File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 3 HTML/markSceme-HL-paper2html
File size: 342.99 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>The electrical circuit shown is used to investigate the temperature change in a wire that is&nbsp;wrapped around a mercury-in-glass thermometer.</p>
<p style="text-align: center;"><img src=""></p>
<p>A power supply of emf (electromotive force) 24 V and of negligible internal resistance is&nbsp;connected to a capacitor and to a coil of resistance wire using an arrangement of two&nbsp;switches. Switch S<sub>1</sub> is closed and, a few seconds later, opened. Then switch S<sub>2</sub> is closed.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The capacitance of the capacitor is 22 mF. Calculate the energy stored in the capacitor&nbsp;when it is fully charged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the wire is 8.0 Ω. Determine the time taken for the capacitor to&nbsp;discharge through the resistance wire. Assume that the capacitor is completely&nbsp;discharged when the potential difference across it has fallen to 0.24 V.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the resistance wire is 0.61 g and its observed temperature&nbsp;rise is 28 K. Estimate the specific heat capacity of the wire. Include an&nbsp;appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> other energy loss in the experiment and the effect it will have on the value for the specific heat capacity of the wire.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}C{V^2} = \frac{1}{2} \times 0.22 \times {24^2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>C</mi>
  <mrow>
    <msup>
      <mi>V</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>0.22</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>24</mn>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>» =&nbsp;«J»</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{100}} = {e^{ - \frac{t}{{8.0 \times 0.022}}}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>100</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mfrac>
          <mi>t</mi>
          <mrow>
            <mn>8.0</mn>
            <mo>×</mo>
            <mn>0.022</mn>
          </mrow>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ln 0.01 = &nbsp;- \frac{t}{{8.0 \times 0.022}}">
  <mi>ln</mi>
  <mo>⁡</mo>
  <mn>0.01</mn>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mi>t</mi>
    <mrow>
      <mn>8.0</mn>
      <mo>×</mo>
      <mn>0.022</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.81 «s»</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>c</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{Q}{{m \times \Delta T}}">
  <mfrac>
    <mi>Q</mi>
    <mrow>
      <mi>m</mi>
      <mo>×</mo>
      <mi mathvariant="normal">Δ</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6.3}}{{0.00061 \times 28}}">
  <mfrac>
    <mrow>
      <mn>6.3</mn>
    </mrow>
    <mrow>
      <mn>0.00061</mn>
      <mo>×</mo>
      <mn>28</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>370 J kg<sup>–1</sup> K<sup>–1</sup></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><em>Allow ECF from 3(a) for energy transferred.</em></p>
<p><em>Correct answer only to include correct unit that matches answer power of ten.</em></p>
<p><em>Allow use of g and kJ in unit but must match numerical answer,&nbsp;eg: 0.37 J kg<sup>–1</sup> K<sup>–1</sup> receives<strong> [1]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>some thermal energy will be transferred to surroundings/along connecting wires/to<br>thermometer</p>
<p>estimate «of specific heat capacity by student» will be larger «than accepted value»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>not all energy transferred as capacitor did not fully discharge</p>
<p>so estimate «of specific heat capacity by student» will be larger «than accepted value»</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p>0.46 mole of an ideal monatomic gas is trapped in a cylinder. The gas has a volume of 21 m<sup>3</sup> and a pressure of 1.4 Pa.</p>
<p>(i) State how the internal energy of an ideal gas differs from that of a real gas.</p>
<p>(ii) Determine, in kelvin, the temperature of the gas in the cylinder.</p>
<p>(iii) The kinetic theory of ideal gases is one example of a scientific model. Identify <strong>two</strong> reasons why scientists find such models useful.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>i<br>«intermolecular» potential energy/PE of an ideal gas is zero/negligible<br><br></p>
<p>ii<br><strong>THIS IS FOR USE WITH AN ENGLISH SCRIPT ONLY</strong><br>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = \frac{{PV}}{{nR}}">
  <mi>T</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>P</mi>
      <mi>V</mi>
    </mrow>
    <mrow>
      <mi>n</mi>
      <mi>R</mi>
    </mrow>
  </mfrac>
</math></span> <em><strong>or</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = \frac{{1.4 \times 21}}{{0.46 \times 8.31}}">
  <mi>T</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>1.4</mn>
      <mo>×</mo>
      <mn>21</mn>
    </mrow>
    <mrow>
      <mn>0.46</mn>
      <mo>×</mo>
      <mn>8.31</mn>
    </mrow>
  </mfrac>
</math></span><br><em>Award mark for correct re-arrangement as shown here not for quotation of Data Booklet version.</em><br><em>Award <strong>[2]</strong> for a bald correct answer in K.</em><br><em>Award <strong>[2 max]</strong> if correct 7.7 K seen followed by –265°C and mark BOD. However, if only –265°C seen, award <strong>[1 max]</strong>.</em><br><br>7.7K<br><em>Do not penalise use of “°K”</em><br><br></p>
<p>ii<br><strong>THIS IS FOR USE WITH A SPANISH SCRIPT ONLY</strong><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = \frac{{PV}}{{nR}}">
  <mi>T</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>P</mi>
      <mi>V</mi>
    </mrow>
    <mrow>
      <mi>n</mi>
      <mi>R</mi>
    </mrow>
  </mfrac>
</math></span><br><em>Award mark for correct re-arrangement as shown here not for quotation of Data Booklet version.</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = \frac{{1.4 \times 2.1 \times {{10}^{ - 6}}}}{{0.46 \times 8.31}}">
  <mi>T</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>1.4</mn>
      <mo>×</mo>
      <mn>2.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.46</mn>
      <mo>×</mo>
      <mn>8.31</mn>
    </mrow>
  </mfrac>
</math></span><br><em>Uses correct unit conversion for volume</em></p>
<p>T = 7.7×10<sup>-6</sup>K<br><em>Award <strong>[2]</strong> for a bald correct answer in K. Finds solution. Allow an ECF from MP2 if unit not converted, ie candidate uses 21m3 and obtains 7.7 K</em><br><em>Do not penalise use of “°K”</em></p>
<p> </p>
<p>iii<br>«models used to»<br>predict/hypothesize / lead to further theories<br><em>Response needs to identify <strong>two</strong> different reasons. (<strong>N.B.</strong> only one in SL).</em></p>
<p>explain / help with understanding / help to visualize<br><em>Do not allow any response that is gas specific. The question is couched in general, nature of science terms and must be answered as such.</em></p>
<p>simulate<br>simplify/approximate</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The first scientists to identify alpha particles by a direct method were Rutherford and Royds.&nbsp;They knew that radium-226 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{226}{\text{Ra}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>86</mn>
    </mrow>
    <mrow>
      <mn>226</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ra</mtext>
  </mrow>
</math></span>) decays by alpha emission to form a nuclide known as radon (Rn).</p>
</div>

<div class="specification">
<p>At the start of the experiment, Rutherford and Royds put 6.2 x&nbsp;10<sup>–4</sup> mol of&nbsp;pure radium-226 in a small closed cylinder A. Cylinder A is fixed in the centre of a&nbsp;larger closed cylinder B.</p>
<p style="text-align: center;"><img src=""></p>
<p>The experiment lasted for 6 days. The decay constant of radium-226 is 1.4 x&nbsp;10<sup>–11</sup> s<sup>–1</sup>.</p>
</div>

<div class="specification">
<p>At the start of the experiment, all the air was removed from cylinder B. The&nbsp;alpha particles combined with electrons as they moved through the wall of cylinder A to&nbsp;form helium gas in cylinder B.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the nuclear equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the activity of the radium-226 is almost constant during the&nbsp;experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that about 3 x&nbsp;10<sup>15</sup> alpha particles are emitted by the radium-226 in 6 days.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wall of cylinder A is made from glass. Outline why this glass wall had to be very thin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment was carried out at a temperature of 18 °C. The volume of&nbsp;cylinder B was 1.3 x&nbsp;10<sup>–5</sup> m<sup>3</sup> and the volume of cylinder A was negligible.&nbsp;Calculate the pressure of the helium gas that was collected in cylinder B over the 6 day period. Helium is a monatomic gas.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2^4\alpha ">
  <msubsup>
    <mi></mi>
    <mn>2</mn>
    <mn>4</mn>
  </msubsup>
  <mi>α</mi>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_2^4{\text{He}}">
  <msubsup>
    <mrow>

    </mrow>
    <mn>2</mn>
    <mn>4</mn>
  </msubsup>
  <mrow>
    <mtext>He</mtext>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{222}{\text{Rn}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>86</mn>
    </mrow>
    <mrow>
      <mn>222</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Rn</mtext>
  </mrow>
</math></span></p>
<p>&nbsp;</p>
<p><em>These <strong>must</strong> be seen on the right-hand&nbsp;side of the equation.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>6 days is 5.18&nbsp;x 10<sup>5</sup> s</p>
<p>activity after 6 days is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{A_0}{e^{ - 1.4 \times {{10}^{ - 11}} \times 5.8 \times {{10}^5}}} \approx {A_0}">
  <mrow>
    <msub>
      <mi>A</mi>
      <mn>0</mn>
    </msub>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mn>1.4</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>11</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>×</mo>
        <mn>5.8</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mn>5</mn>
          </msup>
        </mrow>
      </mrow>
    </msup>
  </mrow>
  <mo>≈</mo>
  <mrow>
    <msub>
      <mi>A</mi>
      <mn>0</mn>
    </msub>
  </mrow>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p>A = 0.9999927 <em>A</em><sub>0&nbsp;</sub><em><strong>or</strong> </em>0.9999927&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span><em>N</em><sub>0</sub></p>
<p><em><strong>OR</strong></em></p>
<p>states that index of e is so small that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{A}{{{A_0}}}">
  <mfrac>
    <mi>A</mi>
    <mrow>
      <mrow>
        <msub>
          <mi>A</mi>
          <mn>0</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span> is&nbsp;≈ 1</p>
<p><em><strong>OR</strong></em></p>
<p><em>A – A</em><sub>0</sub>&nbsp;≈ 10<sup>–15</sup>&nbsp;«s<sup>–1</sup>»</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>shows half-life of the order of 10<sup>11</sup> s or 5.0&nbsp;x 10<sup>10</sup> s</p>
<p>converts this to year «1600 y» or days and states half-life&nbsp;much longer than experiment compared to experiment</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> if calculations/substitutions have numerical slips&nbsp;but would lead to correct deduction.</em></p>
<p><em>eg: failure to convert 6 days to seconds but correct substitution&nbsp;into equation will give MP2.</em></p>
<p><em>Allow working in days, but for MP1 must see conversion of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span> or&nbsp;half-life to day<sup>–1</sup>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1&nbsp;</strong></em><br><br>use of <em>A</em>&nbsp;= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span><em>N</em><sub>0</sub></p>
<p>conversion to number of molecules = <em>nN</em><sub>A</sub> =&nbsp;3.7&nbsp;x 10<sup>20</sup></p>
<p><em><strong>OR</strong></em></p>
<p>initial activity =&nbsp;5.2 x 10<sup>9</sup> «s<sup>–1</sup>»</p>
<p>number emitted =&nbsp;(6&nbsp;x 24&nbsp;x 3600)&nbsp;x 1.4&nbsp;x 10<sup>–11</sup>&nbsp;x 3.7&nbsp;x 10<sup>20</sup> <em><strong>or</strong> </em>2.7 x 10<sup>15</sup> alpha particles</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>use of <em>N</em> = <em>N</em><sub>0</sub><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{ - \lambda t}}">
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mi>λ</mi>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p><em>N</em><sub>0</sub> =&nbsp;<em>n</em> x <em>N</em><sub>A</sub> =&nbsp;3.7 x 10<sup>20</sup></p>
<p>alpha particles emitted «= number of atoms disintegrated = <em>N</em> –&nbsp;<em>N</em><sub>0</sub> =» <em>N</em><sub>0</sub><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 - {e^{ - \lambda &nbsp;\times 6 \times 24 \times 3600}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mrow>
        <msup>
          <mi>e</mi>
          <mrow>
            <mo>−</mo>
            <mi>λ</mi>
            <mo>×</mo>
            <mn>6</mn>
            <mo>×</mo>
            <mn>24</mn>
            <mo>×</mo>
            <mn>3600</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;<em><strong>or</strong> </em>2.7&nbsp;x 10<sup>15</sup> alpha particles&nbsp;</p>
<p>&nbsp;</p>
<p><em>Must see correct substitution or&nbsp;answer to 2+ sf for MP3</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>alpha particles highly ionizing<br><em><strong>OR</strong></em><br>alpha particles have a low penetration power<br><em><strong>OR</strong></em><br>thin glass increases probability of alpha crossing glass<br><em><strong>OR</strong></em><br>decreases probability of alpha striking atom/nucleus/molecule</p>
<p> </p>
<p><em>Do not allow reference to tunnelling.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>conversion of temperature to 291 K</p>
<p><em>p</em> = 4.5 x 10<sup>–9</sup>&nbsp;x 8.31 x «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{291}}{{1.3 \times {{10}^{ - 5}}}}">
  <mfrac>
    <mrow>
      <mn>291</mn>
    </mrow>
    <mrow>
      <mn>1.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>5</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>p</em>&nbsp;= 2.7 x&nbsp;10<sup>15</sup>&nbsp;x 1.3 x&nbsp;10<sup>–23&nbsp;</sup>x «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{291}}{{1.3 \times {{10}^{ - 5}}}}">
  <mfrac>
    <mrow>
      <mn>291</mn>
    </mrow>
    <mrow>
      <mn>1.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>5</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>»<br><br>0.83 <em><strong>or</strong> </em>0.84 «Pa»</p>
<p>&nbsp;</p>
<p><em>Allow ECF for 2.7&nbsp;x&nbsp;10<sup>15</sup> from (b)(ii).</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A closed box of fixed volume 0.15 m<sup>3</sup> contains 3.0 mol of an ideal monatomic gas. The temperature of the gas is 290 K.</p>
</div>

<div class="specification">
<p>When the gas is supplied with 0.86 kJ of energy, its temperature increases by 23 K. The specific heat capacity of the gas is 3.1 kJ kg<sup>–1</sup> K<sup>–1</sup>.</p>
</div>

<div class="specification">
<p>A closed box of fixed volume 0.15 m<sup>3</sup> contains 3.0 mol of an ideal monatomic gas. The temperature of the gas is 290 K.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in kJ, the total kinetic energy of the particles of the gas.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the kinetic model of an ideal gas, how an increase in temperature of the gas leads to an increase in pressure.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>average kinetic energy = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span>1.38 ×&nbsp;10<sup>–23</sup> × 313 = 6.5 × 10<sup>–21</sup><strong>&nbsp;«</strong>J<strong>»</strong></p>
<p>number of particles = 3.0 × 6.02 × 10<sup>23</sup> = 1.8 × 10<sup>24</sup></p>
<p>total kinetic energy = 1.8 × 10<sup>24</sup> × 6.5 × 10<sup>–21</sup>&nbsp;= 12&nbsp;<strong>«</strong>kJ<strong>»</strong></p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>ideal gas so <em>U</em> =<em> KE</em></p>
<p><em>KE</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span>8.31 ×&nbsp;131 × 3</p>
<p>total kinetic energy = 12&nbsp;<strong>«</strong>kJ<strong>»</strong></p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>larger temperature implies larger (average) speed/larger (average) KE of molecules/particles/atoms</p>
<p>increased force/momentum transferred to walls (per collision) / more frequent collisions with walls</p>
<p>increased force leads to increased pressure because P = F/A (as area remains constant)</p>
<p>&nbsp;</p>
<p><em>Ignore any mention of PV = nRT.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Liquid oxygen at its boiling point is stored in an insulated tank. Gaseous oxygen is produced&nbsp;from the tank when required using an electrical heater placed in the liquid.</p>
<p>The following data are available.</p>
<p style="padding-left: 60px;">Mass of 1.0 mol of oxygen&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= 32 g</p>
<p style="padding-left: 60px;">Specific latent heat of vaporization of oxygen&nbsp; &nbsp;= 2.1 × 10<sup>5</sup> J kg<sup>–1</sup></p>
</div>

<div class="specification">
<p>An oxygen flow rate of 0.25 mol s<sup>–1</sup> is needed.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between the internal energy of the oxygen at the boiling point when it is in its liquid phase and when it is in its gas phase.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in kW, the heater power required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the oxygen produced in one second when it is allowed to expand to a pressure of 0.11 MPa and to reach a temperature of –13 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> assumption of the kinetic model of an ideal gas that does not apply to oxygen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Internal energy is the sum of all the PEs and KEs of the molecules (of the oxygen) ✔</p>
<p>PE of molecules in gaseous state is zero ✔</p>
<p>(At boiling point) average KE of molecules in gas and liquid is the same ✔</p>
<p>gases have a higher internal energy ✔</p>
<p> </p>
<p><em>Molecules/particles/atoms must be included once, if not, award <strong>[1 max]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>flow rate of oxygen = 8 «g s<sup>−1</sup>» ✔</p>
<p>«2.1 × 10<sup>5</sup> × 8 × 10<sup>−3</sup>» = 1.7 «kW» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><em>Q</em> = «0.25 × 32 × 10<sup>−3</sup> × 2.1 × 10<sup>5</sup> =» 1680 «J» ✔</p>
<p>power = «1680 W =» 1.7 «kW» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>T </em>= 260 «K» ✔</p>
<p><em>V</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{nRT}}{p} = ">
  <mfrac>
    <mrow>
      <mi>n</mi>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
    <mi>p</mi>
  </mfrac>
  <mo>=</mo>
</math></span>» 4.9 × 10<sup>−3</sup> «m<sup>3</sup>» ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ideal gas has point objects ✔</p>
<p>no intermolecular forces ✔</p>
<p>non liquefaction ✔</p>
<p>ideal gas assumes monatomic particles ✔</p>
<p>the collisions between particles are elastic ✔</p>
<p> </p>
<p><em>Allow the opposite statements if they are clearly made about oxygen eg oxygen/this can be liquified</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A square loop of side 5.0&thinsp;cm enters a region of uniform magnetic field at <em>t</em> = 0. The loop exits&nbsp;the region of magnetic field at <em>t</em> = 3.5&thinsp;s. The magnetic field strength is 0.94&thinsp;T and is directed&nbsp;into the plane of the paper. The magnetic field extends over a length 65&thinsp;cm. The speed of the&nbsp;loop is constant.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the loop is 20 cm s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation with time of the magnetic flux linkage <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Φ</mi></math> in the loop.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation with time of the magnitude of the emf induced in the loop.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are 85 turns of wire in the loop. Calculate the maximum induced emf in the loop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the loop is 2.4 Ω. Calculate the magnitude of the magnetic force on the loop as it enters the region of magnetic field.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy dissipated in the loop from <em>t </em>= 0 to <em>t </em>= 3.5 s is 0.13 J.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the wire is 18 g. The specific heat capacity of copper is 385 J kg<sup>−1</sup> K<sup>−1</sup>. Estimate the increase in temperature of the wire.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>70</mn><mrow><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfrac></math> ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>shape as above ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>shape as above ✓</p>
<p> </p>
<p><em>Vertical lines not necessary to score.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(b)(i)</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>maximum flux at «<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup><mo>×</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>94</mn></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>19975</mn><mo>≈</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo> </mo></math>«Wb» ✓</p>
<p>emf = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>20</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>80</mn><mo> </mo></math>«V» ✓</p>
<p><em><strong><br>ALTERNATIVE 2</strong></em></p>
<p>emf induced in one turn = <em>BvL</em> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>0094</mn><mo> </mo></math>«V» ✓</p>
<p>emf <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0094</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo> </mo></math>«V» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mo>«</mo><mfrac><mi>V</mi><mi>R</mi></mfrac><mo>=</mo><mo>»</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>4</mn></mrow></mfrac></math>  <em><strong>OR  </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>33</mn></math> «A» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mo>«</mo><mi>N</mi><mi>B</mi><mi>I</mi><mi>L</mi><mo>=</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>33</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>=</mo><mo>»</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn></math> «N» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>(c)(i)</strong>.</em></p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Energy is being dissipated for 0.50 s ✓</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mi>F</mi><mi>v</mi><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>50</mn><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>13</mn></math> J»</p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mi>V</mi><mi>l</mi><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>33</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>50</mn><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>13</mn></math> J» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>(b)</strong> and <strong>(c)</strong>. </em></p>
<p><em>Watch for candidates who do not justify somehow the use of 0.5 s and just divide by 2 their answer.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>T</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>018</mn><mo>×</mo><mn>385</mn></mrow></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>T</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> «K» ✓</p>
<p> </p>
<p><em>Allow <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Award <strong>[1]</strong> for a <strong>POT</strong> error in <strong>MP1</strong>.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A container of volume 3.2 × 10<sup>-6</sup> m<sup>3</sup> is filled with helium gas at a pressure of 5.1 × 10<sup>5</sup> Pa and temperature 320 K. Assume that this sample of helium gas behaves as an ideal gas.</span></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">A helium atom has a volume of 4.9 × 10<sup>-31</sup> m<sup>3</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The mass of a helium atom is 6.6 × 10<sup>-27</sup> kg. Estimate the average speed of the helium atoms in the container.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the number of helium atoms in the container is 4 × 10<sup>20</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{volume of helium atoms}}}}{{{\text{volume of helium gas}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>volume of helium atoms</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>volume of helium gas</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Discuss, by reference to the kinetic model of an ideal gas and the answer to (c)(i), whether the assumption that helium behaves as an ideal gas is justified.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">cii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{1}}}{2}m{v^2} = \frac{3}{2}kT/v = \sqrt {\frac{{3kT}}{m}} /\sqrt {\frac{{3 \times 1.38 \times {{10}^{ - 23}} \times 320}}{{6.6 \times {{10}^{ - 27}}}}} ">
  <mfrac>
    <mrow>
      <mtext>1</mtext>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mi>m</mi>
  <mrow>
    <msup>
      <mi>v</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
  <mi>k</mi>
  <mi>T</mi>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mi>v</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>3</mn>
        <mi>k</mi>
        <mi>T</mi>
      </mrow>
      <mi>m</mi>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>3</mn>
        <mo>×</mo>
        <mn>1.38</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>23</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>×</mo>
        <mn>320</mn>
      </mrow>
      <mrow>
        <mn>6.6</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>27</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span> &nbsp;&nbsp;✔</span></p>
<p><em><span style="background-color:#ffffff;">v = </span></em><span style="background-color:#ffffff;">1.4&nbsp;× 10<sup>3</sup></span>«ms<sup>–1</sup>»<span style="background-color:#ffffff;"><sup> &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></sup></span></p>
<p><span style="background-color:#ffffff;">&nbsp;</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = \frac{{pV}}{{kT}}/\frac{{5.1 \times {{10}^5} \times 3.2 \times {{10}^{ - 6}}}}{{1.38 \times {{10}^{ - 23}} \times 320}}">
  <mi>N</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>p</mi>
      <mi>V</mi>
    </mrow>
    <mrow>
      <mi>k</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>5.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>5</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>3.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.38</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>320</mn>
    </mrow>
  </mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = \frac{{pV{N_A}}}{{RT}}/\frac{{5.1 \times {{10}^5} \times 3.2 \times {{10}^{ - 6}} \times 6.02 \times {{10}^{23}}}}{{8.31 \times 320}}">
  <mi>N</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>p</mi>
      <mi>V</mi>
      <mrow>
        <msub>
          <mi>N</mi>
          <mi>A</mi>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>5.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>5</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>3.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>8.31</mn>
      <mo>×</mo>
      <mn>320</mn>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔</span></span></p>
<p>&nbsp;</p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = 3.7 \times {10^{20}}">
  <mi>N</mi>
  <mo>=</mo>
  <mn>3.7</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mn>20</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times {{10}^{20}} \times 4.9 \times {{10}^{ - 31}}}}{{3.2 \times {{10}^{ - 6}}}} = ">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>20</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>4.9</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>31</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>3.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>»<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 \times {10^{ - 5}}">
  <mn>6</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>5</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp;&nbsp;✔</span></p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«For an ideal gas» the size of the particles is small compared to the distance between them/size of the container/gas</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«For an ideal gas» the volume of the particles is negligible/the volume of the particles is small compared to the volume of the container/gas<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«For an ideal gas» particles are assumed to be point objects ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">calculation/ratio/result in (c)(i) shows that volume of helium atoms is negligible compared to/much smaller than volume of helium gas/container «hence assumption is justified» ✔</span></p>
<div class="question_part_label">cii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>At HL this was very well answered but at SL many just worked out E=3/2kT and left it as a value for KE.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again at HL this was very well answered with the most common approach being to calculate the number of moles and then multiply by N<sub>A</sub> to calculate the number of atoms. At SL many candidates calculated n but stopped there. Also at SL there was some evidence of candidates working backwards and magically producing a value for ‘n’ that gave a result very close to that required after multiplying by N<sub>A</sub>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered with the most common mistake being to use the volume of a single atom rather than the total volume of the atoms.</p>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>At HL candidates seemed more able to focus on the key part feature of the question, which was the nature of the volumes involved. Examiners were looking for an assumption of the kinetic theory related to the volume of the atoms/gas and then a link to the ratio calculated in ci). The command terms were slightly different at SL and HL, giving slightly more guidance at SL.</p>
<div class="question_part_label">cii.</div>
</div>
<br><hr><br><div class="specification">
<p>An ideal monatomic gas is kept in a container of volume 2.1 × 10<sup>–4</sup> m<sup>3</sup>, temperature&nbsp;310 K and pressure 5.3 × 10<sup>5</sup> Pa.</p>
</div>

<div class="specification">
<p>The volume of the gas in (a) is increased to 6.8 × 10<sup>–4</sup> m<sup>3</sup> at constant temperature.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by an ideal gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of atoms in the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the internal energy of the gas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in Pa, the new pressure of the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, in terms of molecular motion, this change in pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a gas in which there are no intermolecular forces</p>
<p><strong><em>OR</em></strong></p>
<p>a gas that obeys the ideal gas law/all gas laws at all pressures, volumes and temperatures</p>
<p><strong><em>OR</em></strong></p>
<p>molecules have zero PE/only KE</p>
<p>&nbsp;</p>
<p><em>Accept atoms/particles.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>N</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{pV}}{{kT}} = \frac{{5.3 \times {{10}^5} \times 2.1 \times {{10}^{ - 4}}}}{{1.38 \times {{10}^{ - 23}} \times 310}}">
  <mfrac>
    <mrow>
      <mi>p</mi>
      <mi>V</mi>
    </mrow>
    <mrow>
      <mi>k</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>5.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>5</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>2.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>4</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.38</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>310</mn>
    </mrow>
  </mfrac>
</math></span><strong>»</strong>&nbsp;2.6 × 10<sup>22</sup></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>For one atom&nbsp;<em>U</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>kT</em><strong>»</strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;× 1.38 × 10<sup>–23</sup> × 310 / 6.4 × 10<sup>–21</sup> <strong>«</strong>J<strong>»</strong></p>
<p><em>U =&nbsp;</em><strong>«</strong>2.6&nbsp;× 10<sup>22</sup>&nbsp;×&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;× 1.38 × 10<sup>–23</sup> × 310<strong>»</strong> 170&nbsp;<strong>«</strong>J<strong>»</strong></p>
<p>&nbsp;</p>
<p>&nbsp;<em>Allow ECF from (a)(ii)</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow use of U</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>pV</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>p</em><sub>2</sub> =&nbsp;<strong>«</strong>5.3&nbsp;× 10<sup>5</sup>&nbsp;×&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.1 \times {{10}^{ - 4}}}}{{6.8 \times {{10}^{ - 4}}}}">
  <mfrac>
    <mrow>
      <mn>2.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>4</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>6.8</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>4</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong> 1.6&nbsp;× 10<sup>5</sup>&nbsp;<strong>«</strong>Pa<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>volume has increased and<strong>» </strong>average velocity/KE remains unchanged</p>
<p><strong>«</strong>so<strong>» </strong>molecules collide with the walls less frequently/longer time between collisions with the walls</p>
<p><strong>«</strong>hence<strong>» </strong>rate of change of momentum at wall has decreased</p>
<p><strong>«</strong>and so pressure has decreased<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>The idea of average must be included</em></p>
<p><em>Decrease in number of collisions is not sufficient for MP2. Time must be included.</em></p>
<p><em>Accept atoms/particles.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the&nbsp;Earth-Sun distance.</p>
</div>

<div class="specification">
<p>The molar mass of nitrogen is 28&thinsp;g&thinsp;mol<sup>&minus;1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of the solar radiation at the location of Titan is 16 W m<sup>−2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1 W m<sup>−2</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equilibrium surface temperature of Titan is about 90 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of Titan is 0.025 times the mass of the Earth and its radius is 0.404 times the radius of the Earth. The escape speed from Earth is 11.2 km s<sup>−1</sup>. Show that the escape speed from Titan is 2.8 km s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and the period of revolution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo> </mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is 1.2 × 10<sup>9 </sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the mass of a nitrogen molecule is 4.7 × 10<sup>−26</sup> kg.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the root mean square speed of nitrogen molecules in the Titan atmosphere. Assume an atmosphere temperature of 90 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, by reference to the answer in (b), whether it is likely that Titan will lose its atmosphere of nitrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>incident intensity <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1360</mn><mrow><mn>9</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn><mo>≈</mo><mn>16</mn></math> «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow the use of 1400 for the solar constant.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>exposed surface is ¼ of the total surface ✓</p>
<p>absorbed intensity = (1−0.22) × incident intensity ✓</p>
<p>0.78 × 0.25 × 15.7  <em><strong>OR </strong> </em>3.07 «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow 3.06 from rounding and 3.12 if they use 16</em> W m<sup>−2</sup>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>σT </em><sup>4</sup> = 3.07</p>
<p><em><strong>OR</strong></em></p>
<p><em>T</em> = 86 «K» ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>2</mn><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mo>»</mo><msqrt><mfrac><mrow><mn>0</mn><mo>.</mo><mn>025</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>404</mn></mrow></mfrac></msqrt><mo>×</mo><mn>11</mn><mo>.</mo><mn>2</mn></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>79</mn></math> «km s<sup>−1</sup>» ✓</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct equating of gravitational force / acceleration to centripetal force / acceleration ✓</p>
<p>correct rearrangement to reach the expression given ✓</p>
<p> </p>
<p><em>Allow use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mi>R</mi></mrow><mi>T</mi></mfrac></math> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></math> «s» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mn>3</mn></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mfenced><mrow><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>26</mn></msup><mo> </mo></math>«kg» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mrow><mn>28</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>65</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>26</mn></mrow></msup></math> «kg» ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>k</mi><mi>T</mi><mo>⇒</mo><mo>»</mo><mi>v</mi><mo>=</mo><msqrt><mfrac><mrow><mn>3</mn><mi>k</mi><mi>T</mi></mrow><mi>m</mi></mfrac></msqrt></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>3</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>×</mo><mn>90</mn></mrow><mrow><mn>4</mn><mo>.</mo><mn>651</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>26</mn></mrow></msup></mrow></mfrac></msqrt><mo>=</mo><mo>»</mo><mn>283</mn><mo>≈</mo><mn>300</mn></math> «ms<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow 282 from a rounded mass.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no, molecular speeds much less than escape speed ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from incorrect <strong>(d)(ii)</strong>.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Plutonium-238 (Pu) decays by alpha (&alpha;) decay into uranium (U).</p>
<p>The following data are available for binding energies per nucleon:</p>
<p style="padding-left: 30px;">plutonium&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 7.568&thinsp;MeV</p>
<p style="padding-left: 30px;">uranium&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;7.600&thinsp;MeV</p>
<p style="padding-left: 30px;">alpha particle&nbsp; &nbsp; &nbsp;7.074&thinsp;MeV</p>
</div>

<div class="specification">
<p>The energy in b(i) can be transferred into electrical energy to run the instruments of&nbsp;a spacecraft. A spacecraft carries 33&thinsp;kg of pure plutonium-238 at launch. The decay&nbsp;constant of plutonium is 2.50 &times; 10<sup>&minus;10</sup>&thinsp;s<sup>&minus;1</sup>.</p>
</div>

<div class="specification">
<p>Solar radiation falls onto a metallic surface carried by the spacecraft causing&nbsp;the emission of photoelectrons. The radiation has passed through a filter so it is&nbsp;monochromatic. The spacecraft is moving away from the Sun.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some unstable nuclei have many more neutrons than protons. Suggest the likely decay for these nuclei.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in this decay is about 6 MeV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plutonium nucleus is at rest when it decays.</p>
<p>Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power, in kW, that is available from the plutonium at launch.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spacecraft will take 7.2 years (2.3 × 10<sup>8</sup> s) to reach a planet in the solar system. Estimate the power available to the spacecraft when it gets to the planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the kinetic energy of an emitted photoelectron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the rate at which charge leaves the metallic surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the energy needed to «completely» separate the nucleons of a nucleus</p>
<p><em><strong>OR</strong></em></p>
<p>the energy released when a nucleus is assembled from its constituent nucleons ✓</p>
<p> </p>
<p><em>Accept reference to protons and </em><em>neutrons.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve rising to a maximum between 50 and 100 ✓</p>
<p>curve continued and decreasing ✓</p>
<p> </p>
<p><em>Ignore starting point.<br></em></p>
<p><em>Ignore maximum at alpha particle.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>At a point on the peak of their graph ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>beta minus «decay» ✓</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct mass numbers for uranium (234) and alpha (4) ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>234</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>600</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>074</mn><mo>-</mo><mn>238</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>568</mn></math> «MeV» ✓</p>
<p>energy released 5.51 «MeV» ✓</p>
<p> </p>
<p><em>Ignore any negative sign.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>K</mi><msub><mi>E</mi><mi>α</mi></msub></mrow><mrow><mi>K</mi><msub><mi>E</mi><mi>U</mi></msub></mrow></mfrac><mo>=</mo></math>»<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>U</mi></msub></mrow></mfrac></mfrac></mstyle></math>  <em><strong>OR  </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>m</mi><mi>U</mi></msub><msub><mi>m</mi><mi>α</mi></msub></mfrac></math> ✓</p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>234</mn><mn>4</mn></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn><mo>.</mo><mn>5</mn></math> ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>117</mn><mn>2</mn></mfrac></math> for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>number of nuclei present <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>33</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mn>238</mn></mfrac><mo>×</mo><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo>«</mo><mo>=</mo><mn>8</mn><mo>.</mo><mn>347</mn><mo>×</mo><msup><mn>10</mn><mn>25</mn></msup><mo>»</mo></math> ✓</p>
<p>initial activity is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><msub><mi>N</mi><mn>0</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>347</mn><mo>×</mo><msup><mn>10</mn><mn>25</mn></msup><mo>«</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>08</mn><mo>×</mo><msup><mn>10</mn><mn>16</mn></msup><mo> </mo><mtext>Bq</mtext><mo>»</mo></math> ✓</p>
<p>power is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>08</mn><mo>×</mo><msup><mn>10</mn><mn>16</mn></msup><mo>×</mo><mn>5</mn><mo>.</mo><mn>51</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>≈</mo><mn>18</mn></math> «kW» ✓</p>
<p> </p>
<p><em>Allow a final answer of 20 </em>kW<em> if 6 </em>MeV<em> used. </em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> and <strong>MP2</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>available power after time <em>t</em> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>t</mi></mrow></msup></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><msup><mi>e</mi><mrow><mo>−</mo><mn>2</mn><mo>.</mo><mn>50</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></msup><mo>=</mo><mn>17</mn><mo>.</mo><mn>0</mn></math> «kW» ✓</p>
<p> </p>
<p><em><strong>MP1</strong> may be implicit.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(c)(i)</strong>.</em></p>
<p><em>Allow 17.4 </em>kW<em> from unrounded power from <strong>(c)(i)</strong>.</em></p>
<p><em>Allow 18.8 </em>kW<em> from 6 </em>MeV<em>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stays the same ✓</p>
<p>as energy depends on the frequency of light ✓</p>
<p> </p>
<p><em>Allow reference to wavelength for <strong>MP2</strong>.</em></p>
<p><em>Award <strong>MP2</strong> only to answers stating that KE decreases due to Doppler effect.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases ✓</p>
<p>as number of photons incident decreases ✓</p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Three identical light bulbs, X, Y and Z, each of resistance 4.0 Ω are connected to a cell of emf 12 V. The cell has negligible internal resistance.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">When fully charged the space between the plates of the capacitor is filled with a dielectric with double the permittivity of a vacuum.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch S is initially open. Calculate the total power dissipated in the circuit.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. State, without calculation, why the current in the cell will increase.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Deduce the ratio }}\frac{{{\text{power dissipated in Y with S open}}}}{{{\text{power dissipated in Y with S closed}}}}">
  <mrow>
    <mtext>Deduce the ratio&nbsp;</mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>power dissipated in Y with S open</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>power dissipated in Y with S closed</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</span></p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The cell is used to charge a parallel-plate capacitor in a vacuum. The fully charged capacitor is then connected to an ideal voltmeter.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">The capacitance of the capacitor is 6.0 μF and the reading of the voltmeter is 12 V.</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Calculate the energy stored in the capacitor.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the change in the energy stored in the capacitor.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest, in terms of conservation of energy, the cause for the above change.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">dii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">total resistance of circuit is 8.0 «Ω» ✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = \frac{{{{12}^2}}}{{8.0}} = 18">
  <mi>P</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>12</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>8.0</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>18</mn>
</math></span>«W»&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«a resistor is now connected in parallel» reducing the total resistance<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">current through YZ unchanged and additional current flows through X ✔</span></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">evidence in calculation or statement that pd across Y/current in Y is the same as before ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">so ratio is 1 ✔</span></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = «\frac{1}{2}C{V^2} = \frac{1}{2} \times 6 \times {10^{ - 6}} \times {12^2} =»&nbsp; 4.3 \times {10^{ - 4}}">
  <mi>E</mi>
  <mo>=</mo>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>C</mi>
  <mrow>
    <msup>
      <mi>V</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>6</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>6</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>12</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mn>4.3</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>4</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{J}}">
  <mrow>
    <mtext>J</mtext>
  </mrow>
</math></span>»&nbsp;✔</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><em><strong><span style="background-color:#ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">capacitance doubles and voltage halves ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">since&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = \frac{1}{2}C{V^2}">
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>C</mi>
  <mrow>
    <msup>
      <mi>V</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> energy halves &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">so change is «–»2.2×10<sup>–4 </sup>«J» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">&nbsp;</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = \frac{1}{2}C{V^2}{\text{ and }}Q = CV{\text{ so }}E = \frac{{{Q^2}}}{{2C}}">
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>C</mi>
  <mrow>
    <msup>
      <mi>V</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext>&nbsp;and&nbsp;</mtext>
  </mrow>
  <mi>Q</mi>
  <mo>=</mo>
  <mi>C</mi>
  <mi>V</mi>
  <mrow>
    <mtext>&nbsp;so&nbsp;</mtext>
  </mrow>
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>Q</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mi>C</mi>
    </mrow>
  </mfrac>
</math></span> &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span>&nbsp;</span><span style="background-color:#ffffff;"><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">capacitance doubles and charge unchanged so energy halves ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">so change is <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">−</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">»</span>2.2 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 10<sup><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">−</span>4 </sup>«<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">J</span>» ✔</span></p>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">it is the work done when inserting the dielectric into the capacitor ✔<br></span></p>
<div class="question_part_label">dii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates scored both marks. ECF was awarded for those who didn’t calculate the new resistance correctly. Candidates showing clearly that they were attempting to calculate the new total resistance helped examiners to award ECF marks.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most recognised that this decreased the total resistance of the circuit. Answers scoring via the second alternative were rare as the statements were often far too vague.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few gained any credit for this at both levels. Most performed complicated calculations involving the total circuit and using 12V – they had not realised that the question refers to Y only.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most answered this correctly.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>By far the most common answer involved doubling the capacitance without considering the change in p.d. Almost all candidates who did this calculated a change in energy that scored 1 mark.</p>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few scored on this question.</p>
<div class="question_part_label">dii.</div>
</div>
<br><hr><br><div class="specification">
<p>Potassium-40&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>K</mtext><mprescripts></mprescripts><mn>19</mn><mn>40</mn></mmultiscripts></mfenced></math>&nbsp;decays by two processes.</p>
<p>The first process is that of beta-minus (&beta;<sup>&minus;</sup>) decay to form a calcium (Ca) nuclide.</p>
</div>

<div class="specification">
<p>Potassium-40 decays by a second process to argon-40. This decay accounts for 11&thinsp;%&nbsp;of the total decay of the potassium-40.</p>
<p>Rocks can be dated by measuring the quantity of argon-40 gas trapped in them. One&nbsp;rock sample contains 340&thinsp;&micro;mol of potassium-40 and 12&thinsp;&micro;mol of argon-40.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the initial quantity of potassium-40 in the rock sample was about 450 µmol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of potassium-40 is 1.3 × 10<sup>9</sup> years. Estimate the age of the rock sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the decay constant of potassium-40 was determined in the laboratory for a pure sample of the nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Ca</mtext><mprescripts></mprescripts><mn>20</mn><mn>40</mn></mmultiscripts></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mmultiscripts><mtext>e</mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo></mrow><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math>  <strong><em>OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>β</mi><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math>  ✓</em></strong></p>
<p> </p>
<p><em>Full equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>K</mtext><mprescripts></mprescripts><mn>19</mn><mn>40</mn></mmultiscripts><mo>→</mo><mmultiscripts><mtext>Ca</mtext><mprescripts></mprescripts><mn>20</mn><mn>40</mn></mmultiscripts><mo>+</mo><mrow><mmultiscripts><mtext>e</mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo></mrow><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total K-40 decayed = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>12 μmol</mtext><mrow><mn>0</mn><mo>.</mo><mn>11</mn></mrow></mfrac><mo>=</mo><mn>109</mn></math> «μmol» ✓</p>
<p>so total K-40 originally was 109 + 340 = 449 «μmol»✓ </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mtext>ln</mtext><mfenced><mn>2</mn></mfenced></mrow><msub><mi>t</mi><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></msub></mfrac></math> used to give 𝜆 = 5.3 x 10<sup>-10</sup> per year ✓</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>340</mn><mo>=</mo><mfenced><mn>449</mn></mfenced><mfenced><msup><mi>e</mi><mrow><mo>-</mo><mn>5</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mi>t</mi></mrow></msup></mfenced></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mn>340</mn><mn>449</mn></mfrac></mfenced><mo>=</mo><mo>-</mo><mn>5</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mi>t</mi></math>  ✓</p>
<p><em><br>t </em>= 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>340</mn><mn>449</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>76</mn></math> </strong></em>«remaining» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mfenced><mi>p</mi></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>693</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>ln</mi><mfenced><mrow><mn>0</mn><mo>.</mo><mn>76</mn></mrow></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>693</mn></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn></math> ✓</p>
<p><em>t</em> = 0.40 x 1.3 x 10<sup>9</sup> = 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>340</mn><mn>449</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>76</mn></math> «remaining» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>76</mn><mo>=</mo><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mfrac><mi>t</mi><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></msup></math> ✓</p>
<p><em>t </em>= 0.40 x 1.3 x 10<sup>9 </sup>= 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em>Allow 5.3 x 10<sup>8</sup> years for final answer.</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP3</strong> for an incorrect number of half-lives.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«use the mass of the sample to» determine number of potassium-40 atoms / nuclei in sample ✓</p>
<p>«use a counter to» determine (radio)activity / A of sample ✓</p>
<p>use <em>A = λN</em> «to determine the decay constant / <em>λ</em>» ✓</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was very well done by candidates. The majority were able to identify the correct nuclide of Calcium and many correctly included an electron/beta particle and a properly written antineutrino.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" question that was generally well done by candidates.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a more challenging question for candidates. Many were able to calculate the decay constant and recognized that the ratio of initial and final quantities of the potassium-40 was important. A very common error was mixing the two common half-life equations up and using the wrong values in the exponent (using half life instead of the decay constant, or using the decay constant instead of the half life). Examiners were generous with ECF for candidates who clearly showed an incorrect number of half-lives multiplied by the time for one half-life.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Describing methods of determining half-life continues to be a struggle for candidates with very few earning all three marks. Many candidates described a method more appropriate to measuring a short half- life, but even those descriptions fell far short of being acceptable.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the gravitational field lines of planet X.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how this diagram shows that the gravitational field strength of planet X decreases with distance from the surface.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows part of the surface of planet X. The gravitational potential at the surface of planet X is –3<em>V</em> and the gravitational potential at point Y is –<em>V</em>.</p>
<p><img src=""></p>
<p>Sketch on the grid the equipotential surface corresponding to a gravitational potential of –2<em>V</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A meteorite, very far from planet X begins to fall to the surface with a negligibly small initial speed. The mass of planet X is 3.1 × 10<sup>21</sup> kg and its radius is 1.2 × 10<sup>6</sup> m. The planet has no atmosphere. Calculate the speed at which the meteorite will hit the surface.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the instant of impact the meteorite which is made of ice has a temperature of 0 °C. Assume that all the kinetic energy at impact gets transferred into internal energy in the meteorite. Calculate the percentage of the meteorite’s mass that melts. The specific latent heat of fusion of ice is 3.3 × 10<sup>5</sup> J kg<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the field lines/arrows are further apart at greater distances from the surface</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>circle centred on Planet X<br>three units from Planet X centre</p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>loss in gravitational potential = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6.67 \times {{10}^{ - 11}} \times 3.1 \times {{10}^{21}}}}{{1.2 \times {{10}^6}}}">
  <mfrac>
    <mrow>
      <mn>6.67</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>11</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>3.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>21</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>6</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>«= 1.72 × 10<sup>5</sup> JKg<sup>−1</sup>»</p>
<p>equate to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>v</em><sup>2</sup></p>
<p>v = 590 «m s<sup>−1</sup>»</p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>available energy to melt one kg 1.72 × 10<sup>5</sup> «J»</p>
<p>fraction that melts is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.72 \times {{10}^5}}}{{3.3 \times {{10}^5}}}">
  <mfrac>
    <mrow>
      <mn>1.72</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>5</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>3.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>5</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = 0.52 <em><strong>OR</strong></em> 52%</p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1.</em></p>
<p><em>Allow 53% from use of 590 ms<sup>-1</sup>.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br>