File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 4 HTML/markSceme-SL-paper2html
File size: 744.48 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A pipe is open at both ends. A first-harmonic standing wave is set up in the pipe.&nbsp;The diagram shows the variation of displacement of air molecules in the pipe with&nbsp;distance along the pipe at time <em>t</em> = 0. The frequency of the first harmonic is <em>f</em>.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>A transmitter of electromagnetic waves is next to a long straight vertical wall that acts&nbsp;as a plane mirror to the waves. An observer on a boat detects the waves both directly&nbsp;and as an image from the other side of the wall. The diagram shows one ray from the&nbsp;transmitter reflected at the wall and the position of the image.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An air molecule is situated at point X in the pipe at <em>t</em> = 0. Describe the motion of this air molecule during one complete cycle of the standing wave beginning from <em>t</em> = 0.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed of sound <em>c</em> for longitudinal waves in air is given by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = \sqrt {\frac{K}{\rho }} ">
  <mi>c</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mi>K</mi>
      <mi>ρ</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p>where <em>ρ</em> is the density of the air and <em>K</em> is a constant.</p>
<p>A student measures <em>f</em> to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m<sup>–3</sup>. Determine, in kg m<sup>–1</sup> s<sup>–2</sup>, the value of <em>K</em> for air.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate, using a second ray, that the image appears to come from the position indicated.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the observer detects a series of increases and decreases in the intensity of the received signal as the boat moves along the line XY.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«air molecule» moves to the right and then back to the left ✔</p>
<p>returns to X/original position ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength = 2 × 1.4 = «2.8 m» ✔</p>
<p><em>c</em> = «<em>f λ</em> =» 120 × 2.8 «= 340 m s<sup>−1</sup>» ✔</p>
<p><em>K</em> = «<em>ρc</em><sup>2</sup> = 1.3 × 340<sup>2</sup> =» 1.5 × 10<sup>5</sup> ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>construction showing formation of image ✔</p>
<p><em>Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>interference pattern is observed</p>
<p><em><strong>OR</strong></em></p>
<p>interference/superposition mentioned ✔</p>
<p><br>maximum when two waves occur in phase/path difference is nλ</p>
<p><em><strong>OR</strong></em></p>
<p>minimum when two waves occur 180° out of phase/path difference is (n + ½)λ ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.</p>
</div>

<div class="specification">
<p>The beam is incident normally on a double slit. The distance between the slits is 0.300 mm. A screen is at a distance <em>D </em>from the slits. The diffraction angle <em>θ </em>is labelled.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.53.34.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/03.a"></p>
</div>

<div class="specification">
<p>The air between the slits and the screen is replaced with water. The refractive index of water is 1.33.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A series of dark and bright fringes appears on the screen. Explain how a dark fringe is formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wavelength of the beam as observed on Earth is 633.0 nm. The separation between a dark and a bright fringe on the screen is 4.50 mm. Calculate <em>D</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the light in water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two </strong>ways in which the intensity pattern on the screen changes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>superposition of light from each slit / interference of light from both slits</p>
<p>with path/phase difference of any half-odd multiple of wavelength/any odd multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span>&nbsp;(in words or symbols)</p>
<p>producing destructive interference</p>
<p>&nbsp;</p>
<p><em>Ignore any reference to crests and troughs.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of solving for <em>D</em> <strong>«</strong><em>D</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{sd}}{\lambda }">
  <mfrac>
    <mrow>
      <mi>s</mi>
      <mi>d</mi>
    </mrow>
    <mi>λ</mi>
  </mfrac>
</math></span><strong>»</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.50 \times {{10}^{ - 3}} \times 0.300 \times {{10}^{ - 3}}}}{{633.0 \times {{10}^{ - 9}}}}">
  <mfrac>
    <mrow>
      <mn>4.50</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>0.300</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>633.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>9</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> ×&nbsp;2<strong>»</strong> = 4.27 <strong>«</strong>m<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[1] </em></strong><em>max for 2.13 m.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{633.0}}{{1.33}}">
  <mfrac>
    <mrow>
      <mn>633.0</mn>
    </mrow>
    <mrow>
      <mn>1.33</mn>
    </mrow>
  </mfrac>
</math></span> =&nbsp;476 <strong>«</strong>nm<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>distance between peaks decreases</p>
<p>intensity decreases</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The solid line in the graph shows the variation with distance <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> of the displacement <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math></em> of a travelling wave at <em>t</em> = 0. The dotted line shows the wave 0.20 ms later. The period of the wave is longer than 0.20 ms.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="612" height="296"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">One end of a string is attached to an oscillator and the other is fixed to a wall. When the frequency of the oscillator is 360 Hz the standing wave shown is formed on the string.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="521" height="172"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Point X (not shown) is a point on the string at a distance of 10 cm from the oscillator.</span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, in m s<sup>–1</sup>, the speed for this wave.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, in Hz, the frequency for this wave.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph also shows the displacement of two particles, P and Q, in the medium at <em>t</em> = 0. State and explain which particle has the larger magnitude of acceleration at <em>t</em> = 0.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the number of all other points on the string that have the same amplitude and phase as X.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The frequency of the oscillator is reduced to 120 Hz. On the diagram, draw the standing wave that will be formed on the string.</span></p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>v = </em><span style="background-color: #ffffff;">«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>05</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>20</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac><mo>=</mo></math>» 250 «m s<sup>–1</sup>»✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>λ </em>= 0.30 «m» ✔<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>250</mn><mrow><mn>0</mn><mo>.</mo><mn>30</mn></mrow></mfrac><mo>=</mo></math>» 830 «Hz» ✔</span></p>
<p><em>NOTE: </em><em><span style="background-color: #ffffff;">Allow ECF from (a)(i)<br>Allow ECF from wrong wavelength for MP2</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Q ✔<br>acceleration is proportional to displacement «and Q has larger displacement» ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">3 «points» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">first harmonic mode drawn ✔</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Allow if only one curve drawn, either solid or dashed.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical tube, open at both ends, is completely immersed in a container of water.&nbsp;A loudspeaker above the container connected to a signal generator emits sound.&nbsp;As the tube is raised the loudness of the sound heard reaches a maximum because&nbsp;a standing wave has formed in the tube.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>two</strong> ways in which standing waves differ from travelling waves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how a standing wave forms in the tube.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The tube is raised until the loudness of the sound reaches a maximum for a&nbsp;<strong>second time</strong>.</p>
<p>Draw, on the following diagram, the position of the nodes in the tube when the&nbsp;second maximum is heard.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Between the first and second positions of maximum loudness, the tube is&nbsp;raised through 0.37 m. The speed of sound in the air in the tube is 320 m s<sup>−1</sup>.&nbsp;Determine the frequency of the sound emitted by the loudspeaker.</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>energy is not propagated by standing waves <strong>✓</strong></p>
<p>amplitude constant for travelling waves <em><strong>OR</strong> </em>amplitude varies with position for standing waves <em><strong>OR</strong> </em>standing waves have nodes/antinodes <strong>✓</strong></p>
<p>phase varies with position for travelling waves <em><strong>OR</strong> </em>phase constant inter-node for standing waves <strong>✓</strong></p>
<p>travelling waves can have any wavelength <em><strong>OR</strong> </em>standing waves have discrete wavelengths<strong> ✓</strong></p>
<p><strong><em><br>OWTTE</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«sound» wave «travels down tube and» is reflected <strong>✓</strong></p>
<p>incident and reflected wave superpose/combine/interfere <strong>✓</strong></p>
<p><strong><em><br>OWTTE</em></strong></p>
<p><em>Do not award <strong>MP1</strong> if the reflection is quoted at the walls/container</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nodes shown at water surface <em><strong>AND&nbsp;</strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac></math>way up tube (by eye)&nbsp;<strong>✓</strong></p>
<p><em><br>Accept drawing of displacement diagram for correct harmonic without nodes specifically identified. </em></p>
<p><em>Award <strong>[0]</strong> if waveform is shown below the water surface</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>74</mn><mo> </mo><mo>«</mo><mtext>m</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>=</mo><mo>«</mo><mfrac><mi>c</mi><mi>λ</mi></mfrac><mo>=</mo><mfrac><mn>320</mn><mrow><mn>0</mn><mo>.</mo><mn>74</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mo>&nbsp;</mo><mn>430</mn><mo>&nbsp;</mo><mo>«</mo><mtext>Hz</mtext><mo>»</mo></math>&nbsp;✓</strong></p>
<p><em><br>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A loudspeaker emits sound waves of frequency<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math></em> towards a metal plate that reflects the waves.&nbsp;A small microphone is moved along the line from the metal plate to the loudspeaker. The intensity&nbsp;of sound detected at the microphone as it moves varies regularly between maximum and&nbsp;minimum values.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The speed of sound in air is 340&thinsp;m&thinsp;s<sup>&minus;1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the variation in intensity.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Adjacent minima are separated by a distance of 0.12 m. Calculate <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math></em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The metal plate is replaced by a wooden plate that reflects a lower intensity sound wave than the metal plate.</p>
<p>State and explain the differences between the sound intensities detected by the same microphone with the metal plate and the wooden plate.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«incident and reflected» waves superpose/interfere/combine ✓</p>
<p>«that leads to» standing waves formed <em><strong>OR</strong> </em>nodes and antinodes present ✓</p>
<p>at antinodes / maxima there is maximum intensity / constructive interference / «displacement» addition / louder sound ✓</p>
<p>at nodes / minima there is minimum intensity / destructive interference / «displacement» cancellation / quieter sound ✓</p>
<p> </p>
<p><strong><em>OWTTE</em></strong></p>
<p><em>Allow a sketch of a standing wave for <strong>MP2</strong></em></p>
<p><em>Allow a correct reference to path or phase differences to identify constructive / destructive interference</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength = 0.24 «m» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>340</mn><mrow><mn>0</mn><mo>.</mo><mn>24</mn></mrow></mfrac></math>=» 1.4 «kHz» <em><strong>OR</strong> </em>1400 «Hz» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>relates intensity to amplitude ✓</p>
<p>antinodes / maximum intensity will be decreased / quieter ✓</p>
<p>nodes / minimum will be increased / louder ✓</p>
<p>difference in intensities will be less ✓</p>
<p>maxima and minima are at the same positions ✓</p>
<p> </p>
<p><em><strong>OWTTE</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>ai) On most occasions it looked like students knew more than they could successfully communicate. Lots of answers talked about interference between the 2 waves, or standing waves being produced but did not go on to add detail. Candidates should take note of how many marks the question part is worth and attempt a structure of the answer that accounts for that. At SL there were problems recognizing a standard question requiring the typical explanation of how a standing wave is established.</p>
<p>3aii) By far the most common answer was 2800 Hz, not doubling the value given to get the correct wavelength. That might suggest that some students misinterpreted adjacent minima as two troughs, therefore missing to use the information to correctly determine the wavelength as 0.24 m.</p>
<p>b) A question that turned out to be a good high level discriminator. Most candidates went for an answer that generally had everything at a lower intensity and didn't pick up on the relative amount of superposition. Those that did answer it very well, with very clear explanations, succeeded in recognizing that the nodes would be louder and the anti-nodes would be quieter than before.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The diagram shows the direction of a sound wave travelling in a metal sheet.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The frequency of the sound wave in the metal is 250 Hz.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Particle P in the metal sheet performs simple harmonic oscillations. When the displacement of P is 3.2 μm the magnitude of its acceleration is 7.9 m s<sup>-2</sup>. Calculate the magnitude of the acceleration of P when its displacement is 2.3 μm.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The wave is incident at point Q on the metal–air boundary. The wave makes an angle of 54° with the normal at Q. The speed of sound in the metal is 6010 m s<sup>–1</sup> and the speed of sound in air is 340 m s<sup>–1</sup>. Calculate the angle between the normal at Q and the direction of the wave in air.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">State the frequency of the wave in air.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine the wavelength of the wave in air.&nbsp;</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">cii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The sound wave in air in (c) enters a pipe that is open at both ends. The diagram shows the displacement, at a particular time <em>T</em>, of the standing wave that is set up in the pipe.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">On the diagram, at time <em>T</em>, label with the letter C a point in the pipe that is at the centre of a compression.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">Expression or statement showing acceleration is proportional to displacement ✔<br></span></p>
<p><span style="background-color:#ffffff;">so «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7.9 \times \frac{{2.3}}{{3.2}} » = 5.7 « {\text{m }}{{\text{s}}^{ - 2}}">
  <mn>7.9</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>2.3</mn>
    </mrow>
    <mrow>
      <mn>3.2</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mo>=</mo>
  <mn>5.7</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>2</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>»&nbsp; ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \theta&nbsp; = \frac{{340}}{{6010}} \times \sin 54^\circ ">
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>340</mn>
    </mrow>
    <mrow>
      <mn>6010</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>54</mn>
    <mo>∘</mo>
  </msup>
</math></span> &nbsp; </span><span style="background-color:#ffffff;">✔<br></span></p>
<p><span style="background-color:#ffffff;">θ = 2.6° ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em>f</em> = 250&nbsp;«Hz» <em><strong>OR</strong> </em>Same <em><strong>OR</strong> </em>Unchanged ✔<br></span></p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda&nbsp; = « \frac{{340}}{{250}} =» 1.36 \approx 1.4 «{\text{m}}">
  <mi>λ</mi>
  <mo>=</mo>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>340</mn>
    </mrow>
    <mrow>
      <mn>250</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mn>1.36</mn>
  <mo>≈</mo>
  <mn>1.4</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>m</mtext>
  </mrow>
</math></span>»</span> <span style="background-color:#ffffff;">✔</span><span style="background-color:#ffffff;"><br></span></p>
<div class="question_part_label">cii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">any point labelled C on the vertical line shown below ✔<br></span></p>
<p><span style="background-color:#ffffff;">eg:</span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;"><img src="" width="378" height="152"></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was well answered at both levels.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many scored full marks on this question. Common errors were using the calculator in radian mode or getting the equation upside down.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many used a ratio of the speeds to produce a new frequency of 14Hz (340 x 250/6010). It would have helped candidates if they had been aware that the command term ‘state’ means ‘give a specific name, value or other brief answer without explanation or calculation.’</p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">cii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was answered well at both levels.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigates how light can be used to measure the speed of a toy train.</p>
<p style="text-align: center;"><img src=""></p>
<p>Light from a laser is incident on a double slit. The light from the slits is detected by a&nbsp;light sensor attached to the train.</p>
<p>The graph shows the variation with time of the output voltage from the light sensor as&nbsp;the train moves parallel to the slits. The output voltage is proportional to the intensity of&nbsp;light incident on the sensor.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the light passing through the slits, why a series of voltage peaks occurs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The slits are separated by 1.5 mm and the laser light has a wavelength&nbsp;of 6.3 x&nbsp;10<sup>–7</sup> m. The slits are 5.0 m from the train track. Calculate the separation&nbsp;between two adjacent positions of the train when the output voltage is at a maximum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the speed of the train.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In another experiment the student replaces the light sensor with a sound sensor. The train travels away from a loudspeaker that is emitting sound waves of constant amplitude and frequency towards a reflecting barrier.</p>
<p><img src=""></p>
<p>The sound sensor gives a graph of the variation of output voltage with time along the track that is similar in shape to the graph shown in the resource. Explain how this effect arises.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«light» superposes/interferes</p>
<p>pattern consists of «intensity» maxima and minima<br><em><strong>OR</strong></em><br>consisting of constructive and destructive «interference»</p>
<p>voltage peaks correspond to interference maxima</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{{\lambda D}}{d} = \frac{{6.3 \times {{10}^{ - 7}} \times 5.0}}{{1.5 \times {{10}^{ - 3}}}} = ">
  <mi>s</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>λ</mi>
      <mi>D</mi>
    </mrow>
    <mi>d</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>6.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>5.0</mn>
    </mrow>
    <mrow>
      <mn>1.5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 2.1 x 10<sup>–3&nbsp;</sup>«m»&nbsp;</p>
<p>&nbsp;</p>
<p><em>If no unit assume m.</em><br><em>Correct answer only.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct read-off from graph of 25 m s</p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{t} = \frac{{2.1 \times {{10}^{ - 3}}}}{{25 \times {{10}^{ - 3}}}} = ">
  <mfrac>
    <mi>x</mi>
    <mi>t</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 8.4 x 10<sup>–2</sup> «m s<sup>–1</sup>»</p>
<p>&nbsp;</p>
<p><em>Allow ECF from (b)(i)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«reflection at barrier» leads to two waves travelling in opposite directions</p>
<p>mention of formation of standing wave</p>
<p>maximum corresponds to antinode/maximum displacement «of air molecules»<br><em><strong>OR</strong></em><br>complete cancellation at node position</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of microwaves is incident normally on a pair of identical narrow slits S1 and S2.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">When a microwave receiver is initially placed at W which is equidistant from the slits, a maximum in intensity is observed. The receiver is then moved towards Z along a line parallel to the slits. Intensity maxima are observed at X and Y with one minimum between them. W, X and Y are consecutive maxima.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">Explain why intensity maxima are observed at X and Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">The distance from S1 to Y is 1.243 m and the distance from S2 to Y is 1.181 m.<br><br>Determine the frequency of the microwaves.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">Outline <strong>one</strong> reason why the maxima observed at W, X and Y will have different intensities from each other.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>two waves superpose/mention of superposition/mention of «constructive» interference ✔</p>
<p>they arrive in phase/there is a path length difference of an integer number of wavelengths ✔</p>
<p><em>Ignore references to nodes/antinodes</em>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>path difference = 0.062 «m» ✔</p>
<p>so wavelength = 0.031 «m» ✔</p>
<p>frequency = 9.7 × 10<sup>9</sup> «Hz» ✔</p>
<p><em>If no unit is given, assume the answer is in Hz. Accept other prefixes (eg 9.7 GHz)</em></p>
<p><em>Award <strong>[2 max]</strong> for 4.8 x 10<sup>9</sup> Hz.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>intensity varies with distance<em><strong> OR</strong></em> points are different distances from the slits ✔</p>
<p><em>Accept “Intensity is modulated by a single slit diffraction envelope”</em>.</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to discuss the interference that is taking place in this question, but few were able to fully describe the path length difference. That said, the quality of responses on this type of question seems to have improved over the last few examination sessions with very few candidates simply discussing the crests and troughs of waves.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates struggled with this question. Few were able to calculate a proper path length difference, and then use that to calculate the wavelength and frequency. Many candidates went down blind paths of trying various equations from the data booklet, and some seemed to believe that the wavelength is just the reciprocal of the frequency.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is one of many questions on this paper where candidates wrote vague answers that did not clearly connect to physics concepts or include key information. There were many overly simplistic answers like “they are farther away” without specifying what they are farther away from. Candidates should be reminded that their responses should go beyond the obvious and include some evidence of deeper understanding.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A large cube is formed from ice. A light ray is incident from a vacuum at an angle&nbsp;of 46˚ to the normal on one surface of the cube. The light ray is parallel to the plane&nbsp;of one of the sides of the cube. The angle of refraction inside the cube is 33˚.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Each side of the ice cube is 0.75 m in length. The initial temperature of the ice cube&nbsp;is –20 °C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of light inside the ice cube.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that no light emerges from side AB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the diagram, the subsequent path of the light ray.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the energy required to melt all of the ice from –20 °C to water at a temperature of 0 °C.</p>
<p>Specific latent heat of fusion of ice  = 330 kJ kg<sup>–1</sup><br>Specific heat capacity of ice            = 2.1 kJ kg<sup>–1</sup> k<sup>–1</sup><br>Density of ice                                = 920 kg m<sup>–3</sup></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the difference between the molecular structure of a solid and a liquid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>v</em> = <em>c</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{sin }}i}}{{{\text{sin }}r}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>sin </mtext>
      </mrow>
      <mi>i</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>sin </mtext>
      </mrow>
      <mi>r</mi>
    </mrow>
  </mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3 \times {{10}^8} \times {\text{sin}}\left( {33} \right)}}{{{\text{sin}}\left( {46} \right)}}">
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mrow>
        <mtext>sin</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>33</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>sin</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>46</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>2.3 x 10<sup>8</sup> «m s<sup>–1</sup>»</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>light strikes AB at an angle of 57°</p>
<p>critical angle is «sin<sup>–1</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{2.3}}{3}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>2.3</mn>
        </mrow>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> =» 50.1°</p>
<p><em>49.2° from unrounded value</em></p>
<p>angle of incidence is greater than critical angle so total internal reflection</p>
<p><strong><em>OR</em></strong></p>
<p>light strikes AB at an angle of 57°</p>
<p>calculation showing sin of “refracted angle” = 1.1</p>
<p>statement that since 1.1&gt;1 the angle does not exist and the light does not emerge</p>
<p><strong><em>[Max 3 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total internal reflection shown</p>
<p>ray emerges at opposite face to incidence</p>
<p><em>Judge angle of incidence=angle of reflection by eye or accept correctly labelled angles</em></p>
<p><em>With sensible refraction in correct direction</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass = «<em>volume</em> x <em>density</em>» (0.75)<sup>3</sup> x 920 «= 388 kg»</p>
<p>energy required to raise temperature = 388 x 2100 x 20 «= 1.63 x 10<sup>7</sup> J»</p>
<p>energy required to melt = 388 x 330 x 10<sup>3</sup> «= 1.28 x 10<sup>8</sup> J»</p>
<p>1.4 x 10<sup>8</sup> «J» <em><strong>OR</strong> </em>1.4 x 10<sup>5</sup> «kJ»</p>
<p><em>Accept any consistent units </em></p>
<p><em>Award <strong>[3 max]</strong> for answer which uses density as 1000 kg<sup>–3</sup> (1.5× 10<sup>8</sup> «J»)</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in solid state, nearest neighbour molecules cannot exchange places/have fixed positions/are closer to each other/have regular pattern/have stronger forces of attraction</p>
<p>in liquid, bonds between molecules can be broken and re-form</p>
<p><em>OWTTE</em></p>
<p><em>Accept converse argument for liquids</em></p>
<p><strong><em>[Max 1 Mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>On a guitar, the strings played vibrate between two fixed points. The frequency of vibration&nbsp;is modified by changing the string length using a finger. The different strings have different&nbsp;wave speeds. When a string is plucked, a standing wave forms between the bridge and the finger.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src=""></p>
</div>

<div class="specification">
<p>The string is displaced 0.4 cm at point P to sound the guitar. Point P on the string&nbsp;vibrates with simple harmonic motion (shm) in its first harmonic with a frequency of&nbsp;195 Hz. The sounding length of the string is 62 cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how a standing wave is produced on the string.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the wave on the string is about 240 m s<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show how the acceleration of point P varies with its displacement from the rest position.</p>
<p>                 <img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«travelling» wave moves along the length of the string and reflects «at fixed end» <strong>✓</strong></p>
<p>superposition/interference of incident and reflected waves <strong>✓</strong></p>
<p>the superposition of the reflections is reinforced only for certain wavelengths <strong>✓</strong> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>2</mn><mi>l</mi><mo>=</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>62</mn><mo>=</mo><mo>«</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>&nbsp;</mo><mtext>m</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mi>f</mi><mi>λ</mi><mo>=</mo><mn>195</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>=</mo><mn>242</mn><mo>&nbsp;</mo><mo>«</mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<p><em>Answer must be to 3 or more sf <strong>or</strong> working shown for<strong> MP2.</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>straight line through origin with negative gradient <strong>✓</strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A loudspeaker emits sound towards the open end of a pipe. The other end is closed.&nbsp;A standing wave is formed in the pipe. The diagram represents the displacement of&nbsp;molecules of air in the pipe at an instant of time.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>X and Y represent the equilibrium positions of two air molecules in the pipe. The arrow&nbsp;represents the velocity of the molecule at Y.</p>
</div>

<div class="specification">
<p>The loudspeaker in (a) now emits sound towards an air–water boundary. A, B and C&nbsp;are parallel wavefronts emitted by the loudspeaker. The parts of wavefronts A and B&nbsp;in water are not shown. Wavefront C has not yet entered the water.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the standing wave is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw an arrow on the diagram to represent the direction of motion of the&nbsp;molecule at X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label a position N that is a node of the standing wave.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed of sound is 340 m s<sup>–1</sup> and the length of the pipe is 0.30 m.&nbsp;Calculate, in Hz, the frequency of the sound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed of sound in air is 340 m s<sup>–1</sup> and in water it is 1500 m s<sup>–1</sup>.</p>
<p>The wavefronts make an angle <em>θ</em> with the surface of the water. Determine the&nbsp;maximum angle, <em>θ</em><sub>max</sub>, at which the sound can enter water. Give your answer&nbsp;to the correct number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw lines on the diagram to complete wavefronts A and B in water for <em>θ</em> &lt; <em>θ</em><sub>max</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the incident wave <strong>«</strong>from the speaker<strong>» </strong>and the reflected wave <strong>«</strong>from the closed end<strong>»</strong></p>
<p>superpose/combine/interfere</p>
<p>&nbsp;</p>
<p><em>Allow superimpose/add up</em></p>
<p><em>Do not allow meet/interact</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Horizontal arrow from X to the right</p>
<p>&nbsp;</p>
<p><em>MP2 is dependent on MP1</em></p>
<p><em>Ignore length of arrow</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P at a node</p>
<p>&nbsp;</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_14.17.43.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/03.a.iii/M"></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength is&nbsp;<em>λ</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times 0.30}}{3}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mn>0.30</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span> =<strong>»</strong> 0.40&nbsp;<strong>«</strong>m<strong>»</strong></p>
<p><em>f</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{340}}{{0.40}}">
  <mfrac>
    <mrow>
      <mn>340</mn>
    </mrow>
    <mrow>
      <mn>0.40</mn>
    </mrow>
  </mfrac>
</math></span><strong>»</strong> 850&nbsp;<strong>«</strong>Hz<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin {\theta _c}}}{{340}} = \frac{1}{{1500}}">
  <mfrac>
    <mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mrow>
        <msub>
          <mi>θ</mi>
          <mi>c</mi>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mn>340</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>1500</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><em>θ<sub>c</sub></em> = 13<strong>«</strong>°<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald answer of 13.1</em></p>
<p>&nbsp;</p>
<p><em>Answer must be to 2/3 significant figures to award MP2</em></p>
<p><em>Allow 0.23 radians</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct orientation</p>
<p>greater separation</p>
<p>&nbsp;</p>
<p><em>Do not penalize the lengths of A and B in the water</em></p>
<p><em>Do not penalize a wavefront for C if it is consistent with A and B</em></p>
<p><em>MP1 must be awarded for MP2 to be awarded</em></p>
<p><em><img src="images/Schermafbeelding_2018-08-12_om_14.30.57.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/03.b.ii/M"></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two loudspeakers, A and B, are driven in phase and with the same amplitude at a frequency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>850</mn><mo> </mo><mi>Hz</mi></math>. Point P is located <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn><mo>.</mo><mn>5</mn><mo> </mo><mi mathvariant="normal">m</mi></math> from A and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>.</mo><mn>3</mn><mo> </mo><mi mathvariant="normal">m</mi></math> from B. The speed of sound is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>340</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that a minimum intensity of sound is heard at P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A microphone moves along the line from P to Q. PQ is normal to the line midway between the loudspeakers.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="370" height="161"></p>
<p> </p>
<p>The intensity of sound is detected by the microphone. Predict the variation of detected intensity as the microphone moves from P to Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When both loudspeakers are operating, the intensity of sound recorded at Q is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>0</mn></msub></math>. Loudspeaker B is now disconnected. Loudspeaker A continues to emit sound with unchanged amplitude and frequency. The intensity of sound recorded at Q changes to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub></math>.</p>
<p>Estimate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub><msub><mi>I</mi><mn>0</mn></msub></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>wavelength<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>340</mn><mn>850</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math>✓<br><br></p>
<p><span class="fontstyle0">path difference </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math> <span class="fontstyle3">✓<br><br></span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn><mi>λ</mi></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>20</mn></mrow></mfrac><mo>=</mo><mn>9</mn><mo> </mo></math></strong></em><span class="fontstyle2">«</span><span class="fontstyle0">half-wavelengths</span><span class="fontstyle2">» ✓<br><br></span></p>
<p><span class="fontstyle0">waves meet in antiphase </span><span class="fontstyle2">«</span><span class="fontstyle0">at P</span><span class="fontstyle2">»<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span><span class="fontstyle0">destructive interference/superposition </span><span class="fontstyle2">«</span><span class="fontstyle0">at P</span><span class="fontstyle2">» </span><span class="fontstyle4">✓</span></p>
<p> </p>
<p><em><span class="fontstyle0">Allow approach where path length is calculated in terms of number of wavelengths; along path A (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">56</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">25</mn></math>) and<br>path B (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">60</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">75</mn></math>) for MP2, hence path difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">4</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">5</mn></math> wavelengths for MP3</span></em> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«</span><span class="fontstyle1">equally spaced</span><span class="fontstyle0">» </span><span class="fontstyle1">maxima and minima </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle1">a maximum at Q </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle1">four </span><span class="fontstyle0">«</span><span class="fontstyle1">additional</span><span class="fontstyle0">» </span><span class="fontstyle1">maxima </span><span class="fontstyle0">«</span><span class="fontstyle1">between P and Q</span><span class="fontstyle0">» </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the amplitude of sound at Q is halved </span><span class="fontstyle2">✓<br></span><span class="fontstyle3">«</span><span class="fontstyle0">intensity is proportional to amplitude squared hence</span><span class="fontstyle3">» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub><msub><mi>I</mi><mn>0</mn></msub></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two loudspeakers A and B are initially equidistant from a microphone M. The frequency and&nbsp;intensity emitted by A and B are the same. A and B emit sound in phase. A is fixed in position.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>B is moved slowly away from M along the line MP. The graph shows the variation with&nbsp;distance travelled by B of the received intensity at M.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the received intensity varies between maximum and minimum values.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the wavelength of the sound measured at M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>B is placed at the first minimum. The frequency is then changed until the received intensity is again at a maximum.</p>
<p>Show that the lowest frequency at which the intensity maximum can occur is about 3 kHz.</p>
<p style="text-align:center;">Speed of sound = 340 m s<sup>−1</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>movement of B means that path distance is different « between BM and AM »<br><em><strong>OR</strong></em><br>movement of B creates a path difference «between BM and AM» ✓</p>
<p>interference<br><em><strong>OR</strong></em><br>superposition «of waves» ✓</p>
<p>maximum when waves arrive in phase / path difference = n x lambda<br><em><strong>OR</strong></em><br>minimum when waves arrive «180° or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math> » out of phase / path difference = (n+½) x lambda ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength = 26 cm ✓</p>
<p><br>peak to peak distance is the path difference which is one wavelength</p>
<p><em><strong>OR</strong></em></p>
<p>this is the distance B moves to be back in phase «with A» ✓</p>
<p> </p>
<p><em>Allow 25 − 27 </em>cm<em> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>λ</mi><mn>2</mn></mfrac></math>» = 13 cm ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>c</mi><mi>λ</mi></mfrac><mo>=</mo><mfrac><mn>340</mn><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow></mfrac><mo>=</mo></math>» 2.6 «kHz» ✓</p>
<p> </p>
<p><em>Allow ½ of wavelength from <strong>(b)</strong> or data from graph.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was an "explain" questions, so examiners were looking for a clear discussion of the movement of speaker B creating a changing path difference between B and the microphone and A and the microphone. This path difference would lead to interference, and the examiners were looking for a connection between specific phase differences or path differences for maxima or minima. Some candidates were able to discuss basic concepts of interference (e.g. "there is constructive and destructive interference"), but failed to make clear connections between the physical situation and the given graph. A very common mistake candidates made was to think the question was about intensity and to therefore describe the decrease in peak height of the maxima on the graph. Another common mistake was to approach this as a Doppler question and to attempt to answer it based on the frequency difference of B.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates recognized that the wavelength was 26 cm, but the explanations were lacking the details about what information the graph was actually providing. Examiners were looking for a connection back to path difference, and not simply a description of peak-to-peak distance on the graph. Some candidates did not state a wavelength at all, and instead simply discussed the concept of wavelength or suggested that the wavelength was constant.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" question that had enough information for backwards working. Examiners were looking for evidence of using the wavelength from (b) or information from the graph to determine wavelength followed by a correct substitution and an answer to more significant digits than the given result.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by the principle of superposition of waves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Red laser light is incident on a double slit with a slit separation of 0.35 mm.<br>A double-slit interference pattern is observed on a screen 2.4 m from the slits.<br>The distance between successive maxima on the screen is 4.7 mm.</p>
<p><img src=""></p>
<p>Calculate the wavelength of the light. Give your answer to an appropriate number of&nbsp;significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the change to the appearance of the interference pattern when the red-light laser is replaced by one that emits green light.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the slits is now covered.</p>
<p>Describe the appearance of the pattern on the screen.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>when 2 waves meet the resultant displacement</p>
<p>is the «vector» sum of their individual displacements</p>
<p> </p>
<p><em>Displacement should be mentioned at least once in MP 1 or 2.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>λ&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.7 \times {{10}^{ - 3}} \times 0.35 \times {{10}^{ - 3}}}}{{2.4}}">
  <mfrac>
    <mrow>
      <mn>4.7</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>0.35</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2.4</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>= 6.9 x 10<sup>–7</sup> «m»</p>
<p>answer to 2 SF</p>
<p>&nbsp;</p>
<p><em>Allow missed powers of 10 for MP1.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>green wavelength smaller than red</p>
<p>fringe separation / distance between maxima decreases</p>
<p> </p>
<p><em>Allow ECF from MP1.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bright central maximum</p>
<p>subsidiary maxima «on either side»</p>
<p> </p>
<p>the width of the central fringe is twice / larger than the width of the subsidiary/secondary fringes/maxima</p>
<p><em><strong>OR</strong></em></p>
<p>intensity of pattern is decreased</p>
<p> </p>
<p><em>Allow marks from a suitably labelled intensity graph for single slit diffraction.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The ratio&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{distance of Mars from the Sun}}}}{{{\text{distance of Earth from the Sun}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>distance of Mars from the Sun</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>distance of Earth from the Sun</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = 1.5.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of solar radiation at the orbit of Mars is about 600 W m<sup>–2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in K, the mean surface temperature of Mars. Assume that Mars acts as a black body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The atmosphere of Mars is composed mainly of carbon dioxide and has a pressure less than 1 % of that on the Earth. Outline why the greenhouse effect is not significant on Mars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="I \propto \frac{1}{{{r^2}}}">
  <mi>I</mi>
  <mo>∝</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mi>r</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> «1.36 × 10<sup>3</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{{1.5}^2}}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>1.5</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» ✔</p>
<p>604 «W m<sup>–2</sup>» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{600}}{4}">
  <mfrac>
    <mrow>
      <mn>600</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span> for mean intensity ✔</p>
<p>temperature/K = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt[4]{{\frac{{600}}{{4 \times 5.67 \times {{10}^{ - 8}}}}}} = ">
  <mroot>
    <mrow>
      <mfrac>
        <mrow>
          <mn>600</mn>
        </mrow>
        <mrow>
          <mn>4</mn>
          <mo>×</mo>
          <mn>5.67</mn>
          <mo>×</mo>
          <mrow>
            <msup>
              <mrow>
                <mn>10</mn>
              </mrow>
              <mrow>
                <mo>−</mo>
                <mn>8</mn>
              </mrow>
            </msup>
          </mrow>
        </mrow>
      </mfrac>
    </mrow>
    <mn>4</mn>
  </mroot>
  <mo>=</mo>
</math></span>» 230 ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize the link between molecular density/concentration and pressure ✔</p>
<p>low pressure means too few molecules to produce a significant heating effect</p>
<p><em><strong>OR</strong></em></p>
<p>low pressure means too little radiation re-radiated back to Mars ✔</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A longitudinal wave travels in a medium with speed 340&thinsp;m&thinsp;s<sup>&minus;1</sup>. The graph shows the variation&nbsp;with time <em>t</em> of the displacement <em>x</em> of a particle P in the medium. Positive displacements on&nbsp;the graph correspond to displacements to the right for particle P.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Another wave travels in the medium. The graph shows the variation with time <em>t</em> of the&nbsp;displacement of each wave at the position of P.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>A standing sound wave is established in a tube that is closed at one end and open at&nbsp;the other end. The period of the wave is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>. The diagram represents the standing wave&nbsp;at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> and at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>8</mn></mfrac></math>. The wavelength of the wave is 1.20&thinsp;m. Positive displacements&nbsp;mean displacements to the right.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the wave.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the phase difference between the two waves.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a time at which the displacement of P is zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the amplitude of the resultant wave.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of the tube.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A particle in the tube has its equilibrium position at the open end of the tube.<br>State and explain the direction of the velocity of this particle at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>8</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the diagram the standing wave at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>4</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo></math>«s» or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>=</mo><mn>250</mn><mo> </mo></math>«Hz» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>340</mn><mo>×</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>36</mn><mo>≈</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo> </mo></math>«m» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.<br>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«±» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>/</mo><mn>90</mn><mo>°</mo></math>  <em><strong>OR</strong></em>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac><mo>/</mo><mn>270</mn><mo>°</mo></math> ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.5 «ms» ✓</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>8.0 <em><strong>OR</strong> </em>8.5 «μm» ✓</p>
<p><em><br>From the graph on the paper, value is 8.0. From the calculated correct trig functions, value is 8.49.</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>L</em> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>λ</mi><mo>=</mo></mstyle></math>» 0.90 «m» ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to the right ✓<br><br></p>
<p>displacement is getting less negative</p>
<p><em><strong>OR</strong></em></p>
<p>change of displacement is positive ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal line drawn at the equilibrium position ✓</p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the&nbsp;Earth-Sun distance.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of the solar radiation at the location of Titan is 16 W m<sup>−2</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1 W m<sup>−2</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equilibrium surface temperature of Titan is about 90 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and the period of revolution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo> </mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is 1.2 × 10<sup>9 </sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>incident intensity <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1360</mn><mrow><mn>9</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn><mo>≈</mo><mn>16</mn></math> «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow the use of 1400 for the solar constant.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>exposed surface is ¼ of the total surface ✓</p>
<p>absorbed intensity = (1−0.22) × incident intensity ✓</p>
<p>0.78 × 0.25 × 15.7  <em><strong>OR </strong> </em>3.07 «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow 3.06 from rounding and 3.12 if they use 16</em> W m<sup>−2</sup>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>σT </em><sup>4</sup> = 3.07</p>
<p><em><strong>OR</strong></em></p>
<p><em>T</em> = 86 «K» ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct equating of gravitational force / acceleration to centripetal force / acceleration ✓</p>
<p>correct rearrangement to reach the expression given ✓</p>
<p> </p>
<p><em>Allow use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mi>R</mi></mrow><mi>T</mi></mfrac></math> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></math> «s» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mn>3</mn></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mfenced><mrow><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>26</mn></msup><mo> </mo></math>«kg» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two microwave transmitters, X and Y, are placed 12 cm apart and are connected to the same source. A single receiver is placed 54 cm away and moves along a line AB that is parallel to the line joining X and Y.</p>
<p><img src="" alt></p>
<p>Maxima and minima of intensity are detected at several points along AB.</p>
<p>(i) Explain the formation of the intensity <strong>minima</strong>.</p>
<p>(ii) The distance between the central maximum and the first minimum is 7.2 cm. Calculate the wavelength of the microwaves.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Radio waves are emitted by a straight conducting rod antenna (aerial). The plane of polarization of these waves is parallel to the transmitting antenna.</p>
<p><img src=""></p>
<p>An identical antenna is used for reception. Suggest why the receiving antenna needs to be be parallel to the transmitting antenna.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The receiving antenna becomes misaligned by 30° to its original position.</p>
<p><img src="" alt></p>
<p>The power of the received signal in this new position is 12 μW.</p>
<p>(i) Calculate the power that was received in the original position.</p>
<p>(ii) Calculate the minimum time between the wave leaving the transmitting antenna and its reception.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i<br>minima = destructive interference<br><em>Allow “crest meets trough”, but not “waves cancel”.</em><br><em>Allow “destructive superposition” but not bald “superposition”.</em><br><br>at minima waves meet 180° <em><strong>or</strong></em> π out of phase<br><em>Allow similar argument in terms of effective path difference of </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{2}">
  <mfrac>
    <mi>λ</mi>
    <mn>2</mn>
  </mfrac>
</math></span><em>.</em><br><em>Allow “antiphase”, allow “completely out of phase”</em><br><em>Do not allow “out of phase” without angle. Do not allow <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n\lambda }}{2}">
  <mfrac>
    <mrow>
      <mi>n</mi>
      <mi>λ</mi>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span> unless qualified to odd integers but accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {n + \frac{1}{2}} \right)\lambda ">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>n</mi>
      <mo>+</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mi>λ</mi>
</math></span></em><br><br>ii<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{{sd}}{D}">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>s</mi>
      <mi>d</mi>
    </mrow>
    <mi>D</mi>
  </mfrac>
</math></span> <em><strong>or</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{{12 \times 2 \times 7.2}}{{54}} = ">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>12</mn>
      <mo>×</mo>
      <mn>2</mn>
      <mo>×</mo>
      <mn>7.2</mn>
    </mrow>
    <mrow>
      <mn>54</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span> <em><strong>or</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{{12 \times 7.2}}{{54}} = ">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>12</mn>
      <mo>×</mo>
      <mn>7.2</mn>
    </mrow>
    <mrow>
      <mn>54</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span> seen<br><em>Award <strong>[2]</strong> for a bald correct answer.</em><br><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = ">
  <mi>λ</mi>
  <mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12 \times 2 \times 7.2}}{{54}} = ">
  <mfrac>
    <mrow>
      <mn>12</mn>
      <mo>×</mo>
      <mn>2</mn>
      <mo>×</mo>
      <mn>7.2</mn>
    </mrow>
    <mrow>
      <mn>54</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 3.2 «cm»<br><em>Award <strong>[1 max]</strong> for 1.6 «cm»</em><br><em>Award <strong>[2 max]</strong> to a trigonometric solution in which candidate works out individual path lengths and equates to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{2}">
  <mfrac>
    <mi>λ</mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>the component of the polarized signal in the direction of the receiving antenna</p>
<p>is a maximum «when both are parallel»</p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>receiving antenna must be parallel to plane of polarisation<br>for power/intensity to be maximum</p>
<p><em>Do not accept “receiving antenna must be parallel to transmitting antenna”</em></p>
<p><em><strong>ALTERNATIVE 3: </strong></em></p>
<p>refers to Malus’ law <em><strong>or</strong></em>  <em>I = I<sub>0</sub> </em>cos<sup>2</sup><em>θ</em></p>
<p>explains that <em>I</em> is max when<em> θ</em> = 0</p>
<p><em><strong>ALTERNATIVE 4:</strong></em></p>
<p>an electric current is established in the receiving antenna which is proportional to the electric field</p>
<p>maximum current in receiving antenna requires maximum field <strong>«</strong>and so must be parallel<strong>»</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{I_0} = \frac{I}{{{{\cos }^2}\theta }}">
  <mrow>
    <msub>
      <mi>I</mi>
      <mn>0</mn>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mi>I</mi>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mi>cos</mi>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span> <em><strong>or</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12}}{{{{\cos }^2}30}}">
  <mfrac>
    <mrow>
      <mn>12</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mi>cos</mi>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mn>30</mn>
    </mrow>
  </mfrac>
</math></span> seen<br><em>Award <strong>[2]</strong> for bald correct answer.</em><br><em>Award <strong>[1 max]</strong> for MP1 if 9 x 10<sup>-6</sup>W is the final answer (I and I<sub>0</sub> reversed).</em><br><em>Award<strong> [1 max]</strong> if cos not squared (14 μW).</em></p>
<p>1.6 × 10<sup>-5</sup>«W»<br><em>Units not required but if absent assume W.</em><br><br>ii<br>1.9 × 10<sup>–4 </sup>«s»</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>