p>answer to 1 or 2sf ✓</p>
<p> </p>
<p><em>Although the question expects candidates to work from the oxygen radius found, allow <strong>ALT 2</strong> working from the Fermi radius.</em></p>
<p><em><strong>MP4</strong> is for any answer stated to 1 or 2 significant figures.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>ai) Well answered.</p>
<p>aii) Well answered.</p>
<p>aiii) This was generally well done but quite a few attempted the small angle approximation. Probably worth a mention in the report.</p>
<p>b) Most gained credit from the first alternative solution, trying to use the data as the question intended. There were the inevitable slips and calculator mistakes. Most got the fourth mark.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A negatively charged thundercloud above the Earth’s surface may be modelled by a&nbsp;parallel plate capacitor.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.28.35.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/08"></p>
<p>The lower plate of the capacitor is the Earth’s surface and the upper plate is the base of&nbsp;the thundercloud.</p>
<p>The following data are available.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{Area of thundercloud base}}}&amp;{ = 1.2 \times {{10}^8}{\text{ }}{{\text{m}}^2}} \\ {{\text{Charge on thundercloud base}}}&amp;{ = -25{\text{ C}}} \\ {{\text{Distance of thundercloud base from Earth's surface}}}&amp;{ = 1600{\text{ m}}} \\ {{\text{Permittivity of air}}}&amp;{ = 8.8 \times {{10}^{ - 12}}{\text{ F }}{{\text{m}}^{ - 1}}} \end{array}">
  <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>Area of thundercloud base</mtext>
          </mrow>
        </mrow>
      </mtd>
      <mtd>
        <mrow>
          <mo>=</mo>
          <mn>1.2</mn>
          <mo>×<!-- × --></mo>
          <mrow>
            <msup>
              <mrow>
                <mn>10</mn>
              </mrow>
              <mn>8</mn>
            </msup>
          </mrow>
          <mrow>
            <mtext>&nbsp;</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>m</mtext>
              </mrow>
              <mn>2</mn>
            </msup>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>Charge on thundercloud base</mtext>
          </mrow>
        </mrow>
      </mtd>
      <mtd>
        <mrow>
          <mo>=</mo>
          <mo>−<!-- − --></mo>
          <mn>25</mn>
          <mrow>
            <mtext>&nbsp;C</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>Distance of thundercloud base from Earth's surface</mtext>
          </mrow>
        </mrow>
      </mtd>
      <mtd>
        <mrow>
          <mo>=</mo>
          <mn>1600</mn>
          <mrow>
            <mtext>&nbsp;m</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>Permittivity of air</mtext>
          </mrow>
        </mrow>
      </mtd>
      <mtd>
        <mrow>
          <mo>=</mo>
          <mn>8.8</mn>
          <mo>×<!-- × --></mo>
          <mrow>
            <msup>
              <mrow>
                <mn>10</mn>
              </mrow>
              <mrow>
                <mo>−<!-- − --></mo>
                <mn>12</mn>
              </mrow>
            </msup>
          </mrow>
          <mrow>
            <mtext>&nbsp;F&nbsp;</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>m</mtext>
              </mrow>
              <mrow>
                <mo>−<!-- − --></mo>
                <mn>1</mn>
              </mrow>
            </msup>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span></p>
</div>

<div class="specification">
<p>Lightning takes place when the capacitor discharges through the air between the&nbsp;thundercloud and the Earth’s surface. The time constant of the system is 32 ms.&nbsp;A lightning strike lasts for 18 ms.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the capacitance of this arrangement is <em>C </em>= 6.6 × 10<sup>–7</sup> F.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate&nbsp;in V, the potential difference between the thundercloud and the Earth’s surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate&nbsp;in J, the energy stored in the system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that about –11 C of charge is delivered to the Earth’s surface.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in A, the average current during the discharge.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one </strong>assumption that needs to be made so that the Earth-thundercloud system&nbsp;may be modelled by a parallel plate capacitor.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>C</em> =&nbsp;<strong>«</strong><em>ε</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{A}{d}">
  <mfrac>
    <mi>A</mi>
    <mi>d</mi>
  </mfrac>
</math></span> =<strong>»</strong> 8.8&nbsp;× 10<sup>–12</sup>&nbsp;×&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.2 \times {{10}^8}}}{{1600}}">
  <mfrac>
    <mrow>
      <mn>1.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1600</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong>«</strong><em>C</em> = 6.60 × 10<sup>–7</sup>&nbsp;F<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{Q}{C}">
  <mfrac>
    <mi>Q</mi>
    <mi>C</mi>
  </mfrac>
</math></span> =<strong>»</strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{25}}{{6.6 \times {{10}^{ - 7}}}}">
  <mfrac>
    <mrow>
      <mn>25</mn>
    </mrow>
    <mrow>
      <mn>6.6</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p><em>V</em> = 3.8&nbsp;× 10<sup>7</sup>&nbsp;<strong>«</strong>V<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>E</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>QV</em> =<strong>»</strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;× 25&nbsp;× 3.8&nbsp;× 10<sup>7</sup></p>
<p><em>E</em> = 4.7&nbsp;× 10<sup>8</sup>&nbsp;<strong>«</strong>J<strong>»</strong></p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><em>E</em><em> =&nbsp;</em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>CV</em><sup>2</sup> =<strong>»</strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;× 6.60&nbsp;× 10<sup>–7</sup>&nbsp;× (3.8&nbsp;× 10<sup>7</sup>)<sup>2</sup></p>
<p><em>E</em> = 4.7&nbsp;× 10<sup>8</sup>&nbsp;<strong>«</strong>J<strong>»</strong> / 4.8&nbsp;× 10<sup>8</sup>&nbsp;<strong>«</strong>J<strong>»</strong>&nbsp;if rounded value of V used</p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow ECF from (b)(i)</em></p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Q</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{Q_0}{e^{ - \frac{t}{\tau }}}">
  <mrow>
    <msub>
      <mi>Q</mi>
      <mn>0</mn>
    </msub>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mfrac>
          <mi>t</mi>
          <mi>τ</mi>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;=<strong>»</strong> 25&nbsp;× <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{ - \frac{{18}}{{32}}}}">
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mfrac>
          <mrow>
            <mn>18</mn>
          </mrow>
          <mrow>
            <mn>32</mn>
          </mrow>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p><em>Q</em> = 14.2&nbsp;<strong>«</strong>C<strong>»</strong></p>
<p>charge delivered =&nbsp;<em>Q</em> = 25 – 14.2 = 10.8&nbsp;<strong>«</strong>C<strong>»</strong></p>
<p><strong>«</strong>≈ –11 C<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Final answer must be given to at least 3 significant figures</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>I</em>&nbsp;<strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta Q}}{{\Delta t}} = \frac{{11}}{{18 \times {{10}^{ - 3}}}}">
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>Q</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>11</mn>
    </mrow>
    <mrow>
      <mn>18</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong>&nbsp;≈ 610&nbsp;<strong>«</strong>A<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Accept an answer in the range 597 </em>− <em>611 </em><strong>«</strong><em>A</em><strong>»</strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the base of the thundercloud must be parallel to the Earth surface</p>
<p><strong><em>OR</em></strong></p>
<p>the base of the thundercloud must be flat</p>
<p><strong><em>OR</em></strong></p>
<p>the base of the cloud must be very long <strong>«</strong>compared with the distance from the surface<strong>»</strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A heater in an electric shower has a power of 8.5 kW when connected to a 240 V electrical supply. It is connected to the electrical supply by a copper cable.</p>
<p>The following data are available:</p>
<p style="padding-left: 120px;">Length of cable = 10 m<br>Cross-sectional area of cable = 6.0 mm<sup>2</sup><br>Resistivity of copper = 1.7 × 10<sup>–8</sup> Ω m</p>
</div>

<div class="question">
<p>Calculate the power dissipated in the cable.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>power = «35<sup>2</sup> × 0.028» = 34 «W»</p>
<p>&nbsp;</p>
<p><em>Allow 35 – 36 W if unrounded figures for R or I are used.</em><br><em>Allow ECF from (a)(i) and (a)(ii).</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">X has a capacitance of 18 μF. X is charged so that the one plate has a charge of 48 μC. X is then connected to an uncharged capacitor Y and a resistor via an open switch S.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="254" height="182"></span></p>
</div>

<div class="specification">
<p>The capacitance of Y is 12 μF. S is now closed.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, in J, the energy stored in X with the switch S open.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the final charge on X and the final charge on Y.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the final total energy, in J, stored in X and Y.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the answers to (a) and (b)(ii) are different.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfrac><msup><mi>Q</mi><mn>2</mn></msup><mi>C</mi></mfrac></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mi>Q</mi><mi>C</mi></mfrac></math><span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mo>«</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfrac><mfenced><mrow><mn>48</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfenced><mrow><mn>18</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>6</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math><span style="background-color: #ffffff;">✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Q</mi><mi mathvariant="normal">X</mi></msub><mo>+</mo><msub><mi>Q</mi><mi mathvariant="normal">Y</mi></msub><mo>=</mo><mn>48</mn></math> ✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>Q</mi><mi mathvariant="normal">X</mi></msub><mn>18</mn></mfrac><mo>=</mo><mfrac><msub><mi>Q</mi><mi mathvariant="normal">Y</mi></msub><mn>12</mn></mfrac></math> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></p>
<p>solving to get <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Q</mi><mi mathvariant="normal">X</mi></msub><mo>=</mo><mn>29</mn><mo> </mo><mo>«</mo><mi>μ</mi><mi mathvariant="normal">C</mi><mo>»</mo><mo> </mo><mo> </mo><msub><mi>Q</mi><mi mathvariant="normal">Y</mi></msub><mo>=</mo><mn>19</mn><mo> </mo><mo>«</mo><mi>μ</mi><mi mathvariant="normal">C</mi><mo>»</mo></math> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>48</mn><mo>=</mo><mn>18</mn><mo> </mo><mi mathvariant="normal">V</mi><mo>+</mo><mn>12</mn><mo> </mo><mi mathvariant="normal">V</mi><mo>⇒</mo><mi>V</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math>✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Q</mi><mi mathvariant="normal">X</mi></msub><mo>=</mo><mo>«</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>18</mn><mo>=</mo><mo>»</mo><mo> </mo><mn>29</mn><mo> </mo><mo>«</mo><msub><mi>Q</mi><mi mathvariant="normal">X</mi></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>18</mn><mo>=</mo><mn>29</mn><mo> </mo><mo>«</mo><mi>μ</mi><mi mathvariant="normal">C</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Q</mi><mi mathvariant="normal">Y</mi></msub><mo>=</mo><mo>«</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>12</mn><mo>=</mo><mo>»</mo><mo> </mo><mn>19</mn><mo> </mo><mo>«</mo><mi>μ</mi><mi mathvariant="normal">C</mi><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>NOTE: Award <strong>[3]</strong> for bald correct answer</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span style="background-color: #ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p><em><strong><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">T</mi></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfrac><msup><mfenced><mrow><mn>29</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfenced><mn>2</mn></msup><mrow><mn>18</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfrac><msup><mfenced><mrow><mn>19</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfenced><mn>2</mn></msup><mrow><mn>12</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac></math></span></strong></em><strong><span style="background-color: #ffffff;">✔</span></strong></p>
<p><em><strong><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</strong></span></strong></em></p>
<p> </p>
<p><span style="font-size: 14px;"><strong><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">ALTERNATIVE 2</span></span></em></strong></span></p>
<p><span style="font-size: 14px;"><strong><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">T</mi></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>18</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>6</mn><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>12</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>6</mn><mn>2</mn></msup></math> <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</strong></span></span></em></strong></span></p>
<p><span style="font-size: 14px;"><strong><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</strong></span></span></em></strong></span></p>
<p> </p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">NOTE: Allow ECF from (b)(i)<br>Award <strong>[2]</strong> for bald correct answer<br>Award <strong>[1]</strong> max as ECF to a calculation using only one charge</span></span></em></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">charge moves/current flows «in the circuit» ✔<br>thermal losses «in the resistor and connecting wires» ✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept heat losses for MP2</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A conducting sphere has radius 48&thinsp;cm. The electric potential on the surface of the sphere is&nbsp;3.4&thinsp;&times;&thinsp;10<sup>5</sup>&thinsp;V.</p>
</div>

<div class="specification">
<p>The sphere is connected by a long conducting wire to a second conducting sphere of&nbsp;radius 24&thinsp;cm. The second sphere is initially uncharged.</p>
<p style="text-align: center;">&nbsp;<img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the charge on the surface of the sphere is +18 μC.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of electron flow, how the smaller sphere becomes charged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the charge on each sphere.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mi>V</mi><mi>R</mi></mrow><mi>k</mi></mfrac><mo>=</mo><mo>»</mo><mfrac><mrow><mn>3</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>48</mn></mrow><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mn>18</mn><mo>.</mo><mn>2</mn></math> «μC» ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons leave the small sphere «making it positively charged» ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mfrac><msub><mi>q</mi><mn>1</mn></msub><mn>48</mn></mfrac><mo>=</mo><mi>k</mi><mfrac><msub><mi>q</mi><mn>2</mn></msub><mn>24</mn></mfrac><mo>⇒</mo><msub><mi>q</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><msub><mi>q</mi><mn>2</mn></msub></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>q</mi><mn>1</mn></msub><mo>+</mo><msub><mi>q</mi><mn>2</mn></msub><mo>=</mo><mn>18</mn></math> ✓</p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>q</mi><mn>1</mn></msub><mo>=</mo><mn>12</mn></math> «μC», <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>q</mi><mn>2</mn></msub><mo>=</mo><mn>6</mn><mo>.</mo><mn>0</mn></math> «μC» ✓</p>
<p> </p>
<p><em>Award <strong>[3]</strong> marks for a bald correct answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two identical positive point charges X and Y are placed 0.30&thinsp;m apart on a horizontal line.&nbsp;O is the point midway between X and Y. The charge on X and the charge on Y is +4.0&thinsp;&micro;C.</p>
</div>

<div class="specification">
<p>A positive charge Z is released from rest 0.010&thinsp;m from O on the line between X and Y.&nbsp;Z then begins to oscillate about point O.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electric potential at O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, the variation of the electric potential <em>V</em> with distance between X and Y.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the direction of the resultant force acting on Z as it oscillates.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce whether the motion of Z is simple harmonic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>k</mi><mi>Q</mi></mrow><mi>r</mi></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mfenced><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>15</mn></mrow></mfrac></math> <em><strong>OR</strong> </em>240 «kV» for one charge calculated ✓</p>
<p>480 «kV» for both ✓</p>
<p> </p>
<p><em><strong>MP1</strong> can be seen or implied from calculation.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP2</strong> for <strong>MP3</strong>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>symmetric curve around 0 with potential always positive, “bowl shape up” and curve not touching the horizontal axis. ✓</p>
<p>clear asymptotes at X and Y ✓</p>
<p> </p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force is towards O ✓</p>
<p>always ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>motion is not SHM ✓</p>
<p>«because SHM requires force proportional to r and» this force depends on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>r</mi><mn>2</mn></msup></mfrac></math> ✓</p>
<p><em><strong><br>ALTERNATIVE 2</strong></em></p>
<p>motion is not SHM ✓</p>
<p>energy-distance «graph must be parabolic for SHM and this» graph is not parabolic ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was generally well approached. Two common errors were either starting with the wrong equation (electric potential energy or Coulomb's law) or subtracting the potentials rather than adding them.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates drew a graph that was awarded two marks. Many had a generally correct shape, but common errors were drawing the graph touching the x-axis at O and drawing a general parabola with no clear asymptotes.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to identify the direction of the force on the particle at position Z, but a common error was to miss that the question was about the direction as the particle was oscillating. Examiners were looking for a clear understanding that the force was always directed toward the equilibrium position, and not just at the moment shown in the diagram.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question for candidates. Most simply assumed that because the charge was oscillating that this meant the motion was simple harmonic. Some did recognize that it was not, and most of those candidates correctly identified that the relationship between force and displacement was an inverse square.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br>