File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 12 HTML/markSceme-HL-paper2html
File size: 927.39 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Two observations about the photoelectric effect are</p>
<p style="text-align: left;">Observation 1: For light below the threshold frequency no electrons are emitted from the metal surface.</p>
<p style="text-align: left;">Observation 2: For light above the threshold frequency, the emission of electrons is almost instantaneous.</p>
</div>
<div class="specification">
<p>The graph shows how the maximum kinetic energy <em>E</em><sub>max</sub> of electrons emitted from a surface of barium metal varies with the frequency <em>f</em> of the incident radiation.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how each observation provides support for the particle theory but not the wave theory of light.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine a value for Planck’s constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the work function of a metal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the work function of barium in eV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment is repeated with a metal surface of cadmium, which has a greater work function. Draw a second line on the graph to represent the results of this experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Observation 1:</em><br>particle – photon energy is below the work function<br><em><strong>OR</strong></em><br><em>E = hf</em> and energy is too small «to emit electrons»<br>wave – the energy of an <em>em</em> wave is independent of frequency</p>
<p><br><em>Observation 2:</em><br>particle – a single electron absorbs the energy of a single photon «in an almost instantaneous interaction»<br>wave – it would take time for the energy to build up to eject the electron</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to calculate gradient of graph = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.2 \times {{10}^{ - 19}}}}{{6.2 \times {{10}^{14}}}}">
<mfrac>
<mrow>
<mn>4.2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>6.2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>14</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 6.8 - 6.9 \times {10^{ - 34}}">
<mo>=</mo>
<mn>6.8</mn>
<mo>−</mo>
<mn>6.9</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
</math></span> «Js»</p>
<p> </p>
<p><em>Do not allow a bald answer of 6.63 x 10<sup>-34</sup> Js or 6.6 x 10<sup>-34</sup> Js.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>minimum energy required to remove an electron «from the metal surface»</p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>energy required to remove the least tightly bound electron «from the metal surface»</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>reading of<em> y</em> intercept from graph in range 3.8 − 4.2 × 10<sup>–19</sup> «J»<br>conversion to <em>eV</em> = 2.4 – 2.6 «eV»</p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>reading of x intercept from graph «5.8 − 6.0 × 10<sup>14 </sup>Hz» and using <em>hf</em><sub>0</sub> to get 3.8 − 4.2 × 10<sup>–19</sup> «J»<br>conversion to <em>eV</em> = 2.4 – 2.6 «eV»</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line parallel to existing line<br>to the right of the existing line</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The first scientists to identify alpha particles by a direct method were Rutherford and Royds. They knew that radium-226 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{226}{\text{Ra}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>86</mn>
</mrow>
<mrow>
<mn>226</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Ra</mtext>
</mrow>
</math></span>) decays by alpha emission to form a nuclide known as radon (Rn).</p>
</div>
<div class="specification">
<p>At the start of the experiment, Rutherford and Royds put 6.2 x 10<sup>–4</sup> mol of pure radium-226 in a small closed cylinder A. Cylinder A is fixed in the centre of a larger closed cylinder B.</p>
<p style="text-align: center;"><img src=""></p>
<p>The experiment lasted for 6 days. The decay constant of radium-226 is 1.4 x 10<sup>–11</sup> s<sup>–1</sup>.</p>
</div>
<div class="specification">
<p>At the start of the experiment, all the air was removed from cylinder B. The alpha particles combined with electrons as they moved through the wall of cylinder A to form helium gas in cylinder B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the nuclear equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the activity of the radium-226 is almost constant during the experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that about 3 x 10<sup>15</sup> alpha particles are emitted by the radium-226 in 6 days.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wall of cylinder A is made from glass. Outline why this glass wall had to be very thin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment was carried out at a temperature of 18 °C. The volume of cylinder B was 1.3 x 10<sup>–5</sup> m<sup>3</sup> and the volume of cylinder A was negligible. Calculate the pressure of the helium gas that was collected in cylinder B over the 6 day period. Helium is a monatomic gas.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2^4\alpha ">
<msubsup>
<mi></mi>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mi>α</mi>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_2^4{\text{He}}">
<msubsup>
<mrow>
</mrow>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mrow>
<mtext>He</mtext>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{222}{\text{Rn}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>86</mn>
</mrow>
<mrow>
<mn>222</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Rn</mtext>
</mrow>
</math></span></p>
<p> </p>
<p><em>These <strong>must</strong> be seen on the right-hand side of the equation.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>6 days is 5.18 x 10<sup>5</sup> s</p>
<p>activity after 6 days is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{A_0}{e^{ - 1.4 \times {{10}^{ - 11}} \times 5.8 \times {{10}^5}}} \approx {A_0}">
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mn>1.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>11</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>5.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
</msup>
</mrow>
<mo>≈</mo>
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
</mrow>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p>A = 0.9999927 <em>A</em><sub>0 </sub><em><strong>or</strong> </em>0.9999927 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span><em>N</em><sub>0</sub></p>
<p><em><strong>OR</strong></em></p>
<p>states that index of e is so small that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{A}{{{A_0}}}">
<mfrac>
<mi>A</mi>
<mrow>
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span> is ≈ 1</p>
<p><em><strong>OR</strong></em></p>
<p><em>A – A</em><sub>0</sub> ≈ 10<sup>–15</sup> «s<sup>–1</sup>»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>shows half-life of the order of 10<sup>11</sup> s or 5.0 x 10<sup>10</sup> s</p>
<p>converts this to year «1600 y» or days and states half-life much longer than experiment compared to experiment</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> if calculations/substitutions have numerical slips but would lead to correct deduction.</em></p>
<p><em>eg: failure to convert 6 days to seconds but correct substitution into equation will give MP2.</em></p>
<p><em>Allow working in days, but for MP1 must see conversion of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span> or half-life to day<sup>–1</sup>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1 </strong></em><br><br>use of <em>A</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span><em>N</em><sub>0</sub></p>
<p>conversion to number of molecules = <em>nN</em><sub>A</sub> = 3.7 x 10<sup>20</sup></p>
<p><em><strong>OR</strong></em></p>
<p>initial activity = 5.2 x 10<sup>9</sup> «s<sup>–1</sup>»</p>
<p>number emitted = (6 x 24 x 3600) x 1.4 x 10<sup>–11</sup> x 3.7 x 10<sup>20</sup> <em><strong>or</strong> </em>2.7 x 10<sup>15</sup> alpha particles</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>use of <em>N</em> = <em>N</em><sub>0</sub><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{ - \lambda t}}">
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><em>N</em><sub>0</sub> = <em>n</em> x <em>N</em><sub>A</sub> = 3.7 x 10<sup>20</sup></p>
<p>alpha particles emitted «= number of atoms disintegrated = <em>N</em> – <em>N</em><sub>0</sub> =» <em>N</em><sub>0</sub><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 - {e^{ - \lambda \times 6 \times 24 \times 3600}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
<mo>×</mo>
<mn>6</mn>
<mo>×</mo>
<mn>24</mn>
<mo>×</mo>
<mn>3600</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>or</strong> </em>2.7 x 10<sup>15</sup> alpha particles </p>
<p> </p>
<p><em>Must see correct substitution or answer to 2+ sf for MP3</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>alpha particles highly ionizing<br><em><strong>OR</strong></em><br>alpha particles have a low penetration power<br><em><strong>OR</strong></em><br>thin glass increases probability of alpha crossing glass<br><em><strong>OR</strong></em><br>decreases probability of alpha striking atom/nucleus/molecule</p>
<p> </p>
<p><em>Do not allow reference to tunnelling.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>conversion of temperature to 291 K</p>
<p><em>p</em> = 4.5 x 10<sup>–9</sup> x 8.31 x «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{291}}{{1.3 \times {{10}^{ - 5}}}}">
<mfrac>
<mrow>
<mn>291</mn>
</mrow>
<mrow>
<mn>1.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>p</em> = 2.7 x 10<sup>15</sup> x 1.3 x 10<sup>–23 </sup>x «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{291}}{{1.3 \times {{10}^{ - 5}}}}">
<mfrac>
<mrow>
<mn>291</mn>
</mrow>
<mrow>
<mn>1.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>»<br><br>0.83 <em><strong>or</strong> </em>0.84 «Pa»</p>
<p> </p>
<p><em>Allow ECF for 2.7 x 10<sup>15</sup> from (b)(ii).</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The de Broglie wavelength <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math> of a particle accelerated close to the speed of light is approximately</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>≈</mo><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>E</mi></mfrac></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> is the energy of the particle.<br>A beam of electrons of energy <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo> </mo><mi>eV</mi></math> is produced in an accelerator.</p>
</div>
<div class="specification">
<p>The electron beam is used to study the nuclear radius of carbon-12. The beam is directed from the left at a thin sample of carbon-12. A detector is placed at an angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> relative to the direction of the incident beam.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="378" height="137"></p>
<p>The graph shows the variation of the intensity of electrons with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>. There is a minimum of intensity for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><msub><mi>θ</mi><mn>0</mn></msub></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="365" height="235"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the wavelength of an electron in the beam is about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup><mo> </mo><mi mathvariant="normal">m</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how the results of the experiment provide evidence for matter waves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The accepted value of the diameter of the carbon-12 nucleus is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>94</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup><mo> </mo><mi mathvariant="normal">m</mi></math>. Estimate the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>θ</mi><mn>0</mn></msub></math> at which the minimum of the intensity is formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why electrons with energy of approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>10</mn><mn>7</mn></msup><mo> </mo><mi>eV</mi></math> would be unsuitable for the investigation of nuclear radii.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Experiments with many nuclides suggest that the radius of a nucleus is proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is the number of nucleons in the nucleus. Show that the density of a nucleus remains approximately the same for all nuclei.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>60</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>4</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></mfrac></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>96</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math></strong></em> ✓ </span></p>
<p><em><span class="fontstyle2"><br>Answer to at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">2</mn></math> s.f. (i.e. 3.0)</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«</span><span class="fontstyle1">the shape of the graph suggests that</span><span class="fontstyle0">» </span><span class="fontstyle1">electrons undergo diffraction </span><span class="fontstyle0">«</span><span class="fontstyle1">with carbon nuclei</span><span class="fontstyle0">» </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle1">only waves diffract </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><msub><mi>θ</mi><mn>0</mn></msub><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>96</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>94</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>599</mn><mo>»</mo></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn><mo> </mo><mo>«</mo><mpadded lspace="-1px"><mi>degrees</mi></mpadded><mo>»</mo></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>64</mn><mo>/</mo><mn>0</mn><mo>.</mo><mn>65</mn><mo> </mo><mo>«</mo><mi>rad</mi><mo>»</mo></math> </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the de Broglie wavelength of electrons is </span><span class="fontstyle2">«</span><span class="fontstyle0">much</span><span class="fontstyle2">» </span><span class="fontstyle0">longer than the size of a nucleus </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle3"><br></span><span class="fontstyle0">hence electrons would not undergo diffraction<br></span><span class="fontstyle4"><em><strong>OR</strong></em><br></span><span class="fontstyle0">no diffraction pattern would be observed </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">volume of a nucleus proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><msup><mi>A</mi><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle></msup></mfenced><mn>3</mn></msup><mo>=</mo><mi>A</mi></math> </span><em><strong><span class="fontstyle2">AND </span></strong></em><span class="fontstyle0">mass proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle0">the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>mass</mi><mpadded lspace="+1px"><mi>volume</mi></mpadded></mfrac></math> independent of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> </span><span class="fontstyle4">«</span><span class="fontstyle0">hence density the same for all nuclei</span><span class="fontstyle4">» </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><em><span class="fontstyle5">Both needed for MP1</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>An easy calculation with only one energy conversion to consider and a 'show' answer to help. </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was challenging for candidates many of whom seemed to have little idea of the experiment. Many answers discussed deflection, with the idea that forces between the electron and the nucleus causing it to deflect at a particular angle. This was often combined with the word interference to suggest evidence of matter waves. A number of answers described a demonstration the candidates remembered seeing so answers talked about fuzzy green rings.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was answered reasonably well with only the odd omission of the sine in the equation.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates generally scored poorly on this question. There was confusion between this experiment and another diffraction one, so often the new wavelength was compared to the spacing between atoms. Also, in line with answers to b(i) there were suggestions that the electrons did not have sufficient energy to reach the nucleus or would be deflected by too great an angle to be seen.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question proved challenging and it wasn't common to find answers that scored both marks. Of those that had the right approach some missed out on both marks by describing A as the mass of the nucleus rather than proportional to the mass of the nucleus.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Yellow light of photon energy 3.5 x 10<sup>–19</sup> J is incident on the surface of a particular photocell.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The photocell is connected to a cell as shown. The photoelectric current is at its maximum value (the saturation current).</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Radiation with a greater photon energy than that in (b) is now incident on the photocell. The intensity of this radiation is the same as that in (b).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the light.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Electrons emitted from the surface of the photocell have almost no kinetic energy. Explain why this does not contradict the law of conservation of energy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Radiation of photon energy 5.2 x 10<sup>–19</sup> J is now incident on the photocell. Calculate the maximum velocity of the emitted electrons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the change in the number of photons per second incident on the surface of the photocell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect on the maximum photoelectric current as a result of increasing the photon energy in this way.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>wavelength = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{E} = \frac{{1.99 \times {{10}^{ - 25}}}}{{{\text{3}}{\text{.5}} \times {\text{1}}{{\text{0}}^{ - 19}}}} = ">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mi>E</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1.99</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>25</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>3</mtext>
</mrow>
<mrow>
<mtext>.5</mtext>
</mrow>
<mo>×</mo>
<mrow>
<mtext>1</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>0</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 5.7 x 10<sup>–7</sup> «m»</p>
<p> </p>
<p><em>If no unit assume m.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«potential» energy is required to leave surface</p>
<p><em>Do not allow reference to “binding energy”.</em><br><em>Ignore statements of conservation of energy.</em></p>
<p><br>all/most energy given to potential «so none left for kinetic energy»</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy surplus = 1.7 x 10<sup>–19</sup> J</p>
<p>v<sub>max</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{2 \times 1.7 \times {{10}^{ - 19}}}}{{9.1 \times {{10}^{ - 31}}}}} = 6.1 \times {10^5}">
<msqrt>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>1.7</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>9.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>31</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</msqrt>
<mo>=</mo>
<mn>6.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>5</mn>
</msup>
</mrow>
</math></span> «m s<sup>–1</sup>»</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> if surplus of 5.2 x 10<sup>–19</sup>J used (answer: 1.1 x 10<sup>6</sup> m s<sup>–1</sup>)</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«same intensity of radiation so same total energy delivered per square metre per second» </p>
<p>light has higher photon energy so fewer photons incident per second</p>
<p> </p>
<p><em>Reason is required</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1:1 correspondence between photon and electron</p>
<p>so fewer electrons per second</p>
<p>current smaller</p>
<p> </p>
<p><em>Allow ECF from (c)(i)</em><br><em>Allow ECF from MP2 to MP3.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Plutonium-238 (Pu) decays by alpha (α) decay into uranium (U).</p>
<p>The following data are available for binding energies per nucleon:</p>
<p style="padding-left: 30px;">plutonium 7.568 MeV</p>
<p style="padding-left: 30px;">uranium 7.600 MeV</p>
<p style="padding-left: 30px;">alpha particle 7.074 MeV</p>
</div>
<div class="specification">
<p>The energy in b(i) can be transferred into electrical energy to run the instruments of a spacecraft. A spacecraft carries 33 kg of pure plutonium-238 at launch. The decay constant of plutonium is 2.50 × 10<sup>−10</sup> s<sup>−1</sup>.</p>
</div>
<div class="specification">
<p>Solar radiation falls onto a metallic surface carried by the spacecraft causing the emission of photoelectrons. The radiation has passed through a filter so it is monochromatic. The spacecraft is moving away from the Sun.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some unstable nuclei have many more neutrons than protons. Suggest the likely decay for these nuclei.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in this decay is about 6 MeV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plutonium nucleus is at rest when it decays.</p>
<p>Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power, in kW, that is available from the plutonium at launch.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spacecraft will take 7.2 years (2.3 × 10<sup>8</sup> s) to reach a planet in the solar system. Estimate the power available to the spacecraft when it gets to the planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the kinetic energy of an emitted photoelectron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the rate at which charge leaves the metallic surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the energy needed to «completely» separate the nucleons of a nucleus</p>
<p><em><strong>OR</strong></em></p>
<p>the energy released when a nucleus is assembled from its constituent nucleons ✓</p>
<p> </p>
<p><em>Accept reference to protons and </em><em>neutrons.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve rising to a maximum between 50 and 100 ✓</p>
<p>curve continued and decreasing ✓</p>
<p> </p>
<p><em>Ignore starting point.<br></em></p>
<p><em>Ignore maximum at alpha particle.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>At a point on the peak of their graph ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>beta minus «decay» ✓</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct mass numbers for uranium (234) and alpha (4) ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>234</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>600</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>074</mn><mo>-</mo><mn>238</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>568</mn></math> «MeV» ✓</p>
<p>energy released 5.51 «MeV» ✓</p>
<p> </p>
<p><em>Ignore any negative sign.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>K</mi><msub><mi>E</mi><mi>α</mi></msub></mrow><mrow><mi>K</mi><msub><mi>E</mi><mi>U</mi></msub></mrow></mfrac><mo>=</mo></math>»<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>U</mi></msub></mrow></mfrac></mfrac></mstyle></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>m</mi><mi>U</mi></msub><msub><mi>m</mi><mi>α</mi></msub></mfrac></math> ✓</p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>234</mn><mn>4</mn></mfrac><mo>=</mo></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn><mo>.</mo><mn>5</mn></math> ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>117</mn><mn>2</mn></mfrac></math> for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>number of nuclei present <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>33</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mn>238</mn></mfrac><mo>×</mo><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo>«</mo><mo>=</mo><mn>8</mn><mo>.</mo><mn>347</mn><mo>×</mo><msup><mn>10</mn><mn>25</mn></msup><mo>»</mo></math> ✓</p>
<p>initial activity is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><msub><mi>N</mi><mn>0</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>347</mn><mo>×</mo><msup><mn>10</mn><mn>25</mn></msup><mo>«</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>08</mn><mo>×</mo><msup><mn>10</mn><mn>16</mn></msup><mo> </mo><mtext>Bq</mtext><mo>»</mo></math> ✓</p>
<p>power is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>08</mn><mo>×</mo><msup><mn>10</mn><mn>16</mn></msup><mo>×</mo><mn>5</mn><mo>.</mo><mn>51</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>≈</mo><mn>18</mn></math> «kW» ✓</p>
<p> </p>
<p><em>Allow a final answer of 20 </em>kW<em> if 6 </em>MeV<em> used. </em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> and <strong>MP2</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>available power after time <em>t</em> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>t</mi></mrow></msup></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><msup><mi>e</mi><mrow><mo>−</mo><mn>2</mn><mo>.</mo><mn>50</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></msup><mo>=</mo><mn>17</mn><mo>.</mo><mn>0</mn></math> «kW» ✓</p>
<p> </p>
<p><em><strong>MP1</strong> may be implicit.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>(c)(i)</strong>.</em></p>
<p><em>Allow 17.4 </em>kW<em> from unrounded power from <strong>(c)(i)</strong>.</em></p>
<p><em>Allow 18.8 </em>kW<em> from 6 </em>MeV<em>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stays the same ✓</p>
<p>as energy depends on the frequency of light ✓</p>
<p> </p>
<p><em>Allow reference to wavelength for <strong>MP2</strong>.</em></p>
<p><em>Award <strong>MP2</strong> only to answers stating that KE decreases due to Doppler effect.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases ✓</p>
<p>as number of photons incident decreases ✓</p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> is formed when a nucleus of deuterium (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{1}^{2}{\text{H}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>1</mn>
</mrow>
<mrow>
<mn>2</mn>
</mrow>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
</math></span>) collides with a nucleus of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{31}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>31</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>. The radius of a deuterium nucleus is 1.5 fm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the density of a nucleus varies with the number of nucleons in the nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the nuclear radius of phosphorus-31 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{31}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>31</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>) is about 4 fm.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the maximum distance between the centres of the nuclei for which the production of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> is likely to occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in J, the minimum initial kinetic energy that the deuterium nucleus must have in order to produce <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>. Assume that the phosphorus nucleus is stationary throughout the interaction and that only electrostatic forces act.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> undergoes beta-minus (β<sup>–</sup>) decay. Explain why the energy gained by the emitted beta particles in this decay is not the same for every beta particle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by decay constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a fresh pure sample of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> the activity of the sample is 24 Bq. After one week the activity has become 17 Bq. Calculate, in s<sup>–1</sup>, the decay constant of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>it is constant ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>R</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{1}}{\text{.20}} \times {10^{ - 15}} \times {31^{\frac{1}{3}}} = 3.8 \times {10^{ - 15}}">
<mrow>
<mtext>1</mtext>
</mrow>
<mrow>
<mtext>.20</mtext>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>15</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>31</mn>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>3.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>15</mn>
</mrow>
</msup>
</mrow>
</math></span> «m» ✔</p>
<p><em>Must see working and answer to at least 2SF</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>separation for interaction = 5.3 <em><strong>or</strong></em> 5.5 «fm» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy required = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{15{e^2}}}{{4\pi {\varepsilon _0} \times 5.3 \times {{10}^{ - 15}}}}">
<mfrac>
<mrow>
<mn>15</mn>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mi>π</mi>
<mrow>
<msub>
<mi>ε</mi>
<mn>0</mn>
</msub>
</mrow>
<mo>×</mo>
<mn>5.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>15</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> ✔</p>
<p>= 6.5 / 6.6 ×10<sup>−13</sup> <em><strong>OR</strong></em> 6.3 ×10<sup>−13 </sup>«J» ✔</p>
<p> </p>
<p><em>Allow ecf from (b)(i)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electron» <span style="text-decoration: underline;">antineutrino</span> also emitted ✔</p>
<p>energy split between electron and «anti»neutrino ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>probability of decay of a nucleus ✔</p>
<p><em><strong>OR</strong></em></p>
<p>the fraction of the number of nuclei that decay</p>
<p>in one/the next second</p>
<p><strong>OR</strong></p>
<p>per unit time ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1 week = 6.05 × 10<sup>5</sup> «s»</p>
<p>17 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24{{\text{e}}^{ - \lambda \times 6.1 \times {{10}^5}}}">
<mn>24</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>λ</mi>
<mo>×</mo>
<mn>6.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
</msup>
</mrow>
</math></span> ✔</p>
<p>5.7 × 10<sup>−7 </sup>«s<sup>–1</sup>» ✔<br><br></p>
<p><em>Award<strong> [2 max]</strong> if answer is not in seconds</em></p>
<p><em>If answer <strong>not</strong> in seconds and <strong>no</strong> unit quoted award<strong> [1 max]</strong> for correct substitution into equation (MP2)</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Particles can be used in scattering experiments to estimate nuclear sizes.</p>
</div>
<div class="specification">
<p>Electron diffraction experiments indicate that the nuclear radius of carbon-12 is 2.7 x 10<sup>–15</sup> m. The graph shows the variation of nuclear radius with nucleon number. The nuclear radius of the carbon-12 is shown on the graph.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>The Feynman diagram shows electron capture.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the nature of the particle labelled X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how these experiments are carried out.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the particles must be accelerated to high energies in scattering experiments.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain <strong>one</strong> example of a scientific analogy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the position of magnesium-24 on the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a line on the graph, to show the variation of nuclear radius with nucleon number.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«electron» neutrino</p>
<p>it has a lepton number of 1 «as lepton number is conserved»</p>
<p>it has a charge of zero/is neutral «as charge is conserved»<br><em><strong>OR</strong></em><br>it has a baryon number of 0 «as baryon number is conserved»</p>
<p><em>Do not allow antineutrino </em></p>
<p><em>Do not credit answers referring to energy</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«high energy particles incident on» thin sample</p>
<p>detect angle/position of deflected particles</p>
<p>reference to interference/diffraction/minimum/maximum/numbers of particles</p>
<p><em>Allow “foil” instead of thin</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>λ </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \propto \frac{1}{{\sqrt E }}">
<mo>∝</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>E</mi>
</msqrt>
</mrow>
</mfrac>
</math></span> <em><strong>OR</strong></em> <em>λ </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \propto \frac{1}{E}">
<mo>∝</mo>
<mfrac>
<mn>1</mn>
<mi>E</mi>
</mfrac>
</math></span></p>
<p>so high energy gives small <em>λ</em></p>
<p>to match the small nuclear size</p>
<p><strong><em>Alternative 2</em></strong></p>
<p><em>E = hf</em>/energy is proportional to frequency</p>
<p>frequency is inversely proportional to wavelength/<em>c = fλ</em></p>
<p>to match the small nuclear size</p>
<p><em><strong>Alternative 3</strong></em></p>
<p>higher energy means closer approach to nucleus</p>
<p>to overcome the repulsive force from the nucleus</p>
<p>so greater precision in measurement of the size of the nucleus</p>
<p><em>Accept inversely proportional</em></p>
<p><em>Only allow marks awarded from <strong>one</strong> alternative</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two analogous situations stated</p>
<p>one element of the analogy equated to an element of physics</p>
<p><em>eg: moving away from Earth is like climbing a hill where the contours correspond to the equipotentials</em></p>
<p><em>Atoms in an ideal gas behave like pool balls</em></p>
<p><em>The forces between them only act during collisions</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correctly plotted</p>
<p><em>Allow ECF from (d)(i)</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>single smooth curve passing through both points with decreasing gradient</p>
<p>through origin</p>
<p><img src=""></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>In an electric circuit used to investigate the photoelectric effect, the voltage is varied until the reading in the ammeter is zero. The stopping voltage that produces this reading is 1.40 V.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the photoelectric effect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the maximum velocity of the photoelectrons is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>700</mn><mo> </mo><msup><mtext>km s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The photoelectrons are emitted from a sodium surface. Sodium has a work function of 2.3 eV.</p>
<p>Calculate the wavelength of the radiation incident on the sodium. State an appropriate unit for your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electrons are ejected from the surface of a metal <strong>✓</strong></p>
<p>after gaining energy from photons/electromagnetic radiation <strong>✓</strong></p>
<p>there is a minimum «threshold» energy/frequency<br><em><strong>OR</strong></em><br>maximum «threshold» wavelength <strong>✓</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>V</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></math>» and manipulation to get <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><msqrt><mfrac><mrow><mn>2</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>4</mn></mrow><mrow><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup></mrow></mfrac></msqrt></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>702</mn><mo>«</mo><msup><mtext>km s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math><strong>✓</strong></p>
<p><em>Must see either complete substitution or calculation to at least 3 s.f. for <strong>MP2</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>4</mn></math> ✓</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow><mrow><mn>3</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfrac></math> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup><mo> </mo><mtext>m </mtext><mtext mathvariant="bold-italic">OR</mtext><mtext> 340 nm</mtext></math> <strong>✓</strong></p>
<p><em><br>Must see an appropriate unit to award<strong> MP3.</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment to demonstrate the photoelectric effect, monochromatic electromagnetic radiation from source A is incident on the surfaces of metal P and metal Q. Observations of the emission of electrons from P and Q are made.</p>
<p>The experiment is then repeated with two other sources of electromagnetic radiation: B and C. The table gives the results for the experiment and the wavelengths of the radiation sources.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the cause of the electron emission for radiation A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why electrons are never emitted for radiation C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why radiation B gives different results.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why there is no effect on the table of results when the intensity of source B is doubled.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Photons with energy 1.1 × 10<sup>−18 </sup>J are incident on a third metal surface. The maximum energy of electrons emitted from the surface of the metal is 5.1 × 10<sup>−19 </sup>J.</p>
<p>Calculate, in eV, the work function of the metal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>photon transfers «all» energy to electron <strong>✓</strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>photon energy is less than both work functions<br><em><strong>OR</strong></em><br>photon energy is insufficient «to remove an electron» <strong>✓</strong></p>
<p><em><br>Answer must be in terms of photon energy.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Identifies P work function lower than Q work function<strong> ✓</strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>changing/doubling intensity «changes/doubles number of photons arriving but» does not change energy of photon<strong> ✓</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>18</mn></mrow></msup><mo>-</mo><mi mathvariant="normal">ϕ</mi></math> ✓</strong></p>
<p>work function <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>= «</mtext><mfrac><mrow><mo>(</mo><mn>11</mn><mo>.</mo><mn>0</mn><mo>-</mo><mn>5</mn><mo>.</mo><mn>1</mn><mo>)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfrac><mtext>= » 3.7 «eV»</mtext></math> <strong> ✓</strong></p>
<p><em><br>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An apparatus is used to investigate the photoelectric effect. A caesium cathode C is illuminated by a variable light source. A variable power supply is connected between C and the collecting anode A. The photoelectric current <em>I</em> is measured using an ammeter.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A current is observed on the ammeter when violet light illuminates C. With V held constant the current becomes zero when the violet light is replaced by red light of the same intensity. Explain this observation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation of photoelectric current <em>I</em> with potential difference <em>V</em> between C and A when violet light of a particular intensity is used.</p>
<p><img src=""></p>
<p>The intensity of the light source is increased without changing its wavelength.</p>
<p>(i) Draw, on the axes, a graph to show the variation of <em>I</em> with <em>V</em> for the increased intensity.</p>
<p>(ii) The wavelength of the violet light is 400 nm. Determine, in eV, the work function of caesium.</p>
<p>(iii) <em>V</em> is adjusted to +2.50V. Calculate the maximum kinetic energy of the photoelectrons just before they reach A.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>reference to photon<br><em><strong>OR</strong></em><br>energy = <em>hf <strong>or</strong></em> =<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{\lambda }">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span><br><br>violet photons have greater energy than red photons</p>
<p>when <em>hf </em>> Φ <em><strong>or</strong></em> photon energy> work function then electrons are ejected</p>
<p>frequency of red light < threshold frequency «so no emission»<br><em><strong>OR</strong></em><br>energy of red light/photon < work function «so no emission»</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>line with same negative intercept «–1.15V»<br><br>otherwise above existing line everywhere and of similar shape with clear plateau</p>
<p><em>Award this marking point even if intercept is wrong.</em></p>
<p> </p>
<p>ii<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{{\lambda e}} = ">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mrow>
<mi>λ</mi>
<mi>e</mi>
</mrow>
</mfrac>
<mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{40 \times {{10}^{ - 9}} \times 1.6 \times {{10}^{ - 19}}}} = ">
<mfrac>
<mrow>
<mn>6.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>40</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>1.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 3.11 «eV»</p>
<p><em>Intermediate answer is 4.97×10<sup>−19</sup> J. </em></p>
<p><em>Accept approach using </em>f<em> rather than c/λ</em><br><br>«3.10 − 1.15 =» 1.96 «eV»<br><em>Award <strong>[2]</strong> for a bald correct answer in eV.<br>Award <strong>[1 max]</strong> if correct answer is given in</em> <em>J</em> (3.12×10<sup>−19 </sup>J).</p>
<p> </p>
<p>iii</p>
<p>«KE = <em>qVs =</em>» 1.15 «eV»</p>
<p><em><strong>OR</strong></em></p>
<p>1.84 x 10<sup>−19 </sup>«J»</p>
<p><em>Allow ECF from MP1 to MP2.</em></p>
<p>adds 2.50 eV = 3.65 eV</p>
<p><em><strong>OR</strong></em></p>
<p>5.84 x 10<sup>−19</sup> J</p>
<p><em>Must see units in this question to identify energy unit used.</em><br><em>Award <strong>[2]</strong> for a bald correct answer that includes units.</em><br><em>Award <strong>[1 max]</strong> for correct answer without units.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>During electron capture, an atomic electron is captured by a proton in the nucleus. The stable nuclide thallium-205 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>) can be formed when an unstable lead (Pb) nuclide captures an electron.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation to represent this decay.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The unstable lead nuclide has a half-life of 15 × 10<sup>6</sup> years. A sample initially contains 2.0 μmol of the lead nuclide. Calculate the number of thallium nuclei being formed each second 30 × 10<sup>6</sup> years later.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The neutron number <em>N</em> and the proton number <em>Z</em> are not equal for the nuclide <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>. Explain, with reference to the forces acting within the nucleus, the reason for this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thallium-205 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>) can also form from successive alpha (α) and beta-minus (β<sup>−</sup>) decays of an unstable nuclide. The decays follow the sequence α β<sup>−</sup> β<sup>−</sup> α. The diagram shows the position of <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math> on a chart of neutron number against proton number.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Draw <strong>four</strong> arrows to show the sequence of changes to <em>N</em> and <em>Z</em> that occur as the <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math> forms from the unstable nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Pb</mtext><mprescripts></mprescripts><mn>82</mn><mn>205</mn></mmultiscripts></math> <strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>e </mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mtext mathvariant="bold-italic">AND </mtext><mo> </mo><mmultiscripts><mi>ν</mi><mtext>e</mtext><none></none><mprescripts></mprescripts><mn>0</mn><mn>0</mn></mmultiscripts></math> <strong>✓</strong></p>
<p> </p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>calculates <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mrow><mn>15</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac><mo> </mo><mo>«</mo><mo>=</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>62</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>8</mn></mrow></msup><msup><mtext> year</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>
<p>calculates nuclei remaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>= </mtext><mn>0</mn><mo>.</mo><mn>50</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>×</mo><mn>6</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo> </mo><mo>«</mo><mo>=</mo><mn>3</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>17</mn></msup><mo>»</mo></math> <strong>✓</strong></p>
<p>activity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>«</mo><mi>λ</mi><mo> </mo><mi>N</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mo> </mo><mtext>nuclei per year</mtext><mo>»</mo><mo>=</mo><mn>440</mn><mo> </mo><mo>«</mo><mtext>nuclei per second</mtext><mo>»</mo></math><strong> ✓</strong></p>
<p><em><br>Accept conversion to seconds at any stage. </em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer. </em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> and <strong>MP2</strong> </em></p>
<p><em>Allow use of decay equation.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Reference to proton repulsion <em><strong>OR</strong> </em>nucleon attraction <strong>✓</strong></p>
<p>strong force is short range <em><strong>OR</strong> </em>electrostatic/electromagnetic force is long range <strong>✓</strong></p>
<p>more neutrons «than protons» needed «to hold nucleus together» <strong> ✓</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>any α change correct <strong>✓</strong></p>
<p>any β change correct <strong>✓</strong></p>
<p>diagram fully correct<strong> ✓</strong></p>
<p><em><br>Award <strong>[2] max</strong> for a correct diagram without arrows drawn. </em></p>
<p><em>For <strong>MP1</strong> accept a (−2, −2 ) line with direction indicated, drawn at any position in the graph. </em></p>
<p><em>For <strong>MP2</strong> accept a (1, −1) line with direction indicated, drawn at any position in the graph. </em></p>
<p><em>Award <strong>[1] max</strong> for a correct diagram with all arrows in the opposite direction.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Radioactive uranium-238 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>238</mn></mmultiscripts></mfenced></math> produces a series of decays ending with a stable nuclide of lead. The nuclides in the series decay by either alpha (α) or beta-minus (β<sup>−</sup>) processes.</p>
</div>
<div class="specification">
<p>The graph shows the variation with the nucleon number <em>A</em> of the binding energy per nucleon.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Uranium-238 decays into a nuclide of thorium-234 (Th).</p>
<p><br>Write down the complete equation for this radioactive decay.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thallium-206 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>206</mn></mmultiscripts></mfenced></math> decays into lead-206 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Pb</mtext><mprescripts></mprescripts><mn>82</mn><mn>206</mn></mmultiscripts></mfenced></math>.</p>
<p>Identify the quark changes for this decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of uranium-238 is about 4.5 × 10<sup>9</sup> years. The half-life of thallium-206 is about 4.2 minutes.</p>
<p>Compare and contrast the methods to measure these half-lives.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why high temperatures are required for fusion to occur.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the graph, why energy is released both in fusion and in fission.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Uranium-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts></mfenced></math> is used as a nuclear fuel. The fission of uranium-235 can produce krypton-89 and barium-144.</p>
<p>Determine, in MeV and using the graph, the energy released by this fission.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>U→«</mtext><mprescripts></mprescripts><mn>92</mn><mn>238</mn></mmultiscripts><mmultiscripts><mo>»</mo><mprescripts></mprescripts><mn>90</mn><mn>234</mn></mmultiscripts><mtext>Th+</mtext><mo>«</mo><mmultiscripts><mo>»</mo><mprescripts></mprescripts><mn>2</mn><mn>4</mn></mmultiscripts><mi>α</mi></math><strong> ✓</strong><strong> </strong></p>
<p><em>Allow He for alpha.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>udd→uud<strong><br><em>OR</em><br></strong>down quark changes to up quark <strong>✓</strong><strong> </strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>measure «radio»activity/«radioactive» decay/A for either<br><em><strong>OR</strong></em><br>take measurements with a Geiger counter. <strong>✓</strong></p>
<p>for Uranium measure number/N of radioactive atoms/<strong><em>OWTTE </em>✓</strong></p>
<p>for Thalium measure «rate of» change in activity over time. <strong>✓</strong></p>
<p>correct connection for either Uranium or Thalium to determine half life<strong> ✓</strong><strong> </strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>links temperature to kinetic energy/speed of particles <strong>✓</strong><strong> </strong></p>
<p>energy required to overcome «Coulomb» electrostatic repulsion <strong>✓</strong><strong> </strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«energy is released when» binding energy per nucleon increases</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any use of (value from graph) x (number of nucleons) <strong>✓</strong></p>
<p>«235 × 7.6 – (89 × 8.6 + 144 × 8.2) =» 160 «MeV» <strong>✓</strong> </p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Potassium-40 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>K</mtext><mprescripts></mprescripts><mn>19</mn><mn>40</mn></mmultiscripts></mfenced></math> decays by two processes.</p>
<p>The first process is that of beta-minus (β<sup>−</sup>) decay to form a calcium (Ca) nuclide.</p>
</div>
<div class="specification">
<p>Potassium-40 decays by a second process to argon-40. This decay accounts for 11 % of the total decay of the potassium-40.</p>
<p>Rocks can be dated by measuring the quantity of argon-40 gas trapped in them. One rock sample contains 340 µmol of potassium-40 and 12 µmol of argon-40.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the initial quantity of potassium-40 in the rock sample was about 450 µmol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of potassium-40 is 1.3 × 10<sup>9</sup> years. Estimate the age of the rock sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the decay constant of potassium-40 was determined in the laboratory for a pure sample of the nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Ca</mtext><mprescripts></mprescripts><mn>20</mn><mn>40</mn></mmultiscripts></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mmultiscripts><mtext>e</mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo></mrow><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math> <strong><em>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>β</mi><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math> ✓</em></strong></p>
<p> </p>
<p><em>Full equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>K</mtext><mprescripts></mprescripts><mn>19</mn><mn>40</mn></mmultiscripts><mo>→</mo><mmultiscripts><mtext>Ca</mtext><mprescripts></mprescripts><mn>20</mn><mn>40</mn></mmultiscripts><mo>+</mo><mrow><mmultiscripts><mtext>e</mtext><mprescripts></mprescripts><mrow><mo>-</mo><mn>1</mn></mrow><mn>0</mn></mmultiscripts><mo>+</mo></mrow><msub><mover><mi>ν</mi><mo>¯</mo></mover><mtext>e</mtext></msub></math></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total K-40 decayed = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>12 μmol</mtext><mrow><mn>0</mn><mo>.</mo><mn>11</mn></mrow></mfrac><mo>=</mo><mn>109</mn></math> «μmol» ✓</p>
<p>so total K-40 originally was 109 + 340 = 449 «μmol»✓ </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mtext>ln</mtext><mfenced><mn>2</mn></mfenced></mrow><msub><mi>t</mi><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></msub></mfrac></math> used to give 𝜆 = 5.3 x 10<sup>-10</sup> per year ✓</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>340</mn><mo>=</mo><mfenced><mn>449</mn></mfenced><mfenced><msup><mi>e</mi><mrow><mo>-</mo><mn>5</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mi>t</mi></mrow></msup></mfenced></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mn>340</mn><mn>449</mn></mfrac></mfenced><mo>=</mo><mo>-</mo><mn>5</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo>×</mo><mi>t</mi></math> ✓</p>
<p><em><br>t </em>= 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>340</mn><mn>449</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>76</mn></math> </strong></em>«remaining» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mfenced><mi>p</mi></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>693</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>ln</mi><mfenced><mrow><mn>0</mn><mo>.</mo><mn>76</mn></mrow></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>693</mn></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn></math> ✓</p>
<p><em>t</em> = 0.40 x 1.3 x 10<sup>9</sup> = 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>340</mn><mn>449</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>76</mn></math> «remaining» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>76</mn><mo>=</mo><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mfrac><mi>t</mi><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></msup></math> ✓</p>
<p><em>t </em>= 0.40 x 1.3 x 10<sup>9 </sup>= 5.2 x 10<sup>8</sup> «years» ✓</p>
<p> </p>
<p><em>Allow 5.3 x 10<sup>8</sup> years for final answer.</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP3</strong> for an incorrect number of half-lives.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«use the mass of the sample to» determine number of potassium-40 atoms / nuclei in sample ✓</p>
<p>«use a counter to» determine (radio)activity / A of sample ✓</p>
<p>use <em>A = λN</em> «to determine the decay constant / <em>λ</em>» ✓</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was very well done by candidates. The majority were able to identify the correct nuclide of Calcium and many correctly included an electron/beta particle and a properly written antineutrino.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" question that was generally well done by candidates.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a more challenging question for candidates. Many were able to calculate the decay constant and recognized that the ratio of initial and final quantities of the potassium-40 was important. A very common error was mixing the two common half-life equations up and using the wrong values in the exponent (using half life instead of the decay constant, or using the decay constant instead of the half life). Examiners were generous with ECF for candidates who clearly showed an incorrect number of half-lives multiplied by the time for one half-life.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Describing methods of determining half-life continues to be a struggle for candidates with very few earning all three marks. Many candidates described a method more appropriate to measuring a short half- life, but even those descriptions fell far short of being acceptable.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment a beam of electrons with energy 440 MeV are incident on oxygen-16 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>O</mtext><mprescripts></mprescripts><mn>8</mn><mn>16</mn></mmultiscripts></mfenced></math> nuclei. The variation with scattering angle of the relative intensity of the scattered electrons is shown.<br><br></p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a property of electrons demonstrated by this experiment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy <em>E</em> of each electron in the beam is about 7 × 10<sup>−11 </sup>J.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The de Broglie wavelength for an electron is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>E</mi></mfrac></math>. Show that the diameter of an oxygen-16 nucleus is about 4 fm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the result in (a)(iii), the volume of a tin-118 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Sn</mtext><mprescripts></mprescripts><mn>50</mn><mn>118</mn></mmultiscripts></mfenced></math> nucleus. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>wave properties ✓</p>
<p><em><br>Accept reference to diffraction or interference.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>440 x 10<sup>6</sup> x 1.6 x 10<sup>-19</sup> <em><strong>OR</strong> </em>7.0 × 10<sup>-11</sup> «J» ✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow><mrow><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow></mfrac></math> <em><strong>OR </strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>440</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math> <em><strong>OR </strong> </em>2.8 × 10<sup>-15 </sup>«m» seen ✓</p>
<p>read off graph as 46° ✓</p>
<p>«Use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>=</mo><mfrac><mi>λ</mi><mrow><mi>sin</mi><mi>θ</mi></mrow></mfrac></math>=» 3.9 × 10<sup>-15</sup> m ✓</p>
<p> </p>
<p><em>Accept an angle between 45 and 47 degrees.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP2</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>∝</mo><msup><mi>A</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>∝</mo><mi>A</mi></math> ✓</p>
<p>volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Sn</mtext><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>π</mi><mfenced><mfrac><msub><mi>A</mi><mrow><mi>S</mi><mi>n</mi></mrow></msub><msub><mi>A</mi><mi>O</mi></msub></mfrac></mfenced><msubsup><mi>r</mi><mi>O</mi><mrow><mo> </mo><mn>3</mn></mrow></msubsup></math> or equivalent working ✓</p>
<p>2.3 to 2.5 × 10<sup>-43 </sup>«m<sup>3</sup>»✓</p>
<p>answer to 1 or 2sf ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><msub><mi>R</mi><mtext>o</mtext></msub><mo>×</mo><msup><mi>A</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></math> ✓</p>
<p>volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Sn</mtext><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>π</mi><msup><mi>R</mi><mn>3</mn></msup></math> <em><strong>OR</strong> </em>5.9 x 10<sup>-15</sup> seen ✓</p>
<p>8.5 × 10<sup>-43</sup> «m<sup>3</sup>»✓</p>
<p>answer to 1 or 2sf ✓</p>
<p> </p>
<p><em>Although the question expects candidates to work from the oxygen radius found, allow <strong>ALT 2</strong> working from the Fermi radius.</em></p>
<p><em><strong>MP4</strong> is for any answer stated to 1 or 2 significant figures.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>ai) Well answered.</p>
<p>aii) Well answered.</p>
<p>aiii) This was generally well done but quite a few attempted the small angle approximation. Probably worth a mention in the report.</p>
<p>b) Most gained credit from the first alternative solution, trying to use the data as the question intended. There were the inevitable slips and calculator mistakes. Most got the fourth mark.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,45}^{106}{\text{Rh}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>45</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Rh</mtext>
</mrow>
</math></span>) decays into palladium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,46}^{106}{\text{Pd}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>46</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Pd</mtext>
</mrow>
</math></span>) by beta minus (<em>β</em><sup>–</sup>) decay. The diagram shows some of the nuclear energy levels of rhodium-106 and palladium-106. The arrow represents the <em>β</em><sup>–</sup> decay.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.42.36.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/09.d"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bohr modified the Rutherford model by introducing the condition <em>mvr </em>= <em>n</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
<mfrac>
<mi>h</mi>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span>. Outline the reason for this modification.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed <em>v </em>of an electron in the hydrogen atom is related to the radius <em>r </em>of the orbit by the expression</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="v = \sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} ">
<mi>v</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>where <em>k </em>is the Coulomb constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the answer in (b) and (c)(i), deduce that the radius <em>r </em>of the electron’s orbit in the ground state of hydrogen is given by the following expression.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="r = \frac{{{h^2}}}{{4{\pi ^2}k{m_{\text{e}}}{e^2}}}">
<mi>r</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>k</mi>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electron’s orbital radius in (c)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what may be deduced about the energy of the electron in the <em>β</em><sup>–</sup> decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the <em>β</em><sup>–</sup> decay is followed by the emission of a gamma ray photon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the gamma ray photon in (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the electrons accelerate and so radiate energy</p>
<p>they would therefore spiral into the nucleus/atoms would be unstable</p>
<p>electrons have discrete/only certain energy levels</p>
<p>the only orbits where electrons do not radiate are those that satisfy the Bohr condition <strong>«</strong><em>mvr</em> = <em>n</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
<mfrac>
<mi>h</mi>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span><strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{m_{\text{e}}}{v^2}}}{r} = \frac{{k{e^2}}}{{{r^2}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p>KE = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>PE hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>m</em><sub>e</sub><em>v</em><sup>2</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\frac{{k{e^2}}}{r}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mi>r</mi>
</mfrac>
</math></span></p>
<p><strong>«</strong>solving for <em>v </em>to get answer<strong>»</strong></p>
<p> </p>
<p><em>Answer given – look for correct working</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>combining <em>v</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} ">
<msqrt>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span> with <em>m</em><sub>e</sub><em>vr</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
<mfrac>
<mi>h</mi>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span> using correct substitution</p>
<p><strong>«</strong><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_e}^2\frac{{k{e^2}}}{{{m_{\text{e}}}r}}{r^2} = \frac{{{h^2}}}{{4{\pi ^2}}}">
<msup>
<mrow>
<msub>
<mi>m</mi>
<mi>e</mi>
</msub>
</mrow>
<mn>2</mn>
</msup>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong></p>
<p>correct algebraic manipulation to gain the answer</p>
<p> </p>
<p><em>Answer given – look for correct working</em></p>
<p><em>Do not allow a bald statement of the answer for MP2. Some further working eg cancellation of m or r must be shown</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong> <em>r</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{(6.63 \times {{10}^{ - 34}})}^2}}}{{4{\pi ^2} \times 8.99 \times {{10}^9} \times 9.11 \times {{10}^{ - 31}} \times {{(1.6 \times {{10}^{ - 19}})}^2}}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mn>6.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>8.99</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>9</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>9.11</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>31</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mn>1.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong></p>
<p><em>r</em> = 5.3 × 10<sup>–11</sup> <strong>«</strong>m<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the energy released is 3.54 – 0.48 = 3.06 <strong>«</strong>MeV<strong>»</strong></p>
<p>this is shared by the electron and the antineutrino</p>
<p>so the electron’s energy varies from 0 to 3.06 <strong>«</strong>MeV<strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the palladium nucleus emits the photon when it decays into the ground state <strong>«</strong>from the excited state<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Photon energy</p>
<p><em>E</em> = 0.48 × 10<sup>6</sup> × 1.6 × 10<sup>–19</sup> = <strong>«</strong>7.68 × 10<sup>–14</sup> <em>J</em><strong>»</strong></p>
<p><em>λ</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{hc}}{E} = \frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{7.68 \times {{10}^{ - 14}}}}">
<mfrac>
<mrow>
<mi>h</mi>
<mi>c</mi>
</mrow>
<mi>E</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>34</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>7.68</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>14</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =<strong>»</strong> 2.6 × 10<sup>–12</sup><strong> «</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow ECF from incorrect energy</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The radioactive nuclide beryllium-10 (Be-10) undergoes beta minus (<em>β–</em>) decay to form a stable boron (B) nuclide.</p>
</div>
<div class="specification">
<p>The initial number of nuclei in a pure sample of beryllium-10 is N<sub>0</sub>. The graph shows how the number of remaining <strong>beryllium </strong>nuclei in the sample varies with time.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>An ice sample is moved to a laboratory for analysis. The temperature of the sample is –20 °C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing information for this decay.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph, sketch how the number of <strong>boron </strong>nuclei in the sample varies with time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After 4.3 × 10<sup>6</sup> years,</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{\text{number of produced boron nuclei}}}}{{{\text{number of remaining beryllium nuclei}}}} = 7.">
<mfrac>
<mrow>
<mrow>
<mtext>number of produced boron nuclei</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>number of remaining beryllium nuclei</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>7.</mn>
</math></span></p>
<p>Show that the half-life of beryllium-10 is 1.4 × 10<sup>6</sup> years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Beryllium-10 is used to investigate ice samples from Antarctica. A sample of ice initially contains 7.6 × 10<sup>11</sup> atoms of beryllium-10. The present activity of the sample is 8.0 × 10<sup>−3</sup> Bq.</p>
<p>Determine, in years, the age of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by thermal radiation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the peak wavelength in the intensity of the radiation emitted by the ice sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The temperature in the laboratory is higher than the temperature of the ice sample. Describe <strong>one </strong>other energy transfer that occurs between the ice sample and the laboratory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\mkern 1mu} {\mkern 1mu} 4}^{10}{\text{Be}} \to _{{\mkern 1mu} {\mkern 1mu} 5}^{10}{\text{B}} + _{ - 1}^{\,\,\,0}{\text{e}} + {\overline {\text{V}} _{\text{e}}}">
<msubsup>
<mi></mi>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>4</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Be</mtext>
</mrow>
<msubsup>
<mo stretchy="false">→</mo>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>5</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>B</mtext>
</mrow>
<msubsup>
<mo>+</mo>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
</msubsup>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mover>
<mtext>V</mtext>
<mo accent="false">¯</mo>
</mover>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
</math></span></p>
<p>antineutrino <em><strong>AND</strong> </em>charge <em><strong>AND</strong> </em>mass number of electron <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{ - 1}^{\,\,\,0}{\text{e}}">
<msubsup>
<mi></mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
</msubsup>
<mrow>
<mtext>e</mtext>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overline {\text{V}} ">
<mover>
<mtext>V</mtext>
<mo accent="false">¯</mo>
</mover>
</math></span></p>
<p>conservation of mass number <strong><em>AND </em></strong>charge <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,5}^{10}{\text{B}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>B</mtext>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\mkern 1mu} {\mkern 1mu} 4}^{10}{\text{Be}}">
<msubsup>
<mi></mi>
<mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mrow>
<mspace width="0.056em"></mspace>
</mrow>
<mn>4</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Be</mtext>
</mrow>
</math></span></p>
<p> </p>
<p><em>Do not accept V.</em></p>
<p><em>Accept </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar V}">
<mrow>
<mrow>
<mover>
<mi>V</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span><em> without subscript e.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct shape <em>ie </em>increasing from 0 to about 0.80 N<sub>0</sub></p>
<p>crosses given line at 0.50 N<sub>0</sub></p>
<p><img src="images/Schermafbeelding_2018-08-10_om_19.42.49.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/06.b.i/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>fraction of Be = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>, 12.5%, or 0.125</p>
<p>therefore 3 half lives have elapsed</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_{\frac{1}{2}}} = \frac{{4.3 \times {{10}^6}}}{3} = 1.43 \times {10^6}">
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>1.43</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
</math></span> <strong>«</strong>≈ 1.4 × 10<sup>6</sup><strong>»</strong> <strong>«</strong>y<strong>»</strong></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>fraction of Be = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>, 12.5%, or 0.125</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8} = {{\text{e}}^{ - \lambda }}(4.3 \times {10^6})">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>4.3</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> leading to <em>λ</em> = 4.836 × 10<sup>–7</sup> <strong>«</strong>y<strong>»</strong><sup>–1</sup></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{\lambda }">
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mi>λ</mi>
</mfrac>
</math></span> = 1.43 × 10<sup>6</sup> <strong>«</strong>y<strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Must see at least one extra sig fig in final answer.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>λ</em> <strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{{1.4 \times {{10}^6}}}">
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mrow>
<mn>1.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong> = 4.95 × 10<sup>–7</sup> <strong>«</strong>y<sup>–1</sup><strong>»</strong></p>
<p>rearranging of <em>A</em> = <em>λN</em><sub>0</sub>e<sup>–<em>λt</em></sup> to give –<em>λt</em> = ln <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{8.0 \times {{10}^{-3}} \times 365 \times 24 \times 60 \times 60}}{{4.95 \times {{10}^{-7}} \times 7.6 \times {{10}^{11}}}}">
<mfrac>
<mrow>
<mn>8.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>365</mn>
<mo>×</mo>
<mn>24</mn>
<mo>×</mo>
<mn>60</mn>
<mo>×</mo>
<mn>60</mn>
</mrow>
<mrow>
<mn>4.95</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>7.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>11</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <strong>«</strong>= –0.400<strong>»</strong></p>
<p><em>t</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 0.400}}{{ - 4.95 \times {{10}^{ - 7}}}} = 8.1 \times {10^5}">
<mfrac>
<mrow>
<mo>−</mo>
<mn>0.400</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4.95</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>7</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>8.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>5</mn>
</msup>
</mrow>
</math></span> <strong>«</strong>y<strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Allow ECF from MP1</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>emission of (infrared) electromagnetic/infrared energy/waves/radiation.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein’s Law</p>
<p>so frequency/color depends on temperature</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = \frac{{2.90 \times {{10}^{ - 3}}}}{{253}}">
<mi>λ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2.90</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>253</mn>
</mrow>
</mfrac>
</math></span></p>
<p>= 1.1 × 10<sup>–5</sup> <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from MP1 (incorrect temperature).</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from the laboratory to the sample</p>
<p>conduction – contact between ice and lab surface.</p>
<p><strong><em>OR</em></strong></p>
<p>convection – movement of air currents</p>
<p> </p>
<p><em>Must clearly see direction of energy transfer for MP1.</em></p>
<p><em>Must see more than just words “conduction” or “convection” for MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen atoms in an ultraviolet (UV) lamp make transitions from the first excited state to the ground state. Photons are emitted and are incident on a photoelectric surface as shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_12.49.40.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08"></p>
</div>
<div class="specification">
<p>The photons cause the emission of electrons from the photoelectric surface. The work function of the photoelectric surface is 5.1 eV.</p>
</div>
<div class="specification">
<p>The electric potential of the photoelectric surface is 0 V. The variable voltage is adjusted so that the collecting plate is at –1.2 V.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy of photons from the UV lamp is about 10 eV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the maximum kinetic energy of the emitted electrons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with reference to conservation of energy, how the variable voltage source can be used to stop all emitted electrons from reaching the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The variable voltage can be adjusted so that no electrons reach the collecting plate. Write down the minimum value of the voltage for which no electrons reach the collecting plate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label the equipotential lines at –0.4 V and –0.8 V.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is emitted from the photoelectric surface with kinetic energy 2.1 eV. Calculate the speed of the electron at the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>1</sub> = –13.6 <strong>«</strong>eV<strong>»</strong> E<sub>2</sub> = – <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{13.6}}{4}">
<mfrac>
<mrow>
<mn>13.6</mn>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> = –3.4 <strong>«</strong>eV<strong>»</strong></p>
<p>energy of photon is difference <em>E</em><sub>2</sub> – <em>E</em><sub>1</sub> = 10.2 <strong>«</strong>≈ 10 eV<strong>»</strong></p>
<p> </p>
<p><em>Must see at least 10.2 eV.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>10 – 5.1 = 4.9 <strong>«</strong>eV<strong>»</strong></p>
<p>4.9 × 1.6 × 10<sup>–19</sup> = 7.8 × 10<sup>–19</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Allow </em>5.1 <em>if </em>10.2 <em>is used to give</em> 8.2×10<sup>−19</sup> <strong>«</strong>J<strong>»</strong>.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>EPE produced by battery</p>
<p>exceeds maximum KE of electrons / electrons don’t have enough KE</p>
<p> </p>
<p><em>For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4.9 <strong>«</strong>V<strong>»</strong></p>
<p> </p>
<p><em>Allow 5.1 if 10.2 is used in (b)(i).</em></p>
<p><em>Ignore sign on answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two equally spaced vertical lines (judge by eye) at approximately 1/3 and 2/3</p>
<p>labelled correctly</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_14.47.13.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08.c.i/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>kinetic energy at collecting plate = 0.9 <strong>«</strong>eV<strong>»</strong></p>
<p>speed = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{2 \times 0.9 \times 1.6 \times {{10}^{ - 19}}}}{{9.11 \times {{10}^{ - 31}}}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>0.9</mn>
<mo>×</mo>
<mn>1.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>9.11</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>31</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</msqrt>
</math></span><strong>»</strong> = 5.6 × 10<sup>5</sup> <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em>Allow ECF from MP1</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Monochromatic light of very low intensity is incident on a metal surface. The light causes the emission of electrons almost instantaneously. Explain how this observation</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">In an experiment to demonstrate the photoelectric effect, light of wavelength 480 nm is incident on a metal surface.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The graph shows the variation of the current<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></em> in the ammeter with the potential <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math></em> of the cathode.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src=""></span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">does not support the wave nature of light.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">does support the photon nature of light.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, in eV, the work function of the metal surface.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The intensity of the light incident on the surface is reduced by half without changing the wavelength. Draw, on the graph, the variation of the current <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></em> with potential <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math></em> after this change.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«low intensity light would» transfer energy to the electron at a low rate/slowly ✔<br>time would be required for the electron «to absorb the required energy» to escape/be emitted ✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: OWTTE</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«in the photon theory of light» the electron interacts with a single photon ✔<br>and absorbs all the energy <em><strong>OR</strong> </em>and can leave the metal immediately ✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Reference to photon-electron collision scores MP1</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi><mo>=</mo><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>λ</mi></mfrac><mo>-</mo><msub><mi>E</mi><mi mathvariant="normal">K</mi></msub></math> <span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">K</mi></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>«</mo><mi>eV</mi><mo>»</mo></math><span style="background-color: #ffffff;"> ✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>480</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn></mrow></msup></mrow></mfrac><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>=</mo><mo>»</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>eV</mi><mo>»</mo></math><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;"><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">NOTE: Allow reading from the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>k</mi></msub><mo>=</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">.4</mo></math>leading to an answer of 1.2 «eV».</span></span></em></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">similar curve lower than original ✔<br></span></p>
<p><span style="background-color: #ffffff;">with same horizontal intercept ✔</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="401" height="246"></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of electrons each of de Broglie wavelength 2.4 × 10<sup>–15</sup> m is incident on a thin film of silicon-30 <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{}_{14}^{30}{\text{Si}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>30</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Si</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span>. The variation in the electron intensity of the beam with scattering angle is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to show that the nuclear radius of silicon-30 is about 4 fm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the result from (a)(i), the nuclear radius of thorium-232 <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{}_{90}^{232}{\text{Th}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>90</mn>
</mrow>
<mrow>
<mn>232</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Th</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> reason why a beam of electrons is better for investigating the size of a nucleus than a beam of alpha particles of the same energy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why deviations from Rutherford scattering are observed when high-energy alpha particles are incident on nuclei.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>read off between 17 and 19 «deg» ✔</p>
<p>correct use of <em>d</em> = <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{{\sin \theta }}">
<mfrac>
<mi>λ</mi>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></span> = 7.8 × 10<sup>−15</sup> «m» ✔</p>
<p>so radius = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7.8}{2}">
<mfrac>
<mn>7.8</mn>
<mn>2</mn>
</mfrac>
</math></span> «fm» = 3.9 «fm» ✔</p>
<p><em>Award ecf for wrong angle in MP1.</em></p>
<p><em>Answer for MP3 must show at least 2 </em><em>sf.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>R<sub>Th</sub> = R<sub>si </sub> <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{{{A_{{\text{Th}}}}}}{{{A_{{\text{Si}}}}}}} \right)^{\frac{1}{3}}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mrow>
<mtext>Th</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mrow>
<mtext>Si</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span></span> or substitution ✔</p>
<p>7.4 «fm» ✔<br><br></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electron wavelength shorter than alpha particles (thus increased resolution)<br><em><strong>OR</strong></em><br>electron is not subject to strong nuclear force ✔</p>
<p> </p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nuclear forces act ✔</p>
<p>nuclear recoil occurs ✔</p>
<p>significant penetration into nucleus / probing internal structure of individual nucleons ✔</p>
<p>incident particles are relativistic ✔</p>
<div class="question_part_label">a.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was left blank by many candidates and many of those who attempted it chose an angle that when used with the correct equation gave an answer close to the given answer of 4 fm. Very few selected the correct angle, calculated the correct diameter, and divided by two to get the correct radius.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was also left blank by many candidates. Many who did answer simply used the ratio of the of the mass numbers of the two elements and failed to take the cube root of the ratio. It should be noted that the question specifically stated that candidates were expected to use the result from 2ai, and not just simply guess at the new radius.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was very poorly answered with the vast majority of candidates simply listing differences between alpha particles and electrons (electrons have less mass, electrons have less charge, etc) rather than considering why high speed electrons would be better for studying the nucleus.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates struggled with this question. The vast majority of responses were descriptions of Rutherford scattering with no connection made to the deviations when high-energy alpha particles are used. Many of the candidates who did appreciate that this was a different situation from the traditional experiment made vague comments about the alpha particles “hitting” the nucleus.</p>
<div class="question_part_label">a.iv.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A particular K meson has a quark structure <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{\bar u}}">
<mrow>
<mrow>
<mrow>
<mover>
<mi mathvariant="normal">u</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</mrow>
</math></span>s. State the charge, strangeness and baryon number for this meson.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Feynman diagram shows the changes that occur during beta minus (β<sup>–</sup>) decay.</p>
<p><img src=""></p>
<p>Label the diagram by inserting the <strong>four</strong> missing particle symbols <strong>and</strong> the direction of the arrows for the decay particles.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>C-14 decay is used to estimate the age of an old dead tree. The activity of C-14 in the dead tree is determined to have <strong>fallen to</strong> 21% of its original value. C-14 has a half-life of 5700 years.</p>
<p>(i) Explain why the activity of C-14 in the dead tree decreases with time.</p>
<p>(ii) Calculate, in years, the age of the dead tree. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>charge:</em> –1«e» <em><strong>or</strong></em> negative <em><strong>or</strong> K</em><sup>−</sup></p>
<p><em>strangeness:</em> –1 </p>
<p><em>baryon number:</em> 0</p>
<p>Negative signs required.<br>Award <strong>[2]</strong> for three correct answers, <strong>[1 max]</strong> for two correct answer and <strong>[0]</strong> for one correct answer.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct symbols for both missing quarks</p>
<p>exchange particle and electron labelled W <em><strong>or</strong></em> W<sup>–</sup> and e <em><strong>or</strong></em> e<sup>–</sup></p>
<p><em>Do not allow W<sup>+</sup> <strong>or</strong> e<sup>+</sup> <strong>or</strong> β<sup>+</sup>. Allow β <strong>or</strong> β<sup>–</sup>.</em></p>
<p>arrows for both electron and anti-neutrino correct</p>
<p><em>Allow ECF from previous marking point.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>number of C-14 atoms/nuclei are decreasing<br><em><strong>OR</strong></em><br>decreasing activity proportional to number of C-14 atoms/nuclei<br><em><strong>OR</strong></em><br><em>A </em>= <em>A</em><sub>0</sub>e<sup>–<em>λt</em></sup> so <em>A</em> decreases as <em>t</em> increases<br><em>Do not allow “particles”</em><br><em>Must see reference to atoms or nuclei or an equation, just “C-14 is decreasing” is not enough.</em></p>
<p><br>ii<br>0.21 = (0.5)<em><sup>n</sup></em><br><em><strong>OR</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.21 = {e^{ - \left( {\frac{{\ln 2 \times t}}{{5700}}} \right)}}">
<mn>0.21</mn>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
<mo>×</mo>
<mi>t</mi>
</mrow>
<mrow>
<mn>5700</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><em>n </em>= 2.252 half-lives or <em>t </em>=1 2834 «y»<br><em>Early rounding to 2.25 gives 12825 y</em></p>
<p>13000 y rounded correctly to two significant figures:<br><em>Both needed; answer must be in year for MP3.</em><br><em>Allow ECF from MP2.</em><br><em>Award <strong>[3]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">In a classical model of the singly-ionized helium atom, a single electron orbits the nucleus in a circular orbit of radius <em>r</em>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="249" height="248"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The Bohr model for hydrogen can be applied to the singly-ionized helium atom. In this model the radius<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math></em>, in m, of the orbit of the electron is given by<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>–</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mi>n</mi><mn>2</mn></msup></math></em> where <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math></em> is a positive integer.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the speed <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math></em> of the electron with mass <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math></em>, is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><msqrt><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mrow><mi>m</mi><mi>r</mi></mrow></mfrac></msqrt></math>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Hence, deduce that the total energy of the electron is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>TOT</mi></msub><mo>=</mo><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">In this model the electron loses energy by emitting electromagnetic waves. Describe the predicted effect of this emission on the orbital radius of the electron.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the de Broglie wavelength<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math></em> of the electron in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math> state is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></math> m.<br></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The formula for the de Broglie wavelength of a particle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mi>h</mi><mrow><mi>m</mi><mi>v</mi></mrow></mfrac></math>.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Estimate for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math>, the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>circumference</mi><mo> </mo><mi>of</mi><mo> </mo><mi>orbit</mi></mrow><mrow><mi>de</mi><mo> </mo><mi>Broglie</mi><mo> </mo><mi>wavelength</mi><mo> </mo><mi>of</mi><mo> </mo><mi>electron</mi></mrow></mfrac></math>.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">State your answer to one significant figure.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The description of the electron is different in the Schrodinger theory than in the Bohr model. Compare and contrast the description of the electron according to the Bohr model and to the Schrodinger theory.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">equating centripetal to electrical force <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math> to get result ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">uses (a)(i) to state <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">k</mi></msub><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math> <em><strong>OR </strong></em>states <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">p</mi></msub><mo>=</mo><mo>-</mo><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math> ✔</span></p>
<p><span style="background-color: #ffffff;">adds « <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>TOT</mi></msub><mo>=</mo><msub><mi>E</mi><mi mathvariant="normal">k</mi></msub><mo>+</mo><msub><mi>E</mi><mi mathvariant="normal">p</mi></msub><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac><mo>-</mo><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math>» to get the result ✔</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">the total energy decreases<br><em><strong>OR</strong></em><br>by reference to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>TOT</mi></msub><mo>=</mo><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math> ✔</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">the radius must also decrease ✔</span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">NOTE: <span style="background-color: #ffffff;">Award <strong>[0]</strong> for an answer concluding that radius increases</span></span></span></em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>v</mi><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfenced><mn>2</mn></msup></mrow><mrow><mn>9</mn><mo>.</mo><mn>11</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup><mo>×</mo><mn>9</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow></mfrac></msqrt><mo>=</mo><mo>»</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>44</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo> </mo><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo> </mo><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math><span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup></mrow><mrow><mn>9</mn><mo>.</mo><mn>11</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>44</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math> <em><strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>05</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math><span style="background-color: #ffffff;">✔</span></strong></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mi>r</mi></mstyle><mstyle displaystyle="true"><mi>λ</mi></mstyle></mfrac><mo>=</mo><mo>«</mo><mfrac><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>×</mo><mn>9</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mstyle><mstyle displaystyle="true"><mn>5</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></mstyle></mfrac><mo>=</mo><mn>2</mn><mo>.</mo><mn>99</mn><mo>»</mo><mo>≅</mo><mn>3</mn></math> <span style="background-color: #ffffff;">✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Allow ECF from (b)(i)</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">reference to fixed orbits/specific radii <em><strong>OR</strong> </em>quantized angular momentum in Bohr model ✔<br></span></p>
<p><span style="background-color: #ffffff;">electron described by a wavefunction/as a wave in Schrödinger model <em><strong>OR</strong> </em>as particle in Bohr model ✔<br></span></p>
<p><span style="background-color: #ffffff;">reference to «same» energy levels in both models ✔<br></span></p>
<p><span style="background-color: #ffffff;">reference to «relationship between wavefunction and» probability «of finding an electron in a point» in Schrödinger model ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>