File "HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 11 HTML/HL-paper1html
File size: 1.02 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>A capacitor of capacitance <em>C</em> discharges through a resistor of resistance <em>R</em>. The graph shows the variation with time <em>t</em> of the voltage <em>V</em> across the capacitor.</p>
<p><img src=""></p>
<p>The capacitor is changed to one of value 2<em>C</em> and the resistor is changed to one of value 2<em>R</em>. Which graph shows the variation with <em>t</em> of <em>V</em> when the new combination is discharged?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>The root mean square (rms) current in the primary coil of an ideal transformer is 2.0 A. The rms voltage in the secondary coil is 50 V. The average power transferred from the secondary coil is 20 W.</p>
<p>What is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>N</mi><mi>p</mi></msub><msub><mi>N</mi><mi>s</mi></msub></mfrac></math> and what is the average power transferred from the primary coil?</p>
<p><br><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A fully charged capacitor is connected to a resistor. When the switch is closed the capacitor will discharge through the resistor.</p>
<p><img src=""></p>
<p>Which graphs correctly show how the charge on the capacitor and the current in the circuit vary with time during the discharging of the capacitor?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>The graph below shows the variation with time of the magnetic flux through a coil.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Which of the following gives three times for which the magnitude of the induced emf is a maximum?</p>
<p style="text-align:left;">A. 0, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{4}">
  <mfrac>
    <mi>T</mi>
    <mn>4</mn>
  </mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{2}">
  <mfrac>
    <mi>T</mi>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p style="text-align:left;">B. 0, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{2}">
  <mfrac>
    <mi>T</mi>
    <mn>2</mn>
  </mfrac>
</math></span>, <em>T</em></p>
<p style="text-align:left;">C. 0, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{4}">
  <mfrac>
    <mi>T</mi>
    <mn>4</mn>
  </mfrac>
</math></span>, <em>T</em></p>
<p style="text-align:left;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{4}">
  <mfrac>
    <mi>T</mi>
    <mn>4</mn>
  </mfrac>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{2}">
  <mfrac>
    <mi>T</mi>
    <mn>2</mn>
  </mfrac>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3T}{4}">
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mi>T</mi>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Three identical capacitors are connected in series. The total capacitance of the arrangement is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{9}">
  <mfrac>
    <mn>1</mn>
    <mn>9</mn>
  </mfrac>
</math></span>mF. </span><span style="background-color:#ffffff;">The three capacitors are then connected in parallel. What is the capacitance of the parallel arrangement?</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
</math></span>mF&nbsp;&nbsp;&nbsp; <br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">B. 1 mF<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">C. 3 mF<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">D. 81 mF</span></span></p>
</div>
<br><hr><br><div class="question">
<p>Why are high voltages and low currents used when electricity is transmitted over long distances?</p>
<p>A.  Cables can be closer to the ground.</p>
<p>B.  Electrons have a greater drift speed.</p>
<p>C.  Energy losses are reduced.</p>
<p>D.  Resistance of the power lines is reduced.</p>
</div>
<br><hr><br><div class="question">
<p>The diagram shows a bar magnet near an aluminium ring.</p>
<p><img src=""></p>
<p>The ring is supported so that it is free to move. The ring is initially at rest. In experiment 1 the magnet is moved towards the ring. In experiment 2 the magnet is moved away from the ring. For each experiment what is the initial direction of motion of the ring?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>The current <em>I </em>flowing in loop A in a clockwise direction is increasing so as to induce a current both in loops B and C. All three loops are on the same plane.</p>
<p>                                           <img src="images/Schermafbeelding_2018-08-13_om_19.06.33.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/33_01"></p>
<p>What is the direction of the induced currents in loop B and loop C?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_19.06.57.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/33_02"></p>
</div>
<br><hr><br><div class="question">
<p>Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch.</p>
<p>                                                       <img src="images/Schermafbeelding_2018-08-13_om_11.06.13.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/33_01"></p>
<p>The switch is closed and then opened. What is the force between the coils when the switch is closing and when the switch is opening?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_11.06.53.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/33_02"></p>
</div>
<br><hr><br><div class="question">
<p>A conducting ring encloses an area of 2.0 cm<sup>2</sup> and is perpendicular to a magnetic field of strength 5.0 mT. The direction of the magnetic field is reversed in a time 4.0 s. What is the average emf induced in the ring?</p>
<p>A. 0</p>
<p>B. 0.25 μV</p>
<p>C. 0.40 μV</p>
<p>D. 0.50 μV</p>
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of magnetic flux <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Φ</mi></math> in a coil with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What represents the variation with time of the induced emf <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ε</mi></math> across the coil?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A conducting square coil is placed in a region where there is a uniform magnetic field. The magnetic field is directed into the page. There is a clockwise current in the coil.</p>
<p>What is a correct force that acts on a side of the coil?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>The secondary coil of an alternating current (ac) transformer is connected to two diodes as shown.</p>
<p><img src="" alt></p>
<p>Which graph shows the variation with time of the potential difference <em>V</em><sub>XY</sub> between X and Y?</p>
<p><img src="" alt></p>
</div>
<br><hr><br><div class="question">
<p>A direct current (dc) of 5A dissipates a power <em>P</em> in a resistor. Which peak value of the alternating current (ac) will dissipate an average power <em>P</em> in the same resistor?</p>
<p>A. &nbsp;5A</p>
<p>B. &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{2}{\text{A}}">
  <mfrac>
    <mn>5</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span></p>
<p>C. &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{\sqrt 2 }}{\text{A}}">
  <mfrac>
    <mn>5</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span></p>
<p>D. &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{5}}\sqrt 2 \,{\text{A}}">
  <mrow>
    <mtext>5</mtext>
  </mrow>
  <msqrt>
    <mn>2</mn>
  </msqrt>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span></p>
</div>
<br><hr><br><div class="question">
<p>A parallel-plate capacitor is connected to a cell of constant emf. The capacitor plates are then moved closer together without disconnecting the cell. What are the changes in the capacitance of the capacitor and the energy stored in the capacitor?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation with time <em>t </em>of the current <em>I </em>in the primary coil of an ideal transformer.</p>
<p>                                                           <img src="images/Schermafbeelding_2018-08-13_om_11.08.10.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/34_01"></p>
<p>The number of turns in the primary coil is 100 and the number of turns in the secondary coil is 200. Which graph shows the variation with time of the current in the secondary coil?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_11.08.54.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/34_02"></p>
</div>
<br><hr><br><div class="question">
<p>What are the units of magnetic flux and magnetic field strength?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>Six identical capacitors, each of value <em>C</em>, are connected as shown.</p>
<p><img src=""></p>
<p>What is the total capacitance?</p>
<p>A.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{C}{6}">
  <mfrac>
    <mi>C</mi>
    <mn>6</mn>
  </mfrac>
</math></span></p>
<p>B.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2C}}{3}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>C</mi>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span></p>
<p>C.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3C}}{3}">
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mi>C</mi>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span></p>
<p>D. 6<em>C</em></p>
</div>
<br><hr><br><div class="question">
<p>Two capacitors of 3 μF and 6 μF are connected in series and charged using a 9 V battery.</p>
<p>What charge is stored on each capacitor?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A magnet connected to a spring oscillates above a solenoid with a 240 turn coil as shown.</p>
<p style="text-align:center;"><img src=""></p>
<p>The graph below shows the variation with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> of the emf across the solenoid with the period,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, of the system shown.</p>
<p style="text-align:center;"><img src=""></p>
<p>The spring is replaced with one that allows the magnet to oscillate with a higher frequency.&nbsp;Which graph shows the new variation with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> of the current <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> in the resistor for this&nbsp;new set-up?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A capacitor of capacitance <em>X</em> is connected to a power supply of voltage <em>V</em>. At time <em>t</em> = 0, the&nbsp;capacitor is disconnected from the supply and discharged through a resistor of resistance <em>R</em>.&nbsp;What is the variation with time of the charge on the capacitor?</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A.&nbsp;&nbsp;</mtext><mfrac><mi>X</mi><mi>V</mi></mfrac><msup><mi>e</mi><mrow><mo>-</mo><mi>R</mi><mi>X</mi><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B.&nbsp;&nbsp;</mtext><mfrac><mi>X</mi><mi>V</mi></mfrac><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mi>t</mi><mrow><mi>R</mi><mi>X</mi></mrow></mfrac></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C.&nbsp;&nbsp;</mtext><mi>X</mi><mi>V</mi><msup><mi>e</mi><mrow><mo>-</mo><mi>R</mi><mi>X</mi><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D.&nbsp;&nbsp;</mtext><mi>X</mi><mi>V</mi><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mi>t</mi><mrow><mi>R</mi><mi>X</mi></mrow></mfrac></mrow></msup></math></p>
</div>
<br><hr><br><div class="question">
<p>A circuit consists of three identical capacitors of capacitance <em>C</em> and a battery of voltage <em>V</em>. Two capacitors are connected in parallel with a third in series. The capacitors are fully charged.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the charge stored in capacitors X and Z?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A rectangular coil rotates at a constant angular velocity. At the instant shown, the plane of the coil is at right angles to the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Z</mi><mi>Z</mi><mo mathvariant="italic">'</mo></math>. A uniform magnetic field acts in the direction <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Z</mi><mi>Z</mi><mo mathvariant="italic">'</mo></math>.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="511" height="230"></p>
<p>What rotation of the coil about a specified axis will produce the graph of electromotive force (emf) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> against time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>?</p>
<p>A.  Through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> about <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Z</mi><mi>Z</mi><mo mathvariant="italic">'</mo></math></p>
<p>B.  Through <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> about <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mi>Y</mi><mo mathvariant="italic">'</mo></math></p>
<p>C.  Through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> about <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mi>X</mi><mo mathvariant="italic">'</mo></math></p>
<p>D.  Through <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> about <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mi>X</mi><mo mathvariant="italic">'</mo></math></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A coil is rotated in a uniform magnetic field. An alternating emf is induced in the coil. What is a possible phase relationship between the magnetic flux through the coil and the induced emf in the coil when the variations of both quantities are plotted with time?</span></p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A ring of area <em>S</em> is in a uniform magnetic field <em>X</em>. Initially the magnetic field is perpendicular to the plane of the ring. The ring is rotated by 180° about the axis in time <em>T</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the average induced emf in the ring?</p>
<p> </p>
<p>A.   0</p>
<p>B.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{XS}}{{2T}}">
  <mfrac>
    <mrow>
      <mi>X</mi>
      <mi>S</mi>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mi>T</mi>
    </mrow>
  </mfrac>
</math></span></p>
<p>C.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{XS}}{{T}}">
  <mfrac>
    <mrow>
      <mi>X</mi>
      <mi>S</mi>
    </mrow>
    <mrow>
      <mi>T</mi>
    </mrow>
  </mfrac>
</math></span><br><br>D.   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2XS}}{{T}}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>X</mi>
      <mi>S</mi>
    </mrow>
    <mrow>
      <mi>T</mi>
    </mrow>
  </mfrac>
</math></span></p>
</div>
<br><hr><br><div class="question">
<p>A small magnet is released from rest to drop through a stationary horizontal conducting ring.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the variation with time of the emf induced in the ring?</p>
<p><br><img src=""></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A circular coil of wire moves through a region of uniform magnetic field directed out of the page.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">What is the direction of the induced conventional current in the coil for the marked positions?</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><img src=""></span></span></p>
</div>
<br><hr><br><div class="question">
<p>The circuit diagram shows a capacitor that is charged by the battery after the switch is connected to terminal X. The cell has emf <em>V</em> and internal resistance <em>r</em>. After the switch is connected to terminal Y the capacitor discharges through the resistor of resistance <em>R</em>.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">What is the nature of the current and magnitude of the initial current in the resistor after the switch is connected to terminal Y?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>Three capacitors are arranged as shown.</p>
<p><img src="" alt></p>
<p>What is the total capacitance of the arrangement?</p>
<p>A. 1.0F</p>
<p>B. 2.5F</p>
<p>C. 3.0F</p>
<p>D. 4.0F</p>
</div>
<br><hr><br><div class="question">
<p>A battery is used to charge a capacitor fully through a resistor of resistance <em>R</em>. The energy supplied by the battery is <em>E</em><sub>b</sub>. The energy stored by the capacitor is <em>E</em><sub>c</sub>.</p>
<p>What is the relationship between <em>E</em><sub>b</sub> and <em>E</em><sub>c</sub>?</p>
<p>A.  <em>E</em><sub>b</sub> &lt; <em>E</em><sub>c</sub></p>
<p>B.  <em>E</em><sub>b</sub> = <em>E</em><sub>c</sub></p>
<p>C.  <em>E</em><sub>b</sub> &gt; <em>E</em><sub>c</sub></p>
<p>D.  The relationship depends on <em>R</em>.</p>
</div>
<br><hr><br><div class="question">
<p>Four identical capacitors of capacitance X are connected as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the effective capacitance between P and Q?</p>
<p>&nbsp;</p>
<p>A.&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{X}}}{3}">
  <mfrac>
    <mrow>
      <mtext>X</mtext>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span></p>
<p>B.&nbsp; &nbsp;X</p>
<p>C.&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{4X}}}}{3}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>4X</mtext>
      </mrow>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span></p>
<p>D.&nbsp; &nbsp;4X</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A diode bridge rectification circuit is constructed as shown. An alternating potential difference is applied between M and N.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="267" height="207"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Three statements about circuits are</span></span></p>
<p style="padding-left:60px;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">I.   when diode P conducts, Q does not conduct<br>II.  when diode S conducts, neither P nor R conducts<br>III. the direction of conventional current in the resistor is from left to right.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Which statements are correct for this circuit?</span></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A.  I and II only<br></span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B.  I and III only<br></span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C.  II and III only<br></span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D.  I, II and III</span></span></span></p>
</div>
<br><hr><br><div class="question">
<p>A direct current <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> in a lamp dissipates power <em>P</em>. What root mean square (rms) value of an alternating current dissipates average power <em>P</em> through the same lamp?</p>
<p>A.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>I</mi><mn>2</mn></mfrac></math></p>
<p>B.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>I</mi><msqrt><mn>2</mn></msqrt></mfrac></math></p>
<p>C.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></p>
<p>D.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><msqrt><mn>2</mn></msqrt></math></p>
</div>
<br><hr><br><div class="question">
<p>The ratio&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{number of primary turns}}}}{{{\text{number of secondary turns}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>number of primary turns</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>number of secondary turns</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>&nbsp;for a transformer is 2.5.</p>
<p>The primary coil of the transformer draws a current of 0.25 A from a 200 V alternating current (ac)&nbsp;supply. The current in the secondary coil is 0.5 A. What is the efficiency of the transformer?</p>
<p>A. 20 %</p>
<p>B. 50 %</p>
<p>C. 80 %</p>
<p>D. 100 %</p>
</div>
<br><hr><br><div class="question">
<p>An alternating supply is connected to a diode bridge rectification circuit.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The conventional current in the load resistor</p>
<p><br>A.  is a maximum twice during one oscillation of the input voltage.</p>
<p>B.  is never zero.</p>
<p>C.  has a zero average value during one oscillation of the input voltage.</p>
<p>D.  can only flow from P to Q.</p>
</div>
<br><hr><br><div class="question">
<p>Two capacitors of different capacitance are connected in series to a source of emf of negligible internal resistance.</p>
<p><img src=""></p>
<p>What is correct about the potential difference across each capacitor and the charge on each capacitor?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A conducting bar with vertices PQRS is moving vertically downwards with constant velocity <em>v</em> through a horizontal magnetic field <em>B</em> that is directed into the plane of the page.<br><br></p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p><br>Which side of the bar will have the greatest density of electrons?</p>
<p>A.  PQ</p>
<p>B.  QR</p>
<p>C.  RS</p>
<p>D.  SP</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">A capacitor of capacitance 1.0 μF stores a charge of 15 μC. The capacitor is discharged through a 25 Ω resistor. What is the maximum current in the resistor?</span></p>
<p><span style="background-color: #ffffff;">A.  0.60 mA<br></span></p>
<p><span style="background-color: #ffffff;">B.  1.7 mA<br></span></p>
<p><span style="background-color: #ffffff;">C.  0.60 A<br></span></p>
<p><span style="background-color: #ffffff;">D.  1.7 A</span></p>
</div>
<br><hr><br><div class="question">
<p>The arrangement shows four diodes connected to an alternating current (ac) supply. The output is connected to an external circuit.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the output to the external circuit?</p>
<p>A.  Full-wave rectified current</p>
<p>B.  Half-wave rectified current</p>
<p>C.  Constant non-zero current</p>
<p>D.  Zero current</p>
</div>
<br><hr><br><div class="question">
<p>The diagram shows a diode bridge rectification circuit and a load resistor.</p>
<p>                                                    <img src="images/Schermafbeelding_2018-08-13_om_11.10.14.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/35_01"></p>
<p>The input is a sinusoidal signal. Which of the following circuits will produce the most smoothed output signal?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_11.11.06.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/35_02"></p>
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of the peak output power <em>P</em> with time of an alternating current (ac) generator.</p>
<p style="text-align: center;"><img src=""></p>
<p>Which graph shows the variation of the peak output power with time when the frequency of rotation is decreased?</p>
<p> </p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>Three conducting loops, X, Y and Z, are moving with the same speed&nbsp;from a region of&nbsp;zero magnetic field to a region of uniform non-zero magnetic field.</p>
<p><img src=""></p>
<p>Which loop(s) has/have the largest induced electromotive force (emf) at the instant when the loops&nbsp;enter the magnetic field?</p>
<p>A. Z only</p>
<p>B. Y only</p>
<p>C. Y and Z only</p>
<p>D. X and Y only</p>
</div>
<br><hr><br><div class="question">
<p>Three capacitors, each one with a capacitance <em>C</em>, are connected such that their combined capacitance is 1.5<em>C</em>. How are they connected?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_19.12.40.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/36"></p>
</div>
<br><hr><br><div class="question">
<p>Two initially uncharged capacitors X and Y are connected in series to a cell as shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>voltage across X</mtext><mtext>voltage across Y</mtext></mfrac></math>?</p>
<p><br>A.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p>B.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math></p>
<p>C.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math></p>
<p>D.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math></p>
</div>
<br><hr><br><div class="question">
<p>A parallel plate capacitor is connected to a cell of negligible internal resistance.</p>
<p>                                                                          <img src="images/Schermafbeelding_2018-08-13_om_11.12.32.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/36_01"></p>
<p>The energy stored in the capacitor is 4 J and the electric field in between the plates is 100 N C<sup>–1</sup>. The distance between the plates of the capacitor is doubled. What are the energy stored and the electric field strength?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_11.13.23.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/36_02"></p>
</div>
<br><hr><br><div class="question">
<p>A capacitor of capacitance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> has initial charge <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi></math>. The capacitor is discharged through a resistor of resistance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>. The potential difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> across the capacitor varies with time.</p>
<p>What is true for this capacitor?</p>
<p>A.  After time <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>R</mi><mi>C</mi></mrow><mn>2</mn></mfrac></math> the potential difference across the capacitor is halved.</p>
<p>B.  The capacitor discharges more quickly when the resistance is changed to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>R</mi></math>.</p>
<p>C.  The rate of change of charge on the capacitor is proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>.</p>
<p>D.  The time for the capacitor to lose half its charge is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ln</mi><mn>2</mn></mrow><mrow><mi>R</mi><mi>C</mi></mrow></mfrac></math>.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">X and Y are two plane coils parallel to each other that have a common axis. There is a constant direct current in Y.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="246" height="162"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">X is first moved towards Y and later is moved away from Y. What, as X moves, is the direction of the current in X relative to that in Y?</span></span></p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A parallel-plate capacitor is connected to a battery. What happens when a sheet of dielectric material is inserted between the plates without disconnecting the battery? </p>
<p>A. The capacitance is unchanged. </p>
<p>B. The charge stored decreases. </p>
<p>C. The energy stored increases. </p>
<p>D. The potential difference between the plates decreases.</p>
</div>
<br><hr><br><div class="question">
<p>Three identical capacitors are connected together as shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the order of increasing total capacitance for these arrangements?</p>
<p>A.  P, S, R, Q</p>
<p>B.  Q, R, S, P</p>
<p>C.  P, R, S, Q</p>
<p>D.  Q, S, R, P</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A transformer with 600 turns in the primary coil is used to change an alternating root mean square (rms) potential difference of 240 V<sub>rms</sub> to 12 V<sub>rms</sub>.<br></span></p>
<p><span style="background-color:#ffffff;">When connected to the secondary coil, a lamp labelled “120 W, 12 V” lights normally. The current in the primary coil is 0.60 A when the lamp is lit.</span></p>
<p><span style="background-color:#ffffff;">What are the number of secondary turns and the efficiency of the transformer?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<br><hr><br><div class="question">
<p>The graph shows the power dissipated in a resistor of 100 Ω when connected to an&nbsp;alternating current (ac) power supply of root mean square voltage (<em>V</em><sub>rms</sub>) 60 V.</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_19.10.44.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/35_01"></p>
<p>What are the frequency of the ac power supply and the average power dissipated in the resistor?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_19.11.38.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/35_02"></p>
</div>
<br><hr><br><div class="question">
<p>An alternating current (ac) generator produces a peak emf <em>E</em><sub>0</sub> and periodic time <em>T</em>. What are the&nbsp;peak emf and periodic time when the frequency of rotation is doubled?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A resistor designed for use in a direct current (dc) circuit is labelled “50 W, 2 Ω”. The resistor&nbsp;is connected in series with an alternating current (ac) power supply of peak potential&nbsp;difference 10 V. What is the average power dissipated by the resistor in the ac circuit?</p>
<p>A. 25 W</p>
<p>B. 35 W</p>
<p>C. 50 W</p>
<p>D. 100 W</p>
</div>
<br><hr><br><div class="question">
<p>A capacitor is charged with a constant current <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math>. The graph shows the variation of potential&nbsp;difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> across the capacitor with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>. The gradient of the graph is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math>. What is the&nbsp;capacitance of the capacitor?</p>
<p style="text-align:center;">&nbsp;<img src=""></p>
<p>A.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>I</mi><mi>G</mi></mfrac></math></p>
<p>B.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>G</mi><mi>I</mi></mfrac></math></p>
<p>C.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mo>×</mo><mi>I</mi></math></p>
<p>D.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>G</mi><mo>×</mo><mi>I</mi></mrow></mfrac></math></p>
</div>
<br><hr><br><div class="question">
<p>A rectangular flat coil moves at constant speed through a uniform magnetic field. The direction of the field is into the plane of the paper.</p>
<p>                                            <img src="images/Schermafbeelding_2018-08-13_om_19.08.23.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/34_01"></p>
<p>Which graph shows the variation with time <em>t</em>, of the induced emf <em>ε</em> in the coil as it moves from P to Q?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_19.09.09.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/34_02"></p>
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of an alternating current with time in a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>Ω</mtext></math> resistor.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the average power dissipated in the resistor?</p>
<p>A.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mtext>W</mtext></math></p>
<p>B.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo> </mo><mtext>W</mtext></math></p>
<p>C.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo> </mo><mtext>W</mtext></math></p>
<p>D.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn><mo> </mo><mtext>W</mtext></math></p>
</div>
<br><hr><br><div class="question">
<p>Power <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is dissipated in a resistor of resistance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> when there is a direct current <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> in the resistor.</p>
<p>What is the average power dissipation in a resistance <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>R</mi><mn>2</mn></mfrac></math> when the alternating root-mean-square (rms) current in the resistor is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>I</mi></math>?</p>
<p>A.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math></p>
<p>B.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>P</mi></math></p>
<p>C.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>P</mi></math></p>
<p>D.  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>P</mi></math></p>
</div>
<br><hr><br><div class="question">
<p>A current of 1.0 × 10<sup>–3 </sup>A flows in the primary coil of a step-up transformer. The number of turns in&nbsp;the primary coil is <em>N</em><sub>p</sub> and the number of turns in the secondary coil is <em>N</em><sub>s</sub>. One coil has 1000 times&nbsp;more turns than the other coil.</p>
<p>What is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{N_{\text{p}}}}}{{{N_{\text{s}}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>N</mi>
          <mrow>
            <mtext>p</mtext>
          </mrow>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>N</mi>
          <mrow>
            <mtext>s</mtext>
          </mrow>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span> and what is the current in the secondary coil for this transformer?</p>
<p>&nbsp;</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">The input to a diode bridge rectification circuit is sinusoidal with a time period of 20 ms.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Which graph shows the variation with time <em>t</em> of the output voltage <em>V</em><sub>out</sub> between X and Y?</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><img src=""></span></span></p>
</div>
<br><hr><br><div class="question">
<p>Which two features are necessary for the operation of a transformer?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A capacitor is charged by a constant current of 2.5 μA for 100 s. As a result the potential difference across the capacitor increases by 5.0 V.</p>
<p>What is the capacitance of the capacitor?</p>
<p>A.  20 μF</p>
<p>B.  50 μF</p>
<p>C.  20 mF</p>
<p>D.  50 mF</p>
</div>
<br><hr><br><div class="question">
<p>Which of the following reduces the energy losses in a transformer? </p>
<p>A. Using thinner wires for the windings. </p>
<p>B. Using a solid core instead of a laminated core. </p>
<p>C. Using a core made of steel instead of iron. </p>
<p>D. Linking more flux from the primary to the secondary core.</p>
</div>
<br><hr><br><div class="question">
<p>The conservation of which quantity explains Lenz’s law?</p>
<p>A. Charge</p>
<p>B. Energy</p>
<p>C. Magnetic field</p>
<p>D. Mass</p>
</div>
<br><hr><br><div class="question">
<p>The plane of a coil is positioned at right angles to a magnetic field of flux density <em>B</em>. The coil&nbsp;has <em>N</em> turns, each of area <em>A</em>. The coil is rotated through 180˚ in time <em>t</em>.</p>
<p><img src=""></p>
<p>What is the magnitude of the induced emf?</p>
<p>A.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{BA}}{t}">
  <mfrac>
    <mrow>
      <mi>B</mi>
      <mi>A</mi>
    </mrow>
    <mi>t</mi>
  </mfrac>
</math></span></p>
<p>B.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2BA}}{t}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>B</mi>
      <mi>A</mi>
    </mrow>
    <mi>t</mi>
  </mfrac>
</math></span></p>
<p>C.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{BAN}}{t}">
  <mfrac>
    <mrow>
      <mi>B</mi>
      <mi>A</mi>
      <mi>N</mi>
    </mrow>
    <mi>t</mi>
  </mfrac>
</math></span></p>
<p>D.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2BAN}}{t}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>B</mi>
      <mi>A</mi>
      <mi>N</mi>
    </mrow>
    <mi>t</mi>
  </mfrac>
</math></span></p>
</div>
<br><hr><br>