File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 4 HTML/markSceme-SL-paper1html
File size: 1004.26 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="question">
<p>A spring XY lies on a frictionless table with the end Y free.</p>
<p><img src="" alt></p>
<p>A horizontal pulse travels along the spring from X to Y. What happens when the pulse reaches Y? </p>
<p>A. The pulse will be reflected towards X and inverted. <br>B. The pulse will be reflected towards X and not be inverted. <br>C. Y will move and the pulse will disappear. <br>D. Y will not move and the pulse will disappear.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graphs show the variation of the displacement <em>y</em> of a medium with distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and with time <em>t</em> for a travelling wave.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">What is the speed of the wave?</p>
<p style="text-align: left;"> </p>
<p style="text-align: left;">A. 0.6 m s<sup>–1</sup></p>
<p style="text-align: left;">B. 0.8 m s<sup>–1</sup></p>
<p style="text-align: left;">C. 600 m s<sup>–1</sup></p>
<p style="text-align: left;">D. 800 m s<sup>–1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p><img src=""></p>
<p>What is a possible pulse shape when the pulses overlap?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A sound wave has a frequency of 1.0 kHz and a wavelength of 0.33 m. What is the distance travelled by the wave in 2.0 ms and the nature of the wave?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the phase difference, in rad, between the centre of a compression and the centre of a rarefaction for a longitudinal travelling wave?</p>
<p>A. 0</p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}">
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
<mn>2</mn>
<mi>π</mi>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Unpolarized light of intensity <em>I</em><sub>0</sub> is incident on the first of two polarizing sheets. Initially the planes of polarization of the sheets are perpendicular.</p>
<p>Which sheet must be rotated and by what angle so that light of intensity <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{I_0}}}{4}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>I</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> can emerge from the second sheet?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A wave travels along a string. Graph M shows the variation with time of the displacement of a point X on the string. Graph N shows the variation with distance of the displacement of the string. PQ and RS are marked on the graphs.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the speed of the wave?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>PQ</mtext><mtext>RS</mtext></mfrac></math><br><br>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PQ</mtext><mo>×</mo><mtext>RS</mtext></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>RS</mtext><mtext>PQ</mtext></mfrac></math><br><br>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mtext>PQ</mtext><mo>×</mo><mtext>RS</mtext></mrow></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A system that is subject to a restoring force oscillates about an equilibrium position.</p>
<p>For the motion to be simple harmonic, the restoring force must be proportional to</p>
<p>A. the amplitude of the oscillation.</p>
<p>B. the displacement from the equilibrium position.</p>
<p>C. the potential energy of the system.</p>
<p>D. the period of the oscillation.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two identical waves, each with amplitude <em>X</em><sub>0</sub> and intensity<em> I</em>, interfere constructively. What are the amplitude and intensity of the resultant wave?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>When a sound wave travels from a region of hot air to a region of cold air, it refracts as shown.</p>
<p><img src=""></p>
<p>What changes occur in the frequency and wavelength of the sound as it passes from the hot air to the cold air?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Unpolarized light with an intensity of 320 W m<sup>−2</sup> goes through a polarizer and an analyser, originally aligned parallel.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The analyser is rotated through an angle <em>θ</em> = 30°. Cos 30° = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the intensity of the light emerging from the analyser? </p>
<p>A. 120 W m<sup>−2</sup></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn><msqrt><mn>3</mn></msqrt></math> W m<sup>−2</sup></p>
<p>C. 240 W m<sup>−2</sup></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>160</mn><msqrt><mn>3</mn></msqrt></math> W m<sup>−2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question proved a little challenging for SL candidates with many choosing incorrect answers especially C or D instead of correct A. At HL option C also was a popular option although a high discrimination index shows that the question discriminated well between the candidates. It appears that candidates are forgetting that 50% of the intensity is lost when unpolarised light passes through a polarizer, and then more is lost at the analyser according to Malus' Law.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Unpolarized light is incident on two polarizing filters X and Y. They are arranged so that light emerging from Y has a maximum intensity. X is fixed and Y is rotated through <em>θ</em> about the direction of the incident beam in its own plane.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="264" height="145"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">What are the first three successive values of<em> θ</em> for which the final transmitted intensity is a maximum?<br></span></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. 90°, 180°, 270°<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. 90°, 270°, 450°<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. 180°, 360°, 540°<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. 180°, 540°, 720°</span></span></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows an interference pattern produced by two sources that oscillate on the surface of a liquid.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_16.41.00.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/15"></p>
<p>Which of the distances shown in the diagram corresponds to <strong>one </strong>fringe width of the interference pattern?</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A string is fixed at both ends. P and Q are two particles on the string.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The first harmonic standing wave is formed in the string. What is correct about the motion of P and Q?</p>
<p><br>A. P is a node and Q is an antinode.</p>
<p>B. P is an antinode and Q is a node.</p>
<p>C. P and Q oscillate with the same amplitude.</p>
<p>D. P and Q oscillate with the same frequency.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In a double-slit experiment, a source of monochromatic red light is incident on slits S<sub>1</sub> and S<sub>2</sub> separated by a distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>. A screen is located at distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> from the slits. A pattern with fringe spacing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> is observed on the screen.</p>
<p style="text-align: center;"><img src=""></p>
<p>Three changes are possible for this arrangement</p>
<p style="padding-left:90px;">I. increasing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span></p>
<p style="padding-left:90px;">II. increasing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span></p>
<p style="padding-left:90px;">III. using green monochromatic light instead of red.</p>
<p>Which changes will cause a decrease in fringe spacing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>?</p>
<p> </p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II, and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A pipe of length <em>L</em> is closed at one end. Another pipe is open at both ends and has length 2<em>L</em>. What is the lowest common frequency for the standing waves in the pipes?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>speed of sound in air</mtext><mrow><mn>8</mn><mtext>L</mtext></mrow></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>speed of sound in air</mtext><mrow><mn>4</mn><mtext>L</mtext></mrow></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>speed of sound in air</mtext><mrow><mn>2</mn><mtext>L</mtext></mrow></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>speed of sound in air</mtext><mtext>L</mtext></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle is displaced from rest and released at time <em>t </em>= 0. It performs simple harmonic motion (SHM). Which graph shows the variation with time of the kinetic energy <em>E</em><sub>k</sub> of the particle?</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_16.43.41.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/17"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What changes occur to the frequency and wavelength of monochromatic light when it travels from glass to air?</p>
<p><img src="" width="316" height="203"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What statement about X-rays and ultraviolet radiation is correct?</p>
<p>A. X-rays travel faster in a vacuum than ultraviolet waves.</p>
<p>B. X-rays have a higher frequency than ultraviolet waves.</p>
<p>C. X-rays cannot be diffracted unlike ultraviolet waves.</p>
<p>D. Microwaves lie between X-rays and ultraviolet in the electromagnetic spectrum.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two strings of lengths <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub> are fixed at both ends. The wavespeed is the same for both strings. They both vibrate at the same frequency. <em>L</em><sub>1</sub> vibrates at its first harmonic. <em>L</em><sub>2</sub> vibrates at its third harmonic.</p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{L_1}}}{{{L_2}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span>?</p>
<p> </p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span></p>
<p>B. 1</p>
<p>C. 2</p>
<p>D. 3</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A body undergoes one oscillation of simple harmonic motion (shm). What is correct for the direction of the acceleration of the body and the direction of its velocity? </p>
<p>A. Always opposite <br>B. Opposite for half a period <br>C. Opposite for a quarter of a period <br>D. Never opposite</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A longitudinal wave moves through a medium. Relative to the direction of energy transfer through the medium, what are the displacement of the medium and the direction of propagation of the wave?</p>
<p> </p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A student blows across the top of a cylinder that contains water. A first-harmonic standing sound wave is produced in the air of the cylinder. More water is then added to the cylinder. The student blows so that a first-harmonic standing wave is produced with a different frequency.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the nature of the displacement in the air at the water surface and the change in frequency when the water is added?</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><img src=""></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation with time <em>t</em> of the velocity <em>v</em> of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position take a maximum positive value?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">A string fixed at both ends vibrates in the first harmonic with frequency 400 Hz. The speed of sound in the string is 480 m s<sup>–1</sup>. What is the length of the string?</p>
<p style="text-align:left;">A. 0.42 m</p>
<p style="text-align:left;">B. 0.60 m</p>
<p style="text-align:left;">C. 0.84 m</p>
<p style="text-align:left;">D. 1.2 m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Response D was the most common option selected, perhaps by students equating the wavelength of the sound with the length of the string, or incorrectly taking the first harmonic to be the fundamental frequency.</p>
</div>
<br><hr><br><div class="question">
<p>A beam of unpolarized light of intensity <em><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>0</mn></msub></math></em> is incident on a polarizing filter. The polarizing filter is rotated through an angle <em>θ</em>. What is the variation in the intensity <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></em> of the beam with angle <em>θ</em> after passing through the polarizing filter?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Option B was chosen most frequently among both HL and SL candidates. It seems likely that students selecting this answer were anticipating a question with two polarising filters where the second filter was rotated. Again, careful reading of the questions by candidates is necessary. A high discrimination index was observed for this question. This is a good conceptual question and would be useful in the teaching and/or revision of polarisation.</p>
</div>
<br><hr><br><div class="question">
<p>Three quantities used to describe a light wave are</p>
<p> I. frequency<br> II. wavelength<br> III. speed.</p>
<p>Which quantities increase when the light wave passes from water to air?</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two travelling waves are moving through a medium. The diagram shows, for a point in the medium, the variation with time <em>t </em>of the displacement <em>d </em>of each of the waves.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_16.38.32.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/14_01"></p>
<p>For the instant when <em>t </em>= 2.0 ms, what is the phase difference between the waves and what is the resultant displacement of the waves?</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_16.39.41.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/14_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two wave generators, placed at position P and position Q, produce water waves with a wavelength of<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mn>4</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>cm</mtext></math>. Each generator, operating alone, will produce a wave oscillating with an amplitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>cm</mtext></math> at position R. PR is<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mn>42</mn><mo> </mo><mtext>cm</mtext></math> and RQ is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><mtext>cm</mtext></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p>Both wave generators now operate together in phase. What is the amplitude of the resulting wave at R?</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo> </mo><mtext>cm</mtext></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mtext>cm</mtext></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo> </mo><mtext>cm</mtext></math></p>
<p>D. zero</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A standing wave is formed on a rope. The distance between the first and fifth antinode on the standing wave is 60 cm. What is the wavelength of the wave?</p>
<p>A. 12 cm</p>
<p>B. 15 cm</p>
<p>C. 24 cm</p>
<p>D. 30 cm</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Option D was the most common (correct) answer, however answers A and B proved to be significant distractors. This would be a useful practice question when reviewing standing waves, nodes/antinodes and wavelengths.</p>
</div>
<br><hr><br><div class="question">
<p>Two sound waves from a point source on the ground travel through the ground to a detector. The speed of one wave is 7.5 km s<sup>–1</sup>, the speed of the other wave is 5.0 km s<sup>–1</sup>. The waves arrive at the detector 15 s apart. What is the distance from the point source to the detector?</p>
<p>A. 38 km</p>
<p>B. 45 km</p>
<p>C. 113 km</p>
<p>D. 225 km</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A girl in a stationary boat observes that 10 wave crests pass the boat every minute. What is the period of the water waves?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{10}">
<mfrac>
<mn>1</mn>
<mn>10</mn>
</mfrac>
</math></span> min</p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{10}">
<mfrac>
<mn>1</mn>
<mn>10</mn>
</mfrac>
</math></span> min<sup>–1</sup></p>
<p>C. 10 min</p>
<p>D. 10 min<sup>–1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The bob of a pendulum has an initial displacement <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>0</mn></msub></math> to the right. The bob is released and allowed to oscillate. The graph shows how the displacement varies with time. At which point is the velocity of the bob at its maximum magnitude directed towards the left?</p>
<p style="text-align:center;"><img src=""></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Horizontally polarized light is incident on a pair of polarizers X and Y. The axis of polarization of X makes an angle <em>θ</em> with the horizontal. The axis of polarization of Y is vertical.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is <em>θ</em> so that the intensity of the light transmitted through Y is a maximum?</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>°</mo></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn><mo>°</mo></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>°</mo></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>°</mo></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A ray of light is incident on the flat side of a semi-circular glass block placed in paraffin. The ray is totally internally reflected inside the glass block as shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The refractive index of glass is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>n</mi><mn>1</mn></msub></math> and the refractive index of paraffin is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>n</mi><mn>2</mn></msub></math>.</p>
<p>What is correct?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msub><mi>n</mi><mn>1</mn></msub><msub><mi>n</mi><mn>2</mn></msub></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msub><mi>n</mi><mn>2</mn></msub><msub><mi>n</mi><mn>1</mn></msub></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>1</mn><msub><mi>n</mi><mn>1</mn></msub></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>1</mn><msub><mi>n</mi><mn>2</mn></msub></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>While option A (correct) was the most frequent response from candidates, options B and D were significant distractors. Very few candidates selected option A, recognizing that different frequency and amplitude could not lead to zero intensity through interference.</p>
</div>
<br><hr><br><div class="question">
<p>A glass block has a refractive index in air of <em>n</em><sub>g</sub>. The glass block is placed in two different liquids: liquid X with a refractive index of <em>n</em><sub>X</sub> and liquid Y with a refractive index of <em>n</em><sub>Y</sub>.</p>
<p>In liquid X <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>n</mi><mtext>g</mtext></msub><msub><mi>n</mi><mtext>X</mtext></msub></mfrac><mo>=</mo><mn>2</mn></math> and in liquid Y <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>n</mi><mtext>g</mtext></msub><msub><mi>n</mi><mtext>Y</mtext></msub></mfrac><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>.</mo></math> What is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>speed of light in liquid X</mtext><mtext>speed of light in liquid Y</mtext></mfrac></math>?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>4</mn></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>4</mn></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A beam of unpolarized light is incident on the first of two parallel polarizers. The transmission axes of the two polarizers are initially parallel.</p>
<p><img src=""></p>
<p>The first polarizer is now rotated about the direction of the incident beam by an angle smaller than 90°. Which gives the changes, if any, in the intensity and polarization of the transmitted light?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A ray of monochromatic light is incident on the parallel interfaces between three media. The speeds of light in the media are <em>v</em><sub>1</sub>, <em>v</em><sub>2</sub> and <em>v</em><sub>3</sub>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is correct about the speeds of light in the media?</p>
<p><br>A. <em>v</em><sub>3</sub> < <em>v</em><sub>1</sub> < <em>v</em><sub>2</sub></p>
<p>B. <em>v</em><sub>3</sub> < <em>v</em><sub>2</sub> < <em>v</em><sub>1</sub></p>
<p>C. <em>v</em><sub>2</sub> < <em>v</em><sub>3</sub> < <em>v</em><sub>1</sub></p>
<p>D. <em>v</em><sub>2</sub> < <em>v</em><sub>1</sub> < <em>v</em><sub>3</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object moves with simple harmonic motion. The acceleration of the object is</p>
<p>A. constant.</p>
<p>B. always directed away from the centre of the oscillation.</p>
<p>C. a maximum at the centre of the oscillation.</p>
<p>D. a maximum at the extremes of the oscillation.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which graph shows the variation with time <em>t</em> of the kinetic energy (KE) of an object undergoing simple harmonic motion (shm) of period T?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A travelling wave has a frequency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mo> </mo><mi>Hz</mi></math>. The closest distance between two points on the wave that have a phase difference of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo>°</mo><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mi>rad</mi></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>050</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. What is the speed of the wave?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A first-harmonic standing wave is formed on a vertical string of length 3.0 m using a vibration generator. The boundary conditions for this string are that it is fixed at one boundary and free at the other boundary.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_16.36.00.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/13"></p>
<p>The generator vibrates at a frequency of 300 Hz.</p>
<p>What is the speed of the wave on the string?</p>
<p>A. 0.90 km s<sup>–1</sup></p>
<p>B. 1.2 km s<sup>–1</sup></p>
<p>C. 1.8 km s<sup>–1</sup></p>
<p>D. 3.6 km s<sup>–1</sup> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Unpolarized light is incident on two polarizers. The axes of polarization of both polarizers are initially parallel. The second polarizer is then rotated through 360° as shown.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Which graph shows the variation of intensity with angle<em> θ</em> for the light leaving the second polarizer?</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><img src=""></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle oscillates with simple harmonic motion (shm) of period <em>T</em>. Which graph shows the variation with time of the kinetic energy of the particle?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A pipe of fixed length is closed at one end. What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{third harmonic frequency of pipe}}}}{{{\text{first harmonic frequency of pipe}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>third harmonic frequency of pipe</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>first harmonic frequency of pipe</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{5}">
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span></p>
<p>C. 3</p>
<p>D. 5</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A pair of slits in a double slit experiment are illuminated with monochromatic light of wavelength 480 nm. The slits are separated by 1.0 mm. What is the separation of the fringes when observed at a distance of 2.0 m from the slits?</p>
<p>A. 2.4 × 10<sup>–4</sup> mm</p>
<p>B. 9.6 × 10<sup>–4</sup> mm</p>
<p>C. 2.4 × 10<sup>–1</sup> mm</p>
<p>D. 9.6 × 10<sup>–1</sup> mm</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The frequency of the first harmonic in a pipe is measured. An adjustment is then made which causes the speed of sound in the pipe to increase. What is true for the frequency and the wavelength of the first harmonic when the speed of sound has increased?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">Which of these waves cannot be polarized?</p>
<p style="text-align:left;">A. microwaves</p>
<p style="text-align:left;">B. ultrasound</p>
<p style="text-align:left;">C. ultraviolet</p>
<p style="text-align:left;">D. X rays</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was very well answered by candidates, with a high difficulty index.</p>
</div>
<br><hr><br><div class="question">
<p>A travelling wave on the surface of a lake has wavelength <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math>. Two points along the wave oscillate with the phase difference of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>. What is the smallest possible distance between these two points?</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>λ</mi><mn>4</mn></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>λ</mi><mn>2</mn></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>λ</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">The orbital radius of the Earth around the Sun is 1.5 times that of Venus. What is the intensity of solar radiation at the orbital radius of Venus?<br></span></p>
<p><span style="background-color:#ffffff;">A. 0.6 kW m<sup>-2</sup><br></span></p>
<p><span style="background-color:#ffffff;">B. 0.9 kW m<sup>-2</sup><br></span></p>
<p><span style="background-color:#ffffff;">C. 2 kW m<sup>-2</sup><br></span></p>
<p><span style="background-color:#ffffff;">D. 3 kW m<sup>-2</sup></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This had a low discrimination index at both SL and HL and although the correct answer was the most popular, all options gained high support. Candidates should be reminded that they have a data booklet and become familiar with its contents before the exam.</p>
</div>
<br><hr><br><div class="question">
<p>A sound wave has a wavelength of 0.20 m. What is the phase difference between two points along the wave which are 0.85 m apart?</p>
<p>A. zero</p>
<p>B. 45°</p>
<p>C. 90°</p>
<p>D. 180°</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle performs simple harmonic motion (shm). What is the phase difference between the displacement and the acceleration of the particle?</p>
<p>A. 0</p>
<p>B. <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}">
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span></span></p>
<p><span style="background-color:#ffffff;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\pi }}{2}">
<mfrac>
<mrow>
<mn>3</mn>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></span></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle undergoes simple harmonic motion (SHM). The graph shows the variation of velocity <em>v</em> of the particle with time <em>t</em>.</p>
<p><img src=""></p>
<p>What is the variation with time of the acceleration <em>a</em> of the particle?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The refractive index of glass is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math> and the refractive index of water is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac></math>. What is the critical angle for light travelling from glass to water?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced></math><br><br>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mn>2</mn><mn>3</mn></mfrac></mfenced></math><br><br>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mn>3</mn><mn>4</mn></mfrac></mfenced></math><br><br>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mn>8</mn><mn>9</mn></mfrac></mfenced></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The motion of an object is described by the equation</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">acceleration ∝ − displacement.</span></p>
<p><span style="background-color: #ffffff;">What is the direction of the acceleration relative to that of the displacement and what is the displacement when the speed is a maximum?</span></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is true about the acceleration of a particle that is oscillating with simple harmonic motion (SHM)?</p>
<p>A. It is in the opposite direction to its velocity</p>
<p>B. It is decreasing when the potential energy is increasing</p>
<p>C. It is proportional to the frequency of the oscillation</p>
<p>D. It is at a minimum when the velocity is at a maximum</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three statements about electromagnetic waves are:</p>
<p style="padding-left:60px;">I. They can be polarized.<br>II. They can be produced by accelerating electric charges.<br>III. They must travel at the same velocity in all media.</p>
<p>Which combination of statements is true?</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">What are the changes in speed, frequency and wavelength of light as it travels from a material of low refractive index to a material of high refractive index?</p>
<p style="text-align:left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by the majority of candidates.</p>
</div>
<br><hr><br><div class="question">
<p>An interference pattern with minima of zero intensity is observed between light waves. What must be true about the frequency and amplitude of the light waves?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was generally well answered by SL candidates with both a high difficulty and discrimination index. Candidates who selected an incorrect answer seems more certain about the correct amplitude than the resulting intensity.</p>
</div>
<br><hr><br><div class="question">
<p>Unpolarized light of intensity <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>1</mn></msub></math> is incident on a polarizer. The light that passes through this polarizer then passes through a second polarizer.</p>
<p> <img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The second polarizer can be rotated to vary the intensity of the emergent light. What is the maximum value of the intensity emerging from the second polarizer?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mn>1</mn></msub><mn>4</mn></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mn>1</mn></msub><mn>2</mn></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><msub><mi>I</mi><mn>1</mn></msub></mrow><mn>3</mn></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>1</mn></msub></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Monochromatic light travelling upwards in glass is incident on a boundary with air. The path of the refracted light is shown.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A layer of liquid is then placed on the glass without changing the angle of incidence on the glass. The refractive index of the glass is greater than the refractive index of the liquid and the refractive index of the liquid is greater than that of air.</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the path of the refracted light when the liquid is placed on the glass?</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><img src=""></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>A low discrimination index with most candidates choosing C. They have deduced, correctly, that the ray moves away from the normal on entering the denser medium but have apparently forgotten that the stem of the question has shown them that it reaches the glass-air boundary at an angle greater than the critical angle.</p>
</div>
<br><hr><br><div class="question">
<p>A student stands a distance <em>L </em>from a wall and claps her hands. Immediately on hearing the reflection from the wall she claps her hands again. She continues to do this, so that successive claps and the sound of reflected claps coincide. The frequency at which she claps her hands is <em>f</em>. What is the speed of sound in air?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{L}{{2f}}">
<mfrac>
<mi>L</mi>
<mrow>
<mn>2</mn>
<mi>f</mi>
</mrow>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{L}{f}">
<mfrac>
<mi>L</mi>
<mi>f</mi>
</mfrac>
</math></span></p>
<p>C. <em>L</em><em>f </em></p>
<p>D. 2<em>L</em><em>f</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In simple harmonic oscillations which two quantities always have opposite directions?</p>
<p>A. Kinetic energy and potential energy</p>
<p>B. Velocity and acceleration</p>
<p>C. Velocity and displacement</p>
<p>D. Acceleration and displacement</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The frequency of the first harmonic standing wave in a pipe that is open at both ends is 200 Hz. What is the frequency of the first harmonic in a pipe of the same length that is open at one end and closed at the other?</p>
<p>A. 50 Hz</p>
<p>B. 75 Hz</p>
<p>C. 100 Hz</p>
<p>D. 400 Hz</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object performs simple harmonic motion (shm). The graph shows how the velocity <em>v</em> of the object varies with time <em>t</em>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The displacement of the object is<em> x</em> and its acceleration is <em>a</em>. What is the variation of <em>x</em> with<em> t</em> and the variation of <em>a</em> with <em>t</em>?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two wave pulses, each of amplitude <em>A</em>, approach each other. They then superpose before continuing in their original directions. What is the total amplitude during superposition and the amplitudes of the individual pulses after superposition?</p>
<p><img src=""></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The air in a pipe, open at both ends, vibrates in the second harmonic mode.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the phase difference between the motion of a particle at P and the motion of a particle at Q?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi mathvariant="normal">π</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A pipe is open at both ends. What is correct about a standing wave formed in the air of the pipe?</span></p>
<p>A. The sum of the number of nodes plus the number of antinodes is an odd number.</p>
<p><span style="background-color: #ffffff;">B. The sum of the number of nodes plus the number of antinodes is an even number.<br></span></p>
<p><span style="background-color: #ffffff;">C. There is always a central node.<br></span></p>
<p><span style="background-color: #ffffff;">D. There is always a central antinode.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle is moving in a straight line with an acceleration proportional to its displacement and opposite to its direction. What are the velocity and the acceleration of the particle when it is at its maximum displacement?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle undergoes simple harmonic motion of amplitude <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>0</mn></msub></math> and frequency <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. What is the average speed of the particle during one oscillation?</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo> </mo><msub><mi>x</mi><mn>0</mn></msub></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>f</mi><mo> </mo><msub><mi>x</mi><mn>0</mn></msub></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>f</mi><mo> </mo><msub><mi>x</mi><mn>0</mn></msub></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The refractive index for light travelling from medium X to medium Y is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}">
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
</math></span>. The refractive index for light travelling from medium Y to medium Z is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}">
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span>. What is the refractive index for light travelling from medium X to medium Z?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{5}">
<mfrac>
<mn>4</mn>
<mn>5</mn>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{15}{12}">
<mfrac>
<mn>15</mn>
<mn>12</mn>
</mfrac>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{4}">
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{29}{15}">
<mfrac>
<mn>29</mn>
<mn>15</mn>
</mfrac>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation with distance <em>x</em> of the displacement of the particles of a medium in which a longitudinal wave is travelling from left to right. Displacements to the right of equilibrium positions are positive.</p>
<p><img src=""></p>
<p>Which point is at the centre of a compression?</p>
<p>A. <em>x</em> = 0</p>
<p>B. <em>x</em> = 1 m</p>
<p>C. <em>x</em> = 2 m</p>
<p>D. <em>x</em> = 3 m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A light source of power <em>P</em> is observed from a distance<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></em>. The power of the source is then halved.</p>
<p>At what distance from the source will the intensity be the same as before?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>d</mi><msqrt><mn>2</mn></msqrt></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>d</mi><mn>2</mn></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>d</mi><mn>4</mn></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>d</mi><mn>8</mn></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>SL candidate responses were divided across options A, B and C, and so this question would be a useful teaching tool for exploring the relationship between power, intensity and distance.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">The graph shows the variation of the displacement of a wave with distance along the wave.<br></span></p>
<p><span style="background-color:#ffffff;">The wave speed is 0.50 m s<sup>-1</sup>.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the period of the wave?<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A. 0.33 s<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">B. 1.5 s<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">C. 3.0 s<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">D. 6.0 s</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Object P moves vertically with simple harmonic motion (shm). Object Q moves in a vertical circle with a uniform speed. P and Q have the same time period <em>T</em>. When P is at the top of its motion, Q is at the bottom of its motion.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the interval between successive times when the acceleration of P is equal and opposite to the acceleration of Q?<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{4}">
<mfrac>
<mi>T</mi>
<mn>4</mn>
</mfrac>
</math></span><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{2}">
<mfrac>
<mi>T</mi>
<mn>2</mn>
</mfrac>
</math></span><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3T}{4}">
<mfrac>
<mrow>
<mn>3</mn>
<mi>T</mi>
</mrow>
<mn>4</mn>
</mfrac>
</math></span></span></span><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">D. T<br></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A wave of period 10 ms travels through a medium. The graph shows the variation of particle displacement with distance for the wave.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the average speed of a particle in the medium during one cycle?</p>
<p>A. 4.0 m s<sup>−1</sup></p>
<p>B. 8.0 m s<sup>−1</sup></p>
<p>C. 16 m s<sup>−1</sup></p>
<p>D. 20 m s<sup>−1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Option D was a very efficient distractor as the most common (incorrect) selection by both HL and SL candidates. The difficulty index was low for this question, suggesting that HL and SL candidates found this question quite challenging. Candidates are again encouraged to read the questions carefully; it is likely that candidates selecting option D were providing the wave speed rather than particle speed.</p>
</div>
<br><hr><br><div class="question">
<p>A particle moving in a circle completes 5 revolutions in 3 s. What is the frequency?</p>
<p> </p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}">
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span>Hz</p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{3}">
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</math></span>Hz</p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\pi }}{5}">
<mfrac>
<mrow>
<mn>3</mn>
<mi>π</mi>
</mrow>
<mn>5</mn>
</mfrac>
</math></span>Hz</p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5\pi }}{3}">
<mfrac>
<mrow>
<mn>5</mn>
<mi>π</mi>
</mrow>
<mn>3</mn>
</mfrac>
</math></span>Hz</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Monochromatic light is used to produce double-slit interference fringes on a screen. The fringe separation on the screen is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>. The distance from the slits to the screen and the separation of the slits are both doubled, and the light source is unchanged. What is the new fringe separation on the screen?</span></p>
<p><span style="background-color: #ffffff;">A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>y</mi><mn>4</mn></mfrac></math></span></p>
<p>B. <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math></em></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>y</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What are the changes in the speed and in the wavelength of monochromatic light when the light passes from water to air?</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_09.30.27.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/16"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A light ray is incident on an air–diamond boundary. The refractive index of diamond is greater than 1. Which diagram shows the correct path of the light ray?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A transverse travelling wave is moving through a medium. The graph shows, for one instant, the variation with distance of the displacement of particles in the medium.</span></p>
<p><span style="background-color: #ffffff;"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="513" height="138"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The frequency of the wave is 25 Hz and the speed of the wave is 100 m s<sup>–1</sup>. What is correct for this wave?<br></span></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. The particles at X and Y are in phase.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. The velocity of the particle at X is a maximum.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. The horizontal distance between X and Z is 3.0 m.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. The velocity of the particle at Y is 100 m s<sup>–1</sup>.</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>