File "HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 12 HTML/HL-paper2html
File size: 564.46 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Two observations about the photoelectric effect are</p>
<p style="text-align: left;">Observation 1: For light below the threshold frequency no electrons are emitted from the metal surface.</p>
<p style="text-align: left;">Observation 2: For light above the threshold frequency, the emission of electrons is almost instantaneous.</p>
</div>
<div class="specification">
<p>The graph shows how the maximum kinetic energy <em>E</em><sub>max</sub> of electrons emitted from a surface of barium metal varies with the frequency <em>f</em> of the incident radiation.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how each observation provides support for the particle theory but not the wave theory of light.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine a value for Planck’s constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the work function of a metal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the work function of barium in eV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment is repeated with a metal surface of cadmium, which has a greater work function. Draw a second line on the graph to represent the results of this experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The first scientists to identify alpha particles by a direct method were Rutherford and Royds. They knew that radium-226 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{226}{\text{Ra}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>86</mn>
</mrow>
<mrow>
<mn>226</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Ra</mtext>
</mrow>
</math></span>) decays by alpha emission to form a nuclide known as radon (Rn).</p>
</div>
<div class="specification">
<p>At the start of the experiment, Rutherford and Royds put 6.2 x 10<sup>–4</sup> mol of pure radium-226 in a small closed cylinder A. Cylinder A is fixed in the centre of a larger closed cylinder B.</p>
<p style="text-align: center;"><img src=""></p>
<p>The experiment lasted for 6 days. The decay constant of radium-226 is 1.4 x 10<sup>–11</sup> s<sup>–1</sup>.</p>
</div>
<div class="specification">
<p>At the start of the experiment, all the air was removed from cylinder B. The alpha particles combined with electrons as they moved through the wall of cylinder A to form helium gas in cylinder B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the nuclear equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the activity of the radium-226 is almost constant during the experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that about 3 x 10<sup>15</sup> alpha particles are emitted by the radium-226 in 6 days.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wall of cylinder A is made from glass. Outline why this glass wall had to be very thin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment was carried out at a temperature of 18 °C. The volume of cylinder B was 1.3 x 10<sup>–5</sup> m<sup>3</sup> and the volume of cylinder A was negligible. Calculate the pressure of the helium gas that was collected in cylinder B over the 6 day period. Helium is a monatomic gas.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The de Broglie wavelength <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math> of a particle accelerated close to the speed of light is approximately</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>≈</mo><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>E</mi></mfrac></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> is the energy of the particle.<br>A beam of electrons of energy <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo> </mo><mi>eV</mi></math> is produced in an accelerator.</p>
</div>
<div class="specification">
<p>The electron beam is used to study the nuclear radius of carbon-12. The beam is directed from the left at a thin sample of carbon-12. A detector is placed at an angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> relative to the direction of the incident beam.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="378" height="137"></p>
<p>The graph shows the variation of the intensity of electrons with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>. There is a minimum of intensity for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><msub><mi>θ</mi><mn>0</mn></msub></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="365" height="235"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the wavelength of an electron in the beam is about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup><mo> </mo><mi mathvariant="normal">m</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how the results of the experiment provide evidence for matter waves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The accepted value of the diameter of the carbon-12 nucleus is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>94</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup><mo> </mo><mi mathvariant="normal">m</mi></math>. Estimate the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>θ</mi><mn>0</mn></msub></math> at which the minimum of the intensity is formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why electrons with energy of approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>10</mn><mn>7</mn></msup><mo> </mo><mi>eV</mi></math> would be unsuitable for the investigation of nuclear radii.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Experiments with many nuclides suggest that the radius of a nucleus is proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is the number of nucleons in the nucleus. Show that the density of a nucleus remains approximately the same for all nuclei.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Yellow light of photon energy 3.5 x 10<sup>–19</sup> J is incident on the surface of a particular photocell.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The photocell is connected to a cell as shown. The photoelectric current is at its maximum value (the saturation current).</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Radiation with a greater photon energy than that in (b) is now incident on the photocell. The intensity of this radiation is the same as that in (b).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the light.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Electrons emitted from the surface of the photocell have almost no kinetic energy. Explain why this does not contradict the law of conservation of energy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Radiation of photon energy 5.2 x 10<sup>–19</sup> J is now incident on the photocell. Calculate the maximum velocity of the emitted electrons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the change in the number of photons per second incident on the surface of the photocell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect on the maximum photoelectric current as a result of increasing the photon energy in this way.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Plutonium-238 (Pu) decays by alpha (α) decay into uranium (U).</p>
<p>The following data are available for binding energies per nucleon:</p>
<p style="padding-left: 30px;">plutonium 7.568 MeV</p>
<p style="padding-left: 30px;">uranium 7.600 MeV</p>
<p style="padding-left: 30px;">alpha particle 7.074 MeV</p>
</div>
<div class="specification">
<p>The energy in b(i) can be transferred into electrical energy to run the instruments of a spacecraft. A spacecraft carries 33 kg of pure plutonium-238 at launch. The decay constant of plutonium is 2.50 × 10<sup>−10</sup> s<sup>−1</sup>.</p>
</div>
<div class="specification">
<p>Solar radiation falls onto a metallic surface carried by the spacecraft causing the emission of photoelectrons. The radiation has passed through a filter so it is monochromatic. The spacecraft is moving away from the Sun.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some unstable nuclei have many more neutrons than protons. Suggest the likely decay for these nuclei.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in this decay is about 6 MeV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plutonium nucleus is at rest when it decays.</p>
<p>Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power, in kW, that is available from the plutonium at launch.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spacecraft will take 7.2 years (2.3 × 10<sup>8</sup> s) to reach a planet in the solar system. Estimate the power available to the spacecraft when it gets to the planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the kinetic energy of an emitted photoelectron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the rate at which charge leaves the metallic surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> is formed when a nucleus of deuterium (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{1}^{2}{\text{H}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>1</mn>
</mrow>
<mrow>
<mn>2</mn>
</mrow>
</msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
</math></span>) collides with a nucleus of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{31}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>31</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>. The radius of a deuterium nucleus is 1.5 fm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the density of a nucleus varies with the number of nucleons in the nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the nuclear radius of phosphorus-31 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{31}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>31</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>) is about 4 fm.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the maximum distance between the centres of the nuclei for which the production of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> is likely to occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in J, the minimum initial kinetic energy that the deuterium nucleus must have in order to produce <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>. Assume that the phosphorus nucleus is stationary throughout the interaction and that only electrostatic forces act.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> undergoes beta-minus (β<sup>–</sup>) decay. Explain why the energy gained by the emitted beta particles in this decay is not the same for every beta particle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by decay constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a fresh pure sample of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> the activity of the sample is 24 Bq. After one week the activity has become 17 Bq. Calculate, in s<sup>–1</sup>, the decay constant of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</msubsup>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Particles can be used in scattering experiments to estimate nuclear sizes.</p>
</div>
<div class="specification">
<p>Electron diffraction experiments indicate that the nuclear radius of carbon-12 is 2.7 x 10<sup>–15</sup> m. The graph shows the variation of nuclear radius with nucleon number. The nuclear radius of the carbon-12 is shown on the graph.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>The Feynman diagram shows electron capture.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the nature of the particle labelled X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how these experiments are carried out.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the particles must be accelerated to high energies in scattering experiments.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain <strong>one</strong> example of a scientific analogy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the position of magnesium-24 on the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a line on the graph, to show the variation of nuclear radius with nucleon number.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>In an electric circuit used to investigate the photoelectric effect, the voltage is varied until the reading in the ammeter is zero. The stopping voltage that produces this reading is 1.40 V.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the photoelectric effect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the maximum velocity of the photoelectrons is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>700</mn><mo> </mo><msup><mtext>km s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The photoelectrons are emitted from a sodium surface. Sodium has a work function of 2.3 eV.</p>
<p>Calculate the wavelength of the radiation incident on the sodium. State an appropriate unit for your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment to demonstrate the photoelectric effect, monochromatic electromagnetic radiation from source A is incident on the surfaces of metal P and metal Q. Observations of the emission of electrons from P and Q are made.</p>
<p>The experiment is then repeated with two other sources of electromagnetic radiation: B and C. The table gives the results for the experiment and the wavelengths of the radiation sources.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the cause of the electron emission for radiation A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why electrons are never emitted for radiation C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why radiation B gives different results.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why there is no effect on the table of results when the intensity of source B is doubled.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Photons with energy 1.1 × 10<sup>−18 </sup>J are incident on a third metal surface. The maximum energy of electrons emitted from the surface of the metal is 5.1 × 10<sup>−19 </sup>J.</p>
<p>Calculate, in eV, the work function of the metal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An apparatus is used to investigate the photoelectric effect. A caesium cathode C is illuminated by a variable light source. A variable power supply is connected between C and the collecting anode A. The photoelectric current <em>I</em> is measured using an ammeter.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A current is observed on the ammeter when violet light illuminates C. With V held constant the current becomes zero when the violet light is replaced by red light of the same intensity. Explain this observation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation of photoelectric current <em>I</em> with potential difference <em>V</em> between C and A when violet light of a particular intensity is used.</p>
<p><img src=""></p>
<p>The intensity of the light source is increased without changing its wavelength.</p>
<p>(i) Draw, on the axes, a graph to show the variation of <em>I</em> with <em>V</em> for the increased intensity.</p>
<p>(ii) The wavelength of the violet light is 400 nm. Determine, in eV, the work function of caesium.</p>
<p>(iii) <em>V</em> is adjusted to +2.50V. Calculate the maximum kinetic energy of the photoelectrons just before they reach A.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>During electron capture, an atomic electron is captured by a proton in the nucleus. The stable nuclide thallium-205 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>) can be formed when an unstable lead (Pb) nuclide captures an electron.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation to represent this decay.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The unstable lead nuclide has a half-life of 15 × 10<sup>6</sup> years. A sample initially contains 2.0 μmol of the lead nuclide. Calculate the number of thallium nuclei being formed each second 30 × 10<sup>6</sup> years later.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The neutron number <em>N</em> and the proton number <em>Z</em> are not equal for the nuclide <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>. Explain, with reference to the forces acting within the nucleus, the reason for this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thallium-205 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math>) can also form from successive alpha (α) and beta-minus (β<sup>−</sup>) decays of an unstable nuclide. The decays follow the sequence α β<sup>−</sup> β<sup>−</sup> α. The diagram shows the position of <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math> on a chart of neutron number against proton number.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Draw <strong>four</strong> arrows to show the sequence of changes to <em>N</em> and <em>Z</em> that occur as the <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>205</mn></mmultiscripts></math> forms from the unstable nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Radioactive uranium-238 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>238</mn></mmultiscripts></mfenced></math> produces a series of decays ending with a stable nuclide of lead. The nuclides in the series decay by either alpha (α) or beta-minus (β<sup>−</sup>) processes.</p>
</div>
<div class="specification">
<p>The graph shows the variation with the nucleon number <em>A</em> of the binding energy per nucleon.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Uranium-238 decays into a nuclide of thorium-234 (Th).</p>
<p><br>Write down the complete equation for this radioactive decay.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thallium-206 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Tl</mtext><mprescripts></mprescripts><mn>81</mn><mn>206</mn></mmultiscripts></mfenced></math> decays into lead-206 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Pb</mtext><mprescripts></mprescripts><mn>82</mn><mn>206</mn></mmultiscripts></mfenced></math>.</p>
<p>Identify the quark changes for this decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of uranium-238 is about 4.5 × 10<sup>9</sup> years. The half-life of thallium-206 is about 4.2 minutes.</p>
<p>Compare and contrast the methods to measure these half-lives.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why high temperatures are required for fusion to occur.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the graph, why energy is released both in fusion and in fission.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Uranium-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>U</mtext><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts></mfenced></math> is used as a nuclear fuel. The fission of uranium-235 can produce krypton-89 and barium-144.</p>
<p>Determine, in MeV and using the graph, the energy released by this fission.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Potassium-40 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>K</mtext><mprescripts></mprescripts><mn>19</mn><mn>40</mn></mmultiscripts></mfenced></math> decays by two processes.</p>
<p>The first process is that of beta-minus (β<sup>−</sup>) decay to form a calcium (Ca) nuclide.</p>
</div>
<div class="specification">
<p>Potassium-40 decays by a second process to argon-40. This decay accounts for 11 % of the total decay of the potassium-40.</p>
<p>Rocks can be dated by measuring the quantity of argon-40 gas trapped in them. One rock sample contains 340 µmol of potassium-40 and 12 µmol of argon-40.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the initial quantity of potassium-40 in the rock sample was about 450 µmol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of potassium-40 is 1.3 × 10<sup>9</sup> years. Estimate the age of the rock sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the decay constant of potassium-40 was determined in the laboratory for a pure sample of the nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment a beam of electrons with energy 440 MeV are incident on oxygen-16 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>O</mtext><mprescripts></mprescripts><mn>8</mn><mn>16</mn></mmultiscripts></mfenced></math> nuclei. The variation with scattering angle of the relative intensity of the scattered electrons is shown.<br><br></p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a property of electrons demonstrated by this experiment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy <em>E</em> of each electron in the beam is about 7 × 10<sup>−11 </sup>J.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The de Broglie wavelength for an electron is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>E</mi></mfrac></math>. Show that the diameter of an oxygen-16 nucleus is about 4 fm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the result in (a)(iii), the volume of a tin-118 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Sn</mtext><mprescripts></mprescripts><mn>50</mn><mn>118</mn></mmultiscripts></mfenced></math> nucleus. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,45}^{106}{\text{Rh}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>45</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Rh</mtext>
</mrow>
</math></span>) decays into palladium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,46}^{106}{\text{Pd}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>46</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Pd</mtext>
</mrow>
</math></span>) by beta minus (<em>β</em><sup>–</sup>) decay. The diagram shows some of the nuclear energy levels of rhodium-106 and palladium-106. The arrow represents the <em>β</em><sup>–</sup> decay.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.42.36.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/09.d"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bohr modified the Rutherford model by introducing the condition <em>mvr </em>= <em>n</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
<mfrac>
<mi>h</mi>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span>. Outline the reason for this modification.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed <em>v </em>of an electron in the hydrogen atom is related to the radius <em>r </em>of the orbit by the expression</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="v = \sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} ">
<mi>v</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>where <em>k </em>is the Coulomb constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the answer in (b) and (c)(i), deduce that the radius <em>r </em>of the electron’s orbit in the ground state of hydrogen is given by the following expression.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="r = \frac{{{h^2}}}{{4{\pi ^2}k{m_{\text{e}}}{e^2}}}">
<mi>r</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>k</mi>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electron’s orbital radius in (c)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what may be deduced about the energy of the electron in the <em>β</em><sup>–</sup> decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the <em>β</em><sup>–</sup> decay is followed by the emission of a gamma ray photon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the gamma ray photon in (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The radioactive nuclide beryllium-10 (Be-10) undergoes beta minus (<em>β–</em>) decay to form a stable boron (B) nuclide.</p>
</div>
<div class="specification">
<p>The initial number of nuclei in a pure sample of beryllium-10 is N<sub>0</sub>. The graph shows how the number of remaining <strong>beryllium </strong>nuclei in the sample varies with time.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>An ice sample is moved to a laboratory for analysis. The temperature of the sample is –20 °C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing information for this decay.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph, sketch how the number of <strong>boron </strong>nuclei in the sample varies with time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After 4.3 × 10<sup>6</sup> years,</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{\text{number of produced boron nuclei}}}}{{{\text{number of remaining beryllium nuclei}}}} = 7.">
<mfrac>
<mrow>
<mrow>
<mtext>number of produced boron nuclei</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>number of remaining beryllium nuclei</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>7.</mn>
</math></span></p>
<p>Show that the half-life of beryllium-10 is 1.4 × 10<sup>6</sup> years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Beryllium-10 is used to investigate ice samples from Antarctica. A sample of ice initially contains 7.6 × 10<sup>11</sup> atoms of beryllium-10. The present activity of the sample is 8.0 × 10<sup>−3</sup> Bq.</p>
<p>Determine, in years, the age of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by thermal radiation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the peak wavelength in the intensity of the radiation emitted by the ice sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The temperature in the laboratory is higher than the temperature of the ice sample. Describe <strong>one </strong>other energy transfer that occurs between the ice sample and the laboratory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen atoms in an ultraviolet (UV) lamp make transitions from the first excited state to the ground state. Photons are emitted and are incident on a photoelectric surface as shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_12.49.40.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08"></p>
</div>
<div class="specification">
<p>The photons cause the emission of electrons from the photoelectric surface. The work function of the photoelectric surface is 5.1 eV.</p>
</div>
<div class="specification">
<p>The electric potential of the photoelectric surface is 0 V. The variable voltage is adjusted so that the collecting plate is at –1.2 V.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy of photons from the UV lamp is about 10 eV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the maximum kinetic energy of the emitted electrons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with reference to conservation of energy, how the variable voltage source can be used to stop all emitted electrons from reaching the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The variable voltage can be adjusted so that no electrons reach the collecting plate. Write down the minimum value of the voltage for which no electrons reach the collecting plate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label the equipotential lines at –0.4 V and –0.8 V.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is emitted from the photoelectric surface with kinetic energy 2.1 eV. Calculate the speed of the electron at the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Monochromatic light of very low intensity is incident on a metal surface. The light causes the emission of electrons almost instantaneously. Explain how this observation</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">In an experiment to demonstrate the photoelectric effect, light of wavelength 480 nm is incident on a metal surface.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The graph shows the variation of the current<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></em> in the ammeter with the potential <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math></em> of the cathode.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src=""></span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">does not support the wave nature of light.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">does support the photon nature of light.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, in eV, the work function of the metal surface.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The intensity of the light incident on the surface is reduced by half without changing the wavelength. Draw, on the graph, the variation of the current <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></em> with potential <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math></em> after this change.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of electrons each of de Broglie wavelength 2.4 × 10<sup>–15</sup> m is incident on a thin film of silicon-30 <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{}_{14}^{30}{\text{Si}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>30</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Si</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span>. The variation in the electron intensity of the beam with scattering angle is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to show that the nuclear radius of silicon-30 is about 4 fm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the result from (a)(i), the nuclear radius of thorium-232 <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{}_{90}^{232}{\text{Th}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>90</mn>
</mrow>
<mrow>
<mn>232</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Th</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> reason why a beam of electrons is better for investigating the size of a nucleus than a beam of alpha particles of the same energy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why deviations from Rutherford scattering are observed when high-energy alpha particles are incident on nuclei.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A particular K meson has a quark structure <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{\bar u}}">
<mrow>
<mrow>
<mrow>
<mover>
<mi mathvariant="normal">u</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</mrow>
</math></span>s. State the charge, strangeness and baryon number for this meson.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Feynman diagram shows the changes that occur during beta minus (β<sup>–</sup>) decay.</p>
<p><img src=""></p>
<p>Label the diagram by inserting the <strong>four</strong> missing particle symbols <strong>and</strong> the direction of the arrows for the decay particles.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>C-14 decay is used to estimate the age of an old dead tree. The activity of C-14 in the dead tree is determined to have <strong>fallen to</strong> 21% of its original value. C-14 has a half-life of 5700 years.</p>
<p>(i) Explain why the activity of C-14 in the dead tree decreases with time.</p>
<p>(ii) Calculate, in years, the age of the dead tree. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">In a classical model of the singly-ionized helium atom, a single electron orbits the nucleus in a circular orbit of radius <em>r</em>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="249" height="248"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The Bohr model for hydrogen can be applied to the singly-ionized helium atom. In this model the radius<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math></em>, in m, of the orbit of the electron is given by<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>–</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mi>n</mi><mn>2</mn></msup></math></em> where <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math></em> is a positive integer.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the speed <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math></em> of the electron with mass <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math></em>, is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><msqrt><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mrow><mi>m</mi><mi>r</mi></mrow></mfrac></msqrt></math>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Hence, deduce that the total energy of the electron is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>TOT</mi></msub><mo>=</mo><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">In this model the electron loses energy by emitting electromagnetic waves. Describe the predicted effect of this emission on the orbital radius of the electron.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the de Broglie wavelength<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math></em> of the electron in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math> state is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></math> m.<br></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The formula for the de Broglie wavelength of a particle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mi>h</mi><mrow><mi>m</mi><mi>v</mi></mrow></mfrac></math>.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Estimate for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math>, the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>circumference</mi><mo> </mo><mi>of</mi><mo> </mo><mi>orbit</mi></mrow><mrow><mi>de</mi><mo> </mo><mi>Broglie</mi><mo> </mo><mi>wavelength</mi><mo> </mo><mi>of</mi><mo> </mo><mi>electron</mi></mrow></mfrac></math>.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">State your answer to one significant figure.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The description of the electron is different in the Schrodinger theory than in the Bohr model. Compare and contrast the description of the electron according to the Bohr model and to the Schrodinger theory.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>