File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 5 HTML/markSceme-HL-paper1html
File size: 469.81 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>A 12V battery has an internal resistance of 2.0Ω. A load of variable resistance is connected across the battery and adjusted to have resistance equal to that of the internal resistance of the battery. Which statement is correct for this circuit? </p>
<p>A. The current in the battery is 6A. <br>B. The potential difference across the load is 12V. <br>C. The power dissipated in the battery is 18W. <br>D. The resistance in the circuit is 1.0Ω.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows the path of a particle in a region of uniform magnetic field. The field is directed into the plane of the page.</p>
<p><img src=""></p>
<p>This particle could be</p>
<p>A. an alpha particle.</p>
<p>B. a beta particle.</p>
<p>C. a photon.</p>
<p>D. a neutron.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Positive charge is uniformly distributed on a semi-circular plastic rod. What is the direction of the electric field strength at point S?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Four particles, two of charge +Q and two of charge −Q, are positioned on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis as shown. A particle P with a positive charge is placed on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis. What is the direction of the net electrostatic force on this particle?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A power station generates <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>250</mn><mo> </mo><mi>kW</mi></math> of power at a potential difference of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo> </mo><mi>kV</mi></math>. The energy is transmitted through cables of total resistance <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>0</mn><mo> </mo><mi mathvariant="normal">Ω</mi></math>.</p>
<p>What is the power loss in the cables?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>04</mn><mo> </mo><mi>kW</mi></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>kW</mi></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi>kW</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo> </mo><mi>kW</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two wires, X and Y, are made from the same metal. The wires are connected in series. The radius of X is twice that of Y. The carrier drift speed in X is <em>v</em><sub>X</sub> and in Y it is <em>v</em><sub>Y</sub>.</p>
<p><br>What is the value of the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{v}}_{\text{X}}}}}{{{{\text{v}}_{\text{Y}}}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mrow>
<mtext>v</mtext>
</mrow>
<mrow>
<mtext>X</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mrow>
<mtext>v</mtext>
</mrow>
<mrow>
<mtext>Y</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span>?</p>
<p>A. 0.25</p>
<p>B. 0.50</p>
<p>C. 2.00</p>
<p>D. 4.00</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron enters the space inside a current-carrying solenoid. The velocity of the electron is parallel to the solenoid’s axis. The electron is</p>
<p>A. slowed down.</p>
<p>B. speeded up.</p>
<p>C. undeflected.</p>
<p>D. deflected outwards.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>When an electric cell of negligible internal resistance is connected to a resistor of resistance 4<em>R</em>, the power dissipated in the resistor is <em>P</em>.</p>
<p>What is the power dissipated in a resistor of resistance value <em>R </em>when it is connected to the same cell?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{P}{4}">
<mfrac>
<mi>P</mi>
<mn>4</mn>
</mfrac>
</math></span></p>
<p>B. <em>P</em></p>
<p>C. 4<em>P</em></p>
<p>D. 16<em>P</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A circuit contains a variable resistor of maximum resistance R and a fixed resistor, also of resistance R, connected in series. The emf of the battery is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>V</mtext></math> and its internal resistance is negligible.</p>
<p style="text-align:center;"><img src=""></p>
<p>What are the initial and final voltmeter readings when the variable resistor is increased from an initial resistance of zero to a final resistance of R?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two parallel wires P and Q are perpendicular to the page and carry equal currents. Point S is the same distance from both wires. The arrow shows the magnetic field at S due to P and Q.</p>
<p style="text-align: center;"><img src=""></p>
<p>What are the correct directions for the current at P and the current at Q?</p>
<p> </p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two point charges <em>Q</em><sub>1</sub> and <em>Q</em><sub>2</sub> are one metre apart. The graph shows the variation of electric potential <em>V</em> with distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> from <em>Q</em><sub>1</sub>.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{Q_1}}}{{{Q_2}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>Q</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>Q</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span>?</p>
<p> </p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{16}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{4}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>4</mn>
</mrow>
</mfrac>
</math></span></p>
<p>C. 4</p>
<p>D. 16</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two cells are connected in parallel as shown below. Each cell has an emf of 5.0 V and an internal resistance of 2.0 Ω. The lamp has a resistance of 4.0 Ω. The ammeter is ideal.</p>
<p>What is the reading on the ammeter?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>A. 1.0 A</p>
<p>B. 1.3 A</p>
<p>C. 2.0 A</p>
<p>D. 2.5 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The correct option (A) was selected with the lowest frequency of the four possible answers. This question has a low difficulty index, suggesting that the majority of candidates found it challenging. Students were asked to apply the concept of resistors in parallel; omitting the internal resistance in parallel to the external lamp resistance was the most common error here. This question is useful for the revision of resistors in combination.</p>
</div>
<br><hr><br><div class="question">
<p>A cell of electromotive force (emf) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> and zero internal resistance is in the circuit shown.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="361" height="413"></p>
<p>What is correct for loop WXYUW?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mn>3</mn><msub><mi>I</mi><mn>1</mn></msub><mi>R</mi><mo>-</mo><msub><mi>I</mi><mn>3</mn></msub><mi>R</mi></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><msub><mi>I</mi><mn>3</mn></msub><mi>R</mi><mo>-</mo><msub><mi>I</mi><mn>2</mn></msub><mi>R</mi></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><msub><mi>I</mi><mn>3</mn></msub><mi>R</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mn>2</mn><msub><mi>I</mi><mn>2</mn></msub><mi>R</mi><mo>-</mo><msub><mi>I</mi><mn>3</mn></msub><mi>R</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There are a high number of blanks responses indicating that some candidates decided to leave it until the end. It perhaps looked complicated but pleasingly over half did get the correct answer with choices reasonably evenly balanced between the three wrong answers suggesting that these were guesses.</p>
</div>
<br><hr><br><div class="question">
<p>An ion of charge +<em>Q </em>moves vertically upwards through a small distance <em>s </em>in a uniform vertical electric field. The electric field has a strength <em>E </em>and its direction is shown in the diagram.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_10.43.27.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/15"></p>
<p>What is the electric potential difference between the initial and final position of the ion?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{EQ}}{s}">
<mfrac>
<mrow>
<mi>E</mi>
<mi>Q</mi>
</mrow>
<mi>s</mi>
</mfrac>
</math></span></p>
<p>B. <em>EQs</em></p>
<p>C. <em>Es</em></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{E}{s}">
<mfrac>
<mi>E</mi>
<mi>s</mi>
</mfrac>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A proton of velocity <em>v</em> enters a region of electric and magnetic fields. The proton is not deflected. An electron and an alpha particle enter the same region with velocity <em>v</em>. Which is correct about the paths of the electron and the alpha particle?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cell of emf 6.0 V and negligible internal resistance is connected to three resistors as shown.</p>
<p>The resistors have resistance of 3.0 Ω and 6.0 Ω as shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_18.36.47.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/16"></p>
<p>What is the current in resistor X?</p>
<p>A. 0.40 A</p>
<p>B. 0.50 A</p>
<p>C. 1.0 A</p>
<p>D. 2.0 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">In an experiment to determine the resistivity of a material, a student measures the resistance of several wires made from the pure material. The wires have the same length but different diameters.<br></span></p>
<p><span style="background-color:#ffffff;">Which quantities should the student plot on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis of a graph to obtain a straight line?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">Two currents of 3 A and 1 A are established in the same direction through two parallel straight wires R and S.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">What is correct about the magnetic forces acting on each wire?</p>
<p style="text-align:left;">A. Both wires exert equal magnitude attractive forces on each other.</p>
<p style="text-align:left;">B. Both wires exert equal magnitude repulsive forces on each other.</p>
<p style="text-align:left;">C. Wire R exerts a larger magnitude attractive force on wire S.</p>
<p style="text-align:left;">D. Wire R exerts a larger magnitude repulsive force on wire S.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question had the lowest difficulty index on the HL paper, with roughly 10 % of candidates selecting response A. Responses C and D were roughly equally common candidate answers, with students not recognizing the applicability of Newton’s 3rd law.</p>
</div>
<br><hr><br><div class="question">
<p>Electrons, each with a charge <em>e</em>, move with speed <em>v</em> along a metal wire. The electric current in the wire is <em>I</em>.</p>
<p><img src=""></p>
<p>Plane <em>P</em> is perpendicular to the wire. How many electrons pass through plane <em>P</em> in each second?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{e}{I}">
<mfrac>
<mi>e</mi>
<mi>I</mi>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ve}}{I}">
<mfrac>
<mrow>
<mi>v</mi>
<mi>e</mi>
</mrow>
<mi>I</mi>
</mfrac>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{I}{{ve}}">
<mfrac>
<mi>I</mi>
<mrow>
<mi>v</mi>
<mi>e</mi>
</mrow>
</mfrac>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{I}{e}">
<mfrac>
<mi>I</mi>
<mi>e</mi>
</mfrac>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">Two parallel plates are a distance apart with a potential difference between them. A point charge moves from the negatively charged plate to the positively charged plate. The charge gains kinetic energy <em>W</em>. The distance between the plates is doubled and the potential difference between them is halved. What is the kinetic energy gained by an identical charge moving between these plates?</p>
<p style="text-align:left;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{W}{2}">
<mfrac>
<mi>W</mi>
<mn>2</mn>
</mfrac>
</math></span></p>
<p style="text-align:left;">B. <em>W</em></p>
<p style="text-align:left;">C. 2<em>W</em></p>
<p style="text-align:left;">D. 4<em>W</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The correct response (A) was the most common from candidates, however a significant number of candidates appeared unsure of the impact of the distance between plates and (incorrectly) selected response B.</p>
</div>
<br><hr><br><div class="question">
<p>A conductor is placed in a uniform magnetic field perpendicular to the plane of the paper. A force <em>F</em> acts on the conductor when there is a current in the conductor as shown.</p>
<p style="text-align:center;"><img src=""></p>
<p>The conductor is rotated 30° about the axis of the magnetic field.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the direction of the magnetic field and what is the magnitude of the force on the conductor after the rotation?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question requires careful reading by the candidate. Candidates needed to appreciate that the rotation relative to the magnetic field axis still produces a 90 degree angle between the conductor and the field. Option D was a very effective distractor for students.</p>
</div>
<br><hr><br><div class="question">
<p>An electrical power supply has an internal resistance. It supplies a direct current <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> to an external circuit for a time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>. What is the electromotive force (emf) of the power supply?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>total</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>transferred</mi><mo> </mo><mi>to</mi><mo> </mo><mi>the</mi><mo> </mo><mi>whole</mi><mo> </mo><mi>circuit</mi></mrow><mrow><mi>I</mi><mo>×</mo><mi>t</mi></mrow></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>total</mi><mo> </mo><mi>power</mi><mo> </mo><mi>transferred</mi><mo> </mo><mi>to</mi><mo> </mo><mi>the</mi><mo> </mo><mi>whole</mi><mo> </mo><mi>circuit</mi></mrow><mrow><mi>I</mi><mo>×</mo><mi>t</mi></mrow></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>total</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>transferred</mi><mo> </mo><mi>to</mi><mo> </mo><mi>the</mi><mo> </mo><mi>external</mi><mo> </mo><mi>circuit</mi></mrow><mrow><mi>I</mi><mo>×</mo><mi>t</mi></mrow></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>total</mi><mo> </mo><mi>power</mi><mo> </mo><mi>transferred</mi><mo> </mo><mi>to</mi><mo> </mo><mi>the</mi><mo> </mo><mi>external</mi><mo> </mo><mi>circuit</mi></mrow><mrow><mi>I</mi><mo>×</mo><mi>t</mi></mrow></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The coil of a direct current electric motor is turning with a period <em>T</em>. At <em>t</em> = 0 the coil is in the position shown in the diagram. Assume the magnetic field is uniform across the coil.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Which graph shows the variation with time of the force exerted on section XY of the coil during one complete turn?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Has a negative discrimination index with over 80% of candidates choosing the incorrect answer. The difficulty index is also low. The question states that it is about a direct current electric motor, suggesting that C and D are incorrect so by choosing them it would seem that some candidates are confusing an electric motor with a generator.</p>
</div>
<br><hr><br><div class="question">
<p>What is the relationship between the resistivity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi></math> of a uniform wire, the radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> of the wire and the length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math> of the wire when its resistance is constant?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>∝</mo><msup><mi>r</mi><mn>2</mn></msup><mi>l</mi></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>∝</mo><mi>r</mi><msup><mi>l</mi><mn>2</mn></msup></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>∝</mo><mfrac><mi>l</mi><msup><mi>r</mi><mn>2</mn></msup></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>∝</mo><mfrac><msup><mi>r</mi><mn>2</mn></msup><mi>l</mi></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>It was pointed out on the G2s that the proportional symbol is incorrect. The high number of correct responses indicates that it did not disadvantage the students and will be corrected for publication.</p>
</div>
<br><hr><br><div class="question">
<p>Two parallel wires carry equal currents in the same direction out of the paper. Which diagram shows the magnetic field surrounding the wires?</p>
<p><br><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">A horizontal electrical cable carries a steady current out of the page. The Earth’s magnetic field exerts a force on the cable.</p>
<p style="text-align:left;">Which arrow shows the direction of the force on the cable due to the Earth’s magnetic field?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The correct answer was well answered by candidates, with a relatively high discrimination index.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The force acting between two point charges is <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math></em> when the separation of the charges is <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>. What is the force between the charges when the separation is increased to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi></math>?</span></p>
<p><span style="background-color: #ffffff;">A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>F</mi><mn>3</mn></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>F</mi><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>F</mi><mn>9</mn></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>F</mi><mrow><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">A resistor of resistance <em>R</em> is connected to a fully charged cell of negligible internal resistance. A constant power <em>P</em> is dissipated in the resistor and the cell discharges in time <em>t</em>. An identical cell is connected in series with two identical resistors each of resistance <em>R</em>.</p>
<p style="text-align:left;">What is the power dissipated in each resistor and the time taken to discharge the cell?</p>
<p style="text-align:left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was not well answered, with fewer than 25 % of candidates correctly selecting response B. Furthermore, the discrimination index for this question was remarkably low, suggesting this question would provide rich classroom discussion.</p>
</div>
<br><hr><br><div class="question">
<p>In the circuit shown, the battery has an emf of 12 V and negligible internal resistance. Three identical resistors are connected as shown. The resistors each have a resistance of 10 Ω.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The resistor L is removed. What is the change in potential at X?</p>
<p>A. Increases by 2 V</p>
<p>B. Decreases by 2 V</p>
<p>C. Increases by 4 V</p>
<p>D. Decreases by 4 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The majority of HL candidates correctly determined the magnitude of the potential but determining the direction of the change was more problematic. More candidates (incorrectly) selected option A than the correct option B, reinforcing the importance of a conceptual understanding of circuits and potential change.</p>
</div>
<br><hr><br><div class="question">
<p>A cell has an emf of 3.0 V and an internal resistance of 2.0 Ω. The cell is connected in series with a resistance of 10 Ω.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the terminal potential difference of the cell?</p>
<p><br>A. 0.5 V</p>
<p>B. 1.5 V</p>
<p>C. 2.5 V</p>
<p>D. 3.0 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows the magnetic field surrounding two current-carrying metal wires P and Q. The wires are parallel to each other and at right angles to the plane of the page.</p>
<p><img src=""></p>
<p>What is the direction of the electron flow in P and the direction of the electron flow in Q?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A capacitor of capacitance 1.0 μF stores a charge of 15 μC. The capacitor is discharged through a 25 Ω resistor. What is the maximum current in the resistor?</span></p>
<p><span style="background-color: #ffffff;">A. 0.60 mA<br></span></p>
<p><span style="background-color: #ffffff;">B. 1.7 mA<br></span></p>
<p><span style="background-color: #ffffff;">C. 0.60 A<br></span></p>
<p><span style="background-color: #ffffff;">D. 1.7 A</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Two power supplies, one of constant emf 24 V and the other of variable emf <em>P</em>, are connected to two resistors as shown. Both power supplies have negligible internal resistances.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="314" height="219"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">What is the magnitude of <em>P</em> for the reading on the ammeter to be zero?</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. Zero<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. 6 V<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. 8 V<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. 18 V</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>