File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 2 HTML/markSceme-HL-paper2html
File size: 825.74 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Curling is a game played on a horizontal ice surface. A player pushes a large smooth stone across the ice for several seconds and then releases it. The stone moves until friction brings it to rest. The graph shows the variation of speed of the stone with time.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">The total distance travelled by the stone in 17.5 s is 29.8 m.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the coefficient of dynamic friction between the stone and the ice during the last 14.0 s of the stone’s motion.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the stone during its motion <strong>after</strong> release.</p>
<p><img src=""></p>
<p>Label the diagram to show the forces acting on the stone. Your answer should include the name, the direction <strong>and</strong> point of application of each force.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«deceleration» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3.41}}{{14.0}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3.41</mn>
    </mrow>
    <mrow>
      <mn>14.0</mn>
    </mrow>
  </mfrac>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.243\,{\text{m}}\,{{\text{s}}^{ - 2}}">
  <mo>=</mo>
  <mn>0.243</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>m</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>2</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>»</p>
<p><em>F</em> = 0.243 × <em>m</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  = \frac{{0.243 \times m}}{{m \times 9.81}} = 0.025">
  <mi>μ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.243</mn>
      <mo>×</mo>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mi>m</mi>
      <mo>×</mo>
      <mn>9.81</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.025</mn>
</math></span></p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>distance travelled after release = 23.85 «m»<br>KE lost = 5.81<em>m</em> «J»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\mu _{\text{d}}} = \frac{{{\text{KE lost}}}}{{mg \times {\text{distance}}}} = \frac{{5.81m}}{{23.85mg}} = 0.025">
  <mrow>
    <msub>
      <mi>μ</mi>
      <mrow>
        <mtext>d</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>KE lost</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
      <mo>×</mo>
      <mrow>
        <mtext>distance</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>5.81</mn>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mn>23.85</mn>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.025</mn>
</math></span></p>
<p><em>Award <strong>[3]</strong> for a bald correct answer.</em></p>
<p><em>Ignore sign in acceleration.</em></p>
<p><em>Allow ECF from (a) (note that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  = 0.0073">
  <mi>μ</mi>
  <mo>=</mo>
  <mn>0.0073</mn>
</math></span> x candidate answer to (a) ).</em></p>
<p><em>Ignore any units in answer.</em></p>
<p><em>Condone omission of m in solution.</em></p>
<p><em>Allow g = 10 N kg<sup>–1</sup> (gives 0.024).</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>normal force, upwards, ignore point of application</p>
<p><em>Force must be labeled for its mark to be awarded. Blob at poa not required. <br>Allow OWTTE for normal force.  </em><em>Allow N, R, reaction.<br>The vertical forces must lie within the middle third of the stone</em></p>
<p>weight/weight force/force of gravity, downwards, ignore point of application</p>
<p><em>Allow mg, W but not “gravity”. </em></p>
<p><em>Penalise gross deviations from vertical/horizontal once only</em></p>
<p>friction/resistive force, to left, at bottom of stone, point of application must be <strong>on</strong> the interface between ice and stone</p>
<p><em>Allow F, μR. Only allow arrows/lines that lie on the interface. Take the tail of the arrow as the definitive point of application and expect line to be drawn horizontal. <br></em></p>
<p><em>Award <strong>[2 max]</strong> if any force arrow does not touch the stone </em></p>
<p><em>Do not award MP3 if a “driving force” is shown acting to the right. This need not be labelled to disqualify the mark. Treat arrows labelled “air resistance” as neutral.</em></p>
<p><em><img src="" alt></em></p>
<p> </p>
<p><em><strong>N.B:</strong> Diagram in MS is drawn with the vertical forces not direction of travel collinear for clarity</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Airboats are used for transport across a river. To move the boat forward, air is propelled from&nbsp;the back of the boat by a fan blade.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>An airboat has a fan blade of radius 1.8&thinsp;m. This fan can propel air with a maximum speed&nbsp;relative to the boat of 20&thinsp;m&thinsp;s<sup>&minus;1</sup>. The density of air is 1.2&thinsp;kg&thinsp;m<sup>&minus;3</sup>.</p>
</div>

<div class="specification">
<p>In a test the airboat is tied to the river bank with a rope normal to the bank. The fan&nbsp;propels the air at its maximum speed. There is no wind.</p>
</div>

<div class="specification">
<p>The rope is untied and the airboat moves away from the bank. The variation with time <em>t</em>&nbsp;of the speed <em>v</em> of the airboat is shown for the motion.<br><br></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a force acts on the airboat due to the fan blade.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that a mass of about 240 kg of air moves through the fan every second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the tension in the rope is about 5 kN.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the airboat has a maximum speed under these conditions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the distance the airboat travels to reach its maximum speed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the mass of the airboat.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>there is a force «by the fan» on the air / air is accelerated «to the rear» ✓</p>
<p>by Newton 3 ✓</p>
<p>there is an «equal and» opposite force on the boat ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>air gains momentum «backward» ✓</p>
<p>by conservation of momentum / force is rate of change in momentum ✓</p>
<p>boat gains momentum in the opposite direction ✓</p>
<p> </p>
<p><em>Accept a reference to Newton’s third law, e.g. N’3, or any correct statement of it for <strong>MP2</strong> in <strong>ALT 1</strong>.</em></p>
<p><em>Allow any reasonable choice of object where the force of the air is acting on, e.g., fan or blades.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><msup><mi>R</mi><mn>2</mn></msup></math> <em><strong>OR</strong></em> «mass of air through system per unit time =» <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>v</mi><mi>ρ</mi></math> seen ✓</p>
<p>244 «kg s<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Accept use of Energy of air per second = 0.5 ρΑv<sup>3</sup> = 0.5 mv<sup>2</sup> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«force = Momentum change per sec = <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><msup><mi>v</mi><mn>2</mn></msup><mi>ρ</mi></math> = » 244 x 20 <em><strong>OR</strong> </em>4.9 «kN» ✓</p>
<p> </p>
<p><em>Allow use of 240</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>resistive forces increase with speed  <em><strong>OR</strong>  </em>resistive forces/drag equal forward thrust ✓</p>
<p>acceleration/net force becomes zero/speed remains constant ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that area under the graph is distance covered ✓</p>
<p>«Distance =» 480 - 560 «m» ✓</p>
<p> </p>
<p><em>Accept graphical evidence or calculation of correct geometric areas for <strong>MP1</strong>.</em></p>
<p><em><strong>MP2</strong> is numerical value within range.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>calculation of acceleration as gradient at <em>t</em> = 0 «= 1 m s<sup>-2</sup>» ✓</p>
<p>use of <em>F=ma <strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4900</mn><mn>1</mn></mfrac></math>seen ✓</p>
<p>4900 «kg» ✓</p>
<p> </p>
<p><em><strong>MP1</strong> can be shown on the graph.</em></p>
<p><em>Allow an acceleration in the range 1 – 1.1 for <strong>MP2</strong> and consistent answer for <strong>MP3</strong></em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<p><em>Allow use of average acceleration = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>18</mn><mn>40</mn></mfrac></math></em><br><br><em>or assumption of constant force to obtain 11000 «kg» for<strong> [2]</strong></em></p>
<p><em>Allow use of 4800 or 5000 for <strong>MP2</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The majority succeeded in making use of Newton's third law to explain the force on the boat. The question was quite well answered but sequencing of answers was not always ideal. There were some confusions about the air hitting the bank and bouncing off to hit the boat. A small number thought that the wind blowing the fan caused the force on the boat.</p>
<p>bi) This was generally well answered with candidates either starting from the wind turbine formula given in the data booklet or with the mass of the air being found using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mi>A</mi><mi>v</mi></math>.</p>
<p>1bii) Well answered by most candidates. Some creative work to end up with 240 was found in scripts.</p>
<p>1ci) Many candidates gained credit here for recognising that the resistive force eventually equalled the drag force and most were able to go on to link this to e.g. zero acceleration. Some had not read the question properly and assumed that the rope was still tied. There was one group of answers that stated something along the lines of "as there is no rope there is nothing to stop the boat so it can go at max speed.</p>
<p>1cii) A slight majority did not realise that they had to find the area under the velocity-time graph, trying equations of motion for non-linear acceleration. Those that attempted to calculate the area under the graph always succeeded in answering within the range.</p>
<p>1ciii) Use of the average gradient was common here for the acceleration. However, there also were answers that attempted to calculate the mass via a kinetic energy calculation that made all sorts of incorrect assumptions. Use of average acceleration taken from the gradient of the secant was also common.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A small metal pendulum bob is suspended at rest from a fixed point with a length of thread of negligible mass. Air resistance is negligible.</p>
<p>The pendulum begins to oscillate. Assume that the motion of the system is simple harmonic, and in one vertical plane.</p>
<p>The graph shows the variation of kinetic energy of the pendulum bob with time.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>When the 75 g bob is moving horizontally at 0.80 m s<sup>–1</sup>, it collides with a small stationary object also of mass 75 g. The object and the bob stick together.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in m, the length of the thread. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label on the graph with the letter X a point where the speed of the pendulum is half that of its initial speed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the pendulum bob is 75 g. Show that the maximum speed of the bob is about 0.7 m s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of the combined masses immediately after the collision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the collision is inelastic.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation of gravitational potential energy with time for the bob and the object after the collision. The data from the graph used in (a) is shown as a dashed line for reference.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">The speed after the collision of the bob and the object was measured using a sensor. This sensor emits a sound of frequency <em>f</em> and this sound is reflected from the moving bob. The sound is then detected by the sensor as frequency <em>f</em>′.</p>
<p style="text-align:left;">Explain why <em>f</em> and <em>f</em>′ are different.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies T as 2.25 s ✔</p>
<p>L = 1.26 m ✔</p>
<p>1.3 / 1.26 «m» ✔</p>
<p><em>Accept <span style="text-decoration:underline;">any</span> number of s.f. for MP2.</em></p>
<p><em>Accept <span style="text-decoration:underline;">any</span> answer with 2 or 3 s.f. for MP3</em>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>X labels any point <span style="text-decoration:underline;">on the curve</span> where <em>E<span style="font-size:11.6667px;"><sub>K</sub>&nbsp;&nbsp;</span></em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span> of maximum/5 mJ ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> mv<sup>2</sup> = 20 × 10<sup>−3</sup> seen <em><strong>OR&nbsp;</strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> ×&nbsp;7.5&nbsp;× 10<sup>-2</sup>&nbsp;× <em>v</em><sup>2</sup> = 20&nbsp;× 10<sup>-3</sup>&nbsp;✔</p>
<p>0.73 «m s<sup>−1</sup>» ✔</p>
<p><em>Must see at least 2 s.f. for MP2</em>.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.40 «m s<sup>-1</sup>» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>initial energy 24 mJ and final energy 12 mJ ✔</p>
<p>energy is lost/unequal /change in energy is 12 mJ ✔</p>
<p>inelastic collisions occur when energy is lost ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>graph with same period but inverted ✔</p>
<p>amplitude one half of the original/two boxes throughout (by eye) ✔</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mention of Doppler effect ✔</p>
<p>there is a change in the wavelength of the reflected wave ✔</p>
<p>because the wave speed is constant, there is a change in frequency ✔</p>
<div class="question_part_label">b.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was well approached by candidates. The noteworthy mistakes were not reading the correct period of the pendulum from the graph, and some simple calculation and mathematical errors. This question also had one mark for writing an answer with the correct number of significant digits. Candidates should be aware to look for significant digit question on the exam and can write any number with correct number of significant digits for the mark.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered. This is a “show that” question so candidates needed to clearly show the correct calculation and write an answer with at least one significant digit more than the given answer. Many candidates failed to appreciate that the energy was given in mJ and the mass was in grams, and that these values needed to be converted before substitution.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates fell into some broad categories on this question. This was a “show that” question, so there was an expectation of a mathematical argument. Many were able to successfully show that the initial and final kinetic energies were different and connect this to the concept of inelastic collisions. Some candidates tried to connect conservation of momentum unsuccessfully, and some simply wrote an extended response about the nature of inelastic collisions and noted that the bobs stuck together without any calculations. This approach was awarded zero marks.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates drew graphs that received one mark for either recognizing the phase difference between the gravitational potential energy and the kinetic energy, or for recognizing that the total energy was half the original energy. Few candidates had both features for both marks.</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was essentially about the Doppler effect, and therefore candidates were expected to give a good explanation for why there is a frequency difference. As with all explain questions, the candidates were required to go beyond the given information. Very few candidates earned marks beyond just recognizing that this was an example of the Doppler effect. Some did discuss the change in wavelength caused by the relative motion of the bob, although some candidates chose very vague descriptions like “the waves are all squished up” rather than using proper physics terms. Some candidates simply wrote and explained the equation from the data booklet, which did not receive marks. It should be noted that this was a three mark question, and yet some candidates attempted to answer it with a single sentence.</p>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical wall carries a uniform positive charge on its surface. This produces a uniform&nbsp;horizontal electric field perpendicular to the wall. A small, positively-charged ball is&nbsp;suspended in equilibrium from the vertical wall by a thread of negligible mass.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>The centre of the ball, still carrying a charge of 1.2 × 10<sup>−6 </sup>C, is now placed 0.40 m from&nbsp;a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.</p>
<p>P is the point on the line joining the charges where the electric field strength is zero.&nbsp;The distance PQ is 0.22 m.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge per unit area on the surface of the wall is<em> σ</em>. It can be shown that the&nbsp;electric field strength <em>E</em> due to the charge on the wall is given by the equation</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ε</mi><mn>0</mn></msub></mrow></mfrac></math>.</p>
<p>Demonstrate that the units of the quantities in this equation are consistent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread makes an angle of 30° with the vertical wall. The ball has a mass&nbsp;of 0.025 kg.</p>
<p>Determine the horizontal force that acts on the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge on the ball is 1.2 × 10<sup>−6 </sup>C. Determine <em>σ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread breaks. Explain the initial subsequent motion of the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the charge on Q. State your answer to an appropriate number of&nbsp;significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, without calculation, whether or not the electric potential at P is zero.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies units of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>C</mi><msup><mi>m</mi><mn>2</mn></msup></mfrac><mo>×</mo><mfrac><mrow><mi>N</mi><msup><mi>m</mi><mn>2</mn></msup></mrow><msup><mi>C</mi><mn>2</mn></msup></mfrac></math>&nbsp;seen and reduced to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>N C</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p>&nbsp;</p>
<p><em>Accept any analysis (eg dimensional) that yields answer correctly</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> on ball&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>T</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>30</mn></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mi>m</mi><mi>g</mi></mrow><mrow><mi>cos</mi><mo> </mo><mn>30</mn></mrow></mfrac></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>&nbsp;</mo><mo>«</mo><mo>=</mo><mi>m</mi><mi>g</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>025</mn><mo>×</mo><mo>&nbsp;</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>&nbsp;</mo><mo>×</mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>»</mo><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo>&nbsp;</mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em><br>Allow g = 10 N kg<sup>−1</sup></em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer.</em></p>
<p><em>Award <strong>[1max]</strong> for an answer of zero, interpreting that the horizontal force refers to the horizontal component of the net force.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>»</mo></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>85</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>12</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em> <br>Allow <strong>ECF</strong> from the calculated F in (b)(i)</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal/repulsive force and vertical force/pull of gravity act on the ball <strong>✓</strong></p>
<p>so ball has constant acceleration/constant net force <strong>✓</strong></p>
<p>motion is in a straight line <strong>✓</strong></p>
<p>at 30° to vertical away from wall/along original line of thread <strong>✓</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>Q</mi><mrow><mn>0</mn><mo>.</mo><msup><mn>22</mn><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>18</mn><mn>2</mn></msup></mrow></mfrac></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>+</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>C</mtext><mo>»</mo></math><strong>✓</strong></p>
<p>2sf<strong> ✓</strong></p>
<p><em><br>Do not award <strong>MP2</strong> if charge is negative </em></p>
<p><em>Any answer given to 2 sig figs scores <strong>MP3</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>work must be done to move a «positive» charge from infinity to P «as both charges are positive»<br><em><strong>OR</strong></em><br>reference to both potentials positive and added<br><em><strong>OR</strong></em><br>identifies field as gradient of potential and with zero value <strong>✓</strong></p>
<p>therefore, point P is at a positive / non-zero potential<strong>&nbsp;✓</strong></p>
<p><em><br>Award <strong>[0]</strong> for bald answer that P has non-zero potential</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A non-uniform electric field, with field lines as shown, exists in a region where there is&nbsp;no gravitational field. X is a point in the electric field. The field lines and X lie in the&nbsp;plane of the paper.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by electric field strength.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is placed at X and released from rest. Draw, on the diagram, the direction of the force acting on the electron due to the field.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The electron is replaced by a proton which is also released from rest at X. Compare, without calculation, the motion of the electron with the motion of the proton after release. You may assume that no frictional forces act on the electron or the proton.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>force per unit charge</p>
<p>acting on a small/test positive charge</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontally to the left</p>
<p><em>Arrow does not need to touch X</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>proton moves to the right/they move in opposite directions</p>
<p>force on each is initially the same</p>
<p>proton accelerates less than electron initially «because mass is greater»</p>
<p>field is stronger on right than left «as lines closer»</p>
<p>proton acceleration increases «as it is moving into stronger field»</p>
<p><em><strong>OR</strong></em></p>
<p>electron acceleration decreases «as it is moving into weaker field»</p>
<p><em>Allow ECF from (b)</em></p>
<p><em>Accept converse argument for electron</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An elastic climbing rope is tested by fixing one end of the rope to the top of a crane. The other end of the rope is connected to a block which is initially at position A. The block is released from rest. The mass of the rope is negligible.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.44.22.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/01"></p>
<p>The unextended length of the rope is 60.0 m. From position A to position B, the block falls freely.</p>
</div>

<div class="specification">
<p>In another test, the block hangs in equilibrium at the end of the same elastic rope. The elastic constant of the rope is 400 Nm<sup>–1</sup>. The block is pulled 3.50 m vertically below the equilibrium position and is then released from rest.</p>
</div>

<div class="specification">
<p>An elastic climbing rope is tested by fixing one end of the rope to the top of a crane. The other end of the rope is connected to a block which is initially at position A. The block is released from rest. The mass of the rope is negligible.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.44.22.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/01"></p>
<p>The unextended length of the rope is 60.0 m. From position A to position B, the block falls freely.</p>
</div>

<div class="specification">
<p>At position C the speed of the block reaches zero. The time taken for the block to fall between B and C is 0.759 s. The mass of the block is 80.0 kg.</p>
</div>

<div class="specification">
<p>For the rope and block, describe the energy changes that take place</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At position B the rope starts to extend. Calculate the speed of the block at position B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the magnitude of the average resultant force acting on the block between B and C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch on the diagram the average resultant force acting on the block between B and C. The arrow on the diagram represents the weight of the block.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the magnitude of the average force exerted by the rope on the block between B and C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>between A and B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>between B and C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The length reached by the rope at C is 77.4 m. Suggest how energy considerations could be used to determine the elastic constant of the rope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the time taken for the block to return to the equilibrium position for the first time.&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of the block as it passes the equilibrium position.&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of conservation of energy</p>
<p><strong><em>OR</em></strong></p>
<p><em>v</em><sup>2</sup> =&nbsp;<em>u</em><sup>2</sup>&nbsp;+ 2<em>as</em></p>
<p>&nbsp;</p>
<p><em>v</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2 \times 60.0 \times 9.81} ">
  <msqrt>
    <mn>2</mn>
    <mo>×</mo>
    <mn>60.0</mn>
    <mo>×</mo>
    <mn>9.81</mn>
  </msqrt>
</math></span><strong>»</strong> = 34.3 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of impulse <em>F</em><sub>ave</sub> × Δ<em>t</em> =&nbsp;Δ<em>p</em></p>
<p><strong><em>OR</em></strong></p>
<p>use of <em>F</em> = <em>ma</em> with average acceleration</p>
<p><strong><em>OR</em></strong></p>
<p><em>F</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{80.0 \times 34.3}}{{0.759}}">
  <mfrac>
    <mrow>
      <mn>80.0</mn>
      <mo>×</mo>
      <mn>34.3</mn>
    </mrow>
    <mrow>
      <mn>0.759</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>&nbsp;</p>
<p>3620<strong>«</strong>N<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow ECF from (a).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>upwards</p>
<p>clearly longer than weight</p>
<p>&nbsp;</p>
<p><em>For second marking point allow ECF from (b)(i) providing line is upwards.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3620 + 80.0&nbsp;× 9.81</p>
<p>4400 <strong>«</strong>N<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow ECF from (b)(i).</em></p>
<p><strong><em>[</em></strong><strong><em>2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(loss in) gravitational potential energy (of block) into kinetic energy (of block)</p>
<p>&nbsp;</p>
<p><em>Must</em><em> see names of energy (gravitational potential energy and kinetic energy) – Allow for reasonable variations of terminology (eg energy of motion for KE).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope</p>
<p>&nbsp;</p>
<p><em>See note for 1(c)(i) for naming convention.</em></p>
<p><em>Must see either the block or the rope (or both) mentioned in connection with the appropriate energies.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>k can be determined using EPE = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>kx</em><sup>2</sup></p>
<p>correct statement or equation showing</p>
<p>GPE at A = EPE at C</p>
<p><strong><em>OR</em></strong></p>
<p>(GPE + KE) at B = EPE at C</p>
<p>&nbsp;</p>
<p><em>Candidate must clearly indicate the energy associated with either position A or B for MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>T</em> = 2<em>π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{80.0}}{{400}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>80.0</mn>
      </mrow>
      <mrow>
        <mn>400</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span> = 2.81&nbsp;<strong>«</strong>s<strong>»</strong></p>
<p>time =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{4}">
  <mfrac>
    <mi>T</mi>
    <mn>4</mn>
  </mfrac>
</math></span> = 0.702&nbsp;<strong>«</strong>s<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for kinematic solutions that assume a constant acceleration.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>ω</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{{2.81}}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mn>2.81</mn>
    </mrow>
  </mfrac>
</math></span> = 2.24&nbsp;<strong>«</strong>rad s<sup>–1</sup><strong>»</strong></p>
<p><em>v&nbsp;</em>= 2.24 ×&nbsp;3.50 = 7.84&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>kx</em><sup>2</sup> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>mv</em><sup>2</sup>&nbsp;<strong><em>OR</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>400&nbsp;× 3.5<sup>2</sup> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>80<em>v</em><sup>2</sup></p>
<p><em>v =&nbsp;</em>7.84&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for kinematic solutions that assume a constant acceleration.</em></p>
<p><em>Allow ECF for T from (e)(i).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The ball is now displaced through a small distance <em>x </em>from the bottom of the bowl and is&nbsp;then released from rest.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.19.20.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d"></p>
<p>The magnitude of the force on the ball towards the equilibrium position is given by</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{mgx}}{R}">
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
      <mi>x</mi>
    </mrow>
    <mi>R</mi>
  </mfrac>
</math></span></p>
<p>where <em>R </em>is the radius of the bowl.</p>
</div>

<div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a&nbsp;frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>θ</em> to the horizontal.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the&nbsp;weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following&nbsp;equation.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="F = \frac{{mg}}{{\tan \theta }}">
  <mi>F</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the&nbsp;radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ball will perform simple harmonic oscillations about the&nbsp;equilibrium position.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the period of oscillation of the ball is about 6 s.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The amplitude of oscillation is 0.12 m. On the axes, draw a graph to show the&nbsp;variation with time <em>t </em>of the velocity <strong><em>v </em></strong>of the ball during one period.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced&nbsp;so that its height from the horizontal is equal to 8.0 m.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain&nbsp;in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>towards the centre <strong>«</strong>of the circle<strong>» </strong>/ horizontally to the right</p>
<p>&nbsp;</p>
<p><em>Do not accept towards the centre of the bowl</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward vertical arrow of any length</p>
<p>arrow of correct length</p>
<p>&nbsp;</p>
<p><em>Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required</em></p>
<p><em>eg</em>:&nbsp;<img src="images/Schermafbeelding_2018-08-12_om_13.22.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>F</em> = <em>N</em>&nbsp;cos&nbsp;<em>θ</em></p>
<p><em>mg</em> =&nbsp;<em>N</em> sin&nbsp;<em>θ</em></p>
<p>dividing/substituting to get result</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>right angle triangle drawn with <em>F</em>, <em>N </em>and <em>W/mg </em>labelled</p>
<p>angle correctly labelled and arrows on forces in correct directions</p>
<p>correct use of trigonometry leading to the required relationship</p>
<p>&nbsp;</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_13.28.39.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em>tan&nbsp;θ</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{O}}}{A} = \frac{{mg}}{F}">
  <mfrac>
    <mrow>
      <mtext>O</mtext>
    </mrow>
    <mi>A</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mi>F</mi>
  </mfrac>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg}}{{\tan \theta }}">
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span> =&nbsp;<em>m</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span></p>
<p><em>r</em> = <em>R</em> cos&nbsp;<em>θ</em></p>
<p><em>v</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{gR{{\cos }^2}\theta }}{{\sin \theta }}} /\sqrt {\frac{{gR\cos \theta }}{{\tan \theta }}} /\sqrt {\frac{{9.81 \times 8.0\cos 22}}{{\tan 22}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mi>g</mi>
        <mi>R</mi>
        <mrow>
          <msup>
            <mrow>
              <mi>cos</mi>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
        <mi>θ</mi>
      </mrow>
      <mrow>
        <mi>sin</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>g</mi>
        <mi>R</mi>
        <mi>cos</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
      <mrow>
        <mi>tan</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>9.81</mn>
        <mo>×</mo>
        <mn>8.0</mn>
        <mi>cos</mi>
        <mo>⁡</mo>
        <mn>22</mn>
      </mrow>
      <mrow>
        <mi>tan</mi>
        <mo>⁡</mo>
        <mn>22</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span></p>
<p><em>v</em> = 13.4/13&nbsp;<strong>«</strong><em>ms&nbsp;<sup>–</sup></em><em><sup>1</sup></em><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for a bald correct answer&nbsp;</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for an answer of 13.9/14 </em><strong>«</strong><em>ms&nbsp;<sup>–</sup></em><em><sup>1</sup></em><strong>»</strong><em>. MP2 omitted</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is no force to balance the weight/N is horizontal</p>
<p>so no / it is not possible</p>
<p>&nbsp;</p>
<p><em>Must see correct justification to award MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the <strong>«</strong>restoring<strong>» </strong>force/acceleration is proportional to displacement</p>
<p>&nbsp;</p>
<p><em>Direction is not required</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ω</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{g}{R}} ">
  <msqrt>
    <mfrac>
      <mi>g</mi>
      <mi>R</mi>
    </mfrac>
  </msqrt>
</math></span><strong>»</strong> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{9.81}}{{8.0}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>9.81</mn>
      </mrow>
      <mrow>
        <mn>8.0</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span>&nbsp;<strong>«</strong>= 1.107 s<sup>–1</sup><strong>»</strong></p>
<p><em>T</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{\omega }">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mi>ω</mi>
  </mfrac>
</math></span> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{{1.107}}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mn>1.107</mn>
    </mrow>
  </mfrac>
</math></span> =<strong>»</strong> 5.7&nbsp;<strong>«</strong>s<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow use of </em>or <em>g&nbsp;= 9.8 or 10</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for a substitution into T = 2π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{I}{g}} ">
  <msqrt>
    <mfrac>
      <mi>I</mi>
      <mi>g</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sine graph</p>
<p>correct amplitude <strong>«</strong>0.13 m s<sup>–1</sup><strong>»</strong></p>
<p>correct period and only 1 period shown</p>
<p>&nbsp;</p>
<p><em>Accept ± sine for shape of the graph. Accept 5.7 s or 6.0 s for the correct period.</em></p>
<p><em>Amplitude should be correct to ±</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;<em>square for MP2</em></p>
<p><em>eg: v /</em>m s<sup>–1&nbsp;&nbsp;</sup>&nbsp;<img src="images/Schermafbeelding_2018-08-14_om_06.59.06.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d.iii"></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed before collision&nbsp;<em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gR} "> <msqrt> <mn>2</mn> <mi>g</mi> <mi>R</mi> </msqrt> </math></span> =<strong>»</strong> 12.5&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>from conservation of momentum<strong>» </strong>common speed after collision is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>&nbsp;initial speed&nbsp;<strong>«</strong><em>v<sub>c</sub></em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12.5}}{2}"> <mfrac> <mrow> <mn>12.5</mn> </mrow> <mn>2</mn> </mfrac> </math></span> = 6.25 ms<sup>–1</sup><strong>»</strong></p>
<p><em>h =&nbsp;</em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_c}^2}}{{2g}} = \frac{{{{6.25}^2}}}{{2 \times 9.81}}"> <mfrac> <mrow> <msup> <mrow> <msub> <mi>v</mi> <mi>c</mi> </msub> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>g</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>6.25</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>9.81</mn> </mrow> </mfrac> </math></span><strong>»</strong> 2.0&nbsp;<strong>«</strong>m<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow 12.5 from incorrect use of kinematics equations</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for mg(8)&nbsp;=&nbsp;2mgh leading to h = 4 m if done in one step.</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Allow ECF from MP2</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A company delivers packages to customers using a small unmanned aircraft. Rotating horizontal blades exert a force on the surrounding air. The air above the aircraft is initially stationary.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="319" height="179"></p>
<p>The air is propelled vertically downwards with speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>. The aircraft hovers motionless above the ground. A package is suspended from the aircraft on a string. The mass of the aircraft is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>95</mn><mtext> kg</mtext></math> and the combined mass of the package and string is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>45</mn><mo> </mo><mi>kg</mi></math>. The mass of air pushed downwards by the blades in one second is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>7</mn><mo> </mo><mi>kg</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the value of the resultant force on the aircraft when hovering.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, by reference to Newton’s third law, how the upward lift force on the aircraft is achieved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the power transferred to the air by the aircraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The package and string are now released and fall to the ground. The lift force on the aircraft remains unchanged. Calculate the initial acceleration of the aircraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">zero </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">Blades exert a downward force on the air </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0"><br>air exerts an equal and opposite force on the blades </span><span class="fontstyle3">«</span><span class="fontstyle0">by Newton’s third law</span><span class="fontstyle3">»<br></span><span class="fontstyle4"><em><strong>OR</strong></em><br></span><span class="fontstyle0">air exerts a reaction force on the blades </span><span class="fontstyle3">«</span><span class="fontstyle0">by Newton’s third law</span><span class="fontstyle3">» </span><span class="fontstyle2">✓</span></p>
<p><em><span class="fontstyle5"><br>Downward direction required for </span><strong><span class="fontstyle4">MP1</span></strong><span class="fontstyle4">.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«</span><span class="fontstyle1">lift force/change of momentum in one second</span><span class="fontstyle0">» <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>7</mn><mi>v</mi></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>7</mn><mi>v</mi><mo>=</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>95</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>45</mn></mrow></mfenced><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></math> ✓</span></p>
<p><span class="fontstyle4"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <em><strong>AND </strong></em></span><span class="fontstyle1">answer expressed to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> sf only </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle5"><em><br>Allow</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">8</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">2</mn></math> <em>from </em></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo mathvariant="italic">=</mo><mn mathvariant="italic">10</mn><mo mathvariant="italic"> </mo><mi>m</mi><msup><mi>s</mi><mrow><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn></mrow></msup></math>.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span class="fontstyle0">power <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mi>rate</mi><mo> </mo><mi>of</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>transfer</mi><mo> </mo><mi>to</mi><mo> </mo><mi>the</mi><mo> </mo><mi>air</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfrac><mrow><mo>∆</mo><mi>m</mi></mrow><mrow><mo>∆</mo><mi>t</mi></mrow></mfrac><msup><mi>v</mi><mn>2</mn></msup><mo>»</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>8</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup></math> ✓</span></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>56</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">W</mi><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><span class="fontstyle0">Power <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mi>Force</mi><mo> </mo><mo>×</mo><mo> </mo><mi>v</mi><mo> </mo><mi>ave</mi><mo>»</mo><mo>=</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>95</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>45</mn></mrow></mfenced><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn><mo>×</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>1</mn></mrow><mn>2</mn></mfrac></math> ✓</span> </p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>56</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">W</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">vertical force = lift force – weight </span><span class="fontstyle2"><em><strong>OR</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></math> <em><strong>OR</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo>»</mo><mo> </mo></math></span><span class="fontstyle4">✓</span></p>
<p><span class="fontstyle0">acceleration <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>95</mn></mrow></mfrac><mo>=</mo><mn>4</mn><mo>.</mo><mn>6</mn><mo> </mo><mo>«</mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo><mo> </mo></math></span><span class="fontstyle4">✓</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was generally answered well with the most common incorrect answer being the weight of the aircraft and package. The question uses the command term 'state' which indicates that the answer requires no working.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The question required candidates to apply Newton's third law to a specific situation. Candidates who had learned the 'action and reaction' version of Newton's third law generally did less well than those who had learned a version describing 'object A exerting a force on object B' etc. Some answers lacked detail of what was exerting the force and in which direction.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was answered well with many getting full marks. A small number gave the wrong number of significant figures and some attempted to answer using kinematics equations or kinetic energy.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HL only. It was common to see answers that neglected to average the velocity and consequently arrived at an answer twice the size of the correct one. This was awarded 1 of the 2 marks.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well done by a good number of candidates. Many earned a mark by simply using the correct mass to find an acceleration even though the force was incorrect.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The moon Phobos moves around the planet Mars in a circular orbit.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the origin of the force that acts on Phobos.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why this force does no work on Phobos.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital period <em>T</em> of a moon orbiting a planet of mass <em>M</em> is given by</p>
<p style="text-align:center;"><span style="background-color:#ffffff;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{R^3}}}{{{T^2}}} = kM">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>R</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>T</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mi>k</mi>
  <mi>M</mi>
</math></span></span></p>
<p>where <em>R</em> is the average distance between the centre of the planet and the centre of the moon.</p>
<p>Show that&nbsp;<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{G}{{4{\pi ^2}}}">
  <mi>k</mi>
  <mo>=</mo>
  <mfrac>
    <mi>G</mi>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following data for the Mars–Phobos system and the Earth–Moon system are available:</p>
<p>Mass of Earth = 5.97 × 10<sup>24</sup> kg</p>
<p>The Earth–Moon distance is 41 times the Mars–Phobos distance.</p>
<p>The orbital period of the Moon is 86 times the orbital period of Phobos.</p>
<p>Calculate, in kg, the mass of Mars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation of the gravitational potential between the Earth and Moon with distance from the centre of the Earth. The distance from the Earth is expressed as a fraction of the total distance between the centre of the Earth and the centre of the Moon.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Determine, using the graph, the mass of the Moon.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>gravitational attraction/force/field «of the planet/Mars» ✔</p>
<p><em>Do not accept “gravity”</em>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the force/field and the velocity/displacement are at 90° to each other <strong><em>OR</em></strong></p>
<p>there is no change in GPE of the moon/Phobos ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATE 1</strong></em></p>
<p>«using fundamental equations»</p>
<p>use of Universal gravitational force/acceleration/orbital velocity equations ✔</p>
<p>equating to centripetal force or acceleration. ✔</p>
<p>rearranges to get <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{G}{{4{\pi ^2}}}">
  <mi>k</mi>
  <mo>=</mo>
  <mfrac>
    <mi>G</mi>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></span>&nbsp; ✔</p>
<p><em><strong>ALTERNATE 2</strong></em></p>
<p>«starting with&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:center;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{R^3}}}{{{T^2}}} = kM">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>R</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>T</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mi>k</mi>
  <mi>M</mi>
</math></span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">»</span></span></p>
<p>substitution of proper equation for T from orbital motion equations ✔</p>
<p>substitution of proper equation for M <em><strong>OR</strong></em> R from orbital motion equations ✔</p>
<p>rearranges to get <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{G}{{4{\pi ^2}}}">
  <mi>k</mi>
  <mo>=</mo>
  <mfrac>
    <mi>G</mi>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></span>&nbsp; ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_{{\text{Mars}}}} = {\left( {\frac{{{R_{{\text{Mars}}}}}}{{{R_{{\text{Earth}}}}}}} \right)^3}{\left( {\frac{{{T_{{\text{Earth}}}}}}{{{T_{Mars}}}}} \right)^2}{m_{{\text{Earth}}}}">
  <mrow>
    <msub>
      <mi>m</mi>
      <mrow>
        <mrow>
          <mtext>Mars</mtext>
        </mrow>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mrow>
                <msub>
                  <mi>R</mi>
                  <mrow>
                    <mrow>
                      <mtext>Mars</mtext>
                    </mrow>
                  </mrow>
                </msub>
              </mrow>
            </mrow>
            <mrow>
              <mrow>
                <msub>
                  <mi>R</mi>
                  <mrow>
                    <mrow>
                      <mtext>Earth</mtext>
                    </mrow>
                  </mrow>
                </msub>
              </mrow>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mrow>
                <msub>
                  <mi>T</mi>
                  <mrow>
                    <mrow>
                      <mtext>Earth</mtext>
                    </mrow>
                  </mrow>
                </msub>
              </mrow>
            </mrow>
            <mrow>
              <mrow>
                <msub>
                  <mi>T</mi>
                  <mrow>
                    <mi>M</mi>
                    <mi>a</mi>
                    <mi>r</mi>
                    <mi>s</mi>
                  </mrow>
                </msub>
              </mrow>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msub>
      <mi>m</mi>
      <mrow>
        <mrow>
          <mtext>Earth</mtext>
        </mrow>
      </mrow>
    </msub>
  </mrow>
</math></span></span> or other consistent re-arrangement ✔</p>
<p>6.4 × 10<sup>23</sup> «kg» ✔</p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>read off separation at maximum potential 0.9 ✔</p>
<p>equating of gravitational field strength of earth and moon at that location <em><strong>OR <img src="">✔</strong></em></p>
<p>7.4 × 10<sup>22</sup> «kg» ✔</p>
<p><em>Allow ECF from MP1</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered, although some candidates simply used the vague term “gravity” rather than specifying that it is a gravitational force or a gravitational field. Candidates need to be reminded about using proper physics terms and not more general, “every day” terms on the exam.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates connected the idea that the gravitational force is perpendicular to the velocity (and hence the displacement) for the mark. It was also allowed to discuss that there is no change in gravitational potential energy, so therefore no work was being done. It was not acceptable to simply state that the net displacement over one full orbit is zero. Unfortunately, some candidates suggested that there is no net&nbsp;force on the moon so there is no work done, or that the moon is so much smaller so no work could be done on it.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was another “show that” derivation. Many candidates attempted to work with universal gravitation equations, either from memory or the data booklet, to perform this derivation. The variety of correct solution paths was quite impressive, and many candidates who attempted this question were able to receive some marks. Candidates should be reminded on “show that” questions that it is never allowed to work backwards from the given answer. Some candidates also made up equations (such as T = 2𝝿r) to force the derivation to work out.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was challenging for candidates. The candidates who started down the correct path of using the given derived value from 5bi often simply forgot that the multiplication factors had to be squared and cubed as well as the variables.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was left blank by many candidates, and very few who attempted it were able to successfully recognize that the gravitational fields of the Earth and Moon balance at 0.9r and then use the proper equation to calculate the mass of the Moon.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A chicken’s egg of mass 58 g is dropped onto grass from a height of 1.1 m.&nbsp;Assume that air resistance is negligible and that the egg does not bounce or break.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>impulse</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the kinetic energy of the egg just before impact is about 0.6 J.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The egg comes to rest in a time of 55 ms. Determine the magnitude of the average decelerating force that the ground exerts on the egg.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the egg is likely to break when dropped onto concrete from the same height.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>force × time</p>
<p><em><strong>OR</strong></em></p>
<p>change in momentum ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>k</sub> = mgh =  0.058 × 9.81 ×1.1 = 0.63 J ✔</p>
<p><em>Allow use of g = 10 m s<sup>−2</sup> (which gives 0.64 «J»)</em></p>
<p><em>Substitution and at least 2 SF must be shown</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>initial momentum = <em>mv</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2 \times 0.058 \times 0.63} ">
  <msqrt>
    <mn>2</mn>
    <mo>×</mo>
    <mn>0.058</mn>
    <mo>×</mo>
    <mn>0.63</mn>
  </msqrt>
</math></span> «= 0.27 kg m s<sup>−1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>mv</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.058 \times \sqrt {2 \times 9.81 \times 1.1} ">
  <mn>0.058</mn>
  <mo>×</mo>
  <msqrt>
    <mn>2</mn>
    <mo>×</mo>
    <mn>9.81</mn>
    <mo>×</mo>
    <mn>1.1</mn>
  </msqrt>
</math></span> «= 0.27 kg m s<sup>−1</sup>» ✔</p>
<p>force = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{change in momentum}}}}{{{\text{time}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>change in momentum</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>time</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.27}}{{0.055}}">
  <mfrac>
    <mrow>
      <mn>0.27</mn>
    </mrow>
    <mrow>
      <mn>0.055</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p>4.9 «N» ✔</p>
<p><em>F − mg</em> = 4.9 so <em>F </em>= 5.5 «N» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>«<em>E</em><sub>k</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>mv<sup>2</sup> = 0.63 J» v = 4.7 m s<sup>−1</sup> ✔</p>
<p>acceleration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta v}}{{\Delta t}}">
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
</math></span> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.7}}{{55 \times {{10}^{ - 3}}}}">
  <mfrac>
    <mrow>
      <mn>4.7</mn>
    </mrow>
    <mrow>
      <mn>55</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = «85 m s<sup>−2</sup>» ✔</p>
<p>4.9 «N» ✔</p>
<p><em>F − mg</em> = 4.9 so <em>F</em>= 5.5 «N» ✔</p>
<p> </p>
<p><em>Accept negative acceleration and force.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>concrete reduces the stopping time/distance ✔</p>
<p>impulse/change in momentum same so force greater</p>
<p><em><strong>OR</strong></em></p>
<p>work done same so force greater ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>concrete reduces the stopping time ✔</p>
<p>deceleration is greater so force is greater ✔</p>
<p> </p>
<p><em>Allow reverse argument for grass.</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Plutonium-238 (Pu) decays by alpha (&alpha;) decay into uranium (U).</p>
<p>The following data are available for binding energies per nucleon:</p>
<p style="padding-left: 30px;">plutonium&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 7.568&thinsp;MeV</p>
<p style="padding-left: 30px;">uranium&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;7.600&thinsp;MeV</p>
<p style="padding-left: 30px;">alpha particle&nbsp; &nbsp; &nbsp;7.074&thinsp;MeV</p>
</div>

<div class="specification">
<p>The energy in b(i) can be transferred into electrical energy to run the instruments of&nbsp;a spacecraft. A spacecraft carries 33&thinsp;kg of pure plutonium-238 at launch. The decay&nbsp;constant of plutonium is 2.50 &times; 10<sup>&minus;10</sup>&thinsp;s<sup>&minus;1</sup>.</p>
</div>

<div class="specification">
<p>Solar radiation falls onto a metallic surface carried by the spacecraft causing&nbsp;the emission of photoelectrons. The radiation has passed through a filter so it is&nbsp;monochromatic. The spacecraft is moving away from the Sun.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some unstable nuclei have many more neutrons than protons. Suggest the likely decay for these nuclei.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in this decay is about 6 MeV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plutonium nucleus is at rest when it decays.</p>
<p>Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power, in kW, that is available from the plutonium at launch.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spacecraft will take 7.2 years (2.3 × 10<sup>8</sup> s) to reach a planet in the solar system. Estimate the power available to the spacecraft when it gets to the planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the kinetic energy of an emitted photoelectron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the rate at which charge leaves the metallic surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the energy needed to «completely» separate the nucleons of a nucleus</p>
<p><em><strong>OR</strong></em></p>
<p>the energy released when a nucleus is assembled from its constituent nucleons ✓</p>
<p> </p>
<p><em>Accept reference to protons and </em><em>neutrons.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve rising to a maximum between 50 and 100 ✓</p>
<p>curve continued and decreasing ✓</p>
<p> </p>
<p><em>Ignore starting point.<br></em></p>
<p><em>Ignore maximum at alpha particle.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>At a point on the peak of their graph ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>beta minus «decay» ✓</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct mass numbers for uranium (234) and alpha (4) ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>234</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>600</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>074</mn><mo>-</mo><mn>238</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>568</mn></math> «MeV» ✓</p>
<p>energy released 5.51 «MeV» ✓</p>
<p> </p>
<p><em>Ignore any negative sign.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>K</mi><msub><mi>E</mi><mi>α</mi></msub></mrow><mrow><mi>K</mi><msub><mi>E</mi><mi>U</mi></msub></mrow></mfrac><mo>=</mo></math>»<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>U</mi></msub></mrow></mfrac></mfrac></mstyle></math>  <em><strong>OR  </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>m</mi><mi>U</mi></msub><msub><mi>m</mi><mi>α</mi></msub></mfrac></math> ✓</p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>234</mn><mn>4</mn></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn><mo>.</mo><mn>5</mn></math> ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>117</mn><mn>2</mn></mfrac></math> for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>number of nuclei present <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>33</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mn>238</mn></mfrac><mo>×</mo><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo>«</mo><mo>=</mo><mn>8</mn><mo>.</mo><mn>347</mn><mo>×</mo><msup><mn>10</mn><mn>25</mn></msup><mo>»</mo></math> ✓</p>
<p>initial activity is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><msub><mi>N</mi><mn>0</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>347</mn><mo>×</mo><msup><mn>10</mn><mn>25</mn></msup><mo>«</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>08</mn><mo>×</mo><msup><mn>10</mn><mn>16</mn></msup><mo> </mo><mtext>Bq</mtext><mo>»</mo></math> ✓</p>
<p>power is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>08</mn><mo>×</mo><msup><mn>10</mn><mn>16</mn></msup><mo>×</mo><mn>5</mn><mo>.</mo><mn>51</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>≈</mo><mn>18</mn></math> «kW» ✓</p>
<p> </p>
<p><em>Allow a final answer of 20 </em>kW<em> if 6 </em>MeV<em> used. </em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> and <strong>MP2</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>available power after time <em>t</em> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>t</mi></mrow></msup></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><msup><mi>e</mi><mrow><mo>−</mo><mn>2</mn><mo>.</mo><mn>50</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></msup><mo>=</mo><mn>17</mn><mo>.</mo><mn>0</mn></math> «kW» ✓</p>
<p> </p>
<p><em><strong>MP1</strong> may be implicit.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(c)(i)</strong>.</em></p>
<p><em>Allow 17.4 </em>kW<em> from unrounded power from <strong>(c)(i)</strong>.</em></p>
<p><em>Allow 18.8 </em>kW<em> from 6 </em>MeV<em>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stays the same ✓</p>
<p>as energy depends on the frequency of light ✓</p>
<p> </p>
<p><em>Allow reference to wavelength for <strong>MP2</strong>.</em></p>
<p><em>Award <strong>MP2</strong> only to answers stating that KE decreases due to Doppler effect.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases ✓</p>
<p>as number of photons incident decreases ✓</p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Ion-thrust engines can power spacecraft. In this type of engine, ions are created in a&nbsp;chamber and expelled from the spacecraft. The spacecraft is in outer space when the&nbsp;propulsion system is turned on. The spacecraft starts from rest.</p>
<p style="text-align: center;"><img src=""></p>
<p>The mass of ions ejected each second is 6.6 × 10<sup><span style="font-size: small;">–6 </span></sup>kg and the speed of each ion is&nbsp;5.2 × 10<sup><span style="font-size: small;">4</span></sup> m s<sup><span style="font-size: small;">–1</span></sup>. The initial total mass of the spacecraft and its fuel is 740 kg. Assume that&nbsp;the ions travel away from the spacecraft parallel to its direction of motion.</p>
</div>

<div class="specification">
<p>An initial mass of 60 kg of fuel is in the spacecraft for a journey to a planet. Half of the&nbsp;fuel will be required to slow down the spacecraft before arrival at the destination planet.</p>
</div>

<div class="specification">
<p>In practice, the ions leave the spacecraft at a range of angles as shown.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Estimate the maximum speed of the spacecraft.</p>
<p>(ii) Outline why the answer to (i) is an estimate.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why scientists sometimes use estimates in making calculations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ions are likely to spread out.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what effect, if any, this spreading of the ions has on the acceleration of the spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>change in momentum each second = 6.6 × 10<sup>−6</sup> × 5.2 × 10<sup>4</sup> «= 3.4 × 10<sup>−1 </sup>kg m s<sup>−1</sup>» ✔</p>
<p>acceleration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.4 \times {{10}^{ - 1}}}}{{740}}">
  <mfrac>
    <mrow>
      <mn>3.4</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>740</mn>
    </mrow>
  </mfrac>
</math></span> =» 4.6 × 10<sup>−4</sup> «m s<sup>−2</sup>» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <strong>ALTERNATIVE</strong><em><strong> 1:</strong></em></p>
<p>(considering the acceleration of the spacecraft)</p>
<p>time for acceleration = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30}}{{6.6 \times {{10}^{ - 6}}}}">
  <mfrac>
    <mrow>
      <mn>30</mn>
    </mrow>
    <mrow>
      <mn>6.6</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = «4.6 × 10<sup>6</sup>» «s» ✔</p>
<p>max speed = «answer to (a) × 4.6 × 10<sup>6</sup> =» 2.1 × 10<sup>3</sup> «m s<sup>−1</sup>» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>(considering the conservation of momentum)</p>
<p>(momentum of 30 kg of fuel ions = change of momentum of spacecraft)</p>
<p>30 × 5.2 × 10<sup>4 </sup>= 710 × max speed ✔</p>
<p>max speed = 2.2 × 10<sup>3 </sup>«m s<sup>−1</sup>» ✔</p>
<p> </p>
<p>(ii) as fuel is consumed total mass changes/decreases so acceleration changes/increases<br><em><strong>OR</strong></em><br>external forces (such as gravitational) can act on the spacecraft so acceleration isn’t constant ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>problem may be too complicated for exact treatment ✔</p>
<p>to make equations/calculations simpler ✔</p>
<p>when precision of the calculations is not important ✔</p>
<p>some quantities in the problem may not be known exactly ✔</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ions have same (sign of) charge ✔</p>
<p>ions repel each other ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the forces between the ions do not affect the force on the spacecraft. ✔</p>
<p>there is no effect on the acceleration of the spacecraft. ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A fixed horizontal coil is connected to an ideal voltmeter. A bar magnet is released from rest&nbsp;so that it falls vertically through the coil along the central axis of the coil.</p>
<p style="text-align: center;"><img src=""></p>
<p>The variation with time<em> t</em> of the emf induced in the coil is shown.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum magnitude of the rate of change of flux linked with the coil.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the fundamental SI unit for your answer to (a)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the graph becomes negative.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Part of the graph is above the <em>t</em>-axis and part is below. Outline why the areas between the <em>t</em>-axis and the curve for these two parts are likely to be the same.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the changes to the graph when the magnet is dropped from a lower height above the coil.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«−» 5.0 «mV»  <em><strong>OR</strong>  </em>5.0 × 10<sup>−3</sup> «V» ✓</p>
<p> </p>
<p><em>Accept 5.1</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>kg m<sup>2 </sup>A<sup>−1 </sup>s<sup>−3</sup> ✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>Flux linkage is represented by magnetic field lines through the coil ✓</p>
<p>when magnet has passed through the coil / is moving away ✓</p>
<p>flux «linkage» is decreasing ✓</p>
<p>suitable comment that it is the opposite when above ✓</p>
<p>when the magnet goes through the midpoint the induced emf is zero ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>reference to / states Lenz’s law ✓</p>
<p>when magnet has passed through the coil / is moving away ✓</p>
<p>«coil attracts outgoing S pole so» induced field is downwards ✓</p>
<p>before «coil repels incoming N pole so» induced field is upwards<br><em><strong>OR</strong></em><br>induced field has reversed ✓</p>
<p>when the magnet goes through the midpoint the induced emf is zero ✓</p>
<p> </p>
<p><em><strong>OWTTE</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>area represents the total change in flux «linkage» ✓</p>
<p>the change in flux is the same going in and out ✓</p>
<p>«when magnet is approaching» flux increases to a maximum ✓</p>
<p>«when magnet is receding» flux decreases to zero ✓</p>
<p>«so areas must be the same»</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>magnet moves slower ✓</p>
<p>overall time «for interaction» will be longer ✓</p>
<p>peaks will be smaller ✓</p>
<p>areas will be the same as before ✓</p>
<p> </p>
<p><em>Allow a graphical interpretation for <strong>MP2</strong> as “graph more spread out”</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>ai<br>Well answered, with wrong answers stating 8 for the difference or 3 without realising that the sign does not matter.</p>
<p>aii<br>Very few candidates managed to get the correct fundamental SI unit for V. All kinds of errors were observed, from power errors to the use of C as a fundamental unit instead of A.</p>
<p>bi) Most scored best by marking using an alternative method introduced to the markscheme in standardisation. There were some confused and vague comments. Clear, concise answers were rare.</p>
<p>bii) It was common to see conservation of energy invoked here with suggestions that energy was the area under the graph. Many candidates described the shapes to explain why the areas were the same rather than talking about the physics e.g. one peak is short and fat and the other is tall and thin so they balance out.</p>
<p>c) A surprising number didn't pick up on the fact that the magnet would be moving slower. As a result, they discussed everything happening sooner, i.e. the interaction with the magnet and the coil, and that led onto things happening quicker so peaks being bigger.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen atoms in an ultraviolet (UV) lamp make transitions from the first excited state to the ground state. Photons are emitted and are incident on a photoelectric surface as shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_12.49.40.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08"></p>
</div>

<div class="specification">
<p>The photons cause the emission of electrons from the photoelectric surface. The work function of the photoelectric surface is 5.1 eV.</p>
</div>

<div class="specification">
<p>The electric potential of the photoelectric surface is 0 V. The variable voltage is adjusted so that the collecting plate is at –1.2 V.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy of photons from the UV lamp is about 10 eV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the maximum kinetic energy of the emitted electrons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with reference to conservation of energy, how the variable voltage source can be used to stop all emitted electrons from reaching the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The variable voltage can be adjusted so that no electrons reach the collecting plate. Write down the minimum value of the voltage for which no electrons reach the collecting plate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label the equipotential lines at –0.4 V and –0.8 V.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is emitted from the photoelectric surface with kinetic energy 2.1 eV. Calculate the speed of the electron at the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>1</sub> = –13.6&nbsp;<strong>«</strong>eV<strong>»</strong>&nbsp;E<sub>2</sub> = –&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{13.6}}{4}">
  <mfrac>
    <mrow>
      <mn>13.6</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span> = –3.4&nbsp;<strong>«</strong>eV<strong>»</strong></p>
<p>energy of photon is difference&nbsp;<em>E</em><sub>2</sub> – <em>E</em><sub>1</sub>&nbsp;=&nbsp;10.2&nbsp;<strong>«</strong>≈ 10 eV<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Must see at least 10.2 eV.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>10 – 5.1 = 4.9 <strong>«</strong>eV<strong>»</strong></p>
<p>4.9 × 1.6 × 10<sup>–19</sup> = 7.8 × 10<sup>–19</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Allow </em>5.1 <em>if </em>10.2 <em>is used to give</em> 8.2×10<sup>−19</sup> <strong>«</strong>J<strong>»</strong>.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>EPE produced by battery</p>
<p>exceeds maximum KE of electrons / electrons don’t have enough KE</p>
<p>&nbsp;</p>
<p><em>For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4.9&nbsp;<strong>«</strong>V<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow 5.1 if 10.2 is used in (b)(i).</em></p>
<p><em>Ignore sign on answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two equally spaced vertical lines (judge by eye) at approximately 1/3 and 2/3</p>
<p>labelled correctly</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_14.47.13.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08.c.i/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>kinetic energy at collecting plate =&nbsp;0.9&nbsp;<strong>«</strong>eV<strong>»</strong></p>
<p>speed =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{2 \times 0.9 \times 1.6 \times {{10}^{ - 19}}}}{{9.11 \times {{10}^{ - 31}}}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>2</mn>
        <mo>×</mo>
        <mn>0.9</mn>
        <mo>×</mo>
        <mn>1.6</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>19</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mn>9.11</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>31</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span><strong>»</strong>&nbsp;= 5.6 × 10<sup>5</sup>&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A longitudinal wave travels in a medium with speed 340&thinsp;m&thinsp;s<sup>&minus;1</sup>. The graph shows the variation&nbsp;with time <em>t</em> of the displacement <em>x</em> of a particle P in the medium. Positive displacements on&nbsp;the graph correspond to displacements to the right for particle P.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Another wave travels in the medium. The graph shows the variation with time <em>t</em> of the&nbsp;displacement of each wave at the position of P.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>A standing sound wave is established in a tube that is closed at one end and open at&nbsp;the other end. The period of the wave is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>. The diagram represents the standing wave&nbsp;at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> and at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>8</mn></mfrac></math>. The wavelength of the wave is 1.20&thinsp;m. Positive displacements&nbsp;mean displacements to the right.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the wave.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, for particle P, the magnitude and direction of the acceleration at <em>t</em> = 2.0 m s.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the phase difference between the two waves.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a time at which the displacement of P is zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the amplitude of the resultant wave.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of the tube.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A particle in the tube has its equilibrium position at the open end of the tube.<br>State and explain the direction of the velocity of this particle at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>8</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the diagram the standing wave at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>4</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo></math>«s» or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>=</mo><mn>250</mn><mo> </mo></math>«Hz» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>340</mn><mo>×</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>36</mn><mo>≈</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo> </mo></math>«m» ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.<br>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϖ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>T</mi></mfrac><mo>=</mo><mo>»</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math>  <em><strong>OR  </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>57</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></math> «s<sup>−1</sup>» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>a</mtext><mo>=</mo><mo>«</mo><msup><mi>ϖ</mi><mn>2</mn></msup><msub><mi>x</mi><mn>0</mn></msub><mo>=</mo><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>57</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></mfenced><mn>2</mn></msup><mo>×</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>=</mo><mn>14</mn><mo>.</mo><mn>8</mn><mo>≈</mo><mo>»</mo><mn>15</mn></math> «ms<sup>−2</sup>» ✓</p>
<p>«opposite to displacement so» to the right ✓</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«±» <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>/</mo><mn>90</mn><mo>°</mo></math>  <em><strong>OR</strong></em>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac><mo>/</mo><mn>270</mn><mo>°</mo></math> ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.5 «ms» ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>8.0 <em><strong>OR</strong> </em>8.5 «μm» ✓</p>
<p><em><br>From the graph on the paper, value is 8.0. From the calculated correct trig functions, value is 8.49.</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>L</em> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>λ</mi><mo>=</mo></mstyle></math>» 0.90 «m» ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to the right ✓<br><br></p>
<p>displacement is getting less negative</p>
<p><em><strong>OR</strong></em></p>
<p>change of displacement is positive ✓</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal line drawn at the equilibrium position ✓</p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student strikes a tennis ball that is initially at rest so that it leaves the racquet at a speed of 64 m s<sup>–1</sup>. The ball has a mass of 0.058 kg and the contact between the ball and the racquet lasts for 25 ms.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The student strikes the tennis ball at point P. The tennis ball is initially directed at an angle of 7.00° to the horizontal.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The following data are available.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Height of P = 2.80 m<br>Distance of student from net = 11.9 m<br>Height of net = 0.910 m<br>Initial speed of tennis ball = 64 m s<sup>-1</sup></span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the average force exerted by the racquet on the ball.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the average power delivered to the ball during the impact.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the time it takes the tennis ball to reach the net.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the tennis ball passes over the net.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine the speed of the tennis ball as it strikes the ground.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">A student models the bounce of the tennis ball to predict the angle<em> θ</em> at which the ball leaves a surface of clay and a surface of grass.</span></p>
<p><img src=""></p>
<p><span style="background-color:#ffffff;">The model assumes</span></p>
<p><span style="background-color:#ffffff;">• during contact with the surface the ball slides.<br>• the sliding time is the same for both surfaces.<br>• the sliding frictional force is greater for clay than grass.<br>• the normal reaction force is the same for both surfaces.</span></p>
<p><span style="background-color:#ffffff;">Predict for the student’s model, without calculation, whether <em>θ</em> is greater for a clay surface <strong>or</strong> for a grass surface.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F = \frac{{\Delta mv}}{{\Delta t}}/m\frac{{\Delta v}}{{\Delta t}}/\frac{{0.058 \times 64.0}}{{25 \times {{10}^{ - 3}}}}">
  <mi>F</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>m</mi>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mi>m</mi>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>0.058</mn>
      <mo>×</mo>
      <mn>64.0</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔</span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
  <mi>F</mi>
</math></span></span><em><span style="background-color:#ffffff;"> = </span></em><span style="background-color:#ffffff;">148&nbsp;«N»≈150<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«N</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">» &nbsp;✔</span></span></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 1</strong></em></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = \frac{{\frac{1}{2}m{v^2}}}{t}/\frac{{\frac{1}{2} \times 0.058 \times {{64.0}^2}}}{{25 \times {{10}^{ - 3}}}}">
  <mi>P</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mi>m</mi>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>t</mi>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mo>×</mo>
      <mn>0.058</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>64.0</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 4700/4800">
  <mi>P</mi>
  <mo>=</mo>
  <mn>4700</mn>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>4800</mn>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{W}}">
  <mrow>
    <mtext>W</mtext>
  </mrow>
</math></span>»</span></span><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">&nbsp; <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></span></p>
<p>&nbsp;</p>
<p><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = {\text{average}}Fv{\text{ / 148}} \times \frac{{64.0}}{2}">
  <mi>P</mi>
  <mo>=</mo>
  <mrow>
    <mtext>average</mtext>
  </mrow>
  <mi>F</mi>
  <mi>v</mi>
  <mrow>
    <mtext>&nbsp;/ 148</mtext>
  </mrow>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>64.0</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></span> <em><strong><span style="background-color:#ffffff;">&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></strong></em></span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 4700/4800">
  <mi>P</mi>
  <mo>=</mo>
  <mn>4700</mn>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>4800</mn>
</math></span>«<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{W}}">
  <mrow>
    <mtext>W</mtext>
  </mrow>
</math></span></span>»</span><span style="background-color:#ffffff;">&nbsp;</span><span style="background-color:#ffffff;"><em><strong><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">&nbsp;</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></strong></em></span></p>
<p><span style="background-color:#ffffff;">&nbsp;</span></p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">horizontal component of velocity is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="64.0 \times \cos 7^\circ&nbsp; = 63.52">
  <mn>64.0</mn>
  <mo>×</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>7</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mn>63.52</mn>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m }}{{\text{s}}^{ - 1}}">
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;&nbsp;✔&nbsp;<br></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = ">
  <mi>t</mi>
  <mo>=</mo>
</math></span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{11.9}}{{63.52}}">
  <mfrac>
    <mrow>
      <mn>11.9</mn>
    </mrow>
    <mrow>
      <mn>63.52</mn>
    </mrow>
  </mfrac>
</math></span>»<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{0}}{\text{.187/0}}{\text{.19}}">
  <mrow>
    <mtext>0</mtext>
  </mrow>
  <mrow>
    <mtext>.187/0</mtext>
  </mrow>
  <mrow>
    <mtext>.19</mtext>
  </mrow>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{s}}">
  <mrow>
    <mtext>s</mtext>
  </mrow>
</math></span>» &nbsp;✔</span></span></span></p>
<p>&nbsp;</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span style="background-color:#ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p><em><span style="background-color:#ffffff;">u<sub>y</sub></span></em>=64sin7/7.80«ms<sup>–1</sup>»&nbsp; <span style="background-color:#ffffff;">✔</span></p>
<p><span style="background-color:#ffffff;">decrease in height = 7.80&nbsp;× 0.187 +&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;× 9.81&nbsp;× 0.187<sup>2 </sup></span>/ 1.63«m» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></p>
<p>final height =&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«2.80 – 1.63</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">»</span> = 1.1/1.2<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«m</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">» &nbsp;✔</span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;">«higher than net so goes over»</span></p>
<p><span style="background-color:#ffffff;"><br><em><strong>ALTERNATIVE 2</strong></em></span></p>
<p>vertical distance to fall to net&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«=2.80 – 0.91</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">» = 1.89«m» &nbsp;✔</span></p>
<p><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">time to fall this distance found using&nbsp;«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.89 = 7.8t + \frac{1}{2} \times 9.81 \times {t^2}">
  <mn>1.89</mn>
  <mo>=</mo>
  <mn>7.8</mn>
  <mi>t</mi>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>9.81</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></span>»</span></p>
<p><span style="font-size:14px;"><span style="text-align:left;color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-variant:normal;font-weight:400;text-decoration:none;display:inline;white-space:normal;float:none;background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span></span> = 0.21<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«s</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">» &nbsp;✔</span></span></span></p>
<p><span style="font-size:14px;"><span style="text-align:left;color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-variant:normal;font-weight:400;text-decoration:none;display:inline;white-space:normal;float:none;background-color:#ffffff;"><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">0.21«s» &gt; 0.187«s» &nbsp;&nbsp;✔</span></span></span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;">«reaches the net before it has fallen far enough so goes over»</span></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span style="background-color:#ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p><span style="background-color:#ffffff;">Initial KE + PE = final KE /</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 0.058 \times {64^2} + 0.058 \times 9.81 \times 2.80 = \frac{1}{2} \times 0.058 \times {v^2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>0.058</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>64</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>0.058</mn>
  <mo>×</mo>
  <mn>9.81</mn>
  <mo>×</mo>
  <mn>2.80</mn>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>0.058</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>v</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> &nbsp;✔</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 64.4">
  <mi>v</mi>
  <mo>=</mo>
  <mn>64.4</mn>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m }}{{\text{s}}^{ - 1}}">
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;"><br><em><strong>ALTERNATIVE 2</strong></em></span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_v} = ">
  <mrow>
    <msub>
      <mi>v</mi>
      <mi>v</mi>
    </msub>
  </mrow>
  <mo>=</mo>
</math></span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{7.8}^2} + 2 \times 9.81 \times 2.8} ">
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mn>7.8</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>2</mn>
    <mo>×</mo>
    <mn>9.81</mn>
    <mo>×</mo>
    <mn>2.8</mn>
  </msqrt>
</math></span>» = 10.8«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m }}{{\text{s}}^{ - 1}}">
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;✔</span></span></p>
<p><span style="background-color:#ffffff;"><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {{{63.5}^2} + {{10.8}^2}} ">
  <mi>v</mi>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mn>63.5</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10.8</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span>»</span></span></p>
<p><span style="background-color:#ffffff;"><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 64.4">
  <mi>v</mi>
  <mo>=</mo>
  <mn>64.4</mn>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m }}{{\text{s}}^{ - 1}}">
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;✔</span></span></span></p>
<p><span style="background-color:#ffffff;">&nbsp;</span></p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">so horizontal velocity component at lift off for clay is smaller ✔<br></span></p>
<p><span style="background-color:#ffffff;">normal force is the same so vertical component of velocity is the same ✔<br></span></p>
<p><span style="background-color:#ffffff;">so bounce angle on clay is greater ✔</span><span style="background-color:#ffffff;"><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>At both HL and SL many candidates scored both marks for correctly answering this. A straightforward start to the paper. For those not gaining both marks it was possible to gain some credit for calculating either the change in momentum or the acceleration. At SL some used 64 ms-1 as a value for a and continued to use this value over the next few parts to the question.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered although a significant number of candidates approached it using P = Fv but forgot to divide v by 2 to calculated the average velocity. This scored one mark out of 2.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question scored well at HL but less so at SL. One common mistake was to calculate the direct distance to the top of the net and assume that the ball travelled that distance with constant speed. At SL particularly, another was to consider the motion only when the ball is in contact with the racquet.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were a number of approaches students could take to answer this and examiners saw examples of them all. One approach taken was to calculate the time taken to fall the distance to the top of the net and to compare this with the time calculated in bi) for the ball to reach the net. This approach, which is shown in the mark scheme, required solving a quadratic in t which is beyond the mathematical requirements of the syllabus. This mathematical technique was only required if using this approach and not required if, for example, calculating heights.</p>
<p>A common mistake was to forget that the ball has a vertical acceleration. Examiners were able to award credit/ECF for correct parts of an otherwise flawed method.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This proved difficult for candidates at both HL and SL. Many managed to calculate the final vertical component of the velocity of the ball.</p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>As the command term in this question is ‘predict’ a bald answer of clay was acceptable for one mark. This was a testing question that candidates found demanding but there were some very well-reasoned answers. The most common incorrect answer involved suggesting that the greater frictional force on the clay court left the ball with less kinetic energy and so a smaller angle. At SL many gained the answer that the angle on clay would be greater with the argument that frictional force is greater and so the distance the ball slides is less.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A metal sphere is charged positively and placed far away from other charged objects.&nbsp;The electric potential at a point on the surface of the sphere is 53.9&thinsp;kV.</p>
</div>

<div class="specification">
<p>A small positively charged object moves towards the centre of the metal sphere.&nbsp;When the object is 2.8&thinsp;m from the centre of the sphere, its speed is 3.1&thinsp;m&thinsp;s<sup>&minus;1</sup>.&nbsp;The mass of the object is 0.14&thinsp;g and its charge is 2.4 &times; 10<sup>&minus;8&thinsp;</sup>C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by electric potential at a point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The electric potential at a point a distance 2.8 m from the centre of the sphere is 7.71 kV. Determine the radius of the sphere.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the angle at which the object meets equipotential surfaces around the sphere.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the kinetic energy of the object is about 0.7 mJ.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the object will reach the surface of the sphere.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the work done per unit charge ✓</p>
<p>In bringing a small/point/positive/test «charge» from infinity to the point ✓</p>
<p> </p>
<p><em>Allow use of energy per unit charge for <strong>MP1</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of<em> Vr</em> = constant ✓</p>
<p>0.40 m ✓</p>
<p> </p>
<p><em>Allow <strong>[1]</strong> max if r + 2.8 used to get 0.47 m.</em></p>
<p><em>Allow <strong>[2]</strong> marks if they calculate Q at one potential and use it to get the distance at the other potential.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>90° / perpendicular ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup></math>  <em><strong>OR </strong> </em>0.67 «mJ» seen ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«p.d. between point and sphere surface = » (53.9 kV – 7.71) «kV»  <em><strong>OR  </strong></em>46.2 «kV» seen ✓</p>
<p>«energy required =» VQ « = 46 200 × 2.4 × 10<sup>-8</sup>» = 1.11 mJ ✓</p>
<p>this is greater than kinetic energy so will not reach sphere ✓</p>
<p> </p>
<p><em><strong>MP3</strong> is for a conclusion consistent with the calculations shown.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>a) Well answered.</p>
<p>b) Generally, well answered, but there were quite a few using r + 2.8.</p>
<p>ci) Very few had problems to recognize the perpendicular angle</p>
<p>cii) Good simple calculation</p>
<p>ciii) Many had a good go at this, but a significant number tried to answer it based on forces.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigates how light can be used to measure the speed of a toy train.</p>
<p style="text-align: center;"><img src=""><img src="blob:https://questionbank.ibo.org/55ba542d-3306-4ee7-8386-825edadb928d"></p>
<p>Light from a laser is incident on a double slit. The light from the slits is detected by a&nbsp;light sensor attached to the train.</p>
<p>The graph shows the variation with time of the output voltage from the light sensor as&nbsp;the train moves parallel to the slits. The output voltage is proportional to the intensity of&nbsp;light incident on the sensor.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><img src="blob:https://questionbank.ibo.org/4e0f3fdc-c845-43ef-ba7c-39bab20625cf"></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>As the train continues to move, the first diffraction minimum is observed when the&nbsp;light sensor is at a distance of 0.13 m from the centre of the fringe pattern.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A student investigates how light can be used to measure the speed of a toy train.</p>
<p style="text-align: center;"><img src=""></p>
<p>Light from a laser is incident on a double slit. The light from the slits is detected by a&nbsp;light sensor attached to the train.</p>
<p>The graph shows the variation with time of the output voltage from the light sensor as&nbsp;the train moves parallel to the slits. The output voltage is proportional to the intensity of&nbsp;light incident on the sensor.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the light passing through the slits, why a series of voltage peaks occurs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The slits are separated by 1.5 mm and the laser light has a wavelength&nbsp;of 6.3 x&nbsp;10<sup>–7</sup> m. The slits are 5.0 m from the train track. Calculate the separation&nbsp;between two adjacent positions of the train when the output voltage is at a maximum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the speed of the train.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the width of one of the slits.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the variation in the output voltage from the light sensor that will be observed as the train moves beyond the first diffraction minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In another experiment the student replaces the light sensor with a sound sensor. The train travels away from a loudspeaker that is emitting sound waves of constant amplitude and frequency towards a reflecting barrier.</p>
<p><img src=""></p>
<p>The graph shows the variation with time of the output voltage from the sounds sensor.</p>
<p><img src=""></p>
<p>Explain how this effect arises.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«light» superposes/interferes</p>
<p>pattern consists of «intensity» maxima and minima<br><em><strong>OR</strong></em><br>consisting of constructive and destructive «interference»</p>
<p>voltage peaks correspond to interference maxima</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{{\lambda D}}{d} = \frac{{6.3 \times {{10}^{ - 7}} \times 5.0}}{{1.5 \times {{10}^{ - 3}}}} = ">
  <mi>s</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>λ</mi>
      <mi>D</mi>
    </mrow>
    <mi>d</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>6.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>5.0</mn>
    </mrow>
    <mrow>
      <mn>1.5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 2.1 x 10<sup>–3&nbsp;</sup>«m»&nbsp;</p>
<p>&nbsp;</p>
<p><em>If no unit assume m.</em><br><em>Correct answer only.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct read-off from graph of 25 m s</p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{t} = \frac{{2.1 \times {{10}^{ - 3}}}}{{25 \times {{10}^{ - 3}}}} = ">
  <mfrac>
    <mi>x</mi>
    <mi>t</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 8.4 x 10<sup>–2</sup> «m s<sup>–1</sup>»</p>
<p>&nbsp;</p>
<p><em>Allow ECF from (b)(i)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>angular width of diffraction minimum =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.13}}{{5.0}}">
  <mfrac>
    <mrow>
      <mn>0.13</mn>
    </mrow>
    <mrow>
      <mn>5.0</mn>
    </mrow>
  </mfrac>
</math></span> «= 0.026 rad»</p>
<p>slit width =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{d} = \frac{{6.3 \times {{10}^{ - 7}}}}{{0.026}} = ">
  <mfrac>
    <mi>λ</mi>
    <mi>d</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>6.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.026</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 2.4 x 10<sup>–5</sup> «m»</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> for solution using 1.22 factor.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«beyond the first diffraction minimum» average voltage is smaller<br><br>«voltage minimum» spacing is «approximately» same<br><em><strong>OR</strong></em><br>rate of variation of voltage is unchanged</p>
<p> </p>
<p><em>OWTTE</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«reflection at barrier» leads to two waves travelling in opposite directions </p>
<p>mention of formation of standing wave</p>
<p>maximum corresponds to antinode/maximum displacement «of air molecules»<br><em><strong>OR</strong></em><br>complete cancellation at node position</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br>