File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 4 HTML/markSceme-HL-paper1html
File size: 347.43 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>Water is draining from a vertical tube that was initially full. A vibrating tuning fork is held near the&nbsp;top of the tube. For two positions of the water surface only, the sound is at its maximum loudness.</p>
<p><img src=""></p>
<p>The distance between the two positions of maximum loudness is <em>x</em>.</p>
<p>What is the wavelength of the sound emitted by the tuning fork?</p>
<p>A. &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2}">
  <mfrac>
    <mi>x</mi>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p>B. &nbsp;<em>x</em></p>
<p>C. &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3x}}{2}">
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mi>x</mi>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p>D. &nbsp;2<em>x</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Light is incident at the boundary between air and diamond. The speed of light in diamond is less than the speed of light in air. The angle of incidence<em> i</em> of the light is greater than the critical angle. Which diagram is correct for this situation?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A standing wave is formed on a string. P and Q are adjacent antinodes on the wave. Three statements are made by a student:</p>
<p style="padding-left:30px;">I.   The distance between P and Q is half a wavelength.<br>II.  P and Q have a phase difference of π rad.<br>III. Energy is transferred between P and Q.</p>
<p>Which statements are correct?</p>
<p>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was generally well answered by HL candidates. Given the number of candidates who (incorrectly) chose statement III "Energy is transferred between P and Q" as true, this question might be a useful review to identify the properties of standing waves.</p>
</div>
<br><hr><br><div class="question">
<p>A point source of light of amplitude <em>A</em><sub>0</sub> gives rise to a particular light intensity when viewed at a distance from the source. When the amplitude is increased and the viewing distance is doubled, the light intensity is doubled. What is the new amplitude of the source? </p>
<p>A. 2<em>A</em><sub>0<br></sub></p>
<p>B. 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 2 ">
  <msqrt>
    <mn>2</mn>
  </msqrt>
</math></span> <em>A</em><sub>0</sub></p>
<p>C. 4<em>A</em><sub>0</sub></p>
<p>D. 8<em>A</em><sub>0</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows an interference pattern observed on a screen in a double-slit experiment with monochromatic light of wavelength 600 nm. The screen is 1.0 m from the slits.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the separation of the slits?</p>
<p><br>A.  6.0 × 10<sup>−7</sup> m</p>
<p>B.  6.0 × 10<sup>−6</sup> m</p>
<p>C.  6.0 × 10<sup>−5</sup> m</p>
<p>D.  6.0 × 10<sup>−4</sup> m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In two different experiments, white light is passed through a single slit and then is either refracted through a prism or diffracted with a diffraction grating. The prism produces a band of colours from M to N. The diffraction grating produces a first order spectrum P to Q.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What are the colours observed at M and P?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This has low discrimination and the difficulty index suggests candidates found it hard with the incorrect option C being the most popular. The spreading of colours and formation of a spectrum (or rainbow) is something that is covered during an introductory course in physics and then developed in refraction and diffraction.</p>
</div>
<br><hr><br><div class="question">
<p>A particle undergoes simple harmonic motion. Which quantities of the motion can be simultaneously zero?</p>
<p>A.  Displacement and velocity</p>
<p>B.  Displacement and acceleration</p>
<p>C.  Velocity and acceleration</p>
<p>D.  Displacement, velocity and acceleration</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A metal rod of length 45 cm is clamped at its mid point. The speed of sound in the metal rod is 1500 m s<sup>−1</sup> and the speed of sound in air is 300 m s<sup>−1</sup>. The metal rod vibrates at its first harmonic. What is the wavelength in air of the sound wave produced by the metal rod?</p>
<p>A. 4.5 cm</p>
<p>B. 9.0 cm</p>
<p>C. 18 cm</p>
<p>D. 90 cm</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>X and Y are two coherent sources of waves. The phase difference between X and Y is zero. The intensity at P due to X and Y separately is<em> I</em>. The wavelength of each wave is 0.20 m.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the resultant intensity at P?</p>
<p> </p>
<p>A.   0</p>
<p>B.   <em>I</em></p>
<p>C.   2<em>I</em></p>
<p>D.   4<em>I</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows a second harmonic standing wave on a string fixed at both ends.</p>
<p><img src=""></p>
<p>What is the phase difference, in rad, between the particle at X and the particle at Y?</p>
<p>A. 0</p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{4}">
  <mfrac>
    <mi>π</mi>
    <mn>4</mn>
  </mfrac>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}">
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\pi }}{4}">
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mi>π</mi>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Monochromatic light of wavelength <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math></em> is incident on two slits S<sub>1</sub> and S<sub>2</sub>. An interference pattern is observed on the screen.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>O is equidistant from S<sub>1</sub> and S<sub>2</sub>. A bright fringe is observed at O and a dark fringe at X.</p>
<p>There are two dark fringes between O and X. What is the path difference between the light arriving at X from the two slits?</p>
<p>A.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>λ</mi><mn>2</mn></mfrac></math></p>
<p>B.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>λ</mi></mrow><mn>2</mn></mfrac></math></p>
<p>C.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>5</mn><mi>λ</mi></mrow><mn>2</mn></mfrac></math></p>
<p>D.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>7</mn><mi>λ</mi></mrow><mn>2</mn></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>With a relatively high discrimination index, this question was well answered by stronger HL candidates. Some students had difficulty recognising that there would be 2.5λ rather than 1.5λ, and as a result option B was a significant distractor.</p>
</div>
<br><hr><br><div class="question">
<p>A travelling wave of period 5.0 ms travels along a stretched string at a speed of 40 m s<sup>–1</sup>.&nbsp;Two points on the string are 0.050 m apart.</p>
<p>What is the phase difference between the two points?</p>
<p>A. &nbsp;0</p>
<p>B.&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}">
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p>C.&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span></p>
<p>D. &nbsp;2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">In an experiment to determine the speed of sound in air, a tube that is open at the top is filled with water and a vibrating tuning fork is held over the tube as the water is released through a valve.</p>
<p style="text-align:left;">An increase in intensity in the sound is heard for the first time when the air column length is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>. The next increase is heard when the air column length is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Which expressions are approximately correct for the wavelength of the sound?</p>
<p style="text-align:left;padding-left:30px;">I. 4<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span></p>
<p style="text-align:left;padding-left:30px;">II. 4<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span></p>
<p style="text-align:left;padding-left:30px;">III.&nbsp;<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4y}}{3}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mi>y</mi>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span></span></p>
<p style="text-align:left;">A. I and II</p>
<p style="text-align:left;">B. I and III</p>
<p style="text-align:left;">C. II and III</p>
<p style="text-align:left;">D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The question was well answered by students.</p>
</div>
<br><hr><br><div class="question">
<p>Properties of waves are</p>
<p>I.    polarization<br>II.   diffraction<br>III.  refraction</p>
<p>Which of these properties apply to sound waves?</p>
<p>A.  I and II<br>B.  I and III<br>C.  II and III<br>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Monochromatic light of wavelength <em>λ</em> is incident on a double slit. The resulting interference pattern is observed on a screen a distance <em>y</em> from the slits. The distance between consecutive fringes in the pattern is 55 mm when the slit separation is <em>a</em>.</p>
<p><em>λ, y</em> and <em>a</em> are all doubled. What is the new distance between consecutive fringes?</p>
<p>A. 55 mm</p>
<p>B. 110 mm</p>
<p>C. 220 mm</p>
<p>D. 440 mm</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>L is a point source of light. The intensity of the light at a distance 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> from L is <em>I</em>. What is the intensity at a distance 3<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> from L?</p>
<p> </p>
<p>A.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{9}">
  <mfrac>
    <mn>4</mn>
    <mn>9</mn>
  </mfrac>
</math></span><em>I</em></p>
<p>B.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}">
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
</math></span><em>I</em></p>
<p>C.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>I</em></p>
<p>D.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{9}{4}">
  <mfrac>
    <mn>9</mn>
    <mn>4</mn>
  </mfrac>
</math></span><em>I</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation with position <em>s</em> of the displacement <em>x</em> of a wave undergoing simple harmonic motion (SHM).</p>
<p><img src=""></p>
<p>What is the magnitude of the velocity at the displacements X, Y and Z?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Wavefronts travel from air to medium Q as shown.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="368" height="162"></p>
<p>What is the refractive index of Q?</p>
<p>A.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>sin</mi><mn>30</mn><mo>°</mo></mrow><mrow><mi>sin</mi><mn>45</mn><mo>°</mo></mrow></mfrac></math></p>
<p>B.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>sin</mi><mn>45</mn><mo>°</mo></mrow><mrow><mi>sin</mi><mn>30</mn><mo>°</mo></mrow></mfrac></math></p>
<p>C.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>sin</mi><mn>45</mn><mo>°</mo></mrow><mrow><mi>sin</mi><mn>60</mn><mo>°</mo></mrow></mfrac></math></p>
<p>D.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>sin</mi><mn>60</mn><mo>°</mo></mrow><mrow><mi>sin</mi><mn>45</mn><mo>°</mo></mrow></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This has a negative discrimination index and the majority of candidates chose option C which would be correct if we were considering rays but the question asks about wavefronts. It must be stressed that it is important to read the question carefully and not skim over the introductory stem. In this type of question&nbsp;students are advised to draw the rays on the diagram perpendicular to the wavefronts to make it easier to work out which angles to use.</p>
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">A glass block of refractive index 1.5 is immersed in a tank filled with a liquid of higher refractive index. Light is incident on the base of the glass block. Which is the correct diagram for rays incident on the glass block at an angle greater than the critical angle?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Response D was the most common response, with response A providing a significant distractor for roughly a third of candidates unsure about refraction beyond the critical angle.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The graph shows the variation with time for the displacement of a particle in a travelling wave.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">What are the frequency and amplitude for the oscillation of the particle?</span></span></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A pipe of length 0.6 m is filled with a gas and closed at one end. The speed of sound in the gas is 300 m s<sup>–1</sup>. What are the frequencies of the first two harmonics in the tube?</span></p>
<p><span style="background-color: #ffffff;">A.  125 Hz and 250 Hz<br></span></p>
<p><span style="background-color: #ffffff;">B.  125 Hz and 375 Hz<br></span></p>
<p><span style="background-color: #ffffff;">C.  250 Hz and 500 Hz<br></span></p>
<p><span style="background-color: #ffffff;">D.  250 Hz and 750 Hz</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A third-harmonic standing wave of wavelength 0.80 m is set up on a string fixed at both ends. Two points on the wave are separated by a distance of 0.60 m. What is a possible phase difference between the two points on the wave?</span></p>
<p><span style="background-color:#ffffff;">A.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{4}{\text{rad}}">
  <mfrac>
    <mi>π</mi>
    <mn>4</mn>
  </mfrac>
  <mrow>
    <mtext>rad</mtext>
  </mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">B.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}{\text{rad}}">
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mtext>rad</mtext>
  </mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">C.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {\text{rad}}">
  <mi>π</mi>
  <mrow>
    <mtext>rad</mtext>
  </mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">D.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\pi }}{2}{\text{rad}}">
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mi>π</mi>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mtext>rad</mtext>
  </mrow>
</math></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question had a low discrimination index with response D the most popular and an even spread between the other 3 answers. A third-harmonic standing wave of wavelength 0.8m must be on a string of length 1.2m giving 3 loops of 0.4m each. Depending on where the initial point is chosen, two points separated by 0.6m will either be in adjacent loops e.g. at 0.1m and 0.7 m with a phase difference of π or in the two end loops e.g at 0.3 m and 0.9m with a phase difference of 0. So for a standing wave there are only two possible answers, π (response C) or 0 (not included in these responses).</p>
</div>
<br><hr><br><div class="question">
<p>Which graph shows the variation of amplitude with intensity for a wave?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A string stretched between two fixed points sounds its second harmonic at frequency <em>f</em>.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src="images/Schermafbeelding_2018-08-13_om_18.33.18.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/13"></p>
<p>Which expression, where <em>n </em>is an integer, gives the frequencies of harmonics that have a node at&nbsp;the centre of the string?</p>
<p>A.&nbsp; &nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n + 1}}{2}f">
  <mfrac>
    <mrow>
      <mi>n</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mi>f</mi>
</math></span></p>
<p>B.&nbsp; &nbsp; &nbsp;<em>nf</em></p>
<p>C.&nbsp; &nbsp; &nbsp;2<em>nf</em></p>
<p>D.&nbsp; &nbsp; &nbsp;(2<em>n</em> + 1)<em>f</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which diagram shows the shape of the wavefront as a result of the diffraction of plane waves by an object?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A ray of light passes from the air into a long glass plate of refractive index <em>n </em>at an angle <em>θ </em>to the edge of the plate.</p>
<p>                               <img src="images/Schermafbeelding_2018-08-13_om_10.40.22.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/13_01"></p>
<p>The ray is incident on the internal surface of the glass plate and the refracted ray travels along the external surface of the plate.</p>
<p>What change to <em>n </em>and what change to <em>θ </em>will cause the ray to travel entirely within the plate after incidence?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_10.41.08.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/13_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>