File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 2 HTML/markSceme-SL-paper2html
File size: 906 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A student uses a load to pull a box up a ramp inclined at 30°. A string of constant length and negligible mass connects the box to the load that falls vertically. The string passes over a pulley that runs on a frictionless axle. Friction acts between the base of the box and the ramp. Air resistance is negligible.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The load has a mass of 3.5 kg and is initially 0.95 m above the floor. The mass of the box is 1.5 kg.</p>
<p>The load is released and accelerates downwards.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> differences between the momentum of the box and the momentum of the load at the same instant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The vertical acceleration of the load downwards is 2.4 m s<sup>−2</sup>.</p>
<p>Calculate the tension in the string.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the load when it hits the floor is about 2.1 m s<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the pulley is 2.5 cm. Calculate the angular speed of rotation of the pulley as the load hits the floor. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After the load has hit the floor, the box travels a further 0.35 m along the ramp before coming to rest. Determine the average frictional force between the box and the surface of the ramp.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student then makes the ramp horizontal and applies a constant horizontal force to the box. The force is just large enough to start the box moving. The force continues to be applied after the box begins to move.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Explain, with reference to the frictional force acting, why the box accelerates once it has started to move. </p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>direction of motion is different / <em><strong>OWTTE</strong> </em>✓</p>
<p><em>mv</em> / magnitude of momentum is different «even though <em>v</em> the same» ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>ma = mg − T</em> «3.5 x 2.4 = 3.5<em>g − T</em> »</p>
<p><em><strong>OR</strong></em></p>
<p><em>T </em>= 3.5(<em>g − </em>2.4) ✓</p>
<p>26 «N» ✓</p>
<p> </p>
<p><em>Accept 27 N from g = 10 m s<sup>−2</sup></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>proper use of kinematic equation ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfenced><mrow><mn>2</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>95</mn></mrow></mfenced></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>14</mn></math> «m s<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Must see either the substituted values <strong>OR</strong> a value for v to at least three s.f. for <strong>MP2</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><mfrac><mi>v</mi><mi>r</mi></mfrac></math> to give 84 «rad s<sup>−1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>/</mo><mn>0</mn><mo>.</mo><mn>025</mn></math> to give 84 «rad s<sup>−1</sup>» ✓</p>
<p> </p>
<p>quoted to 2sf only✓</p>
<p> </p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><msup><mi>u</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>s</mi><mo>⇒</mo><mn>0</mn><mo>=</mo><mn>2</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>35</mn></math>» leading to <em>a </em>= 6.3 «m s<sup>-2</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn><mfenced><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow></mfenced><mi>t</mi></math> » leading to <em>t</em> = 0.33 « s » ✓</p>
<p><em><br></em><em>F</em><sub>net</sub> = « <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>6</mn><mo>.</mo><mn>3</mn></math> = » 9.45 «N» ✓</p>
<p>Weight down ramp = 1.5 x 9.8 x sin(30) = 7.4 «N» ✓</p>
<p>friction force = net force – weight down ramp = 2.1 «N» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>kinetic energy initial = work done to stop 0.5 x 1.5 x (2.1)<sup>2</sup> = <em>F</em><sub>NET</sub> x 0.35 ✓</p>
<p><em>F</em><sub>net</sub> = 9.45 «N» ✓</p>
<p>Weight down ramp = 1.5 x 9.8 x sin(30) = 7.4 «N» ✓</p>
<p>friction force = net force – weight down ramp = 2.1 «N» ✓</p>
<p> </p>
<p><em>Accept 1.95 N from g = 10 </em>m s<sup>-2</sup><em>.</em><br><em>Accept 2.42 N from u = 2.14 </em>m s<sup>-1</sup><em>.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>static coefficient of friction > dynamic/kinetic coefficient of friction / μ<sub>s</sub> > μ<sub>k</sub> ✓</p>
<p>«therefore» force of dynamic/kinetic friction will be less than the force of static friction ✓</p>
<p><br>there will be a net / unbalanced forward force once in motion «which results in acceleration»</p>
<p><em><strong>OR</strong></em></p>
<p>reference to net F = ma ✓</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many students recognized the vector nature of momentum implied in the question, although some focused on the forces acting on each object rather than discussing the momentum.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some students simply calculated the net force acting on the load and did not recognize that this was not the tension force. Many set up a net force equation but had the direction of the forces backwards. This generally resulted from sloppy problem solving.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" questions, so examiners were looking for a clear equation leading to a clear substitution of values leading to an answer that had more significant digits than the given answer. Most candidates successfully selected the correct equation and showed a proper substitution. Some candidates started with an energy approach that needed modification as it clearly led to an incorrect solution. These responses did not receive full marks.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This SL only question was generally well done. Despite some power of 10 errors, many candidates correctly reported final answer to 2 sf.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates struggled with this question. Very few drew a clear free-body diagram and many simply calculated the acceleration of the box from the given information and used this to calculate the net force on the box, confusing this with the frictional force.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was an "explain" question, so examiners were looking for a clear line of discussion starting with a comparison of the coefficients of friction, leading to a comparison of the relative magnitudes of the forces of friction and ultimately the rise of a net force leading to an acceleration. Many candidates recognized that this was a question about the comparison between static and kinetic/dynamic friction but did not clearly specify which they were referring to in their responses. Some candidates clearly did not read the stem carefully as they referred to the mass being on an incline.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Two players are playing table tennis. Player A hits the ball at a height of 0.24 m above the edge of the table, measured from the top of the table to the bottom of the ball. The initial speed of the ball is 12.0 m s<sup>−1</sup> horizontally. Assume that air resistance is negligible.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="specification">
<p>The ball bounces and then reaches a peak height of 0.18 m above the table with a horizontal speed of 10.5 m s<sup>−1</sup>. The mass of the ball is 2.7 g.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the time taken for the ball to reach the surface of the table is about 0.2 s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph showing the variation with time of the vertical component of velocity <em>v</em><sub>v</sub> of the ball until it reaches the table surface. Take <em>g</em> to be +10 m s<sup>−2</sup>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The net is stretched across the middle of the table. The table has a length of 2.74 m and the net has a height of 15.0 cm.</p>
<p>Show that the ball will go over the net.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the kinetic energy of the ball immediately after the bounce.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Player B intercepts the ball when it is at its peak height. Player B holds a paddle (racket) stationary and vertical. The ball is in contact with the paddle for 0.010 s. Assume the collision is elastic.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Calculate the average force exerted by the ball on the paddle. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>t</em> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mi>g</mi></mfrac></msqrt></math>=» 0.22 «s»<br><strong><em>OR</em></strong></p>
<p><em>t</em> = <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>24</mn></mrow><mrow><mn>9</mn><mo>.</mo><mn>8</mn></mrow></mfrac></msqrt></math> <strong>✓</strong> </p>
<p><em>Answer to 2 or more significant figures or formula with variables replaced by correct values.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>increasing straight line from zero up to 0.2 s in <em>x</em>-axis <strong>✓</strong></p>
<p>with gradient = 10 <strong>✓</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1 </strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>37</mn></mrow><mn>12</mn></mfrac><mo>=</mo></math>«0.114 s» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>10</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>114</mn><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>065</mn></math> m ✓</p>
<p>so (0.24 − 0.065) = 0.175 > 0.15 <em><strong>OR</strong> </em>0.065 < (0.24 − 0.15) «so it goes over the net» <strong>✓</strong></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>«0.24 − 0.15 = 0.09 = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>10</mn><mo>×</mo><msup><mi>t</mi><mn>2</mn></msup></math> so» <em>t </em>= 0.134 s <strong>✓</strong></p>
<p>0.134 × 12 = 1.6 m <strong>✓</strong></p>
<p>1.6 > 1.37 «so ball passed the net already» <strong>✓</strong></p>
<p> </p>
<p><em>Allow use of g = 9.8.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1 </strong></em></p>
<p>KE = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math><em>mv</em><sup>2</sup> + <em>mgh</em> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>0.0027 ×10.5<sup>2</sup> + 0.0027 × 9.8 × 0.18 <strong>✓</strong></p>
<p>0.15 «J» <strong>✓</strong></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>Use of <em>v</em><sub>x</sub> = 10.5 <em><strong>AND</strong></em> <em>v</em><sub>y </sub><em>= </em>1.88 to get <em>v</em> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>10</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><mo>+</mo><mo> </mo><mn>1</mn><mo>.</mo><msup><mn>88</mn><mn>2</mn></msup></msqrt></math>» = 10.67 «m s<sup>−1</sup>» <strong>✓</strong></p>
<p>KE = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> × 0.0027 × 10.67<sup>2</sup> = 0.15 «J» <strong>✓</strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mi>v</mi><mo> </mo><mo>=</mo><mo> </mo><mn>21</mn></math> «m s<sup>−1</sup>» <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0027</mn><mo> </mo><mo>×</mo><mn>21</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>01</mn></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p>5.67 «N» <strong>✓</strong></p>
<p>any answer to 2 significant figures «N» <strong>✓</strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student strikes a tennis ball that is initially at rest so that it leaves the racquet at a speed of 64 m s<sup>–1</sup>. The ball has a mass of 0.058 kg and the contact between the ball and the racquet lasts for 25 ms.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The student strikes the tennis ball at point P. The tennis ball is initially directed at an angle of 7.00° to the horizontal.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The following data are available.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Height of P = 2.80 m<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Distance of student from net = 11.9 m<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Height of net = 0.910 m<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Initial speed of tennis ball = 64 m s<sup>-1</sup></span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the average force exerted by the racquet on the ball.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the average power delivered to the ball during the impact.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the time it takes the tennis ball to reach the net.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the tennis ball passes over the net.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine the speed of the tennis ball as it strikes the ground.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The student models the bounce of the tennis ball to predict the angle <em>θ</em> at which the ball leaves a surface of clay and a surface of grass.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">The model assumes<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">• during contact with the surface the ball slides.<br>• the sliding time is the same for both surfaces.<br>• the sliding frictional force is greater for clay than grass.<br>• the normal reaction force is the same for both surfaces.<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Predict for the student’s model, without calculation, whether θ is greater for a clay surface or for a grass surface.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F = \frac{{\Delta mv}}{{\Delta t}}/m\frac{{\Delta v}}{{\Delta t}}/\frac{{0.058 \times 64.0}}{{25 \times {{10}^{ - 3}}}}">
<mi>F</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>m</mi>
<mi>v</mi>
</mrow>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>t</mi>
</mrow>
</mfrac>
<mrow>
<mo>/</mo>
</mrow>
<mi>m</mi>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>v</mi>
</mrow>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>t</mi>
</mrow>
</mfrac>
<mrow>
<mo>/</mo>
</mrow>
<mfrac>
<mrow>
<mn>0.058</mn>
<mo>×</mo>
<mn>64.0</mn>
</mrow>
<mrow>
<mn>25</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> ✔</span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
<mi>F</mi>
</math></span></span><em><span style="background-color:#ffffff;"> =</span></em><span style="background-color:#ffffff;"> 148«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{N}}">
<mrow>
<mtext>N</mtext>
</mrow>
</math></span>»≈150«<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{N}}">
<mrow>
<mtext>N</mtext>
</mrow>
</math></span></span>» ✔</span></p>
<p> </p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span style="background-color:#ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = \frac{{\frac{1}{2}m{v^2}}}{t}/\frac{{\frac{1}{2} \times 0.058 \times {{64.0}^2}}}{{25 \times {{10}^{ - 3}}}}">
<mi>P</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>t</mi>
</mfrac>
<mrow>
<mo>/</mo>
</mrow>
<mfrac>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>0.058</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>64.0</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>25</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <strong>✔</strong></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 4700/4800«{\text{W}}">
<mi>P</mi>
<mo>=</mo>
<mn>4700</mn>
<mrow>
<mo>/</mo>
</mrow>
<mn>4800</mn>
<mrow>
<mo>«</mo>
</mrow>
<mrow>
<mtext>W</mtext>
</mrow>
</math></span>» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<p> </p>
<p><em><strong><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">ALTERNATIVE 2</span></span></strong></em></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = {\text{average}}Fv/148 \times \frac{{64.0}}{2}">
<mi>P</mi>
<mo>=</mo>
<mrow>
<mtext>average</mtext>
</mrow>
<mi>F</mi>
<mi>v</mi>
<mrow>
<mo>/</mo>
</mrow>
<mn>148</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mn>64.0</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 4700/4800«{\text{W}}">
<mi>P</mi>
<mo>=</mo>
<mn>4700</mn>
<mrow>
<mo>/</mo>
</mrow>
<mn>4800</mn>
<mrow>
<mo>«</mo>
</mrow>
<mrow>
<mtext>W</mtext>
</mrow>
</math></span>» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p> </p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">horizontal component of velocity is 64.0 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> cos7° = 63.52 «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">ms<sup>−</sup></span><sup>1</sup>» ✔</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = « \frac{{11.9}}{{63.52}} =» 0.187/0.19 « {\text{s}}">
<mi>t</mi>
<mo>=</mo>
<mrow>
<mo>«</mo>
</mrow>
<mfrac>
<mrow>
<mn>11.9</mn>
</mrow>
<mrow>
<mn>63.52</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mo>»</mo>
</mrow>
<mn>0.187</mn>
<mrow>
<mo>/</mo>
</mrow>
<mn>0.19</mn>
<mrow>
<mo>«</mo>
</mrow>
<mrow>
<mtext>s</mtext>
</mrow>
</math></span>» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"> ✔</span></span></span></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Do not award BCA. Check working.<br></span></span></em></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Do not award ECF from using 64 m s<sup>-1</sup>.</span></span></em></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span style="background-color:#ffffff;"><strong>ALTERNATIVE 1</strong><br></span></em></p>
<p><em><span style="background-color:#ffffff;">u<sub>y </sub></span></em><span style="background-color:#ffffff;">= 64 </span><span style="background-color:#ffffff;">sin7</span><span style="background-color:#ffffff;">/7.80</span><em><span style="background-color:#ffffff;"> «</span></em><span style="background-color:#ffffff;">ms</span><sup><span style="background-color:#ffffff;"><span style="text-align:left;color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-variant:normal;font-weight:400;text-decoration:none;display:inline !important;white-space:normal;float:none;background-color:#ffffff;">−</span></span><span style="background-color:#ffffff;">1</span></sup><em><span style="background-color:#ffffff;">»</span></em><span style="background-color:#ffffff;">✔</span><em><span style="background-color:#ffffff;"><br></span></em></p>
<p><span style="background-color:#ffffff;">decrease in height = 7.80 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 0.187 + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 9.81 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 0.187<sup>2</sup>/1.63 «m» ✔<br></span></p>
<p><span style="background-color:#ffffff;">final height = «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">2.80 − 1.63</span>» = 1.1/1.2 «m» ✔<br></span></p>
<p><span style="background-color:#ffffff;">«higher than net so goes over»<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">vertical distance to fall to net <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«</span>= <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">2.80 − 0.91</span>» = 1.89 «m»✔<br></span></p>
<p><span style="background-color:#ffffff;">time to fall this distance found using <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«</span>=1.89 = 7.8<em>t</em> + <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 9.81 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span><em>t</em><sup>2</sup>»<br></span></p>
<p><span style="background-color:#ffffff;"><em>t </em>= 0.21 «s»✔<br></span></p>
<p><span style="background-color:#ffffff;">0.21 «s» > 0.187 «s» ✔<br></span></p>
<p><span style="background-color:#ffffff;">«reaches the net before it has fallen far enough so goes over»</span><em><span style="background-color:#ffffff;"><br></span></em></p>
<p><em><span style="background-color:#ffffff;">Other alternatives are possible<br></span></em></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span style="background-color:#ffffff;"><strong>ALTERNATIVE 1</strong><br></span></em></p>
<p><span style="background-color:#ffffff;">Initial KE + PE = final KE /</span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 0.058 × 64<sup>2</sup> + 0.058 × 9.81 × 2.80 = <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 0.058 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> <em>v</em><sup>2</sup> ✔<br></span></p>
<p><span style="background-color:#ffffff;"><em>v</em> = 64.4 «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">ms<sup>−1</sup></span>» ✔</span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_v} = « \sqrt {{{7.8}^2} + 2 \times 9.81 \times 2.8} » = 10.8 « {\text{m}} {{\text{s}}^{ - 1}}">
<mrow>
<msub>
<mi>v</mi>
<mi>v</mi>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<mo>«</mo>
</mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mn>7.8</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mo>×</mo>
<mn>9.81</mn>
<mo>×</mo>
<mn>2.8</mn>
</msqrt>
<mrow>
<mo>»</mo>
</mrow>
<mo>=</mo>
<mn>10.8</mn>
<mrow>
<mo>«</mo>
</mrow>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span> </span></p>
<p><span style="background-color:#ffffff;">« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {{{63.5}^2} + {{10.8}^2}} ">
<mi>v</mi>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mn>63.5</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mn>10.8</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span> »</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 64.4 « {\text{m}} {{\text{s}}^{ - 1}}">
<mi>v</mi>
<mo>=</mo>
<mn>64.4</mn>
<mrow>
<mo>«</mo>
</mrow>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<p><em><span style="background-color:#ffffff;"> </span></em></p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">so horizontal velocity component at lift off for clay is smaller ✔<br></span></p>
<p><span style="background-color:#ffffff;">normal force is the same so vertical component of velocity is the same ✔<br></span></p>
<p><span style="background-color:#ffffff;">so bounce angle on clay is greater ✔</span><em><span style="background-color:#ffffff;"><br></span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>At both HL and SL many candidates scored both marks for correctly answering this. A straightforward start to the paper. For those not gaining both marks it was possible to gain some credit for calculating either the change in momentum or the acceleration. At SL some used 64 ms-1 as a value for a and continued to use this value over the next few parts to the question.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered although a significant number of candidates approached it using P = Fv but forgot to divide v by 2 to calculated the average velocity. This scored one mark out of 2.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question scored well at HL but less so at SL. One common mistake was to calculate the direct distance to the top of the net and assume that the ball travelled that distance with constant speed. At SL particularly, another was to consider the motion only when the ball is in contact with the racquet.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were a number of approaches students could take to answer this and examiners saw examples of them all. One approach taken was to calculate the time taken to fall the distance to the top of the net and to compare this with the time calculated in bi) for the ball to reach the net. This approach, which is shown in the mark scheme, required solving a quadratic in t which is beyond the mathematical requirements of the syllabus. This mathematical technique was only required if using this approach and not required if, for example, calculating heights.</p>
<p>A common mistake was to forget that the ball has a vertical acceleration. Examiners were able to award credit/ECF for correct parts of an otherwise flawed method.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This proved difficult for candidates at both HL and SL. Many managed to calculate the final vertical component of the velocity of the ball.</p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>As the command term in this question is ‘predict’ a bald answer of clay was acceptable for one mark. This was a testing question that candidates found demanding but there were some very well-reasoned answers. The most common incorrect answer involved suggesting that the greater frictional force on the clay court left the ball with less kinetic energy and so a smaller angle. At SL many gained the answer that the angle on clay would be greater with the argument that frictional force is greater and so the distance the ball slides is less.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Airboats are used for transport across a river. To move the boat forward, air is propelled from the back of the boat by a fan blade.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>An airboat has a fan blade of radius 1.8 m. This fan can propel air with a maximum speed relative to the boat of 20 m s<sup>−1</sup>. The density of air is 1.2 kg m<sup>−3</sup>.</p>
</div>
<div class="specification">
<p>In a test the airboat is tied to the river bank with a rope normal to the bank. The fan propels the air at its maximum speed. There is no wind.</p>
</div>
<div class="specification">
<p>The rope is untied and the airboat moves away from the bank. The variation with time <em>t</em> of the speed <em>v</em> of the airboat is shown for the motion.<br><br></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a force acts on the airboat due to the fan blade.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that a mass of about 240 kg of air moves through the fan every second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the tension in the rope is about 5 kN.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the distance the airboat travels to reach its maximum speed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the mass of the airboat.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The fan is rotating at 120 revolutions every minute. Calculate the centripetal acceleration of the tip of a fan blade.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>there is a force «by the fan» on the air / air is accelerated «to the rear» ✓</p>
<p>by Newton 3 ✓</p>
<p>there is an «equal and» opposite force on the boat ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>air gains momentum «backward» ✓</p>
<p>by conservation of momentum / force is rate of change in momentum ✓</p>
<p>boat gains momentum in the opposite direction ✓</p>
<p> </p>
<p><em>Accept a reference to Newton’s third law, e.g. N’3, or any correct statement of it for <strong>MP2</strong> in <strong>ALT 1</strong>.</em></p>
<p><em>Allow any reasonable choice of object where the force of the air is acting on, e.g., fan or blades.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><msup><mi>R</mi><mn>2</mn></msup></math> <em><strong>OR</strong></em> «mass of air through system per unit time =» <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>v</mi><mi>ρ</mi></math> seen ✓</p>
<p>244 «kg s<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Accept use of Energy of air per second = 0.5 ρΑv<sup>3</sup> = 0.5 mv<sup>2</sup> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«force = Momentum change per sec = <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><msup><mi>v</mi><mn>2</mn></msup><mi>ρ</mi></math> = » 244 x 20 <em><strong>OR</strong> </em>4.9 «kN» ✓</p>
<p> </p>
<p><em>Allow use of 240</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that area under the graph is distance covered ✓</p>
<p>«Distance =» 480 - 560 «m» ✓</p>
<p> </p>
<p><em>Accept graphical evidence or calculation of correct geometric areas for <strong>MP1</strong>.</em></p>
<p><em><strong>MP2</strong> is numerical value within range.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>calculation of acceleration as gradient at <em>t</em> = 0 «= 1 m s<sup>-2</sup>» ✓</p>
<p>use of <em>F=ma <strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4900</mn><mn>1</mn></mfrac></math> </strong></em>seen ✓</p>
<p>4900 «kg» ✓</p>
<p> </p>
<p><em><strong>MP1</strong> can be shown on the graph.</em></p>
<p><em>Allow an acceleration in the range 1 – 1.1 for <strong>MP2</strong> and consistent answer for <strong>MP3</strong></em></p>
<p><em>Allow ECF from <strong>MP1</strong>.</em></p>
<p><em>Allow use of average acceleration = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>18</mn><mn>40</mn></mfrac></math></em></p>
<p><em>or assumption of constant force to obtain 11000 «kg» for <strong>[2]</strong></em></p>
<p><em>Allow use of 4800 or 5000 for <strong>MP2</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATE 1</em></strong></p>
<p>« <em>ω</em> = » 4<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math> rad s<sup>−1</sup> ✓</p>
<p>« <em>a = r ω</em><sup>2</sup>= » 280 « m s<sup>−2</sup> » ✓</p>
<p> </p>
<p><em><strong>ALTERNATE 2</strong></em></p>
<p>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi><mi>r</mi></mrow><mi>T</mi></mfrac></math> » = 22.6 m s<sup>−1</sup> ✓</p>
<p>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><msup><mi>v</mi><mn>2</mn></msup><mi>r</mi></mfrac></math>»= 280 « m s<sup>−2</sup> » ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> for wrong ω (120 gives 2.6 x 10<sup>4 </sup></em>« m s<sup>−2</sup> »<em>)</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> for wrong T (2 s gives 18 </em>« m s<sup>−2</sup> »<em>)</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The majority succeeded in making use of Newton's third law to explain the force on the boat. The question was quite well answered but sequencing of answers was not always ideal. There were some confusions about the air hitting the bank and bouncing off to hit the boat. A small number thought that the wind blowing the fan caused the force on the boat.</p>
<p>bi) This was generally well answered with candidates either starting from the wind turbine formula given in the data booklet or with the mass of the air being found using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mi>A</mi><mi>v</mi></math>.</p>
<p>1bii) Well answered by most candidates. Some creative work to end up with 240 was found in scripts.</p>
<p>1ci) Many candidates gained credit here for recognising that the resistive force eventually equalled the drag force and most were able to go on to link this to e.g. zero acceleration. Some had not read the question properly and assumed that the rope was still tied. There was one group of answers that stated something along the lines of "as there is no rope there is nothing to stop the boat so it can go at max speed.</p>
<p>1cii) A slight majority did not realise that they had to find the area under the velocity-time graph, trying equations of motion for non-linear acceleration. Those that attempted to calculate the area under the graph always succeeded in answering within the range.</p>
<p>1ciii) Use of the average gradient was common here for the acceleration. However, there also were answers that attempted to calculate the mass via a kinetic energy calculation that made all sorts of incorrect assumptions. Use of average acceleration taken from the gradient of the secant was also common.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A girl on a sledge is moving down a snow slope at a uniform speed.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The sledge, without the girl on it, now travels up a snow slope that makes an angle of 6.5˚ to the horizontal. At the start of the slope, the speed of the sledge is 4.2 m s<sup>–1</sup>. The coefficient of dynamic friction of the sledge on the snow is 0.11.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the free-body diagram for the sledge at the position shown on the snow slope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After leaving the snow slope, the girl on the sledge moves over a horizontal region of snow. Explain, with reference to the physical origin of the forces, why the vertical forces on the girl must be in equilibrium as she moves over the horizontal region.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the sledge is moving on the horizontal region of the snow, the girl jumps off the sledge. The girl has no horizontal velocity after the jump. The velocity of the sledge immediately after the girl jumps off is 4.2 m s<sup>–1</sup>. The mass of the girl is 55 kg and the mass of the sledge is 5.5 kg. Calculate the speed of the sledge immediately before the girl jumps from it.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The girl chooses to jump so that she lands on loosely-packed snow rather than frozen ice. Outline why she chooses to land on the snow.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the acceleration of the sledge is about –2 m s<sup>–2</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the distance along the slope at which the sledge stops moving. Assume that the coefficient of dynamic friction is constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coefficient of static friction between the sledge and the snow is 0.14. Outline, with a calculation, the subsequent motion of the sledge. </p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>arrow vertically downwards labelled weight «of sledge and/or girl»/<em>W</em>/mg/gravitational force/<em>F</em><sub>g</sub>/<em>F</em><sub>gravitational</sub> <em><strong>AND</strong> </em>arrow perpendicular to the snow slope labelled reaction force/<em>R</em>/normal contact force/N/<em>F</em><sub>N</sub></p>
<p>friction force/<em>F</em>/<em>f</em> acting up slope «perpendicular to reaction force»</p>
<p><em>Do not allow G/g/“gravity”.</em></p>
<p><em>Do not award MP1 if a “driving force” is included.</em></p>
<p><em>Allow components of weight if correctly labelled.</em></p>
<p><em>Ignore point of application or shape of object.</em></p>
<p><em>Ignore “air resistance”.</em></p>
<p><em>Ignore any reference to “push of feet on sledge”.</em></p>
<p><em>Do not award MP2 for forces on sledge on horizontal ground</em></p>
<p><em>The arrows should contact the object</em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gravitational force/weight from the Earth «downwards»</p>
<p>reaction force from the sledge/snow/ground «upwards»</p>
<p>no vertical acceleration/remains in contact with the ground/does not move vertically as there is no resultant vertical force</p>
<p><em>Allow naming of forces as in (a)</em></p>
<p><em>Allow vertical forces are balanced/equal in magnitude/cancel out</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mention of conservation of momentum</p>
<p><em><strong>OR</strong></em></p>
<p>5.5 x 4.2 = (55 + 5.5) «v»</p>
<p>0.38 «m s<sup>–1</sup>»</p>
<p><em>Allow p=p′ or other algebraically equivalent statement</em></p>
<p><em>Award <strong>[0]</strong> for answers based on energy</em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>same change in momentum/impulse</p>
<p>the time taken «to stop» would be greater «with the snow»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F = \frac{{\Delta p}}{{\Delta t}}">
<mi>F</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>p</mi>
</mrow>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> therefore<em> F</em> is smaller «with the snow»</p>
<p><em><strong>OR</strong></em></p>
<p>force is proportional to rate of change of momentum therefore <em>F</em> is smaller «with the snow»</p>
<p><em>Allow reverse argument for ice</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«friction force down slope» = <em>μmg</em> cos(6.5) = «5.9 N»</p>
<p>«component of weight down slope» = <em>mg</em> sin(6.5) «= 6.1 N»</p>
<p>«so <em>a</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{F}{m}">
<mfrac>
<mi>F</mi>
<mi>m</mi>
</mfrac>
</math></span>» acceleration = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12}}{{5.5}}">
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>5.5</mn>
</mrow>
</mfrac>
</math></span> = 2.2 «m s<sup>–2</sup>»</p>
<p><em>Ignore negative signs </em></p>
<p><em>Allow use of g = 10 m s<sup>–2</sup></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct use of kinematics equation</p>
<p>distance = 4.4 <em><strong>or</strong> </em>4.0 «m»</p>
<p><em><strong>Alternative 2</strong></em></p>
<p>KE lost=work done against friction + GPE</p>
<p>distance = 4.4 <em><strong>or</strong> </em>4.0 «m»</p>
<p><em>Allow ECF from (e)(i)</em></p>
<p><em>Allow <strong>[1 max]</strong> for GPE missing leading to 8.2 «m»</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>calculates a maximum value for the frictional force = «<em>μR=</em>» 7.5 «N»</p>
<p>sledge will not move as the maximum static friction force is greater than the component of weight down the slope</p>
<p><em>Allow correct conclusion from incorrect MP1</em></p>
<p><em>Allow 7.5 > 6.1 so will not move</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A football player kicks a stationary ball of mass 0.45 kg towards a wall. The initial speed of the ball after the kick is 19 m s<sup>−1</sup> and the ball does not rotate. Air resistance is negligible and there is no wind.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The player’s foot is in contact with the ball for 55 ms. Calculate the average force that acts on the ball due to the football player.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The ball leaves the ground at an angle of 22°. The horizontal distance from the initial position of the edge of the ball to the wall is 11 m. Calculate the time taken for the ball to reach the wall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The top of the wall is 2.4 m above the ground. Deduce whether the ball will hit the wall.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In practice, air resistance affects the ball. Outline the effect that air resistance has on the vertical acceleration of the ball. Take the direction of the acceleration due to gravity to be positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The player kicks the ball again. It rolls along the ground without sliding with a horizontal velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>40</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>. The radius of the ball is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>11</mn><mo> </mo><mtext>m</mtext></math>. Calculate the angular velocity of the ball. State an appropriate SI unit for your answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>19</mn><mo> </mo><mtext mathvariant="bold-italic">OR </mtext><mi>a</mi><mo> </mo><mo>=</mo><mfrac><mn>19</mn><mrow><mn>0</mn><mo>.</mo><mn>055</mn></mrow></mfrac></math> <strong>✓</strong> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>19</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>055</mn></mrow></mfrac><mo>»</mo><mn>160</mn><mo> </mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p><em>Allow <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong> if 19 sin22 <strong>OR</strong> 19 cos22 used.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>horizontal speed =</mtext><mo> </mo><mn>19</mn><mo>×</mo><mi>cos</mi><mo> </mo><mn>22</mn><mo> </mo><mo>«</mo><mo>=</mo><mn>17</mn><mo>.</mo><mn>6</mn><msup><mtext> m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>time</mtext><mo>=</mo><mo>«</mo><mfrac><mtext>distance</mtext><mtext>speed</mtext></mfrac><mo>=</mo><mfrac><mn>11</mn><mrow><mn>19</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>22</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>62</mn><mo> </mo><mo>«</mo><mtext>s</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>initial vertical speed</mtext><mo>=</mo><mn>19</mn><mo>×</mo><mi>sin</mi><mo> </mo><mn>22</mn><mo> </mo><mo>«</mo><mo>=</mo><mo> </mo><mn>7</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>7</mn><mo>.</mo><mn>12</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>624</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>624</mn><mn>2</mn></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>5</mn><mo> </mo><mo>«</mo><mtext>m</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p>ball does not hit wall <em><strong>OR</strong> </em>2.5 «m» > 2.4 «m» <strong>✓</strong></p>
<p><em><br>Allow <strong>ECF</strong> from (b)(i) and from <strong>MP1</strong> </em></p>
<p><em>Allow g = 10 m s<sup>−2</sup></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>air resistance opposes «direction of» motion<br><em><strong>OR</strong></em><br>air resistance opposes velocity <strong>✓</strong></p>
<p>on the way up «vertical» acceleration is increased <em><strong>OR</strong> </em>greater than g <strong>✓</strong></p>
<p>on the way down «vertical» acceleration is decreased <em><strong>OR</strong> </em>smaller than g <strong>✓</strong></p>
<p><em><br>Allow deceleration/acceleration but meaning must be clear</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mo>«</mo><mtext>rad</mtext><mo>»</mo><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><strong>✓</strong></p>
<p><em><br>Unit must be seen for mark</em></p>
<p><em>Accept Hz</em></p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi>π</mi><mo> </mo><mo>«</mo><mtext>rad</mtext><mo>»</mo><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The graph shows the variation with time<em> t</em> of the horizontal force <em>F</em> exerted on a tennis ball by a racket.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="457" height="356"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The tennis ball was stationary at the instant when it was hit. The mass of the tennis ball is 5.8 × 10<sup>–2</sup> kg. The area under the curve is 0.84 N s.</span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the speed of the ball as it leaves the racket.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the average force exerted on the ball by the racket is about 50 N.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine, with reference to the work done by the average force, the horizontal distance travelled by the ball while it was in contact with the racket.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a graph to show the variation with<em> t</em> of the horizontal speed <em>v</em> of the ball while it was in contact with the racket. Numbers are <strong>not</strong> required on the axes.</span></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">links 0.84 to Δ<em>p</em> ✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo></math>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>84</mn></mrow><mrow><mn>5</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo></math>» 14.5 «m s<sup>–1</sup>»✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award <strong>[2]</strong> for bald correct answer</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of Δ<em>t = </em><span style="background-color: #ffffff;">«</span>(28 – 12) × 10<sup>–3 </sup>=<span style="background-color: #ffffff;">»</span> 16 × 10<sup>–3</sup> <span style="background-color: #ffffff;">«</span>s<span style="background-color: #ffffff;">» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>F</mi><mo>¯</mo></mover></math> =«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>∆</mo><mi>p</mi></mrow><mrow><mo>∆</mo><mi>t</mi></mrow></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>84</mn></mrow><mrow><mn>16</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> <em><strong>OR</strong></em> 53 «N» ✔</span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">NOTE: Accept a time interval from 14 to 16 </span></span></em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">ms</span></span><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"> <br>Allow ECF from incorrect time interval</span></span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>k </sub><em>= <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> × </em>5.8 × 10<sup>–2 </sup>× 14.5<sup>2 </sup>✔</p>
<p><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">E</em><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">k</sub> = <em>W <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></em></p>
<p><span style="font-size: 14px;"><em><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">s = </span></em><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;"><span style="background-color: #ffffff;">«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>W</mi><mi>F</mi></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>5</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>×</mo><mn>14</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></mstyle><mn>53</mn></mfrac><mo>=</mo></math>» 0.12 « m » ✔</span></span></span></p>
<p> </p>
<p><em>Allow ECF from (a) and (b)</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Award <strong>[2]</strong> max for a calculation without reference to work done, eg: average velocity × time</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="370" height="241"></p>
<p><span style="background-color: #ffffff;">graph must show increasing speed from an initial of zero all the time ✔<br>overall correct curvature ✔</span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">An electron is placed at a distance of 0.40 m from a fixed point charge of –6.0 mC.</span></p>
<p style="text-align: center;"> </p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the electric field strength due to the point charge at the position of the electron is 3.4 × 10<sup>8</sup> N C<sup>–1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the magnitude of the initial acceleration of the electron.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the subsequent motion of the electron.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mi>k</mi><mo>×</mo><mi>q</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac></math> <span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>6</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>4</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>37</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo> </mo><msup><mi mathvariant="normal">C</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> </strong></em><strong><span style="background-color: #ffffff;">✔</span></strong></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Ignore any negative sign.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>q</mi><mo>×</mo><mi>E</mi><mo> </mo></math><em><strong> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo>»</mo></math> </strong></em><strong><span style="background-color: #ffffff;">✔</span></strong></p>
<p><strong><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow><mrow><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>5</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>19</mn></msup><mo>«</mo><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></strong></p>
<p><em><span style="background-color: #ffffff;">NOTE: Ignore any negative sign. <br>Award <strong>[1]</strong> for a calculation leading to </span></em><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>«</mo><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math></span><em><span style="background-color: #ffffff;"><br>Award <strong>[2]</strong> for bald correct answer</span></em></p>
<p> </p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">the electron moves away from the point charge/to the right «along the line joining them» ✔<br>decreasing acceleration ✔<br>increasing speed ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Allow ECF from MP1 if a candidate mistakenly evaluates the force as attractive so concludes that the acceleration will increase</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A mass of 1.0 kg of water is brought to its boiling point of 100 °C using an electric heater of power 1.6 kW.</p>
</div>
<div class="specification">
<p>A mass of 0.86 kg of water remains after it has boiled for 200 s.</p>
</div>
<div class="specification">
<p>The electric heater has two identical resistors connected in parallel.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The circuit transfers 1.6 kW when switch A only is closed. The external voltage is 220 V.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The molar mass of water is 18 g mol<sup>−1</sup>. Estimate the average speed of the water molecules in the vapor produced. Assume the vapor behaves as an ideal gas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> assumption of the kinetic model of an ideal gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the specific latent heat of vaporization of water. State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the temperature of water remains at 100 °C during this time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The heater is removed and a mass of 0.30 kg of pasta at −10 °C is added to the boiling water.</p>
<p>Determine the equilibrium temperature of the pasta and water after the pasta is added. Other heat transfers are negligible.</p>
<p style="padding-left:180px;">Specific heat capacity of pasta = 1.8 kJ kg<sup>−1</sup> K<sup>−1</sup><br>Specific heat capacity of water = 4.2 kJ kg<sup>−1</sup> K<sup>−1</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that each resistor has a resistance of about 30 Ω.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the power transferred by the heater when both switches are closed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>k</sub> = « <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>(</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>373</mn><mo>)</mo></math>» = <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>21</mn></mrow></msup></math> «J» <strong>✓</strong></p>
<p><em>v = </em>«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>3</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>×</mo><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo>×</mo><mn>373</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>018</mn></mrow></mfrac></msqrt></math></em>»<em> = </em>720 «m s<sup>−1</sup>» <strong>✓</strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>particles can be considered points «without dimensions» <strong>✓</strong></p>
<p>no intermolecular forces/no forces between particles «except during collisions»<strong>✓</strong></p>
<p>the volume of a particle is negligible compared to volume of gas <strong>✓</strong></p>
<p>collisions between particles are elastic <strong>✓</strong></p>
<p>time between particle collisions are greater than time of collision <strong>✓</strong></p>
<p>no intermolecular PE/no PE between particles <strong>✓</strong></p>
<p> </p>
<p><em>Accept reference to atoms/molecules for “particle”</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>mL = P</em> t» so «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mfrac><mrow><mn>1600</mn><mo>×</mo><mn>200</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow></mfrac></math>» = 2.3 x 10<sup>6</sup> «J kg<sup>-1</sup>» <strong>✓</strong></p>
<p>J kg<sup>−1 </sup><strong>✓</strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«all» of the energy added is used to increase the «intermolecular» potential energy of the particles/break «intermolecular» bonds/<strong>OWTTE</strong> <strong>✓</strong></p>
<p><em>Accept reference to atoms/molecules for “particle”</em> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of mcΔT <strong>✓</strong></p>
<p>0.86 × 4200 × (100 – <em>T</em>) = 0.3 × 1800 × (<em>T</em> +10) <strong>✓</strong></p>
<p><em>T</em><sub>eq</sub> = 85.69«°C» ≅ 86«°C» <strong>✓</strong></p>
<p><em>Accept T<sub>eq</sub> in Kelvin (359 K).</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><msup><mi>v</mi><mn>2</mn></msup><mi>R</mi></mfrac><mo> </mo><mi>so</mi><mo> </mo><mfrac><msup><mn>220</mn><mn>2</mn></msup><mn>1600</mn></mfrac><mo> </mo><mi>so</mi><mo> </mo><mi>R</mi><mo>=</mo><mn>30</mn><mo>.</mo><mn>25</mn></math> «Ω» <strong>✓</strong></p>
<p><em>Must see either the substituted values <strong>OR</strong> a value for R to at least three s.f.</em></p>
<p> </p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of parallel resistors addition so <em>R</em><sub>eq</sub> = 15 «Ω» <strong>✓</strong></p>
<p><em>P</em> = 3200 «W» <strong>✓</strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A girl rides a bicycle that is powered by an electric motor. A battery transfers energy to the electric motor. The emf of the battery is 16 V and it can deliver a charge of 43 kC when discharging completely from a full charge.</p>
<p>The maximum speed of the girl on a horizontal road is 7.0 m s<sup>–1</sup> with energy from the battery alone. The maximum distance that the girl can travel under these conditions is 20 km.</p>
</div>
<div class="specification">
<p>The bicycle and the girl have a total mass of 66 kg. The girl rides up a slope that is at an angle of 3.0° to the horizontal.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The bicycle has a meter that displays the current and the terminal potential difference (pd) for the battery when the motor is running. The diagram shows the meter readings at one instant. The emf of the cell is 16 V.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The battery is made from an arrangement of 10 identical cells as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the time taken for the battery to discharge is about 3 × 10<sup>3</sup> s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the average power output of the battery is about 240 W.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Friction and air resistance act on the bicycle and the girl when they move. Assume that all the energy is transferred from the battery to the electric motor. Determine the total average resistive force that acts on the bicycle and the girl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the component of weight for the bicycle and girl acting down the slope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The battery continues to give an output power of 240 W. Assume that the resistive forces are the same as in (a)(iii).</p>
<p>Calculate the maximum speed of the bicycle and the girl up the slope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On another journey up the slope, the girl carries an additional mass. Explain whether carrying this mass will change the maximum distance that the bicycle can travel along the slope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the internal resistance of the battery.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the emf of <strong>one</strong> cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the internal resistance of <strong>one</strong> cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>time taken <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.0 \times {{10}^4}}}{7}">
<mfrac>
<mrow>
<mn>2.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mn>7</mn>
</mfrac>
</math></span></span>«= 2860 s» = 2900«s» ✔</p>
<p><em>Must see at least two s.f.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of E = qV <em><strong>OR</strong></em> energy = 4.3 × 10<sup>3</sup> × 16 «= 6.88 × 10<sup>5</sup> J» ✔</p>
<p>power = 241 «W» ✔</p>
<p><em>Accept 229 W − 241 W depending on the exact value of t used from ai.</em></p>
<p><em>Must see at least three s.f</em>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of power = force × speed <em><strong>OR</strong></em> <em>force × distance</em> = <em>power × time</em> ✔</p>
<p>«34N» ✔</p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p><em>Accept 34 N – 36 N.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>66 g sin(3°) = 34 «N» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total force 34 + 34 = 68 «N» ✔<br>3.5 «ms<sup>-1</sup>»✔</p>
<p><em>If you suspect that the incorrect reference in this question caused confusion for a particular candidate, please refer the response to the PE.</em></p>
<p><em>Look for ECF from aiii and bi.</em></p>
<p><em>Accept 3.4 − 3.5 «ms<sup>-1</sup>».</em></p>
<p><em>Award <strong>[0]</strong> for solutions involving use of KE.</em></p>
<p><em>Award <strong>[0]</strong> for v = 7 ms<sup>-1</sup>.</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«maximum» distance will decrease <em><strong>OWTTE</strong></em> ✔</p>
<p>because opposing/resistive force has increased<br><em><strong>OR</strong></em><br>because more energy is transferred to GPE<br><em><strong>OR</strong></em><br>because velocity has decreased<br><em><strong>OR</strong></em><br>increased mass means more work required «to move up the hill» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>V dropped across battery <em><strong>OR</strong></em> R<sub>circuit</sub> = 1.85 Ω ✔</p>
<p>so internal resistance = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4.0}{6.5}">
<mfrac>
<mn>4.0</mn>
<mn>6.5</mn>
</mfrac>
</math></span> = 0.62«Ω» ✔</p>
<p><em>For MP1 allow use of internal resistance equations that leads to 16V − 12V (=4V).</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{16}{5}">
<mfrac>
<mn>16</mn>
<mn>5</mn>
</mfrac>
</math></span> = 3.2 «V» ✔</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em>:</p>
<p>2.5<em>r</em> = 0.62 ✔</p>
<p><em>r</em> = 0.25 «Ω» ✔</p>
<p><em><strong>ALTERNATIVE 2</strong></em>:</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{0.62}{5}">
<mfrac>
<mn>0.62</mn>
<mn>5</mn>
</mfrac>
</math></span> = 0.124 «Ω» ✔</p>
<p><em>r</em> = 2(0.124)= 0.248 «Ω» ✔</p>
<p><em>Allow ECF from (d) and/or e(i)</em>.</p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was generally well answered. Candidates should be reminded on questions where a given value is being calculated that they should include an unrounded answer. This whole question set was a blend of electricity and mechanics concepts, and it was clear that some candidates struggled with applying the correct concepts in the various sub-questions.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates struggled with this question. They either simply calculated the weight, used the cosine rather than the sine function, or failed to multiply by the acceleration due to gravity. Candidates need to be able to apply free-body diagram skills in a variety of “real world” situations.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered in general, with the vast majority of candidates specifying that the maximum distance would decrease. This is an “explain” command term, so the examiners were looking for a detailed reason why the distance would decrease for the second marking point. Unfortunately, some candidates simply wrote that because the mass increased so did the weight without making it clear why this would change the maximum distance.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The air in a kitchen has pressure 1.0 × 10<sup>5</sup> Pa and temperature 22°C. A refrigerator of internal volume 0.36 m<sup>3</sup> is installed in the kitchen.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The refrigerator door is closed. The air in the refrigerator is cooled to 5.0°C and the number of air molecules in the refrigerator stays the same.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">With the door open the air in the refrigerator is initially at the same temperature and pressure as the air in the kitchen. Calculate the number of molecules of air in the refrigerator.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the pressure of the air inside the refrigerator.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The door of the refrigerator has an area of 0.72 m<sup>2</sup>. Show that the minimum force needed to open the refrigerator door is about 4 kN.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the magnitude of the force in (b)(ii).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfrac><mrow><mi>p</mi><mi>V</mi></mrow><mrow><mi>k</mi><mi>T</mi></mrow></mfrac></math> <em><strong>OR</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>36</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>×</mo><mn>295</mn></mrow></mfrac></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup></math> ✔</p>
<p><em>NOTE: Allow <strong>[1 max]</strong> for substitution with T in Celsius.</em><br><em>Allow <strong>[1 max]</strong> for a final answer of n = 14.7 or 15</em><br><em>Award <strong>[2]</strong> for bald correct answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>p</mi><mi>T</mi></mfrac></math> = constant <em><strong>OR </strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mrow><mi>n</mi><mi>R</mi><mi>T</mi></mrow><mi>V</mi></mfrac></math> <em><strong>OR </strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>N</mi><mi>k</mi><mi>T</mi></mrow><mi>V</mi></mfrac></math> ✔<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>9</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup></math>« Pa »✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Allow ECF from (a) <br>Award <strong>[2]</strong> for bald correct answer</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>A</mi><mo>×</mo><mo>∆</mo><mi>p</mi></math> <span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>72</mn><mo>×</mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>94</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo> </mo></math><em><strong>OR </strong></em>4.3 × 10<sup>3</sup> « N »✔</p>
<p><em>NOTE: <span style="background-color: #ffffff;">Allow ECF from (b)(i)<br>Allow ECF from MP1</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">force is «very» large ✔</span></p>
<p><span style="background-color: #ffffff;">there must be a mechanism that makes this force smaller<br><em><strong>OR</strong></em><br>assumption used to calculate the force/pressure is unrealistic ✔</span></p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>An elastic climbing rope is tested by fixing one end of the rope to the top of a crane. The other end of the rope is connected to a block which is initially at position A. The block is released from rest. The mass of the rope is negligible.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.44.22.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/01"></p>
<p>The unextended length of the rope is 60.0 m. From position A to position B, the block falls freely.</p>
</div>
<div class="specification">
<p>At position C the speed of the block reaches zero. The time taken for the block to fall between B and C is 0.759 s. The mass of the block is 80.0 kg.</p>
</div>
<div class="specification">
<p>For the rope and block, describe the energy changes that take place</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At position B the rope starts to extend. Calculate the speed of the block at position B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the magnitude of the average resultant force acting on the block between B and C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch on the diagram the average resultant force acting on the block between B and C. The arrow on the diagram represents the weight of the block.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the magnitude of the average force exerted by the rope on the block between B and C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>between A and B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>between B and C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The length reached by the rope at C is 77.4 m. Suggest how energy considerations could be used to determine the elastic constant of the rope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of conservation of energy</p>
<p><strong><em>OR</em></strong></p>
<p><em>v</em><sup>2</sup> = <em>u</em><sup>2</sup> + 2<em>as</em></p>
<p> </p>
<p><em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2 \times 60.0 \times 9.81} ">
<msqrt>
<mn>2</mn>
<mo>×</mo>
<mn>60.0</mn>
<mo>×</mo>
<mn>9.81</mn>
</msqrt>
</math></span><strong>»</strong> = 34.3 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of impulse <em>F</em><sub>ave</sub> × Δ<em>t</em> = Δ<em>p</em></p>
<p><strong><em>OR</em></strong></p>
<p>use of <em>F</em> = <em>ma</em> with average acceleration</p>
<p><strong><em>OR</em></strong></p>
<p><em>F</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{80.0 \times 34.3}}{{0.759}}">
<mfrac>
<mrow>
<mn>80.0</mn>
<mo>×</mo>
<mn>34.3</mn>
</mrow>
<mrow>
<mn>0.759</mn>
</mrow>
</mfrac>
</math></span></p>
<p> </p>
<p>3620<strong>«</strong>N<strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from (a).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>upwards</p>
<p>clearly longer than weight</p>
<p> </p>
<p><em>For second marking point allow ECF from (b)(i) providing line is upwards.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3620 + 80.0 × 9.81</p>
<p>4400 <strong>«</strong>N<strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from (b)(i).</em></p>
<p><strong><em>[</em></strong><strong><em>2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(loss in) gravitational potential energy (of block) into kinetic energy (of block)</p>
<p> </p>
<p><em>Must</em><em> see names of energy (gravitational potential energy and kinetic energy) – Allow for reasonable variations of terminology (eg energy of motion for KE).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope</p>
<p> </p>
<p><em>See note for 1(c)(i) for naming convention.</em></p>
<p><em>Must see either the block or the rope (or both) mentioned in connection with the appropriate energies.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>k can be determined using EPE = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>kx</em><sup>2</sup></p>
<p>correct statement or equation showing</p>
<p>GPE at A = EPE at C</p>
<p><strong><em>OR</em></strong></p>
<p>(GPE + KE) at B = EPE at C</p>
<p> </p>
<p><em>Candidate must clearly indicate the energy associated with either position A or B for MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A small metal pendulum bob of mass 75 g is suspended at rest from a fixed point with a length of thread of negligible mass. Air resistance is negligible. The bob is then displaced to the left.</p>
<p>At time <em>t</em> = 0 the bob is moving horizontally to the right at 0.8 m s<sup>–1</sup>. It collides with a small stationary object also of mass 75 g. Both objects then move together with motion that is simple harmonic.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of the combined masses immediately after the collision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the collision is inelastic.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the changes in gravitational potential energy of the oscillating system from <em>t</em> = 0 as it oscillates through one cycle of its motion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>0.40 «m s<sup>−1</sup>» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>initial energy 24 mJ and final energy 12 mJ ✔</p>
<p>energy is lost/unequal /change in energy is 12 mJ ✔</p>
<p>inelastic collisions occur when energy is lost ✔<br><br></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>maximum GPE at extremes, minimum in centre ✔</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates fell into some broad categories on this question. This was a “show that” question, so there was an expectation of a mathematical argument. Many were able to successfully show that the initial and final kinetic energies were different and connect this to the concept of inelastic collisions. Some candidates tried to connect conservation of momentum unsuccessfully, and some simply wrote an extended response about the nature of inelastic collisions and noted that the bobs stuck together without any calculations. This approach was awarded zero marks.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This straightforward question had surprisingly poorly answers. Candidate answers tended to be overly vague, such as “as the bob went higher the GPE increased and as it fell the GPE decreased.” Candidates needed to specify when GPE would be at maximum and minimum values. Some candidates mistakenly assumed that at t=0 the pendulum bob was at maximum height despite being told otherwise in the question stem.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Ion-thrust engines can power spacecraft. In this type of engine, ions are created in a chamber and expelled from the spacecraft. The spacecraft is in outer space when the propulsion system is turned on. The spacecraft starts from rest.</p>
<p style="text-align: center;"><img src=""></p>
<p>The mass of ions ejected each second is 6.6 × 10<sup>–6 </sup>kg and the speed of each ion is 5.2 × 10<sup>4</sup> m s<sup>–1</sup>. The initial total mass of the spacecraft and its fuel is 740 kg. Assume that the ions travel away from the spacecraft parallel to its direction of motion.</p>
</div>
<div class="specification">
<p>An initial mass of 60 kg of fuel is in the spacecraft for a journey to a planet. Half of the fuel will be required to slow down the spacecraft before arrival at the destination planet.</p>
</div>
<div class="specification">
<p>In practice, the ions leave the spacecraft at a range of angles as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>On arrival at the planet, the spacecraft goes into orbit as it comes into the gravitational field of the planet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the maximum speed of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why scientists sometimes use estimates in making calculations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ions are likely to spread out.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what effect, if any, this spreading of the ions has on the acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by the gravitational field strength at a point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Newton’s law of gravitation applies to point masses. Suggest why the law can be applied to a satellite orbiting a spherical planet of uniform density.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>change in momentum each second = 6.6 × 10<sup>−6</sup> × 5.2 × 10<sup>4</sup> «= 3.4 × 10<sup>−1 </sup>kg m s<sup>−1</sup>» ✔</p>
<p>acceleration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.4 \times {{10}^{ - 1}}}}{{740}}">
<mfrac>
<mrow>
<mn>3.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>740</mn>
</mrow>
</mfrac>
</math></span> =» 4.6 × 10<sup>−4</sup> «m s<sup>−2</sup>» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>(considering the acceleration of the spacecraft)</p>
<p>time for acceleration = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30}}{{6.6 \times {{10}^{ - 6}}}}">
<mfrac>
<mrow>
<mn>30</mn>
</mrow>
<mrow>
<mn>6.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = «4.6 × 10<sup>6</sup>» «s» ✔</p>
<p>max speed = «answer to (a) × 4.6 × 10<sup>6</sup> =» 2.1 × 10<sup>3</sup> «m s<sup>−1</sup>» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>(considering the conservation of momentum)</p>
<p>(momentum of 30 kg of fuel ions = change of momentum of spacecraft)</p>
<p>30 × 5.2 × 10<sup>4 </sup>= 710 × max speed ✔</p>
<p>max speed = 2.2 × 10<sup>3 </sup>«m s<sup>−1</sup>» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>problem may be too complicated for exact treatment ✔</p>
<p>to make equations/calculations simpler ✔</p>
<p>when precision of the calculations is not important ✔</p>
<p>some quantities in the problem may not be known exactly ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ions have same (sign of) charge ✔</p>
<p>ions repel each other ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the forces between the ions do not affect the force on the spacecraft. ✔</p>
<p>there is no effect on the acceleration of the spacecraft. ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force per unit mass ✔</p>
<p>acting on a small/test/point mass «placed at the point in the field» ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>satellite has a much smaller mass/diameter/size than the planet «so approximates to a point mass» ✔ </p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton is moving in a region of uniform magnetic field. The magnetic field is directed into the plane of the paper. The arrow shows the velocity of the proton at one instant and the dotted circle gives the path followed by the proton.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The speed of the proton is 2.0 × 10<sup>6</sup> m s<sup>–1</sup> and the magnetic field strength <em>B</em> is 0.35 T.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the path of the proton is a circle.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the radius of the path is about 6 cm.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the time for <strong>one</strong> complete revolution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the kinetic energy of the proton is constant.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">magnetic force is to the left «at the instant shown»<br><em><strong>OR</strong></em><br>explains a rule to determine the direction of the magnetic force ✔</span></p>
<p><span style="background-color: #ffffff;">force is perpendicular to velocity/«direction of» motion<br><em><strong>OR</strong></em><br>force is constant in magnitude ✔</span></p>
<p><span style="background-color: #ffffff;">force is centripetal/towards the centre ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept reference to acceleration instead of force</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mi>v</mi><mi>B</mi><mo>=</mo><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mi>R</mi></mfrac></math><span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>27</mn></mrow></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>35</mn></mrow></mfrac></math> <em><strong>OR</strong></em> 0.060 « m »</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award MP2 for full replacement or correct answer to at least 2 significant figures</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mi>R</mi></mrow><mi>v</mi></mfrac></math><span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>06</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac><mo>=</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup></math> « s » ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award <strong>[2]</strong> for bald correct answer</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br>work done by force is change in kinetic energy ✔<br>work done is zero/force perpendicular to velocity ✔ <br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Award <strong>[2]</strong> for a reference to work done is zero hence E<sub>k</sub> remains constant</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br>proton moves at constant speed ✔<br>kinetic energy depends on speed ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Accept mention of speed or velocity indistinctly in MP2</em><br></span></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A glider is an aircraft with no engine. To be launched, a glider is uniformly accelerated from rest by a cable pulled by a motor that exerts a horizontal force on the glider throughout the launch.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The glider reaches its launch speed of 27.0 m s<sup>–1</sup> after accelerating for 11.0 s. Assume that the glider moves horizontally until it leaves the ground. Calculate the total distance travelled by the glider before it leaves the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The glider and pilot have a total mass of 492 kg. During the acceleration the glider is subject to an average resistive force of 160 N. Determine the average tension in the cable as the glider accelerates.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable is pulled by an electric motor. The motor has an overall efficiency of 23 %. Determine the average power input to the motor.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable is wound onto a cylinder of diameter 1.2 m. Calculate the angular velocity of the cylinder at the instant when the glider has a speed of 27 m s<sup>–1</sup>. Include an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After takeoff the cable is released and the unpowered glider moves horizontally at constant speed. The wings of the glider provide a lift force. The diagram shows the lift force acting on the glider and the direction of motion of the glider.</p>
<p><img src=""></p>
<p>Draw the forces acting on the glider to complete the free-body diagram. The dotted lines show the horizontal and vertical directions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using appropriate laws of motion, how the forces acting on the glider maintain it in level flight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a particular instant in the flight the glider is losing 1.00 m of vertical height for every 6.00 m that it goes forward horizontally. At this instant, the horizontal speed of the glider is 12.5 m s<sup>–1</sup>. Calculate the <strong>velocity</strong> of the glider. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct use of kinematic equation/equations</p>
<p>148.5 <em><strong>or</strong> </em>149 <em><strong>or</strong> </em>150 «m»</p>
<p> </p>
<p><em>Substitution(s) must be correct.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>a</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27}}{{11}}">
<mfrac>
<mrow>
<mn>27</mn>
</mrow>
<mrow>
<mn>11</mn>
</mrow>
</mfrac>
</math></span> <em><strong>or</strong></em> 2.45 «m s<sup>–2</sup>»</p>
<p><em>F</em> – 160 = 492 × 2.45</p>
<p>1370 «N»</p>
<p> </p>
<p><em>Could be seen in part (a).</em><br><em>Award <strong>[0]</strong> for solution that uses a = 9.81 m s<sup>–2</sup></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«work done to launch glider» = 1370 x 149 «= 204 kJ»</p>
<p>«work done by motor» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{204 \times 100}}{{23}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>204</mn>
<mo>×</mo>
<mn>100</mn>
</mrow>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
</math></span></p>
<p>«power input to motor» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{204 \times 100}}{{23}} \times \frac{1}{{11}} = 80">
<mo>=</mo>
<mfrac>
<mrow>
<mn>204</mn>
<mo>×</mo>
<mn>100</mn>
</mrow>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>11</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>80</mn>
</math></span> <em><strong>or</strong> </em>80.4 <em><strong>or</strong> </em>81 k«W»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>use of average speed 13.5 m s<sup>–1</sup></p>
<p>«useful power output» = force x average speed «= 1370 x 13.5»</p>
<p>power input = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1370 \times 13.5 \times \frac{{100}}{{23}} = ">
<mn>1370</mn>
<mo>×</mo>
<mn>13.5</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mn>100</mn>
</mrow>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 80 <em><strong>or</strong> </em>80.4 <em><strong>or</strong> </em>81 k«W»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p>work required from motor = KE + work done against friction «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.5 \times 492 \times {27^2} + \left( {160 \times 148.5} \right)">
<mo>=</mo>
<mn>0.5</mn>
<mo>×</mo>
<mn>492</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>27</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>160</mn>
<mo>×</mo>
<mn>148.5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>» = 204 «kJ»</p>
<p>«energy input» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{work required from motor}} \times 100}}{{23}}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>work required from motor</mtext>
</mrow>
<mo>×</mo>
<mn>100</mn>
</mrow>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
</math></span></p>
<p>power input <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{883000}}{{11}} = 80.3">
<mo>=</mo>
<mfrac>
<mrow>
<mn>883000</mn>
</mrow>
<mrow>
<mn>11</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>80.3</mn>
</math></span> k«W»</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> for an answer of 160 k«W».</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega = ">
<mi>ω</mi>
<mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{r} = ">
<mfrac>
<mi>v</mi>
<mi>r</mi>
</mfrac>
<mo>=</mo>
</math></span>» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27}}{{0.6}} = 45">
<mfrac>
<mrow>
<mn>27</mn>
</mrow>
<mrow>
<mn>0.6</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>45</mn>
</math></span></p>
<p>rad s<sup>–1</sup></p>
<p> </p>
<p><em>Do not accept Hz.</em><br><em>Award <strong>[1 max]</strong> if unit is missing.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>drag correctly labelled and in correct direction</p>
<p>weight correctly labelled and in correct direction <em><strong>AND</strong></em> no other incorrect force shown</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> if forces do not touch the dot, but are otherwise OK.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>name Newton's first law</p>
<p>vertical/all forces are in equilibrium/balanced/add to zero<br><em><strong>OR</strong></em><br>vertical component of lift mentioned</p>
<p>as equal to weight</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any speed and any direction quoted together as the answer</p>
<p>quotes their answer(s) to 3 significant figures</p>
<p>speed = 12.7 m s<sup>–1</sup> <em><strong>or</strong></em> direction = 9.46<sup>º</sup> <em><strong>or</strong></em> 0.165 rad «below the horizontal» <em><strong>or </strong></em>gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{1}{6}">
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
</math></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A company delivers packages to customers using a small unmanned aircraft. Rotating horizontal blades exert a force on the surrounding air. The air above the aircraft is initially stationary.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="319" height="179"></p>
<p>The air is propelled vertically downwards with speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>. The aircraft hovers motionless above the ground. A package is suspended from the aircraft on a string. The mass of the aircraft is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>95</mn><mtext> kg</mtext></math> and the combined mass of the package and string is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>45</mn><mo> </mo><mi>kg</mi></math>. The mass of air pushed downwards by the blades in one second is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>7</mn><mo> </mo><mi>kg</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the value of the resultant force on the aircraft when hovering.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, by reference to Newton’s third law, how the upward lift force on the aircraft is achieved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The package and string are now released and fall to the ground. The lift force on the aircraft remains unchanged. Calculate the initial acceleration of the aircraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">zero </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">Blades exert a downward force on the air </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0"><br>air exerts an equal and opposite force on the blades </span><span class="fontstyle3">«</span><span class="fontstyle0">by Newton’s third law</span><span class="fontstyle3">»<br></span><span class="fontstyle4"><em><strong>OR</strong></em><br></span><span class="fontstyle0">air exerts a reaction force on the blades </span><span class="fontstyle3">«</span><span class="fontstyle0">by Newton’s third law</span><span class="fontstyle3">» </span><span class="fontstyle2">✓</span></p>
<p><em><span class="fontstyle5"><br>Downward direction required for </span><strong><span class="fontstyle4">MP1</span></strong></em><span class="fontstyle4">.</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«</span><span class="fontstyle1">lift force/change of momentum in one second</span><span class="fontstyle0">» <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>7</mn><mi>v</mi></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>7</mn><mi>v</mi><mo>=</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>95</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>45</mn></mrow></mfenced><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></math> ✓</span></p>
<p><span class="fontstyle4"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>1</mn><mo>«</mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <em><strong>AND </strong></em></span><span class="fontstyle1">answer expressed to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> sf only </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle5">Allow <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">8</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">2</mn></math> from </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo mathvariant="italic">=</mo><mn mathvariant="italic">10</mn><mo mathvariant="italic"> </mo><mi>m</mi><msup><mi>s</mi><mrow><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn></mrow></msup></math>.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">vertical force = lift force – weight </span><span class="fontstyle2"><em><strong>OR</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></math> <em><strong>OR</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo>»</mo><mo> </mo></math></span><span class="fontstyle4">✓</span></p>
<p><span class="fontstyle0">acceleration<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>95</mn></mrow></mfrac><mo>=</mo><mn>4</mn><mo>.</mo><mn>6</mn><mo> </mo><mo>«</mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo><mo> </mo></math></span><span class="fontstyle4">✓</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A ball of mass 0.250 kg is released from rest at time <em>t</em> = 0, from a height <em>H</em> above a horizontal floor.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph shows the variation with time <em>t</em> of the velocity <em>v</em> of the ball. Air resistance is negligible. Take <em>g</em> = −9.80 m s<sup>−2</sup>. The ball reaches the floor after 1.0 s.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <em>H</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label the time and velocity graph, using the letter M, the point where the ball reaches the maximum rebound height.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the acceleration of the ball at the maximum rebound height.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with time of the height of the ball from the instant it rebounds from the floor until the instant it reaches the maximum rebound height. No numbers are required on the axes.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the loss in the mechanical energy of the ball as a result of the collision with the floor.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the average force exerted on the floor by the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the momentum of the ball was not conserved during the collision with the floor.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>H</em> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math><em>gt</em><sup>2</sup> =» 4.9 «m» <strong>✓</strong></p>
<p><em><br>Accept other methods as area from graph, alternative kinematics equations or conservation of mechanical energy.<br></em><em>Award <strong>[1]</strong> for a bald correct answer in the range 4.9 - 5.1.<br></em><em>Award<strong> [0]</strong> if time used is different than 1.0 s.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>M at 1.6 s <strong>✓</strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>g</em> =» 9.80 «ms<sup>−2</sup>» ✓</p>
<p><br><em>Accept 9.81, 10 or a plain “g”.</em><br><em>Ignore sign if provided.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><img src=""></em></p>
<p>concave down parabola as shown «with non-zero initial slope and zero final slope» ✓</p>
<p> </p>
<p><em>Award <strong>[1]</strong> mark if curve starts from a positive time value.</em><br><em>Award <strong>[0]</strong> if the final slope is negative.</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>« loss of KE is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>25</mn><mo>×</mo><mfenced><mrow><mn>9</mn><mo>.</mo><msup><mn>8</mn><mn>2</mn></msup><mo>-</mo><msup><mn>5</mn><mn>2</mn></msup></mrow></mfenced><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>9</mn><mo> </mo></math>«J» ✓</p>
<p><br><em>Award <strong>[1]</strong> mark for an answer in the range 8.7 - 9.5.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>250</mn><mo>×</mo><mfenced><mrow><mn>9</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>5</mn><mo>.</mo><mn>0</mn></mrow></mfenced></math> ✓</p>
<p><em>F</em><sub>net</sub> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>∆</mo><mi>p</mi></mrow><mrow><mo>∆</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mo>.</mo><mn>7</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>1</mn></mrow></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math> «N» ✓</p>
<p><em>N</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>37</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>250</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>39</mn><mo>.</mo><mn>5</mn></math> «N» ✓</p>
<p><br><em>Allow<strong> ECF</strong> for <strong>MP2</strong> and <strong>MP3</strong>.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is an external force acting on the ball</p>
<p><em><strong>OR</strong></em></p>
<p>some momentum is transferred to the floor ✓</p>
<p><br><em>Allow references to impulse instead of force. </em><br><em>Do not award references to energy.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>θ</em> to the horizontal.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following equation.</p>
<p> <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="F = \frac{{mg}}{{\tan \theta }}">
<mi>F</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced so that its height from the horizontal is equal to 8.0 m.</p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>towards the centre <strong>«</strong>of the circle<strong>» </strong>/ horizontally to the right</p>
<p> </p>
<p><em>Do not accept towards the centre of the bowl</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward vertical arrow of any length</p>
<p>arrow of correct length</p>
<p> </p>
<p><em>Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required</em></p>
<p><em>eg</em>: <img src="images/Schermafbeelding_2018-08-12_om_13.22.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>F</em> = <em>N</em> cos <em>θ</em></p>
<p><em>mg</em> = <em>N</em> sin <em>θ</em></p>
<p>dividing/substituting to get result</p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>right angle triangle drawn with <em>F</em>, <em>N </em>and <em>W/mg </em>labelled</p>
<p>angle correctly labelled and arrows on forces in correct directions</p>
<p>correct use of trigonometry leading to the required relationship</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-12_om_13.28.39.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em>tan θ</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{O}}}{A} = \frac{{mg}}{F}">
<mfrac>
<mrow>
<mtext>O</mtext>
</mrow>
<mi>A</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mi>F</mi>
</mfrac>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg}}{{\tan \theta }}">
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span> = <em>m</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span></p>
<p><em>r</em> = <em>R</em> cos <em>θ</em></p>
<p><em>v</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{gR{{\cos }^2}\theta }}{{\sin \theta }}} /\sqrt {\frac{{gR\cos \theta }}{{\tan \theta }}} /\sqrt {\frac{{9.81 \times 8.0\cos 22}}{{\tan 22}}} ">
<msqrt>
<mfrac>
<mrow>
<mi>g</mi>
<mi>R</mi>
<mrow>
<msup>
<mrow>
<mi>cos</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</msqrt>
<mrow>
<mo>/</mo>
</mrow>
<msqrt>
<mfrac>
<mrow>
<mi>g</mi>
<mi>R</mi>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</msqrt>
<mrow>
<mo>/</mo>
</mrow>
<msqrt>
<mfrac>
<mrow>
<mn>9.81</mn>
<mo>×</mo>
<mn>8.0</mn>
<mi>cos</mi>
<mo></mo>
<mn>22</mn>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mn>22</mn>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p><em>v</em> = 13.4/13 <strong>«</strong><em>ms <sup>–</sup></em><em><sup>1</sup></em><strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for a bald correct answer </em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for an answer of 13.9/14 </em><strong>«</strong><em>ms <sup>–</sup></em><em><sup>1</sup></em><strong>»</strong><em>. MP2 omitted</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is no force to balance the weight/N is horizontal</p>
<p>so no / it is not possible</p>
<p> </p>
<p><em>Must see correct justification to award MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed before collision <em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gR} ">
<msqrt>
<mn>2</mn>
<mi>g</mi>
<mi>R</mi>
</msqrt>
</math></span> =<strong>»</strong> 12.5 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>from conservation of momentum<strong>» </strong>common speed after collision is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> initial speed <strong>«</strong><em>v<sub>c</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12.5}}{2}">
<mfrac>
<mrow>
<mn>12.5</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> = 6.25 ms<sup>–1</sup><strong>»</strong></p>
<p><em>h = </em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_c}^2}}{{2g}} = \frac{{{{6.25}^2}}}{{2 \times 9.81}}">
<mfrac>
<mrow>
<msup>
<mrow>
<msub>
<mi>v</mi>
<mi>c</mi>
</msub>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mn>2</mn>
<mi>g</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mn>6.25</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>9.81</mn>
</mrow>
</mfrac>
</math></span><strong>»</strong> 2.0 <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Allow 12.5 from incorrect use of kinematics equations</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for mg(8) = 2mgh leading to h = 4 m if done in one step.</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Allow ECF from MP2</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The Rotor is an amusement park ride that can be modelled as a vertical cylinder of inner radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> rotating about its axis. When the cylinder rotates sufficiently fast, the floor drops out and the passengers stay motionless against the inner surface of the cylinder. The diagram shows a person taking the Rotor ride. The floor of the Rotor has been lowered away from the person.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="291" height="330"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw and label the free-body diagram for the person.</p>
<p> </p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The person must not slide down the wall. Show that the minimum angular velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> of the cylinder for this situation is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><msqrt><mfrac><mi>g</mi><mrow><mi>μ</mi><mi>R</mi></mrow></mfrac></msqrt></math></p>
<p style="text-align: left;">where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> is the coefficient of static friction between the person and the cylinder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coefficient of static friction between the person and the cylinder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>40</mn></math>. The radius of the cylinder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>5</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. The cylinder makes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>28</mn></math> revolutions per minute. Deduce whether the person will slide down the inner surface of the cylinder.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">arrow downwards labelled weight/W/</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>g</mi></math> </span><span class="fontstyle0">and arrow upwards labelled friction/</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle0">arrow horizontally to the left labelled </span><span class="fontstyle4">«</span><span class="fontstyle0">normal</span><span class="fontstyle4">» </span><span class="fontstyle0">reaction/</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> </span><span class="fontstyle3">✓</span></p>
<p><img src=""></p>
<p><em><span class="fontstyle0"><br>Ignore point of application of the forces but do not allow arrows that do not touch the object.</span></em></p>
<p><em><span class="fontstyle0">Do not allow horizontal force to be labelled ‘centripetal’ or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">See <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>μ</mi><mi>N</mi></math> </span><span class="fontstyle2"><em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mi>m</mi><mi>R</mi><msup><mi>ω</mi><mn>2</mn></msup></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle4">«</span><span class="fontstyle0">substituting for N</span><span class="fontstyle4">» <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mi>m</mi><msup><mi>ω</mi><mn>2</mn></msup><mi>R</mi><mo>=</mo><mi>m</mi><mi>g</mi></math> </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span class="fontstyle0">ALTERNATIVE 1</span></strong></em></p>
<p><span class="fontstyle0">minimum required angular velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><msqrt><mfrac><mrow><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>40</mn><mo>×</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfrac></msqrt><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>6</mn><mo>«</mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">actual angular velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mfenced><mstyle displaystyle="true"><mfrac><mn>60</mn><mn>28</mn></mfrac></mstyle></mfenced></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>9</mn><mo>«</mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math></span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">actual angular velocity is greater than the minimum, so the person does not slide </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><span class="fontstyle3"><em><strong>ALTERNATIVE 2</strong></em></span></p>
<p><span class="fontstyle0">Minimum friction force <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>m</mi><mi>g</mi><mo>=</mo><mo>«</mo><mn>9</mn><mo>.</mo><mn>81</mn><mo> </mo><mi mathvariant="normal">m</mi><mo>»</mo></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">Actual friction force <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mi>μ</mi><mi>m</mi><mi>R</mi><msup><mi>ω</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn><mo> </mo><mi mathvariant="normal">m</mi><mo>×</mo><mn>3</mn><mo>.</mo><mn>5</mn><msup><mfenced><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mfrac><mn>28</mn><mn>60</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>»</mo><mo>=</mo><mn>12</mn><mo>.</mo><mn>0</mn><mo> </mo><mi mathvariant="normal">m</mi></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">Actual friction force is greater than the minimum frictional force so the person does not slide </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><em><span class="fontstyle4">Allow <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">2</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">7</mn></math> from </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo mathvariant="italic">=</mo><mn mathvariant="italic">10</mn><mo mathvariant="italic"> </mo><mi>m</mi><msup><mi>s</mi><mrow><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn></mrow></msup></math>.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Plutonium-238 (Pu) decays by alpha (α) decay into uranium (U).</p>
<p>The following data are available for binding energies per nucleon:</p>
<p style="padding-left: 30px;">plutonium 7.568 MeV</p>
<p style="padding-left: 30px;">uranium 7.600 MeV</p>
<p style="padding-left: 30px;">alpha particle 7.074 MeV</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in this decay is about 6 MeV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plutonium nucleus is at rest when it decays.</p>
<p>Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the energy needed to «completely» separate the nucleons of a nucleus</p>
<p><em><strong>OR</strong></em></p>
<p>the energy released when a nucleus is assembled from its constituent nucleons ✓</p>
<p> </p>
<p><em>Accept reference to protons <strong>AND</strong> neutrons.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve rising to a maximum between 50 and 100 ✓</p>
<p>curve continued and decreasing ✓</p>
<p> </p>
<p><em>Ignore starting point.<br></em></p>
<p><em>Ignore maximum at alpha particle</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>At a point on the peak of their graph ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct mass numbers for uranium (234) and alpha (4) ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>234</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>600</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>074</mn><mo>-</mo><mn>238</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>568</mn></math> «MeV» ✓</p>
<p>energy released 5.51 «MeV» ✓</p>
<p> </p>
<p><em>Ignore any negative sign.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>K</mi><msub><mi>E</mi><mi>α</mi></msub></mrow><mrow><mi>K</mi><msub><mi>E</mi><mi>U</mi></msub></mrow></mfrac><mo>=</mo></math>»<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>U</mi></msub></mrow></mfrac></mfrac></mstyle></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>m</mi><mi>U</mi></msub><msub><mi>m</mi><mi>α</mi></msub></mfrac></math> ✓</p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>234</mn><mn>4</mn></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn><mo>.</mo><mn>5</mn></math> ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>117</mn><mn>2</mn></mfrac></math> for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton moves along a circular path in a region of a uniform magnetic field. The magnetic field is directed into the plane of the page.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the diagram the magnetic force <em>F</em> on the proton. </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the velocity vector <em>v</em> of the proton.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The speed of the proton is 2.16 × 10<sup>6</sup> m s<sup>-1</sup> and the magnetic field strength is 0.042 T. For this proton, determine, in m, the radius of the circular path. Give your answer to an appropriate number of significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em>F</em> towards centre ✔</span></p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em>v</em> tangent to circle and in the direction shown in the diagram ✔</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="qvB = \frac{{m{v^2}}}{R} \Rightarrow » R = \frac{{mv}}{{qB}}/\frac{{1.673 \times {{10}^{ - 27}} \times 2.16 \times {{10}^6}}}{{1.60 \times {{10}^{ - 19}} \times 0.042}}">
<mi>q</mi>
<mi>v</mi>
<mi>B</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>R</mi>
</mfrac>
<mo stretchy="false">⇒</mo>
<mrow>
<mo>»</mo>
</mrow>
<mi>R</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>v</mi>
</mrow>
<mrow>
<mi>q</mi>
<mi>B</mi>
</mrow>
</mfrac>
<mrow>
<mo>/</mo>
</mrow>
<mfrac>
<mrow>
<mn>1.673</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>27</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>2.16</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.60</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>0.042</mn>
</mrow>
</mfrac>
</math></span> </span> <span style="background-color:#ffffff;">✔<br></span></p>
<p><span style="background-color:#ffffff;"><em>R</em> = 0.538 «m»✔<br></span></p>
<p><span style="background-color:#ffffff;"><em>R</em> = 0.54 «m» ✔<br></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Examiners were requested to be lenient here and as a result most candidates scored both marks. Had we insisted on <em>e.g.</em> straight lines drawn with a ruler or a force arrow passing exactly through the centre of the circle very few marks would have been scored. For those who didn’t know which way the arrows were supposed to be the common guesses were to the left and up the page. Some candidates neglected to label the arrows.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Examiners were requested to be lenient here and as a result most candidates scored both marks. Had we insisted on <em>e.g.</em> straight lines drawn with a ruler or a force arrow passing exactly through the centre of the circle very few marks would have been scored. For those who didn’t know which way the arrows were supposed to be the common guesses were to the left and up the page. Some candidates neglected to label the arrows.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered although usually to 3 sf. Common mistakes were to substitute 0.042 for F and 1 for q. Also some candidates tried to answer in terms of electric fields.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram below shows part of a downhill ski course which starts at point A, 50 m above level ground. Point B is 20 m above level ground.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A skier of mass 65 kg starts from rest at point A and during the ski course some of the gravitational potential energy transferred to kinetic energy.</p>
</div>
<div class="specification">
<p>At the side of the course flexible safety nets are used. Another skier of mass 76 kg falls normally into the safety net with speed 9.6 m s<sup>–1</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From A to B, 24 % of the gravitational potential energy transferred to kinetic energy. Show that the velocity at B is 12 m s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some of the gravitational potential energy transferred into internal energy of the skis, slightly increasing their temperature. Distinguish between internal energy and temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The dot on the following diagram represents the skier as she passes point B.<br>Draw and label the vertical forces acting on the skier.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hill at point B has a circular shape with a radius of 20 m. Determine whether the skier will lose contact with the ground at point B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The skier reaches point C with a speed of 8.2 m s<sup>–1</sup>. She stops after a distance of 24 m at point D.</p>
<p>Determine the coefficient of dynamic friction between the base of the skis and the snow. Assume that the frictional force is constant and that air resistance can be neglected.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the impulse required from the net to stop the skier and state an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to change in momentum, why a flexible safety net is less likely to harm the skier than a rigid barrier.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{v^2} = 0.24\,{\text{gh}}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0.24</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>gh</mtext>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 11.9">
<mi>v</mi>
<mo>=</mo>
<mn>11.9</mn>
</math></span> «m s<sup>–1</sup>»</p>
<p> </p>
<p><em>Award GPE lost = 65 × 9.81 × 30 = «19130 J»</em></p>
<p><em>Must see the 11.9 value for MP2, not simply 12.</em></p>
<p><em>Allow g = 9.8 ms<sup>–2</sup>.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>internal energy is the total KE «and PE» of the molecules/particles/atoms in an object</p>
<p>temperature is a measure of the average KE of the molecules/particles/atoms</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> if there is no mention of molecules/particles/atoms.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>arrow vertically downwards from dot labelled weight/W/mg/gravitational force/F<sub>g</sub>/F<sub>gravitational</sub> <strong><em>AND</em></strong> arrow vertically upwards from dot labelled reaction force/R/normal contact force/N/F<sub>N</sub></p>
<p>W > R</p>
<p> </p>
<p><em>Do not allow gravity.</em><br><em>Do not award MP1 if additional ‘centripetal’ force arrow is added.</em><br><em>Arrows must connect to dot.</em><br><em>Ignore any horizontal arrow labelled friction.</em><br><em>Judge by eye for MP2. Arrows do not have to be correctly labelled or connect to dot for MP2.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>recognition that centripetal force is required / <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{m{v^2}}}{r}">
<mfrac>
<mrow>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span> seen</p>
<p>= 468 «N»</p>
<p>W/640 N (weight) is larger than the centripetal force required, so the skier does not lose contact with the ground</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>recognition that centripetal acceleration is required / <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span> seen</p>
<p>a = 7.2 «ms<sup>–2</sup>»</p>
<p><em>g</em> is larger than the centripetal acceleration required, so the skier does not lose contact with the ground</p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p>recognition that to lose contact with the ground centripetal force ≥ weight</p>
<p>calculation that v ≥ 14 «ms<sup>–1</sup>»</p>
<p>comment that 12 «ms<sup>–1</sup>» is less than 14 «ms<sup>–1</sup>» so the skier does not lose contact with the ground</p>
<p> </p>
<p><em><strong>ALTERNATIVE 4</strong></em></p>
<p>recognition that centripetal force is required / <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{m{v^2}}}{r}">
<mfrac>
<mrow>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span> seen</p>
<p>calculation that reaction force = 172 «N»</p>
<p>reaction force > 0 so the skier does not lose contact with the ground</p>
<p> </p>
<p> </p>
<p><em>Do not award a mark for the bald statement that the skier does not lose contact with the ground.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>0 = 8.2<sup>2 </sup>+ 2 × <em>a</em> × 24 therefore <em>a</em> = «−»1.40 «m s<sup>−2</sup>»</p>
<p>friction force = <em>ma </em>= 65 × 1.4 = 91 «N»</p>
<p>coefficient of friction = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{91}}{{65 \times 9.81}}">
<mfrac>
<mrow>
<mn>91</mn>
</mrow>
<mrow>
<mn>65</mn>
<mo>×</mo>
<mn>9.81</mn>
</mrow>
</mfrac>
</math></span> = 0.14</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em><br><em>KE</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>mv</em><sup>2</sup> = 0.5 x 65 x 8.2<sup>2</sup> = 2185 «J»</p>
<p>friction force = KE/distance = 2185/24 = 91 «N»</p>
<p>coefficient of friction = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{91}}{{65 \times 9.81}}">
<mfrac>
<mrow>
<mn>91</mn>
</mrow>
<mrow>
<mn>65</mn>
<mo>×</mo>
<mn>9.81</mn>
</mrow>
</mfrac>
</math></span> = 0.14</p>
<p> </p>
<p><em>Allow ECF from MP1.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«76 × 9.6»= 730<br>Ns <em><strong>OR</strong></em> kg ms<sup>–1</sup></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>safety net extends stopping time</p>
<p><em>F</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta p}}{{\Delta t}}">
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>p</mi>
</mrow>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> therefore <em>F</em> is smaller «with safety net»</p>
<p><em><strong>OR</strong></em></p>
<p>force is proportional to rate of change of momentum therefore <em>F</em> is smaller «with safety net»</p>
<p> </p>
<p><em>Accept reverse argument.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A chicken’s egg of mass 58 g is dropped onto grass from a height of 1.1 m. The egg comes to rest in a time of 55 ms. Assume that air resistance is negligible and that the egg does not bounce or break.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the magnitude of the average decelerating force that the ground exerts on the egg.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the egg is likely to break when dropped onto concrete from the same height.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>initial momentum = <em>mv</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2 \times 0.058 \times 0.63} ">
<msqrt>
<mn>2</mn>
<mo>×</mo>
<mn>0.058</mn>
<mo>×</mo>
<mn>0.63</mn>
</msqrt>
</math></span> «= 0.27 kg m s<sup>−1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>mv</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.058 \times \sqrt {2 \times 9.81 \times 1.1} ">
<mn>0.058</mn>
<mo>×</mo>
<msqrt>
<mn>2</mn>
<mo>×</mo>
<mn>9.81</mn>
<mo>×</mo>
<mn>1.1</mn>
</msqrt>
</math></span> «= 0.27 kg m s<sup>−1</sup>» ✔</p>
<p>force = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{change in momentum}}}}{{{\text{time}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>change in momentum</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>time</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.27}}{{0.055}}">
<mfrac>
<mrow>
<mn>0.27</mn>
</mrow>
<mrow>
<mn>0.055</mn>
</mrow>
</mfrac>
</math></span> ✔</p>
<p>4.9 «N» ✔</p>
<p><em>F − mg</em> = 4.9 so <em>F</em>= 5.5 «N» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>«<em>E</em><sub>k</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>mv<sup>2</sup> = 0.63 J» v = 4.7 m s<sup>−1</sup> ✔</p>
<p>acceleration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta v}}{{\Delta t}}">
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>v</mi>
</mrow>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.7}}{{55 \times {{10}^{ - 3}}}}">
<mfrac>
<mrow>
<mn>4.7</mn>
</mrow>
<mrow>
<mn>55</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = «85 m s<sup>−2</sup>» ✔</p>
<p>4.9 «N» ✔</p>
<p><em>F − mg</em> = 4.9 so <em>F</em>= 5.5 «N» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>concrete reduces the stopping time/distance ✔</p>
<p>impulse/change in momentum same so force greater</p>
<p><em><strong>OR</strong></em></p>
<p>work done same so force greater ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>concrete reduces the stopping time ✔</p>
<p>deceleration is greater so force is greater ✔</p>
<p> </p>
<p><em>Allow reverse argument for grass.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A stationary nucleus of uranium-238 undergoes alpha decay to form thorium-234.</span></p>
<p><span style="background-color: #ffffff;">The following data are available.</span></p>
<p style="text-align: left; padding-left: 30px;"><span style="background-color: #ffffff;">Energy released in decay 4.27 MeV<br>Binding energy per nucleon for helium 7.07 MeV<br>Binding energy per nucleon for thorium 7.60 MeV</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Radioactive decay is said to be “random” and “spontaneous”. Outline what is meant by each of these terms.</span></p>
<p><span style="background-color: #ffffff;">Random: </span></p>
<p><span style="background-color: #ffffff;">Spontaneous:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the binding energy per nucleon for uranium-238.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>kinetic</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>of</mi><mo> </mo><mi>alpha</mi><mo> </mo><mi>particle</mi></mrow><mrow><mi>kinetic</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>of</mi><mo> </mo><mi>thorium</mi><mo> </mo><mi>nucleus</mi></mrow></mfrac></math>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>random:</em><br>it cannot be predicted which nucleus will decay<br><em><strong>OR</strong></em><br>it cannot be predicted when a nucleus will decay ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: OWTTE</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>spontaneous:</em><br>the decay cannot be influenced/modified in any way ✔<br></span></p>
<p><span style="background-color: #ffffff;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">NOTE: </span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">OWTTE</span><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">234 × 7.6 <em><strong>OR </strong></em> 4 × 7.07 ✔</span></p>
<p><em>BE</em><sub>U </sub>=<span style="background-color: #ffffff;"><span style="background-color: #ffffff;">« 234<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> ×</span> 7.6<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> + 4 × 7.07 – 4.27 =</span>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1802</mn></math> « MeV » ✔</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>B</mi><msub><mi>E</mi><mi mathvariant="normal">U</mi></msub></mrow><mi>A</mi></mfrac><mo>=</mo><mo>«</mo><mfrac><mn>1802</mn><mn>238</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>7</mn><mo>.</mo><mn>57</mn></math> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">« MeV » ✔</span></span></span></p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;"> NOTE: Allow ECF from MP2<br>Award <strong>[3]</strong> for bald correct answer<br>Allow conversion to J, final answer is 1.2 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 10<sup>–12</sup></span></span></span></em></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">states or applies conservation of momentum ✔</span></p>
<p><span style="background-color: #ffffff;">ratio is «<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>E</mi><mrow><mi mathvariant="normal">k</mi><mi>α</mi></mrow></msub><msub><mi>E</mi><mi>kTh</mi></msub></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>Th</mi></msub></mrow></mfrac></mstyle></mfrac><mo>=</mo><mfrac><mn>234</mn><mn>4</mn></mfrac></math>» 58.5 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span><br></span></p>
<p><em> NOTE: Award<strong> [2]</strong> for bald correct answer</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A charged particle, P, of charge +68 μC is fixed in space. A second particle, Q, of charge +0.25 μC is held at a distance of 48 cm from P and is then released.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The diagram shows two parallel wires X and Y that carry equal currents into the page.</p>
<p><img src=""></p>
<p>Point Q is equidistant from the two wires. The magnetic field at Q due to wire X <strong>alone </strong>is 15 mT.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The work done to move a particle of charge 0.25 μC from one point in an electric field to another is 4.5 μJ. Calculate the magnitude of the potential difference between the two points.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the force on Q at the instant it is released.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the motion of Q after release.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram draw an arrow to show the direction of the magnetic field at Q due to wire X <strong>alone</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the magnitude and direction of the resultant magnetic field at Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></mfrac><mo>=</mo></math>» 18 «V» ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>68</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>25</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>48</mn><mn>2</mn></msup></mrow></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>66</mn></math> «N» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer. </em></p>
<p><em>Allow symbolic k in substitutions for <strong>MP1</strong>. </em></p>
<p><em>Do <strong>not</strong> allow <strong>ECF</strong> from incorrect or not squared distance.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Q moves to the right/away from P «along a straight line»</p>
<p><em><strong>OR</strong></em></p>
<p>Q is repelled from P ✓</p>
<p><br>with increasing speed/Q accelerates ✓</p>
<p>acceleration decreases ✓</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><img src=""></p>
<p>arrow of any length as shown ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«using components or Pythagoras to get» <em>B</em> = 21 «mT» ✓</p>
<p>directed «horizontally» to the right ✓</p>
<p> </p>
<p><em>If no unit seen, assume</em> mT.</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The Moon has no atmosphere and orbits the Earth. The diagram shows the Moon with rays of light from the Sun that are incident at 90° to the axis of rotation of the Moon.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A black body is on the Moon’s surface at point A. Show that the maximum temperature that this body can reach is 400 K. Assume that the Earth and the Moon are the same distance from the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another black body is on the Moon’s surface at point B.</p>
<p>Outline, without calculation, why the aximum temperature of the black body at point B is less than at point A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The albedo of the Earth’s atmosphere is 0.28. Outline why the maximum temperature of a black body on the Earth when the Sun is overhead is less than that at point A on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a force acts on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why this force does no work on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>T</em> = <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{{1360}}{\sigma }} \right)^{0.25}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1360</mn>
</mrow>
<mi>σ</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mn>0.25</mn>
</mrow>
</msup>
</mrow>
</math></span> </span>✔</p>
<p>390 «K» ✔</p>
<p><em>Must see 1360 (from data booklet) used for MP1.</em></p>
<p><em>Must see at least 2 s.f</em>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy/Power/Intensity lower at B ✔</p>
<p>connection made between energy/power/intensity and temperature of blackbody ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(28 %) of sun’s energy is scattered/reflected by earth’s atmosphere <em><strong>OR</strong></em> only 72 % of incident energy gets absorbed by blackbody ✔</p>
<p><em>Must be clear that the energy is being scattered by the atmosphere.</em></p>
<p><em>Award <strong>[0]</strong> for simple definition of “albedo”</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gravitational attraction/force/field «of the planet/Moon» ✔</p>
<p><em>Do not accept “gravity”</em>.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the force/field and the velocity/displacement are at 90° to each other<em><strong> OR</strong></em> there is no change in GPE of the moon ✔</p>
<p><em>Award <strong>[0]</strong> for any mention of no net force on the satellite.</em></p>
<p><em>Do not accept acceleration is perpendicular to velocity.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates struggled with this question. A significant portion attempted to apply Wein’s Law and simply stated that a particular wavelength was the peak and then used that to determine the temperature. Some did use the solar constant from the data booklet and were able to calculate the correct temperature. As part of their preparation for the exam candidates should thoroughly review the data booklet and be aware of what constants are given there. As with all “show that” questions candidates should be reminded to include an unrounded answer.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is question is another example of candidates not thinking beyond the obvious in the question. Many simply said that point B is farther away, or that it is at an angle. Some used vague terms like “the sunlight is more spread out” rather than using proper physics terms. Few candidates connected the lower intensity at B with the lower temperature of the blackbody.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was assessing the understanding of the concept of albedo. Many candidates were able to connect that an albedo of 0.28 meant that 28 % of the incident energy from the sun was being reflected or scattered by the atmosphere before reaching the black body.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered, although some candidates simply used the vague term “gravity” rather than specifying that it is a gravitational force or a gravitational field. Candidates need to be reminded about using proper physics terms and not more general, “every day” terms on the exam.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates connected the idea that the gravitational force is perpendicular to the velocity (and hence the displacement) for the mark. It was also allowed to discuss that there is no change in gravitational potential energy, so therefore no work was being done. It was not acceptable to simply state that the net displacement over one full orbit is zero. Unfortunately, some candidates suggested that there is no net force on the moon so there is no work done, or that the moon is so much smaller so no work could be done on it.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigates how light can be used to measure the speed of a toy train.</p>
<p style="text-align: center;"><img src=""></p>
<p>Light from a laser is incident on a double slit. The light from the slits is detected by a light sensor attached to the train.</p>
<p>The graph shows the variation with time of the output voltage from the light sensor as the train moves parallel to the slits. The output voltage is proportional to the intensity of light incident on the sensor.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the light passing through the slits, why a series of voltage peaks occurs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The slits are separated by 1.5 mm and the laser light has a wavelength of 6.3 x 10<sup>–7</sup> m. The slits are 5.0 m from the train track. Calculate the separation between two adjacent positions of the train when the output voltage is at a maximum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the speed of the train.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In another experiment the student replaces the light sensor with a sound sensor. The train travels away from a loudspeaker that is emitting sound waves of constant amplitude and frequency towards a reflecting barrier.</p>
<p><img src=""></p>
<p>The sound sensor gives a graph of the variation of output voltage with time along the track that is similar in shape to the graph shown in the resource. Explain how this effect arises.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«light» superposes/interferes</p>
<p>pattern consists of «intensity» maxima and minima<br><em><strong>OR</strong></em><br>consisting of constructive and destructive «interference»</p>
<p>voltage peaks correspond to interference maxima</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{{\lambda D}}{d} = \frac{{6.3 \times {{10}^{ - 7}} \times 5.0}}{{1.5 \times {{10}^{ - 3}}}} = ">
<mi>s</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>λ</mi>
<mi>D</mi>
</mrow>
<mi>d</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>5.0</mn>
</mrow>
<mrow>
<mn>1.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 2.1 x 10<sup>–3 </sup>«m» </p>
<p> </p>
<p><em>If no unit assume m.</em><br><em>Correct answer only.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct read-off from graph of 25 m s</p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{t} = \frac{{2.1 \times {{10}^{ - 3}}}}{{25 \times {{10}^{ - 3}}}} = ">
<mfrac>
<mi>x</mi>
<mi>t</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>25</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 8.4 x 10<sup>–2</sup> «m s<sup>–1</sup>»</p>
<p> </p>
<p><em>Allow ECF from (b)(i)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«reflection at barrier» leads to two waves travelling in opposite directions</p>
<p>mention of formation of standing wave</p>
<p>maximum corresponds to antinode/maximum displacement «of air molecules»<br><em><strong>OR</strong></em><br>complete cancellation at node position</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical wall carries a uniform positive charge on its surface. This produces a uniform horizontal electric field perpendicular to the wall. A small, positively-charged ball is suspended in equilibrium from the vertical wall by a thread of negligible mass.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge per unit area on the surface of the wall is<em> σ</em>. It can be shown that the electric field strength <em>E</em> due to the charge on the wall is given by the equation</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ε</mi><mn>0</mn></msub></mrow></mfrac></math>.</p>
<p>Demonstrate that the units of the quantities in this equation are consistent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread makes an angle of 30° with the vertical wall. The ball has a mass of 0.025 kg.</p>
<p>Determine the horizontal force that acts on the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge on the ball is 1.2 × 10<sup>−6 </sup>C. Determine <em>σ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The centre of the ball, still carrying a charge of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mtext>C</mtext></math>, is now placed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>40</mn><mo> </mo><mtext>m</mtext></math> from a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.</p>
<p>P is the point on the line joining the charges where the electric field strength is zero.<br>The distance PQ is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>22</mn><mo> </mo><mtext>m</mtext></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Calculate the charge on Q. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies units of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>C</mi><msup><mi>m</mi><mn>2</mn></msup></mfrac><mo>×</mo><mfrac><mrow><mi>N</mi><msup><mi>m</mi><mn>2</mn></msup></mrow><msup><mi>C</mi><mn>2</mn></msup></mfrac></math> seen and reduced to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>N C</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <strong>✓</strong></p>
<p> </p>
<p><em>Accept any analysis (eg dimensional) that yields answer correctly</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> on the ball<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>T</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>30</mn></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mi>m</mi><mi>g</mi></mrow><mrow><mi>cos</mi><mo> </mo><mn>30</mn></mrow></mfrac></math><strong> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>«</mo><mo>=</mo><mi>m</mi><mi>g</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>×</mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo> </mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p><em><br>Allow g = 10 N kg<sup>−1</sup></em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer.</em></p>
<p><em>Award <strong>[1max]</strong> for an answer of zero, interpreting that the horizontal force refers to the horizontal component of the net force.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>»</mo></math><strong> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>85</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>12</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<p><em> <br>Allow <strong>ECF</strong> from the calculated F in (b)(i)</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>Q</mi><mrow><mn>0</mn><mo>.</mo><msup><mn>22</mn><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>18</mn><mn>2</mn></msup></mrow></mfrac></math> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>+</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>C</mtext><mo>»</mo></math> <strong>✓</strong></p>
<p>2sf <strong>✓</strong></p>
<p><em><br>Do not award <strong>MP2</strong> if charge is negative </em></p>
<p><em>Any answer given to 2 sig figs scores <strong>MP3</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>