File "HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 11 HTML/HL-paper2html
File size: 587.86 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>A fixed horizontal coil is connected to an ideal voltmeter. A bar magnet is released from rest so that it falls vertically through the coil along the central axis of the coil.</p>
<p style="text-align: center;"><img src=""></p>
<p>The variation with time<em> t</em> of the emf induced in the coil is shown.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum magnitude of the rate of change of flux linked with the coil.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the fundamental SI unit for your answer to (a)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the graph becomes negative.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Part of the graph is above the <em>t</em>-axis and part is below. Outline why the areas between the <em>t</em>-axis and the curve for these two parts are likely to be the same.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the changes to the graph when the magnet is dropped from a lower height above the coil.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A device sends an impulse of electrical energy to maintain a regular heartbeat in a person. The device is powered by an alternating current (ac) supply connected to a step-up transformer that charges a capacitor of capacitance 30 μF.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""> </p>
</div>
<div class="specification">
<p>The voltage across the primary coil of the transformer is 220 V. The number of turns on the secondary coil is 15 times greater than the number of turns on the primary coil.</p>
</div>
<div class="specification">
<p>The switch is moved to position B. </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the role of the diode in the circuit when the switch is at position A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the maximum energy stored by the capacitor is about 160 J.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum charge Q<sub>0</sub> stored in the capacitor.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, using the label + on the diagram, the polarity of the capacitor.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what happens to the energy stored in the capacitor when the switch is moved to position B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the charge remaining in the capacitor after a time equal to one time constant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> of the circuit will be 0.37 Q<sub>0</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation with time of the charge in the capacitor as it is being discharged through the heart.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Determine the electrical resistance of the closed circuit with the switch in position B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In practice, two electrodes connect the heart to the circuit. These electrodes introduce an additional capacitance.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Explain the effect of the electrode capacitance on the discharge time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following data are available for a natural gas power station that has a high efficiency.</p>
<table style="width: 522px; margin-left: 60px;">
<tbody style="padding-left: 60px;">
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">Rate of consumption of natural gas</td>
<td style="width: 155px;">= 14.6 kg s<sup>–1</sup></td>
</tr>
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">Specific energy of natural gas</td>
<td style="width: 155px;">= 55.5 MJ kg<sup>–1</sup></td>
</tr>
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">Efficiency of electrical power generation</td>
<td style="width: 155px;">= 59.0 %</td>
</tr>
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">Mass of CO<sub>2</sub> generated per kg of natural gas</td>
<td style="width: 155px;">= 2.75 kg</td>
</tr>
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">One year</td>
<td style="width: 155px;">= 3.16 × 10<sup>7</sup> s </td>
</tr>
</tbody>
</table>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Electrical power output is produced by several alternating current (ac) generators which use transformers to deliver energy to the national electricity grid.</p>
<p>The following data are available. Root mean square (rms) values are given.</p>
ac generator output voltage to a transformer
= 25 kV
ac generator output current to a transformer
= 3.9 kA
Transformer output voltage to the grid
= 330 kV
Transformer efficiency
= 96%
<p> </p>
<p>(i) Calculate the current output by the transformer to the grid. Give your answer to an appropriate number of significant figures.</p>
<p>(ii) Electrical energy is often delivered across large distances at 330 kV. Identify the main advantage of using this very high potential difference.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In an alternating current (ac) generator, a square coil ABCD rotates in a magnetic field.</p>
<p><img src=""></p>
<p>The ends of the coil are connected to slip rings and brushes. The plane of the coil is shown at the instant when it is parallel to the magnetic field. Only one coil is shown for clarity.</p>
<p>The following data are available.</p>
Dimensions of the coil
= 8.5 cm×8.5 cm
Number of turns on the coil
= 80
Speed of edge AB
= 2.0 ms<sup>–1</sup>
Uniform magnetic field strength
= 0.34 T
<p> </p>
<p>(i) Explain, with reference to the diagram, how the rotation of the generator produces an electromotive force (emf ) between the brushes.</p>
<p>(ii) Calculate, for the position in the diagram, the magnitude of the instantaneous emf generated by a <strong>single</strong> wire between A and B of the coil.</p>
<p>(iii) Hence, calculate the total instantaneous peak emf between the brushes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>There is a proposal to power a space satellite X as it orbits the Earth. In this model, X is connected by an electronically-conducting cable to another smaller satellite Y.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Satellite Y orbits closer to the centre of Earth than satellite X. Outline why</p>
</div>
<div class="specification">
<p>The cable acts as a spring. Satellite Y has a mass <em>m</em> of 3.5 x 10<sup>2</sup> kg. Under certain circumstances, satellite Y will perform simple harmonic motion (SHM) with a period <em>T</em> of 5.2 s.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Satellite X orbits 6600 km from the centre of the Earth.</p>
<p>Mass of the Earth = 6.0 x 10<sup>24</sup> kg</p>
<p>Show that the orbital speed of satellite X is about 8 km s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the orbital times for X and Y are different.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>satellite Y requires a propulsion system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable between the satellites cuts the magnetic field lines of the Earth at right angles.</p>
<p><img src=""></p>
<p>Explain why satellite X becomes positively charged.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Satellite X must release ions into the space between the satellites. Explain why the current in the cable will become zero unless there is a method for transferring charge from X to Y.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The magnetic field strength of the Earth is 31 μT at the orbital radius of the satellites. The cable is 15 km in length. Calculate the emf induced in the cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the value of <em>k</em> in the following expression.</p>
<p><em>T</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi \sqrt {\frac{m}{k}} ">
<mn>2</mn>
<mi>π</mi>
<msqrt>
<mfrac>
<mi>m</mi>
<mi>k</mi>
</mfrac>
</msqrt>
</math></span></p>
<p>Give an appropriate unit for your answer. Ignore the mass of the cable and any oscillation of satellite X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the energy changes in the satellite Y-cable system during one cycle of the oscillation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows an alternating current generator with a rectangular coil rotating at a constant frequency in a uniform magnetic field.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="506" height="199"></p>
</div>
<div class="specification">
<p>The graph shows how the generator output voltage <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> varies with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="520" height="382"></p>
<p>Electrical power produced by the generator is delivered to a consumer some distance away.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, by reference to Faraday’s law of induction, how an electromotive force (emf) is induced in the coil.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The average power output of the generator is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo> </mo><mi mathvariant="normal">W</mi></math>. Calculate the root mean square (rms) value of the generator output current.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The voltage output from the generator is stepped up before transmission to the consumer. Estimate the factor by which voltage has to be stepped up in order to reduce power loss in the transmission line by a factor of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>2</mn></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The frequency of the generator is doubled with no other changes being made. Draw, on the axes, the variation with time of the voltage output of the generator.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>A lighting system consists of two long metal rods with a potential difference maintained between them. Identical lamps can be connected between the rods as required.</p>
<p style="text-align: center;"><img src=""></p>
<p>The following data are available for the lamps when at their working temperature.</p>
<p> </p>
<p style="padding-left: 90px;">Lamp specifications 24 V, 5.0 W</p>
<p style="padding-left: 90px;">Power supply emf 24 V</p>
<p style="padding-left: 90px;">Power supply maximum current 8.0 A</p>
<p style="padding-left: 90px;">Length of each rod 12.5 m</p>
<p style="padding-left: 90px;">Resistivity of rod metal 7.2 × 10<sup>–7</sup> Ω m</p>
</div>
<div class="specification">
<p>A step-down transformer is used to transfer energy to the two rods. The primary coil of this transformer is connected to an alternating mains supply that has an emf of root mean square (rms) magnitude 240 V. The transformer is 95 % efficient.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum number of lamps that can be connected between the rods. Neglect the resistance of the rods.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One advantage of this system is that if one lamp fails then the other lamps in the circuit remain lit. Outline <strong>one</strong> other electrical advantage of this system compared to one in which the lamps are connected in series.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how eddy currents reduce transformer efficiency.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the peak current in the primary coil when operating with the maximum number of lamps.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A small electric motor is used with a 12 mF capacitor and a battery in a school experiment.</p>
<p style="text-align: center;"><img src=""></p>
<p>When the switch is connected to X, the capacitor is charged using the battery. When the switch is connected to Y, the capacitor fully discharges through the electric motor that raises a small mass.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The battery has an emf of 7.5 V. Determine the charge that flows through the motor when the mass is raised.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The motor can transfer one-third of the electrical energy stored in the capacitor into gravitational potential energy of the mass. Determine the maximum height through which a mass of 45 g can be raised.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An additional identical capacitor is connected in series with the first capacitor and the charging and discharging processes are repeated. Comment on the effect this change has on the height and time taken to raise the 45 g mass.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The primary coil of a transformer is connected to a 110 V alternating current (ac) supply. The secondary coil of the transformer is connected to a 15 V garden lighting system that consists of 8 lamps connected in parallel. Each lamp is rated at 35 W when working at its normal brightness. Root mean square (rms) values are used throughout this question.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The primary coil has 3300 turns. Calculate the number of turns on the secondary coil.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the total resistance of the lamps when they are working normally.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the current in the primary of the transformer assuming that it is ideal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Flux leakage is one reason why a transformer may not be ideal. Explain the effect of flux leakage on the transformer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A pendulum with a metal bob comes to rest after 200 swings. The same pendulum, released from the same position, now swings at 90° to the direction of a strong magnetic field and comes to rest after 20 swings.</p>
<p style="text-align:center;"> <img src=""></p>
<p>Explain why the pendulum comes to rest after a smaller number of swings.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A cable consisting of many copper wires is used to transfer electrical energy from an alternating current (ac) generator to an electrical load. The copper wires are protected by an insulator.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><img src="blob:https://questionbank.ibo.org/bd73db7f-3f45-4a7f-b356-67d8fed5fa2a"></p>
</div>
<div class="specification">
<p>The cable consists of 32 copper wires each of length 35 km. Each wire has a resistance of 64 Ω. The cable is connected to the ac generator which has an output power of 110 MW when the peak potential difference is 150 kV. The resistivity of copper is 1.7 x 10<sup>–8</sup> Ω m.</p>
<p>output power = 110 MW </p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="specification">
<p>To ensure that the power supply cannot be interrupted, two identical cables are connected in parallel.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The energy output of the ac generator is at a much lower voltage than the 150 kV used for transmission. A step-up transformer is used between the generator and the cables.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of each <strong>wire</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the peak current in the <strong>cable</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the power dissipated in the cable per unit length.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the root mean square (rms) current in each cable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The two cables in part (c) are suspended a constant distance apart. Explain how the magnetic forces acting between the cables vary during the course of one cycle of the alternating current (ac).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the advantage of using a step-up transformer in this way.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The use of alternating current (ac) in a transformer gives rise to energy losses. State how eddy current loss is minimized in the transformer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two capacitors C<sub>1</sub> and C<sub>2</sub> of capacitance 28 µF and 22 µF respectively are connected in a circuit with a two-way switch and a cell of emf 1.5 V with a negligible internal resistance. The capacitors are initially uncharged. The switch is then connected to position A.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The switch is moved to position B.</p>
</div>
<div class="specification">
<p>A cell is now connected by a switch to a coil X. A second coil Y of cross-sectional area 6.4 cm<sup>2</sup> with 5 turns is looped around coil X and connected to an ideal voltmeter.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The graph shows the variation with <em>t</em> of the magnetic flux density <em>B</em> in coil Y.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the charge stored on C<sub>1</sub> is about 0.04 mC.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the energy transferred from capacitor C<sub>1</sub>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the energy gained by capacitor C<sub>2</sub> differs from your answer in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The switch is closed at time<em> t </em>=<em> </em>0. Explain how the voltmeter reading varies after the switch is closed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the average emf induced across coil Y in the first 3.0 ms.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student makes a parallel-plate capacitor of capacitance 68 nF from aluminium foil and plastic film by inserting one sheet of plastic film between two sheets of aluminium foil.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The aluminium foil and the plastic film are 450 mm wide.</p>
<p style="text-align: left;">The plastic film has a thickness of 55 μm and a permittivity of 2.5 × 10<sup>−11</sup> C<sup>2</sup> N<sup>–1</sup> m<sup>–2</sup>.</p>
</div>
<div class="specification">
<p>The student uses a switch to charge and discharge the capacitor using the circuit shown. The ammeter is ideal.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The emf of the battery is 12 V.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">Calculate the total length of aluminium foil that the student will require.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">The plastic film begins to conduct when the electric field strength in it exceeds 1.5 MN C<sup>–1</sup>. Calculate the maximum charge that can be stored on the capacitor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistor <em>R</em> in the circuit has a resistance of 1.2 kΩ. Calculate the time taken for the charge on the capacitor to fall to 50 % of its fully charged value.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The ammeter is replaced by a coil. Explain why there will be an induced emf in the coil while the capacitor is discharging.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> change to the discharge circuit, apart from changes to the coil, that will increase the maximum induced emf in the coil.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A negatively charged thundercloud above the Earth’s surface may be modelled by a parallel plate capacitor.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.28.35.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/08"></p>
<p>The lower plate of the capacitor is the Earth’s surface and the upper plate is the base of the thundercloud.</p>
<p>The following data are available.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{Area of thundercloud base}}}&{ = 1.2 \times {{10}^8}{\text{ }}{{\text{m}}^2}} \\ {{\text{Charge on thundercloud base}}}&{ = -25{\text{ C}}} \\ {{\text{Distance of thundercloud base from Earth's surface}}}&{ = 1600{\text{ m}}} \\ {{\text{Permittivity of air}}}&{ = 8.8 \times {{10}^{ - 12}}{\text{ F }}{{\text{m}}^{ - 1}}} \end{array}">
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Area of thundercloud base</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>1.2</mn>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>8</mn>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Charge on thundercloud base</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>25</mn>
<mrow>
<mtext> C</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Distance of thundercloud base from Earth's surface</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>1600</mn>
<mrow>
<mtext> m</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Permittivity of air</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>8.8</mn>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>12</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> F </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</math></span></p>
</div>
<div class="specification">
<p>Lightning takes place when the capacitor discharges through the air between the thundercloud and the Earth’s surface. The time constant of the system is 32 ms. A lightning strike lasts for 18 ms.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the capacitance of this arrangement is <em>C </em>= 6.6 × 10<sup>–7</sup> F.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate in V, the potential difference between the thundercloud and the Earth’s surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate in J, the energy stored in the system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that about –11 C of charge is delivered to the Earth’s surface.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in A, the average current during the discharge.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one </strong>assumption that needs to be made so that the Earth-thundercloud system may be modelled by a parallel plate capacitor.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The electrical circuit shown is used to investigate the temperature change in a wire that is wrapped around a mercury-in-glass thermometer.</p>
<p style="text-align: center;"><img src=""></p>
<p>A power supply of emf (electromotive force) 24 V and of negligible internal resistance is connected to a capacitor and to a coil of resistance wire using an arrangement of two switches. Switch S<sub>1</sub> is closed and, a few seconds later, opened. Then switch S<sub>2</sub> is closed.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The capacitance of the capacitor is 22 mF. Calculate the energy stored in the capacitor when it is fully charged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the wire is 8.0 Ω. Determine the time taken for the capacitor to discharge through the resistance wire. Assume that the capacitor is completely discharged when the potential difference across it has fallen to 0.24 V.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the resistance wire is 0.61 g and its observed temperature rise is 28 K. Estimate the specific heat capacity of the wire. Include an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> other energy loss in the experiment and the effect it will have on the value for the specific heat capacity of the wire.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A small magnet is dropped from rest above a stationary horizontal conducting ring. The south (S) pole of the magnet is upwards.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">While the magnet is moving towards the ring, state why the magnetic flux in the ring is increasing.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">While the magnet is moving towards the ring, sketch, using an arrow on <strong>Diagram 2</strong>, the direction of the induced current in the ring.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">While the magnet is moving towards the ring, deduce the direction of the magnetic force on the magnet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A capacitor consists of two parallel square plates separated by a vacuum. The plates are 2.5 cm × 2.5 cm squares. The capacitance of the capacitor is 4.3 pF. </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the distance between the plates.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The capacitor is connected to a 16 V cell as shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_13.59.46.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/07.b"></p>
<p>Calculate the magnitude and the sign of the charge on plate A when the capacitor is fully charged.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The capacitor is fully charged and the space between the plates is then filled with a dielectric of permittivity <em>ε </em>= 3.0<em>ε</em><sub>0</sub>.</p>
<p>Explain whether the magnitude of the charge on plate A increases, decreases or stays constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a different circuit, a transformer is connected to an alternating current (ac) supply.</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_14.19.37.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/07.d"></p>
<p>The transformer has 100 turns in the primary coil and 1200 turns in the secondary coil. The peak value of the voltage of the ac supply is 220 V. Determine the root mean square (rms) value of the output voltage.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the use of transformers in electrical power distribution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Three identical light bulbs, X, Y and Z, each of resistance 4.0 Ω are connected to a cell of emf 12 V. The cell has negligible internal resistance.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">When fully charged the space between the plates of the capacitor is filled with a dielectric with double the permittivity of a vacuum.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch S is initially open. Calculate the total power dissipated in the circuit.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. State, without calculation, why the current in the cell will increase.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Deduce the ratio }}\frac{{{\text{power dissipated in Y with S open}}}}{{{\text{power dissipated in Y with S closed}}}}">
<mrow>
<mtext>Deduce the ratio </mtext>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>power dissipated in Y with S open</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>power dissipated in Y with S closed</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The cell is used to charge a parallel-plate capacitor in a vacuum. The fully charged capacitor is then connected to an ideal voltmeter.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">The capacitance of the capacitor is 6.0 μF and the reading of the voltmeter is 12 V.</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Calculate the energy stored in the capacitor.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the change in the energy stored in the capacitor.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest, in terms of conservation of energy, the cause for the above change.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">dii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two equal positive fixed point charges <em>Q</em> = +44 μC and point P are at the vertices of an equilateral triangle of side 0.48 m.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Point P is now moved closer to the charges.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A point charge <em>q</em> = −2.0 μC and mass 0.25 kg is placed at P. When <em>x</em> is small compared to <em>d</em>, the magnitude of the net force on <em>q</em> is <em>F</em> ≈ 115<em>x</em>.</p>
</div>
<div class="specification">
<p>An uncharged parallel plate capacitor C is connected to a cell of emf 12 V, a resistor R and another resistor of resistance 20 MΩ.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the resultant electric field at P is 3 MN C<sup>−1</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant electric field at P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <em>q</em> will perform simple harmonic oscillations when it is released.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the period of oscillations of <em>q</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At <em>t</em> = 0, the switch is connected to X. On the axes, draw a sketch graph to show the variation with time of the voltage <em>V</em><sub>R</sub> across R.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The switch is then connected to Y and C discharges through the 20 MΩ resistor. The voltage <em>V</em><sub>c</sub> drops to 50 % of its initial value in 5.0 s. Determine the capacitance of C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a sketch of an ideal step-down transformer.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The number of turns in the primary coil is 1800 and that in the secondary coil is 90.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Faraday’s law of induction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using Faraday’s law of induction, how the transformer steps down the voltage.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The input voltage is 240 V. Calculate the output voltage.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how energy losses are reduced in the core of a practical transformer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Step-up transformers are used in power stations to increase the voltage at which the electricity is transmitted. Explain why this is done.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A square loop of side 5.0 cm enters a region of uniform magnetic field at <em>t</em> = 0. The loop exits the region of magnetic field at <em>t</em> = 3.5 s. The magnetic field strength is 0.94 T and is directed into the plane of the paper. The magnetic field extends over a length 65 cm. The speed of the loop is constant.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the loop is 20 cm s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation with time of the magnetic flux linkage <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Φ</mi></math> in the loop.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation with time of the magnitude of the emf induced in the loop.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are 85 turns of wire in the loop. Calculate the maximum induced emf in the loop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the loop is 2.4 Ω. Calculate the magnitude of the magnetic force on the loop as it enters the region of magnetic field.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy dissipated in the loop from <em>t </em>= 0 to <em>t </em>= 3.5 s is 0.13 J.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the wire is 18 g. The specific heat capacity of copper is 385 J kg<sup>−1</sup> K<sup>−1</sup>. Estimate the increase in temperature of the wire.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">X has a capacitance of 18 μF. X is charged so that the one plate has a charge of 48 μC. X is then connected to an uncharged capacitor Y and a resistor via an open switch S.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="254" height="182"></span></p>
</div>
<div class="specification">
<p>The capacitance of Y is 12 μF. S is now closed.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, in J, the energy stored in X with the switch S open.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the final charge on X and the final charge on Y.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the final total energy, in J, stored in X and Y.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the answers to (a) and (b)(ii) are different.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>