File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 3 HTML/markSceme-HL-paper1html
File size: 88.57 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>An ideal gas has a volume of 15 ml, a temperature of 20 °C and a pressure of 100 kPa. The volume of the gas is reduced to 5 ml and the temperature is raised to 40 °C. What is the new pressure of the gas?</p>
<p>A. 600 kPa</p>
<p>B. 320 kPa</p>
<p>C. 200 kPa</p>
<p>D. 35 kPa</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is <strong>not</strong> an assumption of the kinetic model of an ideal gas?</p>
<p>A. Attractive forces between molecules are negligible.</p>
<p>B. Collision duration is negligible compared with time between collisions.</p>
<p>C. Molecules suffer negligible momentum change during wall collisions.</p>
<p>D. Molecular volume is negligible compared with gas volume.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Even though both difficulty and discrimination index are acceptable a significant number of candidates chose incorrect options B or D. The examiners appreciated that this was a challenging question which required some thought partly because it asked what is not an assumption. Candidates need to be aware that although questions are normally phased in a positive sense there will occasionally be ones like this and they need to hold the idea of 'not' when looking at the possible answers. A useful strategy is to look for correct assumptions and when those are identified there should be just one left — the required answer.</p>
</div>
<br><hr><br><div class="question">
<p>Unpolarized light of intensity <em>I<sub>0</sub></em> is incident on a polarizing filter. Light from this filter is incident on a second filter, which has its axis of polarization at 30˚ to that of the first filter.</p>
<p>The value of cos 30˚ is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sqrt 3 }}{2}">
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
</math></span>. What is the intensity of the light emerging through the second filter?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sqrt 3 }}{2}">
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
</math></span><em>I<sub>0</sub></em></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</math></span><em>I<sub>0</sub></em></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</math></span><em>I<sub>0</sub></em></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{8}">
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
</math></span><em>I<sub>0</sub></em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An insulated container of negligible mass contains a mass 2<em>M</em> of a liquid. A piece of a metal of mass <em>M</em> is dropped into the liquid. The temperature of the liquid increases by 10 °C and the temperature of the metal decreases by 80 °C in the same time.</p>
<p>What is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>specific heat capacity of the liquid</mtext><mtext>specific heat capacity of the metal</mtext></mfrac></math>?</p>
<p><br>A. 2</p>
<p>B. 4</p>
<p>C. 8</p>
<p>D. 16</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The molar mass of an ideal gas is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>. A fixed mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> of the gas expands at a constant pressure <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>. The graph shows the variation with temperature <em>T</em> of the gas volume <em>V</em>.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the gradient of the graph?</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>M</mi><mi>p</mi></mrow><mrow><mi>m</mi><mi>R</mi></mrow></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>M</mi><mi>R</mi></mrow><mrow><mi>m</mi><mi>p</mi></mrow></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>m</mi><mi>p</mi></mrow><mrow><mi>M</mi><mi>R</mi></mrow></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>m</mi><mi>R</mi></mrow><mrow><mi>M</mi><mi>p</mi></mrow></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A solid substance has just reached its melting point. Thermal energy is supplied to the substance at a constant rate. Which graph shows the variation of the temperature <em>T</em> of the substance with energy <em>E</em> supplied?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Water at room temperature is placed in a freezer. The specific heat capacity of water is twice the specific heat capacity of ice. Assume that thermal energy is transferred from the water at a constant rate.</p>
<p>Which graph shows the variation with time of the temperature of the water?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two ideal gases X and Y are at the same temperature. The mass of a particle of gas X is larger than the mass of a particle of gas Y. Which is correct about the average kinetic energy and the average speed of the particles in gases X and Y?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Under which conditions of pressure and density will a real gas approximate to an ideal gas?</span></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The fraction of the internal energy that is due to molecular vibration varies in the different states of matter. What gives the order from highest fraction to lowest fraction of internal energy due to molecular vibration?</p>
<p>A. liquid > gas > solid</p>
<p>B. solid > liquid > gas</p>
<p>C. solid > gas > liquid</p>
<p>D. gas > liquid > solid</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Q and R are two rigid containers of volume 3<em>V </em>and <em>V </em>respectively containing molecules of the same ideal gas initially at the same temperature. The gas pressures in Q and R are <em>p </em>and 3<em>p </em>respectively. The containers are connected through a valve of negligible volume that is initially closed.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_18.30.51.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/09"></p>
<p>The valve is opened in such a way that the temperature of the gases does not change. What is the change of pressure in Q?</p>
<p>A. +<em>p</em></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ + p}}{2}">
<mfrac>
<mrow>
<mo>+</mo>
<mi>p</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - p}}{2}">
<mfrac>
<mrow>
<mo>−</mo>
<mi>p</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p>D. –<em>p</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A liquid of mass <em>m</em> and specific heat capacity <em>c</em> cools. The rate of change of the temperature of the liquid is <em>k</em>. What is the rate at which thermal energy is transferred from the liquid?</span></p>
<p><span style="background-color:#ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{mc}{k}">
<mfrac>
<mrow>
<mi>m</mi>
<mi>c</mi>
</mrow>
<mi>k</mi>
</mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{k}{mc}">
<mfrac>
<mi>k</mi>
<mrow>
<mi>m</mi>
<mi>c</mi>
</mrow>
</mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{kmc}">
<mfrac>
<mn>1</mn>
<mrow>
<mi>k</mi>
<mi>m</mi>
<mi>c</mi>
</mrow>
</mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;">D. <em>kmc</em></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Cylinder X has a volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V">
<mi>V</mi>
</math></span> and contains 3.0 mol of an ideal gas. Cylinder Y has a volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{V}{2}">
<mfrac>
<mi>V</mi>
<mn>2</mn>
</mfrac>
</math></span> and contains 2.0 mol of the same gas.<br></span></p>
<p><span style="background-color:#ffffff;">The gases in X and Y are at the same temperature <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span><em>.</em> The containers are joined by a valve which is opened so that the temperatures do not change.</span></p>
<p><span style="background-color:#ffffff;">What is the change in pressure in X?</span></p>
<p><span style="background-color:#ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + \frac{1}{3}\left( {\frac{{RT}}{V}} \right)">
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>R</mi>
<mi>T</mi>
</mrow>
<mi>V</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{1}{3}\left( {\frac{{RT}}{V}} \right)">
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>R</mi>
<mi>T</mi>
</mrow>
<mi>V</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + \frac{2}{3}\left( {\frac{{RT}}{V}} \right)">
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>R</mi>
<mi>T</mi>
</mrow>
<mi>V</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}\left( {\frac{{RT}}{V}} \right)">
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>R</mi>
<mi>T</mi>
</mrow>
<mi>V</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two containers X and Y are maintained at the same temperature. X has volume <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><msup><mi mathvariant="normal">m</mi><mn>3</mn></msup></math> and Y has volume <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><msup><mi mathvariant="normal">m</mi><mn>3</mn></msup></math>. They both hold an ideal gas. The pressure in X is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mi>Pa</mi></math> and the pressure in Y is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mi>Pa</mi></math>. The containers are then joined by a tube of negligible volume. What is the final pressure in the containers?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo> </mo><mi>Pa</mi></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn><mo> </mo><mi>Pa</mi></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn><mo> </mo><mi>Pa</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn><mo> </mo><mi>Pa</mi></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>