File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 4 HTML/markSceme-HL-paper2html
File size: 1.03 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>A longitudinal wave travels in a medium with speed 340&thinsp;m&thinsp;s<sup>&minus;1</sup>. The graph shows the variation&nbsp;with time <em>t</em> of the displacement <em>x</em> of a particle P in the medium. Positive displacements on&nbsp;the graph correspond to displacements to the right for particle P.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Another wave travels in the medium. The graph shows the variation with time <em>t</em> of the&nbsp;displacement of each wave at the position of P.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>A standing sound wave is established in a tube that is closed at one end and open at&nbsp;the other end. The period of the wave is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>. The diagram represents the standing wave&nbsp;at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> and at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>8</mn></mfrac></math>. The wavelength of the wave is 1.20&thinsp;m. Positive displacements&nbsp;mean displacements to the right.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the wave.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, for particle P, the magnitude and direction of the acceleration at <em>t</em> = 2.0 m s.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the phase difference between the two waves.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a time at which the displacement of P is zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the amplitude of the resultant wave.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of the tube.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A particle in the tube has its equilibrium position at the open end of the tube.<br>State and explain the direction of the velocity of this particle at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>8</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the diagram the standing wave at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>4</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo></math>«s» or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>=</mo><mn>250</mn><mo> </mo></math>«Hz» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>340</mn><mo>×</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>36</mn><mo>≈</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo> </mo></math>«m» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.<br>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϖ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>T</mi></mfrac><mo>=</mo><mo>»</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math>  <em><strong>OR  </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>57</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></math> «s<sup>−1</sup>» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>a</mtext><mo>=</mo><mo>«</mo><msup><mi>ϖ</mi><mn>2</mn></msup><msub><mi>x</mi><mn>0</mn></msub><mo>=</mo><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>57</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></mfenced><mn>2</mn></msup><mo>×</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>=</mo><mn>14</mn><mo>.</mo><mn>8</mn><mo>≈</mo><mo>»</mo><mn>15</mn></math> «ms<sup>−2</sup>» ✓</p>
<p>«opposite to displacement so» to the right ✓</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«±» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>/</mo><mn>90</mn><mo>°</mo></math>  <em><strong>OR</strong></em>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac><mo>/</mo><mn>270</mn><mo>°</mo></math> ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.5 «ms» ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>8.0 <em><strong>OR</strong> </em>8.5 «μm» ✓</p>
<p><em><br>From the graph on the paper, value is 8.0. From the calculated correct trig functions, value is 8.49.</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>L</em> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>λ</mi><mo>=</mo></mstyle></math>» 0.90 «m» ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to the right ✓<br><br></p>
<p>displacement is getting less negative</p>
<p><em><strong>OR</strong></em></p>
<p>change of displacement is positive ✓</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal line drawn at the equilibrium position ✓</p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A pipe is open at both ends. A first-harmonic standing wave is set up in the pipe.&nbsp;The diagram shows the variation of displacement of air molecules in the pipe with&nbsp;distance along the pipe at time <em>t</em> = 0. The frequency of the first harmonic is <em>f</em>.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>A transmitter of electromagnetic waves is next to a long straight vertical wall that acts&nbsp;as a plane mirror to the waves. An observer on a boat detects the waves both directly&nbsp;and as an image from the other side of the wall. The diagram shows one ray from the&nbsp;transmitter reflected at the wall and the position of the image.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the diagram, the variation of displacement of the air molecules with distance along the pipe when <em>t</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{4f}}">
  <mfrac>
    <mn>3</mn>
    <mrow>
      <mn>4</mn>
      <mi>f</mi>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An air molecule is situated at point X in the pipe at <em>t</em> = 0. Describe the motion of this air molecule during one complete cycle of the standing wave beginning from <em>t</em> = 0.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed of sound <em>c</em> for longitudinal waves in air is given by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = \sqrt {\frac{K}{\rho }} ">
  <mi>c</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mi>K</mi>
      <mi>ρ</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p>where <em>ρ</em> is the density of the air and <em>K</em> is a constant.</p>
<p>A student measures <em>f</em> to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m<sup>–3</sup>. Determine the value of <em>K</em> for air. State your answer with the appropriate fundamental (SI) unit.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate, using a second ray, that the image appears to come from the position indicated.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the observer detects a series of increases and decreases in the intensity of the received signal as the boat moves along the line XY.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>horizontal line shown in centre of pipe ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«air molecule» moves to the right and then back to the left ✔</p>
<p>returns to X/original position ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength = 2 × 1.4 «= 2.8 m» ✔</p>
<p><em>c</em> = «<em>f λ</em> =» 120 × 2.8 «= 340 m s<sup>−1</sup>» ✔</p>
<p><em>K</em> = «<em>ρc</em><sup>2</sup> = 1.3 × 340<sup>2</sup> =» 1.5 × 10<sup>5</sup> ✔</p>
<p>kg m<sup>–1 </sup>s<sup>–2</sup> ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>construction showing formation of image ✔</p>
<p><em>Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>interference pattern is observed</p>
<p><em><strong>OR</strong></em></p>
<p>interference/superposition mentioned ✔</p>
<p><br>maximum when two waves occur in phase/path difference is nλ</p>
<p><em><strong>OR</strong></em></p>
<p>minimum when two waves occur 180° out of phase/path difference is (n + ½)λ ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student is investigating a method to measure the mass of a wooden block by timing the period of its oscillations on a spring.</p>
</div>

<div class="specification">
<p>A 0.52 kg mass performs simple harmonic motion with a period of 0.86 s when attached to the spring. A wooden block attached to the same spring oscillates with a period&nbsp;of 0.74 s.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>With the block stationary a longitudinal wave is made to travel through the original spring from left to right. The diagram shows the variation with distance <em>x</em> of the displacement <em>y</em> of the coils of the spring at an instant of time.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A point on the graph has been labelled that represents a point P on the spring.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the conditions required for an object to perform simple harmonic motion (SHM).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of the wooden block.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In carrying out the experiment the student displaced the block horizontally by 4.8 cm from the equilibrium position. Determine the total energy in the oscillation of the wooden block.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical spring is placed in parallel and the experiment in (b) is repeated. Suggest how this change affects the fractional uncertainty in the mass of the block.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of motion of P on the spring.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain whether P is at the centre of a compression or the centre of a rarefaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>acceleration/restoring force is proportional to displacement<br>and in the opposite direction/directed towards equilibrium</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{T_1^2}}{{T_2^2}} = \frac{{{m_1}}}{{{m_2}}}">
  <mfrac>
    <mrow>
      <msubsup>
        <mi>T</mi>
        <mn>1</mn>
        <mn>2</mn>
      </msubsup>
    </mrow>
    <mrow>
      <msubsup>
        <mi>T</mi>
        <mn>2</mn>
        <mn>2</mn>
      </msubsup>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>1</mn>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>2</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>mass = 0.38 / 0.39 «kg»</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>«use of <em>T&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\pi \sqrt {\frac{m}{k}} ">
  <mo>=</mo>
  <mn>2</mn>
  <mi>π</mi>
  <msqrt>
    <mfrac>
      <mi>m</mi>
      <mi>k</mi>
    </mfrac>
  </msqrt>
</math></span></em>» <em>k</em>&nbsp;= 28&nbsp;«Nm<sup>–1</sup>»</p>
<p>«use of&nbsp;<em>T&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="&nbsp;= 2\pi \sqrt {\frac{m}{k}} ">
  <mo>=</mo>
  <mn>2</mn>
  <mi>π</mi>
  <msqrt>
    <mfrac>
      <mi>m</mi>
      <mi>k</mi>
    </mfrac>
  </msqrt>
</math></span></em>» <em>m</em>&nbsp;=&nbsp;0.38 / 0.39 «kg»</p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ω&nbsp;</em>=&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{{0.74}}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mn>0.74</mn>
    </mrow>
  </mfrac>
</math></span>»&nbsp;<em>= </em>8.5&nbsp;«rads<sup>–1</sup>»</p>
<p>total energy&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 0.39 \times {8.5^2} \times {(4.8 \times {10^{ - 2}})^2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>0.39</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>8.5</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>4.8</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mn>10</mn>
        <mrow>
          <mo>−</mo>
          <mn>2</mn>
        </mrow>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></p>
<p>= 0.032 «J»</p>
<p>&nbsp;</p>
<p><em>Allow ECF from (b) and incorrect ω.</em></p>
<p><em>Allow answer using k from part (b).</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>spring constant/k/stiffness would increase<br><em>T</em> would be smaller<br>fractional uncertainty in <em>T</em> would be greater, so fractional uncertainty of mass of block would be greater</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>left</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>coils to the right of P move right and the coils to the left move left</p>
<p>hence P at centre of rarefaction</p>
<p> </p>
<p><em>Do not allow a bald statement of rarefaction or answers that don’t include reference to the movement of coils.</em></p>
<p><em>Allow ECF from MP1 if the movement of the coils imply a compression.</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two loudspeakers, A and B, are driven in phase and with the same amplitude at a frequency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>850</mn><mo> </mo><mi>Hz</mi></math>. Point P is located <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn><mo>.</mo><mn>5</mn><mo> </mo><mi mathvariant="normal">m</mi></math> from A and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>.</mo><mn>3</mn><mo> </mo><mi mathvariant="normal">m</mi></math> from B. The speed of sound is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>340</mn><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>In another experiment, loudspeaker A is stationary and emits sound with a frequency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>850</mn><mo> </mo><mi>Hz</mi></math>. The microphone is moving directly away from the loudspeaker with a constant speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>. The frequency of sound recorded by the microphone is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>845</mn><mo> </mo><mi>Hz</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that a minimum intensity of sound is heard at P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A microphone moves along the line from P to Q. PQ is normal to the line midway between the loudspeakers.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="370" height="161"></p>
<p>The intensity of sound is detected by the microphone. Predict the variation of detected intensity as the microphone moves from P to Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When both loudspeakers are operating, the intensity of sound recorded at Q is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>0</mn></msub></math>. Loudspeaker B is now disconnected. Loudspeaker A continues to emit sound with unchanged amplitude and frequency. The intensity of sound recorded at Q changes to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub></math>.</p>
<p>Estimate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub><msub><mi>I</mi><mn>0</mn></msub></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the frequency recorded by the microphone is lower than the frequency emitted by the loudspeaker.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>wavelength<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>340</mn><mn>850</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math> ✓<br><br></p>
<p><span class="fontstyle0">path difference </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math> <span class="fontstyle3">✓<br><br></span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn><mi>λ</mi></math>  <em><strong>OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>20</mn></mrow></mfrac><mo>=</mo><mn>9</mn><mo> </mo></math> </strong></em><span class="fontstyle2">«</span><span class="fontstyle0">half-wavelengths</span><span class="fontstyle2">» ✓<br><br></span></p>
<p><span class="fontstyle0">waves meet in antiphase </span><span class="fontstyle2">«</span><span class="fontstyle0">at P</span><span class="fontstyle2">»<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span><span class="fontstyle0">destructive interference/superposition </span><span class="fontstyle2">«</span><span class="fontstyle0">at P</span><span class="fontstyle2">» </span><span class="fontstyle4">✓</span></p>
<p> </p>
<p><em><span class="fontstyle0">Allow approach where path length is calculated in terms of number of wavelengths; along path A (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">56</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">25</mn></math>) and<br>path B (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">60</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">75</mn></math>) for MP2, hence path difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">4</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">5</mn></math> wavelengths for MP3</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«</span><span class="fontstyle1">equally spaced</span><span class="fontstyle0">» </span><span class="fontstyle1">maxima and minima </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle1">a maximum at Q </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle1">four </span><span class="fontstyle0">«</span><span class="fontstyle1">additional</span><span class="fontstyle0">» </span><span class="fontstyle1">maxima </span><span class="fontstyle0">«</span><span class="fontstyle1">between P and Q</span><span class="fontstyle0">» </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the amplitude of sound at Q is halved </span><span class="fontstyle2">✓<br></span><span class="fontstyle3">«</span><span class="fontstyle0">intensity is proportional to amplitude squared hence</span><span class="fontstyle3">» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mi mathvariant="normal">A</mi></msub><msub><mi>I</mi><mn>0</mn></msub></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">speed of sound relative to the microphone is less </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle2"><br></span><span class="fontstyle0">wavelength unchanged </span><span class="fontstyle3">«</span><span class="fontstyle0">so frequency is lower</span><span class="fontstyle3">»<br></span><span class="fontstyle4"><em><strong>OR</strong></em><br></span><span class="fontstyle0">fewer waves recorded in unit time/per second </span><span class="fontstyle3">«</span><span class="fontstyle0">so frequency is lower</span><span class="fontstyle3">» </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>845</mn><mo>=</mo><mn>850</mn><mo>×</mo><mfrac><mrow><mn>340</mn><mo>-</mo><mi>v</mi></mrow><mn>340</mn></mfrac></math> ✓</span></p>
<p> </p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was answered very well, with those not scoring full marks able to, at least, calculate the wavelength.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to score at least one mark by referring to a maximum at Q.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates earned 2 marks or nothing. A common answer was that intensity was 1/2 the original.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HL only. The majority of candidates answered this by describing the Doppler Effect for a moving source. Others reworded the question without adding any explanation. Correct explanations were rare.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HL only. This was answered well with the majority of candidates able to identify the correct formula and the correct values to substitute.</p>
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>There is a proposal to place a satellite in orbit around planet Mars.</p>
</div>

<div class="specification">
<p>The satellite is to have an orbital time <em>T</em> equal to the length of a day on Mars. It can&nbsp;be shown that</p>
<p style="text-align: center;"><em>T</em><sup>2</sup> = <em>kR</em><sup>3</sup></p>
<p>where<em> R</em> is the orbital radius of the satellite and <em>k</em> is a constant.</p>
</div>

<div class="specification">
<p>The ratio&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{distance of Mars from the Sun}}}}{{{\text{distance of Earth from the Sun}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>distance of Mars from the Sun</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>distance of Earth from the Sun</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = 1.5.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by gravitational field strength at a point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Newton’s law of gravitation applies to point masses. Suggest why the law can be applied to a satellite orbiting Mars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mars has a mass of 6.4 × 10<sup>23</sup> kg. Show that, for Mars, <em>k</em> is about 9 × 10<sup>–13 </sup>s<sup>2 </sup>m<sup>–3</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The time taken for Mars to revolve on its axis is 8.9 × 10<sup>4</sup> s. Calculate, in m s<sup>–1</sup>, the orbital speed of the satellite.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of solar radiation at the orbit of Mars is about 600 W m<sup>–2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in K, the mean surface temperature of Mars. Assume that Mars acts as a black body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The atmosphere of Mars is composed mainly of carbon dioxide and has a pressure less than 1 % of that on the Earth. Outline why the mean temperature of Earth is strongly affected by gases in its atmosphere but that of Mars is not.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>force per unit mass ✔</p>
<p>acting on a small/test/point mass «placed at the point in the field» ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mars is spherical/a sphere «and of uniform density so behaves as a point mass» ✔</p>
<p>satellite has a much smaller mass/diameter/size than Mars «so approximates to a point mass» ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{m{v^2}}}{r} = \frac{{GMm}}{{{r^2}}}">
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>r</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>r</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> hence» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {\frac{{GM}}{R}} ">
  <mi>v</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>G</mi>
        <mi>M</mi>
      </mrow>
      <mi>R</mi>
    </mfrac>
  </msqrt>
</math></span>. Also <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \frac{{2\pi R}}{T}">
  <mi>v</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
      <mi>R</mi>
    </mrow>
    <mi>T</mi>
  </mfrac>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m{\omega ^2}r = \frac{{GMm}}{{{r^2}}}">
  <mi>m</mi>
  <mrow>
    <msup>
      <mi>ω</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mi>r</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>r</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\omega ^2} = \frac{{GM}}{{{R^3}}}">
  <mrow>
    <msup>
      <mi>ω</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>R</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p> </p>
<p>uses either of the above to get <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T^2} = \frac{{4{\pi ^2}}}{{GM}}{R^3}">
  <mrow>
    <msup>
      <mi>T</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
  </mfrac>
  <mrow>
    <msup>
      <mi>R</mi>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p>uses <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{{4{\pi ^2}}}{{GM}}">
  <mi>k</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p> </p>
<p><em>k</em> = 9.2 × 10<sup>−13</sup> / 9.3 × 10<sup>−13</sup></p>
<p> </p>
<p> </p>
<p><em>Unit not required</em></p>
<p> </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{R^3} = \frac{{{T^2}}}{k} = \frac{{{{\left( {8.9 \times {{10}^4}} \right)}^2}}}{{9.25 \times {{10}^{ - 13}}}}">
  <mrow>
    <msup>
      <mi>R</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>T</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>k</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>8.9</mn>
                <mo>×</mo>
                <mrow>
                  <msup>
                    <mrow>
                      <mn>10</mn>
                    </mrow>
                    <mn>4</mn>
                  </msup>
                </mrow>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>9.25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>13</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>  <em>R</em> = 2.04 × 10<sup>7</sup> «m» ✔</p>
<p> </p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega r = \frac{{2\pi  \times 2.04 \times {{10}^7}}}{{89000}} = ">
  <mi>ω</mi>
  <mi>r</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
      <mo>×</mo>
      <mn>2.04</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>7</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>89000</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 1.4 × 10<sup>3</sup> «m s<sup>–1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{GM}}{R}}  = \sqrt {\frac{{6.67 \times {{10}^{ - 11}} \times 6.4 \times {{10}^{23}}}}{{2.04 \times {{10}^7}}}}  = ">
  <msqrt>
    <mfrac>
      <mrow>
        <mi>G</mi>
        <mi>M</mi>
      </mrow>
      <mi>R</mi>
    </mfrac>
  </msqrt>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>6.67</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>11</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>×</mo>
        <mn>6.4</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mn>23</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mn>2.04</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mn>7</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
  <mo>=</mo>
</math></span>» 1.4 × 10<sup>3</sup> «m s<sup>–1</sup>» ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="I \propto \frac{1}{{{r^2}}}">
  <mi>I</mi>
  <mo>∝</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mi>r</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> «1.36 × 10<sup>3</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{{1.5}^2}}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>1.5</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» ✔</p>
<p>604 «W m<sup>–2</sup>» ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{600}}{4}">
  <mfrac>
    <mrow>
      <mn>600</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span> for mean intensity ✔</p>
<p>temperature/K = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt[4]{{\frac{{600}}{{4 \times 5.67 \times {{10}^{ - 8}}}}}} = ">
  <mroot>
    <mrow>
      <mfrac>
        <mrow>
          <mn>600</mn>
        </mrow>
        <mrow>
          <mn>4</mn>
          <mo>×</mo>
          <mn>5.67</mn>
          <mo>×</mo>
          <mrow>
            <msup>
              <mrow>
                <mn>10</mn>
              </mrow>
              <mrow>
                <mo>−</mo>
                <mn>8</mn>
              </mrow>
            </msup>
          </mrow>
        </mrow>
      </mfrac>
    </mrow>
    <mn>4</mn>
  </mroot>
  <mo>=</mo>
</math></span>» 230 ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reference to greenhouse gas/effect ✔</p>
<p>recognize the link between molecular density/concentration and pressure ✔</p>
<p>low pressure means too few molecules to produce a significant heating effect</p>
<p><em><strong>OR</strong></em></p>
<p>low pressure means too little radiation re-radiated back to Mars ✔</p>
<p> </p>
<p><em>The greenhouse effect can be described, it doesn’t have to be named</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of microwaves is incident normally on a pair of identical narrow slits S1 and S2.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">When a microwave receiver is initially placed at W which is equidistant from the slits, a maximum in intensity is observed. The receiver is then moved towards Z along a line parallel to the slits. Intensity maxima are observed at X and Y with one minimum between them. W, X and Y are consecutive maxima.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why intensity maxima are observed at X and Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The distance from S1 to Y is 1.243 m and the distance from S2 to Y is 1.181 m.</p>
<p>Determine the frequency of the microwaves.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> reason why the maxima observed at W, X and Y will have different intensities from each other.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The microwaves emitted by the transmitter are horizontally polarized. The microwave receiver contains a polarizing filter. When the receiver is at position W it detects a maximum intensity.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">The receiver is then rotated through 180° about the horizontal dotted line passing through the microwave transmitter. Sketch a graph on the axes provided to show the variation of received intensity with rotation angle.</p>
<p style="text-align:left;"><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>two waves superpose/mention of superposition/mention of «constructive» interference ✔</p>
<p>they arrive in phase/there is a path length difference of an integer number of wavelengths ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>path difference = 0.062 «m»✔</p>
<p>so wavelength = 0.031 «m»✔</p>
<p>frequency = 9.7 × 10<sup>9</sup> «Hz»✔</p>
<p><em>Award <strong>[2 max]</strong> for 4.8 x 10<sup>9</sup> Hz</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>intensity is modulated by a single slit diffraction envelope <em><strong>OR</strong></em></p>
<p>intensity varies with distance <em><strong>OR</strong></em> points are different distances from the slits ✔<br><br></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>cos<sup>2</sup> variation shown ✔</p>
<p>with zero at 90° (by eye) ✔</p>
<p><em>Award <strong>[1 max]</strong> for an inverted curve with maximum at 90°.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to discuss the interference that is taking place in this question, but few were able to fully describe the path length difference. That said, the quality of responses on this type of question seems to have improved over the last few examination sessions with very few candidates simply discussing the crests and troughs of waves.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates struggled with this question. Few were able to calculate a proper path length difference, and then use that to calculate the wavelength and frequency. Many candidates went down blind paths of trying various equations from the data booklet, and some seemed to believe that the wavelength is just the reciprocal of the frequency.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is one of many questions on this paper where candidates wrote vague answers that did not clearly connect to physics concepts or include key information. There were many overly simplistic answers like “they are farther away” without specifying what they are farther away from. Candidates should be reminded that their responses should go beyond the obvious and include some evidence of deeper understanding.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was generally well answered, with many candidates at least recognizing that the intensity would decrease to zero at 90 degrees. Many struggled with the exact shape of the graph, though, and some drew a graph that extended below zero showing a lack of understanding of what was being graphed.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The ball is now displaced through a small distance <em>x </em>from the bottom of the bowl and is&nbsp;then released from rest.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.19.20.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d"></p>
<p>The magnitude of the force on the ball towards the equilibrium position is given by</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{mgx}}{R}">
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
      <mi>x</mi>
    </mrow>
    <mi>R</mi>
  </mfrac>
</math></span></p>
<p>where <em>R </em>is the radius of the bowl.</p>
</div>

<div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a&nbsp;frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>θ</em> to the horizontal.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the&nbsp;weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following&nbsp;equation.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="F = \frac{{mg}}{{\tan \theta }}">
  <mi>F</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the&nbsp;radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ball will perform simple harmonic oscillations about the&nbsp;equilibrium position.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the period of oscillation of the ball is about 6 s.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The amplitude of oscillation is 0.12 m. On the axes, draw a graph to show the&nbsp;variation with time <em>t </em>of the velocity <strong><em>v </em></strong>of the ball during one period.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced&nbsp;so that its height from the horizontal is equal to 8.0 m.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain&nbsp;in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>towards the centre <strong>«</strong>of the circle<strong>» </strong>/ horizontally to the right</p>
<p>&nbsp;</p>
<p><em>Do not accept towards the centre of the bowl</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward vertical arrow of any length</p>
<p>arrow of correct length</p>
<p>&nbsp;</p>
<p><em>Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required</em></p>
<p><em>eg</em>:&nbsp;<img src="images/Schermafbeelding_2018-08-12_om_13.22.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>F</em> = <em>N</em>&nbsp;cos&nbsp;<em>θ</em></p>
<p><em>mg</em> =&nbsp;<em>N</em> sin&nbsp;<em>θ</em></p>
<p>dividing/substituting to get result</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>right angle triangle drawn with <em>F</em>, <em>N </em>and <em>W/mg </em>labelled</p>
<p>angle correctly labelled and arrows on forces in correct directions</p>
<p>correct use of trigonometry leading to the required relationship</p>
<p>&nbsp;</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_13.28.39.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em>tan&nbsp;θ</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{O}}}{A} = \frac{{mg}}{F}">
  <mfrac>
    <mrow>
      <mtext>O</mtext>
    </mrow>
    <mi>A</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mi>F</mi>
  </mfrac>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg}}{{\tan \theta }}">
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span> =&nbsp;<em>m</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span></p>
<p><em>r</em> = <em>R</em> cos&nbsp;<em>θ</em></p>
<p><em>v</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{gR{{\cos }^2}\theta }}{{\sin \theta }}} /\sqrt {\frac{{gR\cos \theta }}{{\tan \theta }}} /\sqrt {\frac{{9.81 \times 8.0\cos 22}}{{\tan 22}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mi>g</mi>
        <mi>R</mi>
        <mrow>
          <msup>
            <mrow>
              <mi>cos</mi>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
        <mi>θ</mi>
      </mrow>
      <mrow>
        <mi>sin</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>g</mi>
        <mi>R</mi>
        <mi>cos</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
      <mrow>
        <mi>tan</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>9.81</mn>
        <mo>×</mo>
        <mn>8.0</mn>
        <mi>cos</mi>
        <mo>⁡</mo>
        <mn>22</mn>
      </mrow>
      <mrow>
        <mi>tan</mi>
        <mo>⁡</mo>
        <mn>22</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span></p>
<p><em>v</em> = 13.4/13&nbsp;<strong>«</strong><em>ms&nbsp;<sup>–</sup></em><em><sup>1</sup></em><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for a bald correct answer&nbsp;</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for an answer of 13.9/14 </em><strong>«</strong><em>ms&nbsp;<sup>–</sup></em><em><sup>1</sup></em><strong>»</strong><em>. MP2 omitted</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is no force to balance the weight/N is horizontal</p>
<p>so no / it is not possible</p>
<p>&nbsp;</p>
<p><em>Must see correct justification to award MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the <strong>«</strong>restoring<strong>» </strong>force/acceleration is proportional to displacement</p>
<p>&nbsp;</p>
<p><em>Direction is not required</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ω</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{g}{R}} ">
  <msqrt>
    <mfrac>
      <mi>g</mi>
      <mi>R</mi>
    </mfrac>
  </msqrt>
</math></span><strong>»</strong> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{9.81}}{{8.0}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>9.81</mn>
      </mrow>
      <mrow>
        <mn>8.0</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span>&nbsp;<strong>«</strong>= 1.107 s<sup>–1</sup><strong>»</strong></p>
<p><em>T</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{\omega }">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mi>ω</mi>
  </mfrac>
</math></span> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{{1.107}}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mn>1.107</mn>
    </mrow>
  </mfrac>
</math></span> =<strong>»</strong> 5.7&nbsp;<strong>«</strong>s<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow use of </em>or <em>g&nbsp;= 9.8 or 10</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for a substitution into T = 2π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{I}{g}} ">
  <msqrt>
    <mfrac>
      <mi>I</mi>
      <mi>g</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sine graph</p>
<p>correct amplitude <strong>«</strong>0.13 m s<sup>–1</sup><strong>»</strong></p>
<p>correct period and only 1 period shown</p>
<p>&nbsp;</p>
<p><em>Accept ± sine for shape of the graph. Accept 5.7 s or 6.0 s for the correct period.</em></p>
<p><em>Amplitude should be correct to ±</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;<em>square for MP2</em></p>
<p><em>eg: v /</em>m s<sup>–1&nbsp;&nbsp;</sup>&nbsp;<img src="images/Schermafbeelding_2018-08-14_om_06.59.06.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d.iii"></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed before collision&nbsp;<em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gR} "> <msqrt> <mn>2</mn> <mi>g</mi> <mi>R</mi> </msqrt> </math></span> =<strong>»</strong> 12.5&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>from conservation of momentum<strong>» </strong>common speed after collision is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>&nbsp;initial speed&nbsp;<strong>«</strong><em>v<sub>c</sub></em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12.5}}{2}"> <mfrac> <mrow> <mn>12.5</mn> </mrow> <mn>2</mn> </mfrac> </math></span> = 6.25 ms<sup>–1</sup><strong>»</strong></p>
<p><em>h =&nbsp;</em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_c}^2}}{{2g}} = \frac{{{{6.25}^2}}}{{2 \times 9.81}}"> <mfrac> <mrow> <msup> <mrow> <msub> <mi>v</mi> <mi>c</mi> </msub> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>g</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>6.25</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>9.81</mn> </mrow> </mfrac> </math></span><strong>»</strong> 2.0&nbsp;<strong>«</strong>m<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow 12.5 from incorrect use of kinematics equations</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for mg(8)&nbsp;=&nbsp;2mgh leading to h = 4 m if done in one step.</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Allow ECF from MP2</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigates how light can be used to measure the speed of a toy train.</p>
<p style="text-align: center;"><img src=""><img src="blob:https://questionbank.ibo.org/55ba542d-3306-4ee7-8386-825edadb928d"></p>
<p>Light from a laser is incident on a double slit. The light from the slits is detected by a&nbsp;light sensor attached to the train.</p>
<p>The graph shows the variation with time of the output voltage from the light sensor as&nbsp;the train moves parallel to the slits. The output voltage is proportional to the intensity of&nbsp;light incident on the sensor.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><img src="blob:https://questionbank.ibo.org/4e0f3fdc-c845-43ef-ba7c-39bab20625cf"></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>As the train continues to move, the first diffraction minimum is observed when the&nbsp;light sensor is at a distance of 0.13 m from the centre of the fringe pattern.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A student investigates how light can be used to measure the speed of a toy train.</p>
<p style="text-align: center;"><img src=""></p>
<p>Light from a laser is incident on a double slit. The light from the slits is detected by a&nbsp;light sensor attached to the train.</p>
<p>The graph shows the variation with time of the output voltage from the light sensor as&nbsp;the train moves parallel to the slits. The output voltage is proportional to the intensity of&nbsp;light incident on the sensor.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the light passing through the slits, why a series of voltage peaks occurs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The slits are separated by 1.5 mm and the laser light has a wavelength&nbsp;of 6.3 x&nbsp;10<sup>–7</sup> m. The slits are 5.0 m from the train track. Calculate the separation&nbsp;between two adjacent positions of the train when the output voltage is at a maximum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the speed of the train.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the width of one of the slits.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the variation in the output voltage from the light sensor that will be observed as the train moves beyond the first diffraction minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In another experiment the student replaces the light sensor with a sound sensor. The train travels away from a loudspeaker that is emitting sound waves of constant amplitude and frequency towards a reflecting barrier.</p>
<p><img src=""></p>
<p>The graph shows the variation with time of the output voltage from the sounds sensor.</p>
<p><img src=""></p>
<p>Explain how this effect arises.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«light» superposes/interferes</p>
<p>pattern consists of «intensity» maxima and minima<br><em><strong>OR</strong></em><br>consisting of constructive and destructive «interference»</p>
<p>voltage peaks correspond to interference maxima</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{{\lambda D}}{d} = \frac{{6.3 \times {{10}^{ - 7}} \times 5.0}}{{1.5 \times {{10}^{ - 3}}}} = ">
  <mi>s</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>λ</mi>
      <mi>D</mi>
    </mrow>
    <mi>d</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>6.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>5.0</mn>
    </mrow>
    <mrow>
      <mn>1.5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 2.1 x 10<sup>–3&nbsp;</sup>«m»&nbsp;</p>
<p>&nbsp;</p>
<p><em>If no unit assume m.</em><br><em>Correct answer only.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct read-off from graph of 25 m s</p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{t} = \frac{{2.1 \times {{10}^{ - 3}}}}{{25 \times {{10}^{ - 3}}}} = ">
  <mfrac>
    <mi>x</mi>
    <mi>t</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 8.4 x 10<sup>–2</sup> «m s<sup>–1</sup>»</p>
<p>&nbsp;</p>
<p><em>Allow ECF from (b)(i)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>angular width of diffraction minimum =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.13}}{{5.0}}">
  <mfrac>
    <mrow>
      <mn>0.13</mn>
    </mrow>
    <mrow>
      <mn>5.0</mn>
    </mrow>
  </mfrac>
</math></span> «= 0.026 rad»</p>
<p>slit width =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{d} = \frac{{6.3 \times {{10}^{ - 7}}}}{{0.026}} = ">
  <mfrac>
    <mi>λ</mi>
    <mi>d</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>6.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.026</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 2.4 x 10<sup>–5</sup> «m»</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> for solution using 1.22 factor.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«beyond the first diffraction minimum» average voltage is smaller<br><br>«voltage minimum» spacing is «approximately» same<br><em><strong>OR</strong></em><br>rate of variation of voltage is unchanged</p>
<p> </p>
<p><em>OWTTE</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«reflection at barrier» leads to two waves travelling in opposite directions </p>
<p>mention of formation of standing wave</p>
<p>maximum corresponds to antinode/maximum displacement «of air molecules»<br><em><strong>OR</strong></em><br>complete cancellation at node position</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>On a guitar, the strings played vibrate between two fixed points. The frequency of vibration&nbsp;is modified by changing the string length using a finger. The different strings have different&nbsp;wave speeds. When a string is plucked, a standing wave forms between the bridge and the finger.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src=""></p>
</div>

<div class="specification">
<p>The string is displaced 0.4 cm at point P to sound the guitar. Point P on the string&nbsp;vibrates with simple harmonic motion (shm) in its first harmonic with a frequency of&nbsp;195 Hz. The sounding length of the string is 62 cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how a standing wave is produced on the string.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the wave on the string is about 240 m s<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show how the acceleration of point P varies with its displacement from the rest position.</p>
<p>                 <img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in m s<sup>−1</sup>, the maximum velocity of vibration of point P when it is&nbsp;vibrating with a frequency of 195 Hz.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in terms of <em>g</em>, the maximum acceleration of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the displacement needed to double the energy of the string.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The string is made to vibrate in its third harmonic. State the distance between&nbsp;consecutive nodes.&nbsp;</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«travelling» wave moves along the length of the string and reflects «at fixed end» <strong>✓</strong></p>
<p>superposition/interference of incident and reflected waves <strong>✓</strong></p>
<p>the superposition of the reflections is reinforced only for certain wavelengths <strong>✓</strong> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>2</mn><mi>l</mi><mo>=</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>62</mn><mo>=</mo><mo>«</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>&nbsp;</mo><mtext>m</mtext><mo>»</mo></math>&nbsp;✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mi>f</mi><mi>λ</mi><mo>=</mo><mn>195</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>=</mo><mn>242</mn><mo>&nbsp;</mo><mo>«</mo><msup><mtext>m&nbsp;s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</p>
<p><em>Answer must be to 3 or more sf or working shown for<strong> MP2.</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>straight line through origin with negative gradient <strong>✓</strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>max velocity occurs at x = 0&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>«</mo><mo>(</mo><mn>2</mn><mi>π</mi><mo>)</mo><mo>(</mo><mn>195</mn><mo>)</mo><msqrt><mn>0</mn><mo>.</mo><msup><mn>004</mn><mn>2</mn></msup></msqrt><mo>»</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>9</mn><mo>&nbsp;</mo><mo>«</mo><msup><mtext>m&nbsp;s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><msup><mfenced><mrow><msub><mn>2</mn><mi mathvariant="normal">π</mi></msub><mo>&nbsp;</mo><mn>195</mn></mrow></mfenced><mn>2</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>004</mn><mo>=</mo><mn>6005</mn><mo>&nbsp;</mo><mo>«</mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>600</mn><mo> </mo><mtext>g</mtext></math>&nbsp;<strong>✓</strong></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>∝</mo><msup><mi>A</mi><mn>2</mn></msup><mtext mathvariant="bold-italic">&nbsp;OR&nbsp;&nbsp;</mtext><msup><msub><mi>x</mi><mtext>o</mtext></msub><mn>2</mn></msup></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><msqrt><mn>2</mn></msqrt><mo>=</mo><mn>0</mn><mo>.</mo><mn>57</mn><mo>&nbsp;</mo><mo>«</mo><mtext>cm</mtext><mo>»</mo><mo>&nbsp;</mo><mo>≅</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>6</mn><mo>&nbsp;</mo><mo>«</mo><mtext>cm</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>62</mn><mn>3</mn></mfrac><mo>=</mo><mn>21</mn><mo>&nbsp;</mo><mo>«</mo><mtext>cm</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A loudspeaker emits sound towards the open end of a pipe. The other end is closed.&nbsp;A standing wave is formed in the pipe. The diagram represents the displacement of&nbsp;molecules of air in the pipe at an instant of time.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>X and Y represent the equilibrium positions of two air molecules in the pipe. The arrow&nbsp;represents the velocity of the molecule at Y.</p>
</div>

<div class="specification">
<p>The loudspeaker in (a) now emits sound towards an air–water boundary. A, B and C&nbsp;are parallel wavefronts emitted by the loudspeaker. The parts of wavefronts A and B&nbsp;in water are not shown. Wavefront C has not yet entered the water.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the standing wave is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw an arrow on the diagram to represent the direction of motion of the&nbsp;molecule at X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label a position N that is a node of the standing wave.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed of sound is 340 m s<sup>–1</sup> and the length of the pipe is 0.30 m.&nbsp;Calculate, in Hz, the frequency of the sound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed of sound in air is 340 m s<sup>–1</sup> and in water it is 1500 m s<sup>–1</sup>.</p>
<p>The wavefronts make an angle <em>θ</em> with the surface of the water. Determine the&nbsp;maximum angle, <em>θ</em><sub>max</sub>, at which the sound can enter water. Give your answer&nbsp;to the correct number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw lines on the diagram to complete wavefronts A and B in water for <em>θ</em> &lt; <em>θ</em><sub>max</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the incident wave <strong>«</strong>from the speaker<strong>» </strong>and the reflected wave <strong>«</strong>from the closed end<strong>»</strong></p>
<p>superpose/combine/interfere</p>
<p>&nbsp;</p>
<p><em>Allow superimpose/add up</em></p>
<p><em>Do not allow meet/interact</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Horizontal arrow from X to the right</p>
<p>&nbsp;</p>
<p><em>MP2 is dependent on MP1</em></p>
<p><em>Ignore length of arrow</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P at a node</p>
<p>&nbsp;</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_14.17.43.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/03.a.iii/M"></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength is&nbsp;<em>λ</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times 0.30}}{3}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mn>0.30</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span> =<strong>»</strong> 0.40&nbsp;<strong>«</strong>m<strong>»</strong></p>
<p><em>f</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{340}}{{0.40}}">
  <mfrac>
    <mrow>
      <mn>340</mn>
    </mrow>
    <mrow>
      <mn>0.40</mn>
    </mrow>
  </mfrac>
</math></span><strong>»</strong> 850&nbsp;<strong>«</strong>Hz<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin {\theta _c}}}{{340}} = \frac{1}{{1500}}">
  <mfrac>
    <mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mrow>
        <msub>
          <mi>θ</mi>
          <mi>c</mi>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mn>340</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>1500</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><em>θ<sub>c</sub></em> = 13<strong>«</strong>°<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald answer of 13.1</em></p>
<p>&nbsp;</p>
<p><em>Answer must be to 2/3 significant figures to award MP2</em></p>
<p><em>Allow 0.23 radians</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct orientation</p>
<p>greater separation</p>
<p>&nbsp;</p>
<p><em>Do not penalize the lengths of A and B in the water</em></p>
<p><em>Do not penalize a wavefront for C if it is consistent with A and B</em></p>
<p><em>MP1 must be awarded for MP2 to be awarded</em></p>
<p><em><img src="images/Schermafbeelding_2018-08-12_om_14.30.57.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/03.b.ii/M"></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.</p>
</div>

<div class="specification">
<p>The beam is incident normally on a double slit. The distance between the slits is 0.300 mm. A screen is at a distance <em>D </em>from the slits. The diffraction angle <em>θ </em>is labelled.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.53.34.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/03.a"></p>
</div>

<div class="specification">
<p>The graph of variation of intensity with diffraction angle for this experiment is shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_12.36.49.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/03.b"></p>
</div>

<div class="specification">
<p>A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.</p>
</div>

<div class="specification">
<p>The beam is incident normally on a double slit. The distance between the slits is 0.300 mm. A screen is at a distance <em>D </em>from the slits. The diffraction angle <em>θ </em>is labelled.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.53.34.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/03.a"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A series of dark and bright fringes appears on the screen. Explain how a dark fringe is formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the beam has to be coherent in order for the fringes to be visible.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wavelength of the beam as observed on Earth is 633.0 nm. The separation between a dark and a bright fringe on the screen is 4.50 mm. Calculate <em>D</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angular separation between the central peak and the missing peak in the double-slit interference intensity pattern. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, in mm, the width of one slit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wavelength of the light in the beam when emitted by the galaxy was 621.4 nm.</p>
<p>Explain, without further calculation, what can be deduced about the relative motion of the galaxy and the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>superposition of light from each slit / interference of light from both slits</p>
<p>with path/phase difference of any half-odd multiple of wavelength/any odd multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span>&nbsp;(in words or symbols)</p>
<p>producing destructive interference</p>
<p>&nbsp;</p>
<p><em>Ignore any reference to crests and troughs.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>light waves (from slits) must have constant phase difference / no phase difference / be in phase</p>
<p>&nbsp;</p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of solving for <em>D&nbsp;</em>«<em>D</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{sd}}{\lambda }">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>s</mi>
      <mi>d</mi>
    </mrow>
    <mi>λ</mi>
  </mfrac>
</math></span>» ✔</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.50 \times {{10}^{ - 3}} \times 0.300 \times {{10}^{ - 3}}}}{{633.0 \times {{10}^{ - 9}}}} \times 2">
  <mfrac>
    <mrow>
      <mn>4.50</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>0.300</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>633.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>9</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>2</mn>
</math></span>» = 4.27 «m»&nbsp;✔</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1]</strong> max for 2.13 m.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sin&nbsp;<em>θ</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times 633.0 \times {{10}^{ - 9}}}}{{0.300 \times {{10}^{ - 3}}}}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mn>633.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>9</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.300</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>sin&nbsp;<em>θ</em> =&nbsp;0.0084401…</p>
<p>final answer to three sig figs (<em>eg </em>0.00844 or 8.44 × 10<sup>–3</sup>)</p>
<p>&nbsp;</p>
<p><em>Allow ECF from (a)(iii).</em></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for 0.121 rad (can award MP3 in addition for proper sig fig)</em></p>
<p><em>Accept calculation in degrees leading to 0.481 degrees.</em></p>
<p><em>Award MP3 for any answer expressed to 3sf.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of diffraction formula&nbsp;<strong>«</strong><em>b</em>&nbsp;= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{\theta }">
  <mfrac>
    <mi>λ</mi>
    <mi>θ</mi>
  </mfrac>
</math></span><strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{633.0 \times {{10}^{ - 9}}}}{{0.00844}}">
  <mfrac>
    <mrow>
      <mn>633.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>9</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.00844</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong>«</strong>=<strong>»</strong>&nbsp;7.5<strong>«</strong>00<strong>»</strong>&nbsp;× 10<sup>–2</sup><strong>&nbsp;«</strong>mm<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow ECF from (b)(i).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength increases (so frequency decreases) / light is redshifted</p>
<p>galaxy is moving away from Earth</p>
<p>&nbsp;</p>
<p><em>Allow ECF for MP2 (ie wavelength decreases so moving towards).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The diagram shows the direction of a sound wave travelling in a metal sheet.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The sound wave in air in (c) enters a pipe that is open at both ends. The diagram shows the displacement, at a particular time <em>T</em>, of the standing wave that is set up in the pipe.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A particular air molecule has its equilibrium position at the point labelled M.</span></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Sound of frequency <em>f</em> = 2500 Hz is emitted from an aircraft that moves with speed <em>v</em> = 280 m s<sup>–1 </sup>away from a stationary observer. The speed of sound in still air is <em>c</em> = 340 m s<sup>–1</sup>.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Particle P in the metal sheet performs simple harmonic oscillations. When the displacement of P is 3.2 μm the magnitude of its acceleration is 7.9 m s<sup>-2</sup>. Calculate the magnitude of the acceleration of P when its displacement is 2.3 μm.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The wave is incident at point Q on the metal–air boundary. The wave makes an angle of 54° with the normal at Q. The speed of sound in the metal is 6010 m s<sup>–1</sup> and the speed of sound in air is 340 m s<sup>–1</sup>. Calculate the angle between the normal at Q and the direction of the wave in air.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The frequency of the sound wave in the metal is 250 Hz. Determine the wavelength of the wave in air.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">On the diagram, at time <em>T</em>, draw an arrow to indicate the acceleration of this molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">On the diagram, at time <em>T</em>, label with the letter C a point in the pipe that is at the centre of a compression.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">dii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the frequency heard by the observer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ei.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the&nbsp;wavelength measured by the observer.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">eii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">Expression or statement showing acceleration is proportional to displacement ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">so </span><span style="background-color:#ffffff;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7.9 \times \frac{{2.3}}{{3.2}}">
  <mn>7.9</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>2.3</mn>
    </mrow>
    <mrow>
      <mn>3.2</mn>
    </mrow>
  </mfrac>
</math></span>» = 5.7«ms<sup>–2</sup>»&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \theta&nbsp; = \frac{{340}}{{6010}} \times \sin {54^0}">
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>340</mn>
    </mrow>
    <mrow>
      <mn>6010</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mrow>
    <msup>
      <mn>54</mn>
      <mn>0</mn>
    </msup>
  </mrow>
</math></span></span><span style="background-color:#ffffff;"> &nbsp; ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta&nbsp; = {2.6^0}">
  <mi>θ</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>2.6</mn>
      <mn>0</mn>
    </msup>
  </mrow>
</math></span> &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda&nbsp; =&nbsp;« \frac{{340}}{{250}} =» 1.36 \approx 1.4 «{\text{m}}»">
  <mi>λ</mi>
  <mo>=</mo>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>340</mn>
    </mrow>
    <mrow>
      <mn>250</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mn>1.36</mn>
  <mo>≈</mo>
  <mn>1.4</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>m</mtext>
  </mrow>
  <mrow>
    <mo>»</mo>
  </mrow>
</math></span></span><span style="background-color:#ffffff;">&nbsp; ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">horizontal arrow «at M» pointing left ✔</span></p>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">any point labelled C on the vertical line shown below ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em>eg</em>:</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><img src="" width="416" height="175"></span></p>
<div class="question_part_label">dii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = 2500 \times \frac{{340}}{{340 + 280}}">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo>=</mo>
  <mn>2500</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>340</mn>
    </mrow>
    <mrow>
      <mn>340</mn>
      <mo>+</mo>
      <mn>280</mn>
    </mrow>
  </mfrac>
</math></span> &nbsp; ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = 1371 \approx 1400">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo>=</mo>
  <mn>1371</mn>
  <mo>≈</mo>
  <mn>1400</mn>
</math></span>«Hz» &nbsp;&nbsp;✔</span></span></p>
<div class="question_part_label">ei.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ' = \frac{{340}}{{1371}} \approx 0.24/0.25">
  <msup>
    <mi>λ</mi>
    <mo>′</mo>
  </msup>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>340</mn>
    </mrow>
    <mrow>
      <mn>1371</mn>
    </mrow>
  </mfrac>
  <mo>≈</mo>
  <mn>0.24</mn>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>0.25</mn>
</math></span>«m» &nbsp;✔</span></p>
<div class="question_part_label">eii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was well answered at both levels.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many scored full marks on this question. Common errors were using the calculator in radian mode or getting the equation upside down.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was very well answered.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates could interpret this situation and most arrows were shown in a vertical plane.</p>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was answered well at both levels.</p>
<div class="question_part_label">dii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was answered well with the most common mistake being to swap the speed of sound and the speed of the aircraft.</p>
<div class="question_part_label">ei.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Answered well with ECF often being awarded to those who answered the previous part incorrectly.</p>
<div class="question_part_label">eii.</div>
</div>
<br><hr><br><div class="specification">
<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the&nbsp;Earth-Sun distance.</p>
</div>

<div class="specification">
<p>The molar mass of nitrogen is 28&thinsp;g&thinsp;mol<sup>&minus;1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of the solar radiation at the location of Titan is 16 W m<sup>−2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1 W m<sup>−2</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equilibrium surface temperature of Titan is about 90 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of Titan is 0.025 times the mass of the Earth and its radius is 0.404 times the radius of the Earth. The escape speed from Earth is 11.2 km s<sup>−1</sup>. Show that the escape speed from Titan is 2.8 km s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and the period of revolution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo> </mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is 1.2 × 10<sup>9 </sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the mass of a nitrogen molecule is 4.7 × 10<sup>−26</sup> kg.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the root mean square speed of nitrogen molecules in the Titan atmosphere. Assume an atmosphere temperature of 90 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, by reference to the answer in (b), whether it is likely that Titan will lose its atmosphere of nitrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>incident intensity <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1360</mn><mrow><mn>9</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn><mo>≈</mo><mn>16</mn></math> «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow the use of 1400 for the solar constant.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>exposed surface is ¼ of the total surface ✓</p>
<p>absorbed intensity = (1−0.22) × incident intensity ✓</p>
<p>0.78 × 0.25 × 15.7  <em><strong>OR </strong> </em>3.07 «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow 3.06 from rounding and 3.12 if they use 16</em> W m<sup>−2</sup>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>σT </em><sup>4</sup> = 3.07</p>
<p><em><strong>OR</strong></em></p>
<p><em>T</em> = 86 «K» ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>2</mn><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mo>»</mo><msqrt><mfrac><mrow><mn>0</mn><mo>.</mo><mn>025</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>404</mn></mrow></mfrac></msqrt><mo>×</mo><mn>11</mn><mo>.</mo><mn>2</mn></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>79</mn></math> «km s<sup>−1</sup>» ✓</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct equating of gravitational force / acceleration to centripetal force / acceleration ✓</p>
<p>correct rearrangement to reach the expression given ✓</p>
<p> </p>
<p><em>Allow use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mi>R</mi></mrow><mi>T</mi></mfrac></math> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></math> «s» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mn>3</mn></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mfenced><mrow><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>26</mn></msup><mo> </mo></math>«kg» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mrow><mn>28</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>65</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>26</mn></mrow></msup></math> «kg» ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>k</mi><mi>T</mi><mo>⇒</mo><mo>»</mo><mi>v</mi><mo>=</mo><msqrt><mfrac><mrow><mn>3</mn><mi>k</mi><mi>T</mi></mrow><mi>m</mi></mfrac></msqrt></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>3</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>×</mo><mn>90</mn></mrow><mrow><mn>4</mn><mo>.</mo><mn>651</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>26</mn></mrow></msup></mrow></mfrac></msqrt><mo>=</mo><mo>»</mo><mn>283</mn><mo>≈</mo><mn>300</mn></math> «ms<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow 282 from a rounded mass.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no, molecular speeds much less than escape speed ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from incorrect <strong>(d)(ii)</strong>.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical solid cylinder of uniform cross-sectional area <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> floats in water. The cylinder is partially submerged. When the cylinder floats at rest, a mark is aligned with the water surface. The cylinder is pushed vertically downwards so that the mark is a distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> below the water surface.</p>
<p style="text-align: center;"><img src="" width="509" height="210"></p>
<p style="text-align: left;">At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> the cylinder is released. The resultant vertical force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> on the cylinder is related to the displacement <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> of the mark by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mo>-</mo><mi>ρ</mi><mi>A</mi><mi>g</mi><mi>x</mi></math></p>
<p style="text-align: left;">where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi></math>&nbsp;is the density of water.</p>
</div>

<div class="specification">
<p>The cylinder was initially pushed down a distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>250</mn><mo> </mo><mi mathvariant="normal">m</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the cylinder performs simple harmonic motion when released.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the cylinder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>118</mn><mo> </mo><mi>kg</mi></math> and the cross-sectional area of the cylinder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>29</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup></math>. The density of water is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>03</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo> </mo><mi>kg</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></math>. Show that the angular frequency of oscillation of the cylinder is about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>4</mn><mo> </mo><mo> </mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum kinetic energy <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>kmax</mi></msub></math> of the cylinder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, the graph to show how the kinetic energy of the cylinder varies with time during <strong>one</strong> period of oscillation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="610" height="371"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the </span><span class="fontstyle2">«</span><span class="fontstyle0">restoring</span><span class="fontstyle2">» </span><span class="fontstyle0">force/acceleration is proportional to displacement </span><span class="fontstyle3">✓ </span></p>
<p><em><span class="fontstyle4"><br>Allow use of symbols i.e. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>∝</mo><mo>-</mo><mi>x</mi></math><span class="fontstyle4"> or </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∝</mo><mo>-</mo><mi>x</mi></math></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">Evidence of equating <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><msup><mi>ω</mi><mn>2</mn></msup><mi>x</mi><mo>=</mo><mi>ρ</mi><mi>A</mi><mi>g</mi><mi>x</mi></math> «to obtain <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ρ</mi><mi>A</mi><mi>g</mi></mrow><mi>m</mi></mfrac><mo>=</mo><msup><mi>ω</mi><mn>2</mn></msup></math>» ✓</span></p>
<p> </p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><msqrt><mfrac><mrow><mn>1</mn><mo>.</mo><mn>03</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>29</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mn>118</mn></mfrac></msqrt></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>43</mn><mo>«</mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><span class="fontstyle0">Answer to at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">3</mn></math> s.f.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">K</mi></msub></math> </span><span class="fontstyle1">is a maximum when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> hence</span><span class="fontstyle0">» <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mrow><mi mathvariant="normal">K</mi><mo>,</mo><mo> </mo><mi>max</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>118</mn><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>4</mn><mn>2</mn></msup><mfenced><mrow><mn>0</mn><mo>.</mo><msup><mn>250</mn><mn>2</mn></msup><mo>-</mo><msup><mn>0</mn><mn>2</mn></msup></mrow></mfenced></math> </span><span class="fontstyle3">✓</span></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>71</mn><mo>.</mo><mn>4</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> <span class="fontstyle3">✓</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">energy never negative </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">correct shape with two maxima </span><span class="fontstyle2">✓</span></p>
<p><img src=""></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was well answered with candidates gaining credit for answers in words or symbols.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again, very well answered.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A straightforward calculation with the most common mistake being missing the squared on the omega.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates answered with a graph that was only positive so scored the first mark.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Two loudspeakers A and B are initially equidistant from a microphone M. The frequency and&nbsp;intensity emitted by A and B are the same. A and B emit sound in phase. A is fixed in position.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>B is moved slowly away from M along the line MP. The graph shows the variation with&nbsp;distance travelled by B of the received intensity at M.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the received intensity varies between maximum and minimum values.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the wavelength of the sound measured at M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>B is placed at the first minimum. The frequency is then changed until the received intensity is again at a maximum.</p>
<p>Show that the lowest frequency at which the intensity maximum can occur is about 3 kHz.</p>
<p style="text-align:center;">Speed of sound = 340 m s<sup>−1</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Loudspeaker A is switched off. Loudspeaker B moves away from M at a speed of 1.5 m s<sup>−1</sup> while emitting a frequency of 3.0 kHz.</p>
<p>Determine the difference between the frequency detected at M and that emitted by B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>movement of B means that path distance is different « between BM and AM »<br><em><strong>OR</strong></em><br>movement of B creates a path difference «between BM and AM» ✓</p>
<p>interference<br><em><strong>OR</strong></em><br>superposition «of waves» ✓</p>
<p>maximum when waves arrive in phase / path difference = n x lambda<br><em><strong>OR</strong></em><br>minimum when waves arrive «180° or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math> » out of phase / path difference = (n+½) x lambda ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength = 26 cm ✓</p>
<p><br>peak to peak distance is the path difference which is one wavelength</p>
<p><em><strong>OR</strong></em></p>
<p>this is the distance B moves to be back in phase «with A» ✓</p>
<p> </p>
<p><em>Allow 25 – 27 cm for <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>λ</mi><mn>2</mn></mfrac></math>» = 13 cm ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>c</mi><mi>λ</mi></mfrac><mo>=</mo><mfrac><mn>340</mn><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow></mfrac><mo>=</mo></math>» 2.6 «kHz» ✓</p>
<p> </p>
<p><em>Allow ½ of wavelength from (b) or data from graph for <strong>MP1</strong>.</em></p>
<p><em>Allow ECF from <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>=</mo><mi>f</mi><mfrac><mi>v</mi><mrow><mi>v</mi><mo>+</mo><msub><mi>u</mi><mn>0</mn></msub></mrow></mfrac></math> (+ sign must be seen) <strong><em>OR</em> </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>= 2987 «Hz» ✓<br>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Δ</mi><mi>f</mi></math>» = 13 «Hz» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>Attempted use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>Δ</mi><mi>f</mi></mrow><mi>f</mi></mfrac></math>≈ <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>v</mi><mi>c</mi></mfrac></math><br><br>« Δf » = 13 «Hz» ✓</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was an "explain" questions, so examiners were looking for a clear discussion of the movement of speaker B creating a changing path difference between B and the microphone and A and the microphone. This path difference would lead to interference, and the examiners were looking for a connection between specific phase differences or path differences for maxima or minima. Some candidates were able to discuss basic concepts of interference (e.g. "there is constructive and destructive interference"), but failed to make clear connections between the physical situation and the given graph. A very common mistake candidates made was to think the question was about intensity and to therefore describe the decrease in peak height of the maxima on the graph. Another common mistake was to approach this as a Doppler question and to attempt to answer it based on the frequency difference of B.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates recognized that the wavelength was 26 cm, but the explanations were lacking the details about what information the graph was actually providing. Examiners were looking for a connection back to path difference, and not simply a description of peak-to-peak distance on the graph. Some candidates did not state a wavelength at all, and instead simply discussed the concept of wavelength or suggested that the wavelength was constant.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" question that had enough information for backwards working. Examiners were looking for evidence of using the wavelength from (b) or information from the graph to determine wavelength followed by a correct substitution and an answer to more significant digits than the given result.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were successful in setting up a Doppler calculation and determining the new frequency, although some missed the second step of finding the difference in frequencies.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Monochromatic coherent light is incident on two parallel slits of negligible width a distance <em>d</em> apart. A screen is placed a distance <em>D</em> from the slits. Point M is directly opposite the midpoint of the slits.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Initially the lower slit is covered and the intensity of light at M due to the upper slit alone is 22 W m<sup>-2</sup>. The lower slit is now uncovered.</span></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The width of each slit is increased to 0.030 mm. <em>D</em>, <em>d</em> and λ remain the same.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Deduce, in W m<sup>-2</sup>, the intensity at M.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">P is the first maximum of intensity on <strong>one</strong> side of M. The following data are available.</span></p>
<p><span style="background-color:#ffffff;"><em>d</em> = 0.12 mm </span></p>
<p><span style="background-color:#ffffff;"><em>D</em> = 1.5 m </span></p>
<p><span style="background-color:#ffffff;">Distance MP = 7.0 mm</span></p>
<p><span style="background-color:#ffffff;">Calculate, in nm, the wavelength λ of the light.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest why, after this change, the intensity at P will be less than that at M.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that, due to single slit diffraction, the intensity at a point on the screen a distance of 28 mm from M is zero.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">cii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">there is constructive interference at M<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">the amplitude doubles at M ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">intensity is «proportional to» amplitude<sup>2</sup> ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">88 «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">W m</span><sup style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">−2</sup>» ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{{\lambda D}}{d} \Rightarrow » \lambda&nbsp; = \frac{{sd}}{D}/\frac{{0.12 \times {{10}^{ - 3}} \times 7.0 \times {{10}^{ - 3}}}}{{1.5}}">
  <mi>s</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>λ</mi>
      <mi>D</mi>
    </mrow>
    <mi>d</mi>
  </mfrac>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>s</mi>
      <mi>d</mi>
    </mrow>
    <mi>D</mi>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>0.12</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>7.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.5</mn>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda&nbsp; = 560«{\text{nm}}">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>560</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>nm</mtext>
  </mrow>
</math></span>» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«the interference pattern will be modulated by»<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">single slit diffraction ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«envelope and so it will be less»</span></p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">the angular position of this point is&nbsp;<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta&nbsp; = \frac{{28 \times {{10}^{ - 3}}}}{{1.5}} = 0.01867">
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>28</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.5</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.01867</mn>
</math></span>«rad»&nbsp; ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">which coincides with the first minimum of the diffraction envelope</p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta&nbsp; = \frac{\lambda }{b} = \frac{{560 \times {{10}^{ - 9}}}}{{0.030 \times {{10}^{ - 3}}}} = 0.01867">
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mi>λ</mi>
    <mi>b</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>560</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>9</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.030</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.01867</mn>
</math></span> «rad»&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«so intensity will be zero»</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">&nbsp;</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">the first minimum of the diffraction envelope is at&nbsp;<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta&nbsp; = \frac{\lambda }{b} = \frac{{560 \times {{10}^{ - 9}}}}{{0.030 \times {{10}^{ - 3}}}} = 0.01867">
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mi>λ</mi>
    <mi>b</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>560</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>9</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.030</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.01867</mn>
</math></span>«rad» &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">distance on screen is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1.50 \times 0.01867 = 28">
  <mi>y</mi>
  <mo>=</mo>
  <mn>1.50</mn>
  <mo>×</mo>
  <mn>0.01867</mn>
  <mo>=</mo>
  <mn>28</mn>
</math></span>«mm» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«so intensity will be zero»</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">&nbsp;</p>
<div class="question_part_label">cii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered by those who attempted it but was the question that was most left blank. The most common mistake was the expected one of simply doubling the intensity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was very well answered. As the question asks for the answer to be given in nm a bald answer of 560 was acceptable. Candidates could also gain credit for an answer of e.g. 5.6 x 10-7 m provided that the m was included.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many recognised the significance of the single slit diffraction envelope.</p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Credit was often gained here for a calculation of an angle for alternative 2 in the markscheme but often the final substitution 1.50 was omitted to score the second mark. Both marks could be gained if the calculation was done in one step. Incorrect answers often included complicated calculations in an attempt to calculate an integer value.</p>
<div class="question_part_label">cii.</div>
</div>
<br><hr><br><div class="specification">
<p>A buoy, floating in a vertical tube, generates energy from the movement of water waves&nbsp;on the surface of the sea. When the buoy moves up, a cable turns a generator on the&nbsp;sea bed producing power. When the buoy moves down, the cable is wound in by a&nbsp;mechanism in the generator and no power is produced.</p>
<p style="text-align: center;"><img src=""></p>
<p>The motion of the buoy can be assumed to be simple harmonic.</p>
</div>

<div class="specification">
<p>Water can be used in other ways to generate energy.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the conditions necessary for simple harmonic motion (SHM) to occur.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A wave of amplitude 4.3 m and wavelength 35 m, moves with a speed of&nbsp;3.4 m s<sup>–1</sup>. Calculate the maximum vertical speed of the buoy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show the variation with time of the generator output power.&nbsp;Label the time axis with a suitable scale.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to energy changes, the operation of a pumped storage hydroelectric system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The water in a particular pumped storage hydroelectric system falls a vertical&nbsp;distance of 270 m to the turbines. Calculate the speed at which water arrives at&nbsp;the turbines. Assume that there is no energy loss in the system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydroelectric system has four 250 MW generators. Determine the maximum time for which the&nbsp;hydroelectric system can maintain full output when a mass of 1.5 x&nbsp;10<sup>10</sup> kg of water&nbsp;passes through the turbines.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Not all the stored energy can be retrieved because of energy losses in the system. Explain <strong>two</strong> such losses.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>force/acceleration proportional to displacement «from equilibrium position»</p>
<p>and directed towards equilibrium position/point<br><em><strong>OR</strong></em><br>and directed in opposite direction to the displacement from equilibrium position/point</p>
<p>&nbsp;</p>
<p><em>Do not award marks for stating the defining equation for SHM.</em><br><em>Award <strong>[1 max]</strong> for a ω–=<sup>2</sup>x with a and x defined.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>frequency of buoy movement&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3.4}}{{35}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3.4</mn>
    </mrow>
    <mrow>
      <mn>35</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp;<em><strong>or</strong></em> 0.097 «Hz»</p>
<p><em><strong>OR</strong></em></p>
<p>time period of buoy&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{35}}{{3.4}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>35</mn>
    </mrow>
    <mrow>
      <mn>3.4</mn>
    </mrow>
  </mfrac>
</math></span> <em><strong>or</strong></em> 10.3 «s» <em><strong>or</strong></em> 10 «s»</p>
<p><em>v</em> =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi {x_0}}}{T}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
      <mrow>
        <msub>
          <mi>x</mi>
          <mn>0</mn>
        </msub>
      </mrow>
    </mrow>
    <mi>T</mi>
  </mfrac>
</math></span>&nbsp;<em><strong>or&nbsp;</strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi f{x_0}">
  <mn>2</mn>
  <mi>π</mi>
  <mi>f</mi>
  <mrow>
    <msub>
      <mi>x</mi>
      <mn>0</mn>
    </msub>
  </mrow>
</math></span>»&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ = \frac{{2 \times \pi &nbsp;\times 4.3}}{{10.3}}">
  <mtext>&nbsp;</mtext>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mo>×</mo>
      <mi>π</mi>
      <mo>×</mo>
      <mn>4.3</mn>
    </mrow>
    <mrow>
      <mn>10.3</mn>
    </mrow>
  </mfrac>
</math></span> <em><strong>or</strong></em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times \pi &nbsp;\times 0.097 \times 4.3">
  <mn>2</mn>
  <mo>×</mo>
  <mi>π</mi>
  <mo>×</mo>
  <mn>0.097</mn>
  <mo>×</mo>
  <mn>4.3</mn>
</math></span></p>
<p>2.6 «m s<sup>–1</sup>»</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>peaks separated by gaps equal to width of each pulse «shape of peak&nbsp;roughly as shown»</p>
<p>one cycle taking 10 s shown on graph</p>
<p><img src=""></p>
<p><em>Judge by eye.</em><br><em>Do not accept cos<sub>2</sub> or sin<sub>2</sub> graph</em><br><em>At least two peaks needed.</em><br><em>Do not allow square waves or asymmetrical shapes.</em><br><em>Allow ECF from (b)(i) value of period if calculated.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>PE of water is converted to KE of moving water/turbine to electrical energy «in generator/turbine/dynamo»</p>
<p>idea of pumped storage, <em>ie:</em> pump water back during night/when energy cheap to buy/when energy not in demand/when there is a surplus of energy</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>specific energy available =&nbsp;«<em>gh</em> =» 9.81 x&nbsp;270 «= 2650J kg<sup>–1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>mgh</em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>mv</em><sup>2</sup></p>
<p><em><strong>OR</strong></em></p>
<p><em>v</em><sup>2</sup> = 2gh</p>
<p><em>v</em> =&nbsp;73 «ms<sup>–1</sup>»</p>
<p>&nbsp;</p>
<p><em>Do not allow 72 as round from 72.8</em></p>
<p>&nbsp;</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total energy =&nbsp;«<em>mgh</em> = 1.5 x 10<sup>10</sup>&nbsp;x 9.81 x 270=» 4.0 x 10<sup>13</sup> «J»</p>
<p><em><strong>OR</strong></em></p>
<p>total energy =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}m{v^2} = \frac{1}{2} \times 1.5 \times {10^{10}} \times ">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>m</mi>
  <mrow>
    <msup>
      <mi>v</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>1.5</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mn>10</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>×</mo>
</math></span> (answer (c)(ii))<sup>2</sup> =» 4.0 x 10<sup>13</sup>&nbsp;«J»</p>
<p>time =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.0 \times {{10}^{13}}}}{{4 \times 2.5 \times {{10}^8}}}">
  <mfrac>
    <mrow>
      <mn>4.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>13</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mn>2.5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» 11.1h&nbsp;<em><strong>or</strong> </em>4.0 x 10<sup>4</sup> s</p>
<p>&nbsp;</p>
<p><em>Use of 3.97 x 10<sup>13</sup>&nbsp;«J» gives 11 h.</em></p>
<p><em>For MP2 the unit <strong>must</strong> be present.</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>friction/resistive losses in pipe/fluid resistance/turbulence/turbine or generator «bearings»<br><em><strong>OR</strong></em><br>sound energy losses from turbine/water in pipe </p>
<p>thermal energy/heat losses in wires/components<br><br>water requires kinetic energy to leave system so not all can be transferred</p>
<p> </p>
<p><em>Must see “seat of friction” to award the mark.</em></p>
<p><em>Do not allow “friction” bald.</em></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>An experiment to investigate simple harmonic motion consists of a mass oscillating at the&nbsp;end of a vertical spring.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The mass oscillates vertically above a motion sensor that measures the speed of the mass.&nbsp;Test 1 is carried out with a 1.0&thinsp;kg mass and spring of spring constant <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>k</mi><mn>1</mn></msub></math>. Test 2 is a repeat of&nbsp;the experiment with a 4.0&thinsp;kg mass and spring of spring constant <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>k</mi><mn>2</mn></msub></math>.&nbsp;</p>
<p>The variation with time of the vertical speed of the masses, for one cycle of the oscillation,&nbsp;is shown for each test.<br><br></p>
<p>&nbsp;<img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the frequency of the oscillation for both tests.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>k</mi><mn>1</mn></msub><msub><mi>k</mi><mn>2</mn></msub></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the amplitude of oscillation for test 1.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In test 2, the maximum elastic potential energy <em>E</em><sub>p</sub> stored in the spring is 44 J.</p>
<p>When <em>t</em> = 0 the value of <em>E</em><sub>p</sub> for test 2 is zero.</p>
<p>Sketch, on the axes, the variation with time of <em>E</em><sub>p</sub> for test 2.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The motion sensor operates by detecting the sound waves reflected from the base of the mass. The sensor compares the frequency detected with the frequency emitted when the signal returns.</p>
<p>The sound frequency emitted by the sensor is 35 kHz. The speed of sound is 340 m s<sup>−1</sup>.</p>
<p>Determine the maximum frequency change detected by the sensor for test 2.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1.3 «Hz» ✓</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∝</mo><mi>m</mi></math>  <em><strong>OR </strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>m</mi><mn>1</mn></msub><msub><mi>k</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><msub><mi>m</mi><mn>2</mn></msub><msub><mi>k</mi><mn>2</mn></msub></mfrac></math> ✓</p>
<p>0.25  <em><strong>OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>4</mn></mfrac></math> </strong></em>✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>v</em><sub>max</sub> = 4.8 «m s<sup>−1</sup>» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>0</mn></msub><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>v</mi><mi>ω</mi></mfrac><mo>=</mo><mfrac><mrow><mi>v</mi><mi>T</mi></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>80</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac></math>» = 0.61 «m» ✓</p>
<p> </p>
<p><em>Allow a range of 4.7 to 4.9 for <strong>MP1</strong></em></p>
<p><em>Allow a range of 0.58 to 0.62 for <strong>MP2</strong></em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(a)(i)</strong></em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>all energy shown positive ✓</p>
<p>curve starting and finishing at <em>E</em> = 0 with two peaks with at least one at 44 J<br><em><strong>OR</strong></em><br>curve starting and finishing at <em>E</em> = 0 with one peak at 44 J ✓</p>
<p> </p>
<p><em>Do not accept straight lines or discontinuous curves for <strong>MP2</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>read off of 9.4 «m s<sup>−1</sup>» ✓</p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>=</mo><mi>f</mi><mfenced><mfrac><mi>v</mi><mrow><mi>v</mi><mo>±</mo><msub><mi>u</mi><mi>s</mi></msub></mrow></mfrac></mfenced></math>  <em><strong>OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>=</mo><mi>f</mi><mfenced><mfrac><mrow><mi>v</mi><mo>±</mo><msub><mi>u</mi><mi>o</mi></msub></mrow><mi>v</mi></mfrac></mfenced></math> </strong></em>✓</p>
<p><em>f</em> = 36 «kHz» <em><strong>OR</strong> </em>34 «kHz» ✓</p>
<p>«recognition that there are two shifts so» change in<em> f</em> = 2 «kHz» <em><strong>OR</strong> f</em> = 37 «kHz» <em><strong>OR</strong> </em>33 «kHz» ✓</p>
<p> </p>
<p><em>Allow a range of 9.3 to 9.5 for <strong>MP1</strong></em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<p><em><strong>MP4</strong> can also be found by applying the Doppler effect twice.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>ai) The majority managed to answer this question correctly.</p>
<p>aii) A very well answered question where most worked correctly from the formula for the period of oscillation of a spring.</p>
<p>aiii) Quite a few answers had <em>v</em><sub>max</sub> from the wrong test.</p>
<p>aiv) Most common answers were a correct 2 peak curve, a correct 1 peak curve and a sine curve. Several alternatives were included in the MS as the original data provided in the question was inconsistent, i.e. 44 J is not the maximum kinetic energy available for the second test, and that was taken into account not to disadvantage any candidate´s interpretation.</p>
<p>b) Many got the first three marks for a correct Doppler shift calculation from the correct speed. . There were very few good correct full answers, might be a question to look at for 6/7 during grading.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>