File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 10 HTML/markSceme-HL-paper2html
File size: 607.58 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>A planet has radius <em>R</em>. At a distance <em>h </em>above the surface of the planet the&nbsp;gravitational field strength is <em>g </em>and the gravitational potential is <em>V</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by gravitational field strength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>V </em>= –<em>g</em>(<em>R </em>+ <em>h</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a graph, on the axes, to show the variation of the gravitational potential <em>V</em>&nbsp;of the planet with height <em>h </em>above the surface of the planet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A planet has a radius of 3.1 × 10<sup>6</sup> m. At a point P a distance 2.4 × 10<sup>7</sup> m above the&nbsp;surface of the planet the gravitational field strength is 2.2 N kg<sup>–1</sup>. Calculate the&nbsp;gravitational potential at point P, include an appropriate unit for your answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the path of an asteroid as it moves past the planet.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2018-08-14_om_07.33.17.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/06.c"></p>
<p>When the asteroid was far away from the planet it had negligible speed.&nbsp;Estimate the speed of the asteroid at point P as defined in (b).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the asteroid is 6.2 × 10<sup>12</sup> kg. Calculate the gravitational force experienced&nbsp;by the <strong>planet </strong>when the asteroid is at point P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the <strong>«</strong>gravitational<strong>» </strong>force per unit mass exerted on a point/small/test mass</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at height <em>h </em>potential is&nbsp;<em>V</em> = –<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{GM}}{{(R + h)}}">
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>R</mi>
      <mo>+</mo>
      <mi>h</mi>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
</math></span></p>
<p>field is <em>g </em>=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{GM}}{{{{(R + h)}^2}}}">
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mi>R</mi>
            <mo>+</mo>
            <mi>h</mi>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong>«</strong>dividing gives answer<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Do not allow an answer that starts with g = –</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta V}}{{\Delta r}}">
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>V</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>r</mi>
    </mrow>
  </mfrac>
</math></span><em> and then cancels the deltas and substitutes </em><em>R </em>+ <em>h</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct shape and sign</p>
<p>non-zero negative vertical intercept</p>
<p>&nbsp;</p>
<p><img src="images/Schermafbeelding_2018-08-14_om_07.26.11.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/06.a.iii/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V</em> =&nbsp;<strong>«</strong>–2.2 × (3.1 × 10<sup>6</sup> + 2.4 × 10<sup>7</sup>) =<strong>»</strong>&nbsp;<strong>«</strong>–<strong>»</strong> 6.0&nbsp;× 10<sup>7</sup> J kg<sup>–1</sup></p>
<p>&nbsp;</p>
<p><em>Unit is essential</em></p>
<p><em>Allow eg MJ kg<sup>–</sup></em><em><sup>1</sup>&nbsp;</em><em>if power of 10 is correct</em></p>
<p><em>Allow other correct SI units eg m</em><sup><em>2</em></sup><em>s<sup>–</sup></em><sup><em>2</em></sup><em>, N m kg<sup>–</sup></em><sup><em>1</em></sup></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total energy at P = 0 / KE gained = GPE lost</p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>mv</em><sup>2</sup> +&nbsp;<em>mV</em> = 0&nbsp;⇒<strong>»</strong>&nbsp;<em>v</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt { - 2V} ">
  <msqrt>
    <mo>−</mo>
    <mn>2</mn>
    <mi>V</mi>
  </msqrt>
</math></span></p>
<p><em>v</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2 \times 6.0 \times {{10}^7}} ">
  <msqrt>
    <mn>2</mn>
    <mo>×</mo>
    <mn>6.0</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mn>7</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span> =<strong>»</strong> 1.1&nbsp;× 10<sup>4</sup>&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Ignore negative sign errors in the workings</em></p>
<p><em>Allow ECF from 6(b)</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>force on asteroid is&nbsp;<strong>«</strong>6.2 ×&nbsp;10<sup>12</sup> × 2.2 =<strong>»</strong>&nbsp;1.4 × 10<sup>13</sup>&nbsp;<strong>«</strong>N<strong>»</strong></p>
<p><strong>«</strong>by Newton’s third law<strong>» </strong>this is also the force on the planet</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>mass of planet = 2.4 x 10<sup>25</sup>&nbsp;<strong>«</strong>kg<strong>» «</strong>from <em>V</em> = –<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{GM}}{{(R + h)}}">
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>R</mi>
      <mo>+</mo>
      <mi>h</mi>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
</math></span><strong>»</strong></p>
<p>force on planet&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{GMm}}{{{{(R + h)}^2}}}">
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mi>R</mi>
            <mo>+</mo>
            <mi>h</mi>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong>&nbsp;= 1.4 × 10<sup>13</sup>&nbsp;<strong>«</strong>N<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>MP2 must be explicit</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen atoms in an ultraviolet (UV) lamp make transitions from the first excited state to the ground state. Photons are emitted and are incident on a photoelectric surface as shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_12.49.40.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08"></p>
</div>

<div class="specification">
<p>The photons cause the emission of electrons from the photoelectric surface. The work function of the photoelectric surface is 5.1 eV.</p>
</div>

<div class="specification">
<p>The electric potential of the photoelectric surface is 0 V. The variable voltage is adjusted so that the collecting plate is at –1.2 V.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy of photons from the UV lamp is about 10 eV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the maximum kinetic energy of the emitted electrons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with reference to conservation of energy, how the variable voltage source can be used to stop all emitted electrons from reaching the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The variable voltage can be adjusted so that no electrons reach the collecting plate. Write down the minimum value of the voltage for which no electrons reach the collecting plate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label the equipotential lines at –0.4 V and –0.8 V.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is emitted from the photoelectric surface with kinetic energy 2.1 eV. Calculate the speed of the electron at the collecting plate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>1</sub> = –13.6&nbsp;<strong>«</strong>eV<strong>»</strong>&nbsp;E<sub>2</sub> = –&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{13.6}}{4}">
  <mfrac>
    <mrow>
      <mn>13.6</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span> = –3.4&nbsp;<strong>«</strong>eV<strong>»</strong></p>
<p>energy of photon is difference&nbsp;<em>E</em><sub>2</sub> – <em>E</em><sub>1</sub>&nbsp;=&nbsp;10.2&nbsp;<strong>«</strong>≈ 10 eV<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Must see at least 10.2 eV.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>10 – 5.1 = 4.9 <strong>«</strong>eV<strong>»</strong></p>
<p>4.9 × 1.6 × 10<sup>–19</sup> = 7.8 × 10<sup>–19</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Allow </em>5.1 <em>if </em>10.2 <em>is used to give</em> 8.2×10<sup>−19</sup> <strong>«</strong>J<strong>»</strong>.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>EPE produced by battery</p>
<p>exceeds maximum KE of electrons / electrons don’t have enough KE</p>
<p>&nbsp;</p>
<p><em>For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4.9&nbsp;<strong>«</strong>V<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow 5.1 if 10.2 is used in (b)(i).</em></p>
<p><em>Ignore sign on answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two equally spaced vertical lines (judge by eye) at approximately 1/3 and 2/3</p>
<p>labelled correctly</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_14.47.13.png" alt="M18/4/PHYSI/HP2/ENG/TZ1/08.c.i/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>kinetic energy at collecting plate =&nbsp;0.9&nbsp;<strong>«</strong>eV<strong>»</strong></p>
<p>speed =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{2 \times 0.9 \times 1.6 \times {{10}^{ - 19}}}}{{9.11 \times {{10}^{ - 31}}}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>2</mn>
        <mo>×</mo>
        <mn>0.9</mn>
        <mo>×</mo>
        <mn>1.6</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>19</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mn>9.11</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>31</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span><strong>»</strong>&nbsp;= 5.6 × 10<sup>5</sup>&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A metal sphere is charged positively and placed far away from other charged objects.&nbsp;The electric potential at a point on the surface of the sphere is 53.9&thinsp;kV.</p>
</div>

<div class="specification">
<p>A small positively charged object moves towards the centre of the metal sphere.&nbsp;When the object is 2.8&thinsp;m from the centre of the sphere, its speed is 3.1&thinsp;m&thinsp;s<sup>&minus;1</sup>.&nbsp;The mass of the object is 0.14&thinsp;g and its charge is 2.4 &times; 10<sup>&minus;8&thinsp;</sup>C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by electric potential at a point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The electric potential at a point a distance 2.8 m from the centre of the sphere is 7.71 kV. Determine the radius of the sphere.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the angle at which the object meets equipotential surfaces around the sphere.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the kinetic energy of the object is about 0.7 mJ.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the object will reach the surface of the sphere.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the work done per unit charge ✓</p>
<p>In bringing a small/point/positive/test «charge» from infinity to the point ✓</p>
<p> </p>
<p><em>Allow use of energy per unit charge for <strong>MP1</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of<em> Vr</em> = constant ✓</p>
<p>0.40 m ✓</p>
<p> </p>
<p><em>Allow <strong>[1]</strong> max if r + 2.8 used to get 0.47 m.</em></p>
<p><em>Allow <strong>[2]</strong> marks if they calculate Q at one potential and use it to get the distance at the other potential.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>90° / perpendicular ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup></math>  <em><strong>OR </strong> </em>0.67 «mJ» seen ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«p.d. between point and sphere surface = » (53.9 kV – 7.71) «kV»  <em><strong>OR  </strong></em>46.2 «kV» seen ✓</p>
<p>«energy required =» VQ « = 46 200 × 2.4 × 10<sup>-8</sup>» = 1.11 mJ ✓</p>
<p>this is greater than kinetic energy so will not reach sphere ✓</p>
<p> </p>
<p><em><strong>MP3</strong> is for a conclusion consistent with the calculations shown.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>a) Well answered.</p>
<p>b) Generally, well answered, but there were quite a few using r + 2.8.</p>
<p>ci) Very few had problems to recognize the perpendicular angle</p>
<p>cii) Good simple calculation</p>
<p>ciii) Many had a good go at this, but a significant number tried to answer it based on forces.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what is meant by the gravitational potential at the surface of a planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An unpowered projectile is fired vertically upwards into deep space from the surface of planet Venus. Assume that the gravitational effects of the Sun and the other planets are negligible.</p>
<p>The following data are available.</p>



Mass of Venus
= 4.87×10<sup>24</sup> kg


Radius of Venus
= 6.05×10<sup>6</sup> m


Mass of projectile
= 3.50×10<sup>3</sup> kg


Initial speed of projectile
= 1.10×escape speed



<p> </p>
<p>(i) Determine the initial kinetic energy of the projectile.</p>
<p>(ii) Describe the subsequent motion of the projectile until it is effectively beyond the gravitational field of Venus.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the «gravitational» work done «by an external agent» per/on unit mass/kg</p>
<p><em>Allow definition in terms of reverse process of moving mass to infinity eg “work done on external agent by…”.<br>Allow “energy” as equivalent to “work done”</em></p>
<p>in moving a «small» mass from infinity to the «surface of» planet / to a point</p>
<p><em><strong>N.B</strong>.: on SL paper Q5(a)(i) and (ii) is about “gravitational field”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>escape speed<br><em>Care with ECF from MP1.</em></p>
<p><em>v</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\left( {\frac{{2\,{\text{GM}}}}{R}} \right)}  = ">
  <msqrt>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mfrac>
          <mrow>
            <mn>2</mn>
            <mspace width="thinmathspace"></mspace>
            <mrow>
              <mtext>GM</mtext>
            </mrow>
          </mrow>
          <mi>R</mi>
        </mfrac>
      </mrow>
      <mo>)</mo>
    </mrow>
  </msqrt>
  <mo>=</mo>
</math></span>»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\left( {\frac{{2 \times 6.67 \times {{10}^{ - 11}} \times 4.87 \times {{10}^{24}}}}{{6.05 \times {{10}^6}}}} \right)} ">
  <msqrt>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mfrac>
          <mrow>
            <mn>2</mn>
            <mo>×</mo>
            <mn>6.67</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mrow>
                  <mo>−</mo>
                  <mn>11</mn>
                </mrow>
              </msup>
            </mrow>
            <mo>×</mo>
            <mn>4.87</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mrow>
                  <mn>24</mn>
                </mrow>
              </msup>
            </mrow>
          </mrow>
          <mrow>
            <mn>6.05</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mn>6</mn>
              </msup>
            </mrow>
          </mrow>
        </mfrac>
      </mrow>
      <mo>)</mo>
    </mrow>
  </msqrt>
</math></span> <em><strong>or</strong></em> 1.04×10<sup>4</sup>«<em>m s<sup>–</sup></em><sup>1</sup>»<br><br><em><strong>or</strong></em> «1.1 × 1.04 × 10<sup>4 </sup>m s<sup>-1</sup>»= 1.14 × 10<sup>4 </sup>«m s<em><sup>–</sup></em><sup>1</sup>»</p>
<p>KE = «0.5 × 3500 × (1.1 × 1.04 × 10<sup>4 </sup>m s<em><sup>–</sup></em><sup>1</sup>)<sup>2 </sup>=» 2.27×10<sup>11 </sup>«J»</p>
<p><em>Award <strong>[1 max]</strong> for omission of 1.1 – leads to 1.88×10<sup>11 </sup>m s<sup>-1</sup>.</em><br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p> </p>
<p>ii<br>Velocity/speed decreases / projectile slows down «at decreasing rate»</p>
<p>«magnitude of» deceleration decreases «at decreasing rate»<br><em>Mention of deceleration scores MP1 automatically.</em></p>
<p>velocity becomes constant/non-zero <br><em><strong>OR</strong></em><br>deceleration tends to zero</p>
<p><em>Accept “negative acceleration” for “deceleration”.</em></p>
<p><em>Must see “velocity” not “speed” for MP3.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The gravitational potential due to the Sun at its surface is –1.9 x&nbsp;10<sup>11</sup> J kg<sup>–1</sup>. The following&nbsp;data are available.</p>
<table style="width: 441.4px; margin-left: 120px;">
<tbody>
<tr>
<td style="width: 422px;">Mass of Earth</td>
<td style="width: 558.4px;">=&nbsp;6.0 x&nbsp;10<sup>24</sup> kg</td>
</tr>
<tr>
<td style="width: 422px;">Distance from Earth to Sun</td>
<td style="width: 558.4px;">=&nbsp;1.5 x&nbsp;10<sup>11</sup> m</td>
</tr>
<tr>
<td style="width: 422px;">Radius of Sun</td>
<td style="width: 558.4px;">=&nbsp;7.0 x&nbsp;10<sup>8</sup> m</td>
</tr>
</tbody>
</table>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the gravitational potential is negative.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The gravitational potential due to the Sun at a distance <em>r</em> from its centre is <em>V</em><sub>S</sub>.&nbsp;Show that</p>
<p><em>rV</em><sub>S</sub> = constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the gravitational potential energy of the Earth in its orbit around the Sun.&nbsp;Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total energy of the Earth in its orbit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An asteroid strikes the Earth and causes the orbital speed of the Earth to suddenly decrease. Suggest the ways in which the orbit of the Earth will change.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of the force acting on it, why the Earth remains in a circular orbit&nbsp;around the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>potential is defined to be zero at infinity</p>
<p>so a positive amount of work needs to be supplied for a mass to reach infinity</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V</em><sub>S</sub> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{GM}}{r}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span> so <em>r</em> x <em>V</em><sub>S</sub> «= –<em>GM</em>» = constant because<em> G</em> and<em> M</em> are constants</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>GM</em> =&nbsp;1.33 x 10<sup>20</sup> «J m kg<sup>–1</sup>»</p>
<p>GPE at Earth orbit&nbsp;«= –<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.33 \times {{10}^{20}} \times 6.0 \times {{10}^{24}}}}{{1.5 \times {{10}^{11}}}}">
  <mfrac>
    <mrow>
      <mn>1.33</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>20</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>6.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>24</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>11</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = «–» 5.3 x 10<sup>33</sup> «J»</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> unless answer is to 2 sf.</em></p>
<p><em>Ignore addition of Sun radius to radius of&nbsp;Earth orbit.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>work leading to statement that kinetic energy&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{GMm}}{{2r}}">
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mi>r</mi>
    </mrow>
  </mfrac>
</math></span>, <em><strong>AND</strong></em> kinetic energy evaluated&nbsp;to be «+» 2.7&nbsp;x 10<sup>33</sup> «J»</p>
<p>energy «=&nbsp;PE + KE =&nbsp;answer to (b)(ii) + 2.7&nbsp;x 10<sup>33</sup>» =&nbsp;«–» 2.7&nbsp;x 10<sup>33</sup> «J»</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>statement that kinetic energy is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = &nbsp;- \frac{1}{2}">
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;gravitational potential energy in orbit</p>
<p>so energy «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{answer to (b)(ii)}}}}{2}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>answer to (b)(ii)</mtext>
      </mrow>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>» = «–»&nbsp;2.7&nbsp;x 10<sup>33</sup>&nbsp;«J»</p>
<p>&nbsp;</p>
<p><em>Various approaches possible.</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«KE will initially decrease so» total energy decreases<br><em><strong>OR</strong></em><br>«KE will initially decrease so» total energy becomes more negative</p>
<p>Earth moves closer to Sun</p>
<p>new orbit with greater speed «but lower total energy»</p>
<p>changes ellipticity of orbit</p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>centripetal force is required</p>
<p>and is provided by gravitational force between Earth and Sun</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> for statement that there is a “centripetal&nbsp;force of gravity” without further qualification.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>There is a proposal to power a space satellite X as it orbits the Earth. In this model,&nbsp;X is connected by an electronically-conducting cable to another smaller satellite Y.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Satellite Y orbits closer to the centre of Earth than satellite X. Outline why</p>
</div>

<div class="specification">
<p>The cable acts as a spring. Satellite Y has a mass <em>m</em> of 3.5&nbsp;x 10<sup>2</sup> kg. Under certain&nbsp;circumstances, satellite Y will perform simple harmonic motion (SHM) with a period <em>T</em>&nbsp;of 5.2 s.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Satellite X orbits 6600 km from the centre of the Earth.</p>
<p>Mass of the Earth = 6.0 x 10<sup>24</sup> kg</p>
<p>Show that the orbital speed of satellite X is about 8 km s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the orbital times for X and Y are different.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>satellite Y requires a propulsion system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable between the satellites cuts the magnetic field lines of the Earth at right angles.</p>
<p><img src=""></p>
<p>Explain why satellite X becomes positively charged.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Satellite X must release ions into the space between the satellites. Explain why the current in the cable will become zero unless there is a method for transferring charge from X to Y.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The magnetic field strength of the Earth is 31 μT at the orbital radius of the satellites. The cable is 15 km in length. Calculate the emf induced in the cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the value of <em>k</em> in the following expression.</p>
<p><em>T</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi \sqrt {\frac{m}{k}} ">
  <mn>2</mn>
  <mi>π</mi>
  <msqrt>
    <mfrac>
      <mi>m</mi>
      <mi>k</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p>Give an appropriate unit for your answer. Ignore the mass of the cable and any oscillation of satellite X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the energy changes in the satellite Y-cable system during one cycle of the oscillation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {\frac{{G{M_E}}}{r}} ">
  <mi>v</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>G</mi>
        <mrow>
          <msub>
            <mi>M</mi>
            <mi>E</mi>
          </msub>
        </mrow>
      </mrow>
      <mi>r</mi>
    </mfrac>
  </msqrt>
</math></span>» = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{6.67 \times {{10}^{ - 11}} \times 6.0 \times {{10}^{24}}}}{{6600 \times {{10}^3}}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>6.67</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>11</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>×</mo>
        <mn>6.0</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mn>24</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mn>6600</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span></p>
<p>7800 «m s<sup>–1</sup>»</p>
<p><em>Full substitution required</em></p>
<p><em>Must see 2+ significant figures.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Y has smaller orbit/orbital speed is greater so time period is less</p>
<p><em>Allow answer from appropriate equation</em></p>
<p><em>Allow converse argument for X</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to stop Y from getting ahead</p>
<p>to remain stationary with respect to X</p>
<p>otherwise will add tension to cable/damage satellite/pull X out of its orbit</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>cable is a conductor and contains electrons</p>
<p>electrons/charges experience a force when moving in a magnetic field</p>
<p>use of a suitable hand rule to show that satellite Y becomes negative «so X becomes positive»</p>
<p><em><strong>Alternative 2</strong></em></p>
<p>cable is a conductor</p>
<p>so current will flow by induction flow when it moves through a B field</p>
<p>use of a suitable hand rule to show current to right so «X becomes positive»</p>
<p><em>Marks should be awarded from either one alternative or the other.</em></p>
<p><em>Do not allow discussion of positive charges moving towards X</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons would build up at satellite Y/positive charge at X</p>
<p>preventing further charge flow</p>
<p>by electrostatic repulsion</p>
<p>unless a complete circuit exists</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>ε</em> = <em>Blv =</em>» 31 x 10<sup>–6</sup> x 7990 x 15000</p>
<p>3600 «V»</p>
<p><em>Allow 3700 «V» from v = 8000 m s<sup>–1</sup>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>k</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4{\pi ^2}m}}{{{T^2}}} = ">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>T</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times {\pi ^2} \times 350}}{{{{5.2}^2}}}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>350</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>5.2</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>510</p>
<p>N m<sup>–1</sup> <em><strong>or</strong> </em>kg s<sup>–2</sup></p>
<p><em>Allow MP1 and MP2 for a bald correct answer</em></p>
<p><em>Allow 500</em></p>
<p><em>Allow N/m etc.</em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sub>p</sub> in the cable/system transfers to <em>E</em><sub>k</sub> of Y</p>
<p>and back again twice in each cycle</p>
<p><em>Exclusive use of gravitational potential energy negates MP1</em></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The table gives data for Jupiter and three of its moons, including the radius <em>r</em> of each object.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A spacecraft is to be sent from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math> to infinity.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the surface of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>, the gravitational field strength <em>g</em><sub>Io</sub> due to the mass of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>.&nbsp;State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>gravitational</mi><mo>&nbsp;</mo><mi>potential</mi><mo>&nbsp;</mo><mi>due</mi><mo>&nbsp;</mo><mi>to</mi><mo>&nbsp;</mo><mi>Jupiter</mi><mo>&nbsp;</mo><mi>at</mi><mo>&nbsp;</mo><mi>the</mi><mo>&nbsp;</mo><mi>orbit</mi><mo>&nbsp;</mo><mi>of</mi><mo>&nbsp;</mo><mi>Io</mi></mrow><mrow><mo>&nbsp;</mo><mi>gravitational</mi><mo>&nbsp;</mo><mi>potential</mi><mo>&nbsp;</mo><mi>due</mi><mo>&nbsp;</mo><mi>to</mi><mo>&nbsp;</mo><mi>Io</mi><mo>&nbsp;</mo><mi>at</mi><mo>&nbsp;</mo><mi>the</mi><mo>&nbsp;</mo><mi>surface</mi><mo>&nbsp;</mo><mi>of</mi><mo>&nbsp;</mo><mi>Io</mi></mrow></mfrac></math>&nbsp;is about 80.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using (b)(i), why it is not correct to use the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>2</mn><mi>G</mi><mo>×</mo><mtext>mass&nbsp;of&nbsp;Io</mtext></mrow><mtext>radius&nbsp;of&nbsp;Io</mtext></mfrac></msqrt></math>&nbsp;to&nbsp;calculate the speed required for the spacecraft to reach infinity from the surface&nbsp;of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An engineer needs to move a space probe of mass 3600 kg from Ganymede to Callisto.&nbsp;Calculate the energy required to move the probe from the orbital radius of Ganymede&nbsp;to the orbital radius of Callisto. Ignore the mass of the moons in your calculation.&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfenced><mn>2</mn></msup></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn></math><strong>&nbsp;✓</strong></p>
<p>N kg<sup>−1&nbsp;&nbsp;</sup><em><strong>OR</strong>&nbsp;&nbsp;</em>m s<sup>−2</sup><strong>&nbsp; ✓</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>27</mn></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></mfrac></math><strong>&nbsp;&nbsp;<em>AND&nbsp;</em>&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math><strong>&nbsp;</strong>seen<strong> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>27</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>78</mn></math><strong>&nbsp; ✓</strong></p>
<p><em><br>For <strong>MP1</strong>, potentials can be seen individually or as a ratio.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«this is the escape speed for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math> alone but» gravitational potential / field of Jupiter must be taken into account<strong>&nbsp; ✓</strong></p>
<p><em><strong><br>OWTTE</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>G</mi><msub><mi>M</mi><mtext>Jupiter</mtext></msub><mfenced><mrow><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>88</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>06</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></mrow></mfenced><mo>=</mo><mo>«</mo><mn>5</mn><mo>.</mo><mn>21</mn><mo>×</mo><msup><mn>10</mn><mn>7</mn></msup><mo> </mo><msup><mtext>J kg</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math><strong>&nbsp; ✓</strong></p>
<p>« multiplies by 3600 kg to get » 1.9 × 10<sup>11 </sup>«J»&nbsp;<strong>✓</strong></p>
<p><em><br>Award <strong>[2]</strong> marks if factor of ½ used, taking into account orbital kinetic energies, leading to a final answer of 9.4 x 10<sup>10 </sup>«J».</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>
<p><em>Award <strong>[2] marks</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the electric field lines of a positively charged conducting sphere of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and charge <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="352" height="213"></p>
<p>Points A and B are located on the same field line.</p>
</div>

<div class="specification">
<p>A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>16</mn></mrow></msup><mo> </mo><mi mathvariant="normal">J</mi></math>. Point A is at a distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo> </mo><mi mathvariant="normal">m</mi></math> from the centre of the sphere. Point B is at a distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><mi mathvariant="normal">m</mi></math> from the centre of the sphere.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electric potential decreases from A to B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, the variation of electric potential <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> with distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> from the centre of the sphere.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="336" height="236"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electric potential difference between points A and B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the charge <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi></math> of the sphere.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><em><strong>ALTERNATIVE 1</strong></em><br></span><span class="fontstyle2">work done on moving a positive test charge in any outward direction is negative </span><span class="fontstyle3">✓<br></span><span class="fontstyle2">potential difference is proportional to this work </span><span class="fontstyle4">«</span><span class="fontstyle2">so </span><span class="fontstyle5"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle2">decreases from A to B</span><span class="fontstyle4">» </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><span class="fontstyle0"><em><strong>ALTERNATIVE 2</strong></em><br></span><span class="fontstyle2">potential gradient is directed opposite to the field so inwards </span><span class="fontstyle3">✓<br></span><span class="fontstyle2">the gradient indicates the direction of increase of </span><span class="fontstyle4"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle5">«</span><span class="fontstyle2">hence </span><span class="fontstyle4"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle2">increases towards the centre/decreases from A to B</span><span class="fontstyle5">» </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><span class="fontstyle0"><em><strong>ALTERNATIVE 3</strong></em><br></span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mi>k</mi><mi>Q</mi></mrow><mi>R</mi></mfrac></math> </span><span class="fontstyle3">so as </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> </span><span class="fontstyle3">increases </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle3">decreases </span><span class="fontstyle4">✓<br></span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> </span><span class="fontstyle3">is positive as </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi></math> </span><span class="fontstyle3">is positive </span><span class="fontstyle4">✓</span></p>
<p><span class="fontstyle2"> </span></p>
<p><span class="fontstyle0"><em><strong>ALTERNATIVE 4</strong></em><br></span><span class="fontstyle2">the work done per unit charge in bringing a positive charge from infinity </span><span class="fontstyle3">✓<br></span><span class="fontstyle2">to point B is less than point A </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">curve decreasing asymptotically for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>&gt;</mo><mi>R</mi></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">non <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> zero constant between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and </span><span class="fontstyle3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> </span><span class="fontstyle2">✓</span></p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mi>W</mi><mi>q</mi></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>16</mn></mrow></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>60</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math> <span class="fontstyle0">✓</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mi>Q</mi><mo>×</mo><mfenced><mrow><mfrac><mn>1</mn><mrow><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></mrow></mfenced><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></math> ✓</span></p>
<p><span class="fontstyle0"><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>8</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">C</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">to highlight similarities between </span><span class="fontstyle2">«</span><span class="fontstyle0">different</span><span class="fontstyle2">» </span><span class="fontstyle0">fields </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The majority who answered in terms of potential gained one mark. Often the answers were in terms of work done rather than work done per unit charge or missed the fact that the potential is positive.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most didn't realise that the key to the answer is the definition of potential or potential difference and tried to answer using one of the formulae in the data booklet, but incorrectly.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Even though many were able to choose the appropriate formula from the data booklet they were often hampered in their use of the formula by incorrect techniques when using fractions.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered with only a small number of answers suggesting greater international cooperation.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the gravitational field lines of planet X.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how this diagram shows that the gravitational field strength of planet X decreases with distance from the surface.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows part of the surface of planet X. The gravitational potential at the surface of planet X is –3<em>V</em> and the gravitational potential at point Y is –<em>V</em>.</p>
<p><img src=""></p>
<p>Sketch on the grid the equipotential surface corresponding to a gravitational potential of –2<em>V</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A meteorite, very far from planet X begins to fall to the surface with a negligibly small initial speed. The mass of planet X is 3.1 × 10<sup>21</sup> kg and its radius is 1.2 × 10<sup>6</sup> m. The planet has no atmosphere. Calculate the speed at which the meteorite will hit the surface.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the instant of impact the meteorite which is made of ice has a temperature of 0 °C. Assume that all the kinetic energy at impact gets transferred into internal energy in the meteorite. Calculate the percentage of the meteorite’s mass that melts. The specific latent heat of fusion of ice is 3.3 × 10<sup>5</sup> J kg<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the field lines/arrows are further apart at greater distances from the surface</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>circle centred on Planet X<br>three units from Planet X centre</p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>loss in gravitational potential = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6.67 \times {{10}^{ - 11}} \times 3.1 \times {{10}^{21}}}}{{1.2 \times {{10}^6}}}">
  <mfrac>
    <mrow>
      <mn>6.67</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>11</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>3.1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>21</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>6</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>«= 1.72 × 10<sup>5</sup> JKg<sup>−1</sup>»</p>
<p>equate to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>v</em><sup>2</sup></p>
<p>v = 590 «m s<sup>−1</sup>»</p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>available energy to melt one kg 1.72 × 10<sup>5</sup> «J»</p>
<p>fraction that melts is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.72 \times {{10}^5}}}{{3.3 \times {{10}^5}}}">
  <mfrac>
    <mrow>
      <mn>1.72</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>5</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>3.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>5</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = 0.52 <em><strong>OR</strong></em> 52%</p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1.</em></p>
<p><em>Allow 53% from use of 590 ms<sup>-1</sup>.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the&nbsp;Earth-Sun distance.</p>
</div>

<div class="specification">
<p>The molar mass of nitrogen is 28&thinsp;g&thinsp;mol<sup>&minus;1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of the solar radiation at the location of Titan is 16 W m<sup>−2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1 W m<sup>−2</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equilibrium surface temperature of Titan is about 90 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of Titan is 0.025 times the mass of the Earth and its radius is 0.404 times the radius of the Earth. The escape speed from Earth is 11.2 km s<sup>−1</sup>. Show that the escape speed from Titan is 2.8 km s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and the period of revolution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo> </mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is 1.2 × 10<sup>9 </sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the mass of a nitrogen molecule is 4.7 × 10<sup>−26</sup> kg.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the root mean square speed of nitrogen molecules in the Titan atmosphere. Assume an atmosphere temperature of 90 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, by reference to the answer in (b), whether it is likely that Titan will lose its atmosphere of nitrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>incident intensity <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1360</mn><mrow><mn>9</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn><mo>≈</mo><mn>16</mn></math> «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow the use of 1400 for the solar constant.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>exposed surface is ¼ of the total surface ✓</p>
<p>absorbed intensity = (1−0.22) × incident intensity ✓</p>
<p>0.78 × 0.25 × 15.7  <em><strong>OR </strong> </em>3.07 «W m<sup>−2</sup>» ✓</p>
<p> </p>
<p><em>Allow 3.06 from rounding and 3.12 if they use 16</em> W m<sup>−2</sup>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>σT </em><sup>4</sup> = 3.07</p>
<p><em><strong>OR</strong></em></p>
<p><em>T</em> = 86 «K» ✓</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>2</mn><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mo>»</mo><msqrt><mfrac><mrow><mn>0</mn><mo>.</mo><mn>025</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>404</mn></mrow></mfrac></msqrt><mo>×</mo><mn>11</mn><mo>.</mo><mn>2</mn></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>79</mn></math> «km s<sup>−1</sup>» ✓</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct equating of gravitational force / acceleration to centripetal force / acceleration ✓</p>
<p>correct rearrangement to reach the expression given ✓</p>
<p> </p>
<p><em>Allow use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mi>R</mi></mrow><mi>T</mi></mfrac></math> for <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></math> «s» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mn>3</mn></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mfenced><mrow><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>26</mn></msup><mo> </mo></math>«kg» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mrow><mn>28</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>65</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>26</mn></mrow></msup></math> «kg» ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>k</mi><mi>T</mi><mo>⇒</mo><mo>»</mo><mi>v</mi><mo>=</mo><msqrt><mfrac><mrow><mn>3</mn><mi>k</mi><mi>T</mi></mrow><mi>m</mi></mfrac></msqrt></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>3</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>×</mo><mn>90</mn></mrow><mrow><mn>4</mn><mo>.</mo><mn>651</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>26</mn></mrow></msup></mrow></mfrac></msqrt><mo>=</mo><mo>»</mo><mn>283</mn><mo>≈</mo><mn>300</mn></math> «ms<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow 282 from a rounded mass.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no, molecular speeds much less than escape speed ✓</p>
<p> </p>
<p><em>Allow <strong>ECF</strong> from incorrect <strong>(d)(ii)</strong>.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical wall carries a uniform positive charge on its surface. This produces a uniform&nbsp;horizontal electric field perpendicular to the wall. A small, positively-charged ball is&nbsp;suspended in equilibrium from the vertical wall by a thread of negligible mass.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>The centre of the ball, still carrying a charge of 1.2 × 10<sup>−6 </sup>C, is now placed 0.40 m from&nbsp;a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.</p>
<p>P is the point on the line joining the charges where the electric field strength is zero.&nbsp;The distance PQ is 0.22 m.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge per unit area on the surface of the wall is<em> σ</em>. It can be shown that the&nbsp;electric field strength <em>E</em> due to the charge on the wall is given by the equation</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ε</mi><mn>0</mn></msub></mrow></mfrac></math>.</p>
<p>Demonstrate that the units of the quantities in this equation are consistent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread makes an angle of 30° with the vertical wall. The ball has a mass&nbsp;of 0.025 kg.</p>
<p>Determine the horizontal force that acts on the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge on the ball is 1.2 × 10<sup>−6 </sup>C. Determine <em>σ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread breaks. Explain the initial subsequent motion of the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the charge on Q. State your answer to an appropriate number of&nbsp;significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, without calculation, whether or not the electric potential at P is zero.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies units of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>C</mi><msup><mi>m</mi><mn>2</mn></msup></mfrac><mo>×</mo><mfrac><mrow><mi>N</mi><msup><mi>m</mi><mn>2</mn></msup></mrow><msup><mi>C</mi><mn>2</mn></msup></mfrac></math>&nbsp;seen and reduced to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>N C</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p>&nbsp;</p>
<p><em>Accept any analysis (eg dimensional) that yields answer correctly</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> on ball&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>T</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>30</mn></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mi>m</mi><mi>g</mi></mrow><mrow><mi>cos</mi><mo> </mo><mn>30</mn></mrow></mfrac></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>&nbsp;</mo><mo>«</mo><mo>=</mo><mi>m</mi><mi>g</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>025</mn><mo>×</mo><mo>&nbsp;</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>&nbsp;</mo><mo>×</mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>»</mo><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo>&nbsp;</mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em><br>Allow g = 10 N kg<sup>−1</sup></em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer.</em></p>
<p><em>Award <strong>[1max]</strong> for an answer of zero, interpreting that the horizontal force refers to the horizontal component of the net force.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>»</mo></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>85</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>12</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em> <br>Allow <strong>ECF</strong> from the calculated F in (b)(i)</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal/repulsive force and vertical force/pull of gravity act on the ball <strong>✓</strong></p>
<p>so ball has constant acceleration/constant net force <strong>✓</strong></p>
<p>motion is in a straight line <strong>✓</strong></p>
<p>at 30° to vertical away from wall/along original line of thread <strong>✓</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>Q</mi><mrow><mn>0</mn><mo>.</mo><msup><mn>22</mn><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>18</mn><mn>2</mn></msup></mrow></mfrac></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>+</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>C</mtext><mo>»</mo></math><strong>✓</strong></p>
<p>2sf<strong> ✓</strong></p>
<p><em><br>Do not award <strong>MP2</strong> if charge is negative </em></p>
<p><em>Any answer given to 2 sig figs scores <strong>MP3</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>work must be done to move a «positive» charge from infinity to P «as both charges are positive»<br><em><strong>OR</strong></em><br>reference to both potentials positive and added<br><em><strong>OR</strong></em><br>identifies field as gradient of potential and with zero value <strong>✓</strong></p>
<p>therefore, point P is at a positive / non-zero potential<strong>&nbsp;✓</strong></p>
<p><em><br>Award <strong>[0]</strong> for bald answer that P has non-zero potential</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A conducting sphere has radius 48&thinsp;cm. The electric potential on the surface of the sphere is&nbsp;3.4&thinsp;&times;&thinsp;10<sup>5</sup>&thinsp;V.</p>
</div>

<div class="specification">
<p>The sphere is connected by a long conducting wire to a second conducting sphere of&nbsp;radius 24&thinsp;cm. The second sphere is initially uncharged.</p>
<p style="text-align: center;">&nbsp;<img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the charge on the surface of the sphere is +18 μC.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of electron flow, how the smaller sphere becomes charged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the charge on each sphere.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mi>V</mi><mi>R</mi></mrow><mi>k</mi></mfrac><mo>=</mo><mo>»</mo><mfrac><mrow><mn>3</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>48</mn></mrow><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mn>18</mn><mo>.</mo><mn>2</mn></math> «μC» ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons leave the small sphere «making it positively charged» ✓</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mfrac><msub><mi>q</mi><mn>1</mn></msub><mn>48</mn></mfrac><mo>=</mo><mi>k</mi><mfrac><msub><mi>q</mi><mn>2</mn></msub><mn>24</mn></mfrac><mo>⇒</mo><msub><mi>q</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><msub><mi>q</mi><mn>2</mn></msub></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>q</mi><mn>1</mn></msub><mo>+</mo><msub><mi>q</mi><mn>2</mn></msub><mo>=</mo><mn>18</mn></math> ✓</p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>q</mi><mn>1</mn></msub><mo>=</mo><mn>12</mn></math> «μC», <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>q</mi><mn>2</mn></msub><mo>=</mo><mn>6</mn><mo>.</mo><mn>0</mn></math> «μC» ✓</p>
<p> </p>
<p><em>Award <strong>[3]</strong> marks for a bald correct answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A planet of mass <em>m</em> is in a circular orbit around a star. The gravitational potential due to the star at the position of the planet is <em>V</em>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the total energy of the planet is given by the equation shown.</span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = \frac{1}{2}mV">
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>m</mi>
  <mi>V</mi>
</math></span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suppose the star could contract to half its original radius without any loss of mass. Discuss the effect, if any, this has on the total energy of the planet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The diagram shows some of the electric field lines for two fixed, charged particles X and Y.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">The magnitude of the charge on X is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q">
  <mi>Q</mi>
</math></span> and that on Y is <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span></span>. The distance between X and Y is 0.600 m. The distance between P and Y is 0.820 m.</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">At P the electric field is zero. Determine, to <strong>one</strong> significant figure, the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{Q}{q}">
  <mfrac>
    <mi>Q</mi>
    <mi>q</mi>
  </mfrac>
</math></span>.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = \frac{1}{2}m\frac{{GM}}{r} - \frac{{GMm}}{r} =&nbsp; - \frac{1}{2}\frac{{GMm}}{r}">
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>m</mi>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
    <mi>r</mi>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
      <mi>m</mi>
    </mrow>
    <mi>r</mi>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
      <mi>m</mi>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span> &nbsp;✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">comparison with&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V =&nbsp; - \frac{{GM}}{r}">
  <mi>V</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span> &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«to give answer»</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">&nbsp;</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">«at the position of the planet» the potential depends only on the mass of the star /does not depend on the radius of the star ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">the potential will not change and so the energy will not change ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">r / distance between the centres of the objects / orbital radius remains unchanged ✔<br></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;">since&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E_{Total}} =&nbsp; - \frac{1}{2}\frac{{GMm}}{r}">
  <mrow>
    <msub>
      <mi>E</mi>
      <mrow>
        <mi>T</mi>
        <mi>o</mi>
        <mi>t</mi>
        <mi>a</mi>
        <mi>l</mi>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mfrac>
    <mrow>
      <mi>G</mi>
      <mi>M</mi>
      <mi>m</mi>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span>, energy will not change&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">&nbsp;</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{kQ}}{{{{(0.600 + 0.820)}^2}}} = \frac{{kq}}{{{{0.820}^2}}}">
  <mfrac>
    <mrow>
      <mi>k</mi>
      <mi>Q</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mn>0.600</mn>
            <mo>+</mo>
            <mn>0.820</mn>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>k</mi>
      <mi>q</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>0.820</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔</span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{Q}{q} = « \frac{{{{(0.600 + 0.820)}^2}}}{{{{0.820}^2}}} = 2.9988 \approx » 3">
  <mfrac>
    <mi>Q</mi>
    <mi>q</mi>
  </mfrac>
  <mo>=</mo>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mn>0.600</mn>
            <mo>+</mo>
            <mn>0.820</mn>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>0.820</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>2.9988</mn>
  <mo>≈</mo>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mn>3</mn>
</math></span> &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<p style="color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered but with candidates sometimes getting in to trouble over negative signs but otherwise producing well-presented answers.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A large number of candidates thought that the total energy of the planet would change, mostly double.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates had an idea of the basic technique here but it was surprisingly common to see the squared missing from the expression for field strengths.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
    <mrow>
      <mn>32</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> is formed when a nucleus of deuterium (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{1}^{2}{\text{H}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mn>2</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>H</mtext>
  </mrow>
</math></span>) collides with a nucleus of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{31}{\text{P}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
    <mrow>
      <mn>31</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>. The radius of a deuterium nucleus is 1.5 fm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the density of a nucleus varies with the number of nucleons in the nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the nuclear radius of phosphorus-31 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{31}{\text{P}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
    <mrow>
      <mn>31</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>) is about 4 fm.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the maximum distance between the centres of the nuclei for which the production of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
    <mrow>
      <mn>32</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> is likely to occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in J, the minimum initial kinetic energy that the deuterium nucleus must have in order to produce <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
    <mrow>
      <mn>32</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>. Assume that the phosphorus nucleus is stationary throughout the interaction and that only electrostatic forces act.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
    <mrow>
      <mn>32</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> undergoes beta-minus (β<sup>–</sup>) decay. Explain why the energy gained by the emitted beta particles in this decay is not the same for every beta particle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by decay constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a fresh pure sample of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
    <mrow>
      <mn>32</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> the activity of the sample is 24 Bq. After one week the activity has become 17 Bq. Calculate, in s<sup>–1</sup>, the decay constant of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{15}^{32}{\text{P}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
    <mrow>
      <mn>32</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>it is constant ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>R</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{1}}{\text{.20}} \times {10^{ - 15}} \times {31^{\frac{1}{3}}} = 3.8 \times {10^{ - 15}}">
  <mrow>
    <mtext>1</mtext>
  </mrow>
  <mrow>
    <mtext>.20</mtext>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>15</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>31</mn>
      <mrow>
        <mfrac>
          <mn>1</mn>
          <mn>3</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>3.8</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>15</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> «m» ✔</p>
<p><em>Must see working and answer to at least 2SF</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>separation for interaction = 5.3 <em><strong>or</strong></em> 5.5 «fm» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy required = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{15{e^2}}}{{4\pi {\varepsilon _0} \times 5.3 \times {{10}^{ - 15}}}}">
  <mfrac>
    <mrow>
      <mn>15</mn>
      <mrow>
        <msup>
          <mi>e</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>4</mn>
      <mi>π</mi>
      <mrow>
        <msub>
          <mi>ε</mi>
          <mn>0</mn>
        </msub>
      </mrow>
      <mo>×</mo>
      <mn>5.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>15</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p>= 6.5 / 6.6 ×10<sup>−13</sup> <em><strong>OR</strong></em> 6.3 ×10<sup>−13 </sup>«J» ✔</p>
<p> </p>
<p><em>Allow ecf from (b)(i)</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electron» <span style="text-decoration: underline;">antineutrino</span> also emitted ✔</p>
<p>energy split between electron and «anti»neutrino ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>probability of decay of a nucleus ✔</p>
<p><em><strong>OR</strong></em></p>
<p>the fraction of the number of nuclei that decay</p>
<p>in one/the next second</p>
<p><strong>OR</strong></p>
<p>per unit time ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1 week = 6.05 × 10<sup>5</sup> «s»</p>
<p>17 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24{{\text{e}}^{ - \lambda  \times 6.1 \times {{10}^5}}}">
  <mn>24</mn>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mi>λ</mi>
        <mo>×</mo>
        <mn>6.1</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mn>5</mn>
          </msup>
        </mrow>
      </mrow>
    </msup>
  </mrow>
</math></span> ✔</p>
<p>5.7 × 10<sup>−7 </sup>«s<sup>–1</sup>» ✔<br><br></p>
<p><em>Award<strong> [2 max]</strong> if answer is not in seconds</em></p>
<p><em>If answer <strong>not</strong> in seconds and <strong>no</strong> unit quoted award<strong> [1 max]</strong> for correct substitution into equation (MP2)</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">In a classical model of the singly-ionized helium atom, a single electron orbits the nucleus in a circular orbit of radius <em>r</em>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="249" height="248"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The Bohr model for hydrogen can be applied to the singly-ionized helium atom. In this model the radius<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math></em>, in m, of the orbit of the electron is given by<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>–</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mi>n</mi><mn>2</mn></msup></math></em>&nbsp;where <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math></em> is a positive integer.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the speed <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math></em> of the electron with mass <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math></em>, is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><msqrt><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mrow><mi>m</mi><mi>r</mi></mrow></mfrac></msqrt></math>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Hence, deduce that the total energy of the electron is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>TOT</mi></msub><mo>=</mo><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">In this model the electron loses energy by emitting electromagnetic waves. Describe the predicted effect of this emission on the orbital radius of the electron.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the de Broglie wavelength<em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math></em> of the electron in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math> state is  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></math> m.<br></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The formula for the de Broglie wavelength of a particle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mi>h</mi><mrow><mi>m</mi><mi>v</mi></mrow></mfrac></math>.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Estimate for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math>, the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>circumference</mi><mo> </mo><mi>of</mi><mo> </mo><mi>orbit</mi></mrow><mrow><mi>de</mi><mo> </mo><mi>Broglie</mi><mo> </mo><mi>wavelength</mi><mo> </mo><mi>of</mi><mo> </mo><mi>electron</mi></mrow></mfrac></math>.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">State your answer to one significant figure.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The description of the electron is different in the Schrodinger theory than in the Bohr model. Compare and contrast the description of the electron according to the Bohr model and to the Schrodinger theory.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">equating centripetal to electrical force <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math> to get result ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">uses (a)(i) to state <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">k</mi></msub><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math> <em><strong>OR </strong></em>states <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">p</mi></msub><mo>=</mo><mo>-</mo><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math> ✔</span></p>
<p><span style="background-color: #ffffff;">adds « <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>TOT</mi></msub><mo>=</mo><msub><mi>E</mi><mi mathvariant="normal">k</mi></msub><mo>+</mo><msub><mi>E</mi><mi mathvariant="normal">p</mi></msub><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac><mo>-</mo><mfrac><mrow><mn>2</mn><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math>» to get the result ✔</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">the total energy decreases<br><em><strong>OR</strong></em><br>by reference to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>TOT</mi></msub><mo>=</mo><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>e</mi><mn>2</mn></msup></mrow><mi>r</mi></mfrac></math> ✔</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">the radius must also decrease ✔</span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">NOTE: <span style="background-color: #ffffff;">Award <strong>[0]</strong> for an answer concluding that radius increases</span></span></span></em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>v</mi><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfenced><mn>2</mn></msup></mrow><mrow><mn>9</mn><mo>.</mo><mn>11</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup><mo>×</mo><mn>9</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow></mfrac></msqrt><mo>=</mo><mo>»</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>44</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo> </mo><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo> </mo><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math><span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup></mrow><mrow><mn>9</mn><mo>.</mo><mn>11</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>44</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math>  <em><strong>OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>05</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math><span style="background-color: #ffffff;">✔</span></strong></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mi>r</mi></mstyle><mstyle displaystyle="true"><mi>λ</mi></mstyle></mfrac><mo>=</mo><mo>«</mo><mfrac><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>×</mo><mn>9</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mstyle><mstyle displaystyle="true"><mn>5</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></mstyle></mfrac><mo>=</mo><mn>2</mn><mo>.</mo><mn>99</mn><mo>»</mo><mo>≅</mo><mn>3</mn></math> <span style="background-color: #ffffff;">✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Allow ECF from (b)(i)</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">reference to fixed orbits/specific radii <em><strong>OR</strong> </em>quantized angular momentum in Bohr model ✔<br></span></p>
<p><span style="background-color: #ffffff;">electron described by a wavefunction/as a wave in Schrödinger model <em><strong>OR</strong> </em>as particle in Bohr model ✔<br></span></p>
<p><span style="background-color: #ffffff;">reference to «same» energy levels in both models ✔<br></span></p>
<p><span style="background-color: #ffffff;">reference to «relationship between wavefunction and» probability «of finding an electron in a point» in Schrödinger model ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A student makes a parallel-plate capacitor of capacitance 68 nF from aluminium foil and plastic film by inserting one sheet of plastic film between two sheets of aluminium foil.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The aluminium foil and the plastic film are 450 mm wide.</p>
<p style="text-align: left;">The plastic film has a thickness of 55 μm and a permittivity of 2.5 × 10<sup>−11</sup> C<sup>2</sup> N<sup>–1</sup> m<sup>–2</sup>.</p>
</div>

<div class="specification">
<p>The student uses a switch to charge and discharge the capacitor using the circuit shown. The ammeter is ideal.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The emf of the battery is 12 V.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">Calculate the total length of aluminium foil that the student will require.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">The plastic film begins to conduct when the electric field strength in it exceeds 1.5 MN C<sup>–1</sup>. Calculate the maximum charge that can be stored on the capacitor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistor <em>R</em> in the circuit has a resistance of 1.2 kΩ. Calculate the time taken for the charge on the capacitor to fall to 50 % of its fully charged value.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The ammeter is replaced by a coil. Explain why there will be an induced emf in the coil while the capacitor is discharging.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> change to the discharge circuit, apart from changes to the coil, that will increase the maximum induced emf in the coil.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>length =&nbsp;<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{d \times C}}{{{\text{width}} \times \varepsilon }}">
  <mfrac>
    <mrow>
      <mi>d</mi>
      <mo>×</mo>
      <mi>C</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>width</mtext>
      </mrow>
      <mo>×</mo>
      <mi>ε</mi>
    </mrow>
  </mfrac>
</math></span></span> ✔</p>
<p>= 0.33 «m» ✔</p>
<p>so 0.66/0.67 «m» «as two lengths required» ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.5 × 10<sup>6</sup> × 55 × 10<sup>-6</sup> = 83 «V» ✔</p>
<p>q «= CV»= 5.6 × 10<sup>-6</sup> «C»✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5 = {{\text{e}}^{ - \frac{t}{{RC}}}} = {{\text{e}}^{ - \frac{t}{{1200 \times 6.8 \times {{10}^{ - 8}}}}}}">
  <mn>0.5</mn>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mfrac>
          <mi>t</mi>
          <mrow>
            <mi>R</mi>
            <mi>C</mi>
          </mrow>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mfrac>
          <mi>t</mi>
          <mrow>
            <mn>1200</mn>
            <mo>×</mo>
            <mn>6.8</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mrow>
                  <mo>−</mo>
                  <mn>8</mn>
                </mrow>
              </msup>
            </mrow>
          </mrow>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span></span></p>
<p><em>t</em> = «−» 1200 × 6.8&nbsp;× 10<sup>−8</sup> × ln0.5 ✔</p>
<p>5.7&nbsp;× 10<sup>−5</sup>&nbsp;«s» ✔</p>
<p><em><strong>OR</strong></em></p>
<p>use of <em>t <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> = RC&nbsp;</em>× ln2 ✔</p>
<p>1200 × 6.8 × 10<sup>−8</sup> × 0.693 ✔</p>
<p>5.7 × 10<sup>−5</sup> «s» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mention of Faraday’s law ✔</p>
<p>indicating that changing current in discharge circuit leads to change in flux in coil/change in magnetic field «and induced emf» ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decrease/reduce ✔</p>
<p>resistance (R) <em><strong>OR</strong></em> capacitance (C) ✔</p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to use the proper equation to calculate the length of one piece of aluminum foil for the first two marks, but very few doubled the length for the final mark.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was challenging for many candidates. While some candidates were able to use proper equations for capacitors to determine the charge some of the candidates attempted to use electrostatic equations for the electric field around a point charge to solve this problem.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was also challenging for many candidates, with not an insignificant number leaving it blank. The candidates who did attempt it generally set up a correct equation, but ran into some simple calculation and power of ten errors. Some candidates attempted to solve the equation using basic circuit equations, which did not receive any marks.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is an explain question, so there was an expectation for a fairly detailed response. Many candidates missed the fact that the discharging capacitor is causing the current in the coil to <span style="text-decoration:underline;">change</span> in time, and that this is what is inducing the emf in the coil. Many simply stated that the current created a magnetic field with not complete explanation of induction.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates who recognized that something about the discharge circuit (not the charging circuit) needed to be changed generally suggested that something had to change with the resistance or capacitance. It should be noted that even though this was the last question on the exam, it was attempted at a higher rate than many of the other questions on the exam.</p>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The moon Phobos moves around the planet Mars in a circular orbit.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the origin of the force that acts on Phobos.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why this force does no work on Phobos.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital period <em>T</em> of a moon orbiting a planet of mass <em>M</em> is given by</p>
<p style="text-align:center;"><span style="background-color:#ffffff;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{R^3}}}{{{T^2}}} = kM">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>R</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>T</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mi>k</mi>
  <mi>M</mi>
</math></span></span></p>
<p>where <em>R</em> is the average distance between the centre of the planet and the centre of the moon.</p>
<p>Show that&nbsp;<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{G}{{4{\pi ^2}}}">
  <mi>k</mi>
  <mo>=</mo>
  <mfrac>
    <mi>G</mi>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following data for the Mars–Phobos system and the Earth–Moon system are available:</p>
<p>Mass of Earth = 5.97 × 10<sup>24</sup> kg</p>
<p>The Earth–Moon distance is 41 times the Mars–Phobos distance.</p>
<p>The orbital period of the Moon is 86 times the orbital period of Phobos.</p>
<p>Calculate, in kg, the mass of Mars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation of the gravitational potential between the Earth and Moon with distance from the centre of the Earth. The distance from the Earth is expressed as a fraction of the total distance between the centre of the Earth and the centre of the Moon.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Determine, using the graph, the mass of the Moon.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>gravitational attraction/force/field «of the planet/Mars» ✔</p>
<p><em>Do not accept “gravity”</em>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the force/field and the velocity/displacement are at 90° to each other <strong><em>OR</em></strong></p>
<p>there is no change in GPE of the moon/Phobos ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATE 1</strong></em></p>
<p>«using fundamental equations»</p>
<p>use of Universal gravitational force/acceleration/orbital velocity equations ✔</p>
<p>equating to centripetal force or acceleration. ✔</p>
<p>rearranges to get <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{G}{{4{\pi ^2}}}">
  <mi>k</mi>
  <mo>=</mo>
  <mfrac>
    <mi>G</mi>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></span>&nbsp; ✔</p>
<p><em><strong>ALTERNATE 2</strong></em></p>
<p>«starting with&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:center;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{R^3}}}{{{T^2}}} = kM">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>R</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>T</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mi>k</mi>
  <mi>M</mi>
</math></span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">»</span></span></p>
<p>substitution of proper equation for T from orbital motion equations ✔</p>
<p>substitution of proper equation for M <em><strong>OR</strong></em> R from orbital motion equations ✔</p>
<p>rearranges to get <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{G}{{4{\pi ^2}}}">
  <mi>k</mi>
  <mo>=</mo>
  <mfrac>
    <mi>G</mi>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></span>&nbsp; ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_{{\text{Mars}}}} = {\left( {\frac{{{R_{{\text{Mars}}}}}}{{{R_{{\text{Earth}}}}}}} \right)^3}{\left( {\frac{{{T_{{\text{Earth}}}}}}{{{T_{Mars}}}}} \right)^2}{m_{{\text{Earth}}}}">
  <mrow>
    <msub>
      <mi>m</mi>
      <mrow>
        <mrow>
          <mtext>Mars</mtext>
        </mrow>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mrow>
                <msub>
                  <mi>R</mi>
                  <mrow>
                    <mrow>
                      <mtext>Mars</mtext>
                    </mrow>
                  </mrow>
                </msub>
              </mrow>
            </mrow>
            <mrow>
              <mrow>
                <msub>
                  <mi>R</mi>
                  <mrow>
                    <mrow>
                      <mtext>Earth</mtext>
                    </mrow>
                  </mrow>
                </msub>
              </mrow>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mrow>
                <msub>
                  <mi>T</mi>
                  <mrow>
                    <mrow>
                      <mtext>Earth</mtext>
                    </mrow>
                  </mrow>
                </msub>
              </mrow>
            </mrow>
            <mrow>
              <mrow>
                <msub>
                  <mi>T</mi>
                  <mrow>
                    <mi>M</mi>
                    <mi>a</mi>
                    <mi>r</mi>
                    <mi>s</mi>
                  </mrow>
                </msub>
              </mrow>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msub>
      <mi>m</mi>
      <mrow>
        <mrow>
          <mtext>Earth</mtext>
        </mrow>
      </mrow>
    </msub>
  </mrow>
</math></span></span> or other consistent re-arrangement ✔</p>
<p>6.4 × 10<sup>23</sup> «kg» ✔</p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>read off separation at maximum potential 0.9 ✔</p>
<p>equating of gravitational field strength of earth and moon at that location <em><strong>OR <img src="">✔</strong></em></p>
<p>7.4 × 10<sup>22</sup> «kg» ✔</p>
<p><em>Allow ECF from MP1</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered, although some candidates simply used the vague term “gravity” rather than specifying that it is a gravitational force or a gravitational field. Candidates need to be reminded about using proper physics terms and not more general, “every day” terms on the exam.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates connected the idea that the gravitational force is perpendicular to the velocity (and hence the displacement) for the mark. It was also allowed to discuss that there is no change in gravitational potential energy, so therefore no work was being done. It was not acceptable to simply state that the net displacement over one full orbit is zero. Unfortunately, some candidates suggested that there is no net&nbsp;force on the moon so there is no work done, or that the moon is so much smaller so no work could be done on it.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was another “show that” derivation. Many candidates attempted to work with universal gravitation equations, either from memory or the data booklet, to perform this derivation. The variety of correct solution paths was quite impressive, and many candidates who attempted this question were able to receive some marks. Candidates should be reminded on “show that” questions that it is never allowed to work backwards from the given answer. Some candidates also made up equations (such as T = 2𝝿r) to force the derivation to work out.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was challenging for candidates. The candidates who started down the correct path of using the given derived value from 5bi often simply forgot that the multiplication factors had to be squared and cubed as well as the variables.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was left blank by many candidates, and very few who attempted it were able to successfully recognize that the gravitational fields of the Earth and Moon balance at 0.9r and then use the proper equation to calculate the mass of the Moon.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A planet is in a circular orbit around a star. The speed of the planet is constant. The following&nbsp;data are given:</p>
<p style="padding-left: 120px;">Mass of planet&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup><mo> </mo></math>kg<br>Mass of star&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>30</mn></msup><mo> </mo></math>kg<br>Distance from the star to the planet <em>R</em>&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mo> </mo></math>m.</p>
</div>

<div class="specification">
<p>A spacecraft is to be launched from the surface of the planet to escape from the star&nbsp;system. The radius of the planet is 9.1 × 10<sup>3</sup> km.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why a centripetal force is needed for the planet to be in a circular orbit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the centripetal force.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the gravitational potential due to the planet and the star at the surface&nbsp;of the planet is about −5 × 10<sup>9 </sup>J kg<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the escape speed of the spacecraft from the planet–star system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«circular motion» involves a changing velocity <strong>✓</strong></p>
<p>«Tangential velocity» is «always» perpendicular to centripetal force/acceleration <strong>✓</strong></p>
<p>there must be a force/acceleration towards centre/star <strong>✓</strong></p>
<p>without a centripetal force the planet will move in a straight line <strong>✓</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup><mo>)</mo><mo>(</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>30</mn></msup><mo>)</mo></mrow><mrow><mo>(</mo><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><msup><mo>)</mo><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>8</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></math>&nbsp;«N»&nbsp;<strong>✓</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V</em><sub>planet</sub> = «−»<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup><mo>)</mo></mrow><mrow><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac><mo>=</mo></math>«−» 5.9&nbsp;× 10<sup>7&nbsp;</sup>«J kg<sup>−1</sup>»&nbsp;<strong>✓</strong></p>
<p><em>V</em><sub>star</sub>&nbsp;= «−»<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>30</mn></msup><mo>)</mo></mrow><mrow><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup></mrow></mfrac><mo>=</mo></math>«−» 4.9&nbsp;× 10<sup>9&nbsp;</sup>«J kg<sup>−1</sup>» <strong>✓</strong></p>
<p><em>V</em><sub>planet</sub>&nbsp;+ <em>V</em><sub>star&nbsp;</sub>= «−» 4.9 «09» × 10<sup>9&nbsp;</sup>«J kg<sup>−1</sup>»&nbsp;<strong>✓</strong></p>
<p><em><br></em><em>Must see substitutions and not just equations.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>v</em><sub>esc</sub>&nbsp;=&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn><mi>V</mi></msqrt></math>&nbsp;<strong>✓</strong></p>
<p><em>v = </em>9.91&nbsp;× 10<sup>4</sup>&nbsp;«m s<sup>−1</sup>»&nbsp;<strong>✓</strong></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two identical positive point charges X and Y are placed 0.30&thinsp;m apart on a horizontal line.&nbsp;O is the point midway between X and Y. The charge on X and the charge on Y is +4.0&thinsp;&micro;C.</p>
</div>

<div class="specification">
<p>A positive charge Z is released from rest 0.010&thinsp;m from O on the line between X and Y.&nbsp;Z then begins to oscillate about point O.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electric potential at O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, the variation of the electric potential <em>V</em> with distance between X and Y.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the direction of the resultant force acting on Z as it oscillates.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce whether the motion of Z is simple harmonic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>k</mi><mi>Q</mi></mrow><mi>r</mi></mfrac></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mfenced><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>15</mn></mrow></mfrac></math> <em><strong>OR</strong> </em>240 «kV» for one charge calculated ✓</p>
<p>480 «kV» for both ✓</p>
<p> </p>
<p><em><strong>MP1</strong> can be seen or implied from calculation.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP2</strong> for <strong>MP3</strong>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>symmetric curve around 0 with potential always positive, “bowl shape up” and curve not touching the horizontal axis. ✓</p>
<p>clear asymptotes at X and Y ✓</p>
<p> </p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force is towards O ✓</p>
<p>always ✓</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>motion is not SHM ✓</p>
<p>«because SHM requires force proportional to r and» this force depends on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>r</mi><mn>2</mn></msup></mfrac></math> ✓</p>
<p><em><strong><br>ALTERNATIVE 2</strong></em></p>
<p>motion is not SHM ✓</p>
<p>energy-distance «graph must be parabolic for SHM and this» graph is not parabolic ✓</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was generally well approached. Two common errors were either starting with the wrong equation (electric potential energy or Coulomb's law) or subtracting the potentials rather than adding them.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates drew a graph that was awarded two marks. Many had a generally correct shape, but common errors were drawing the graph touching the x-axis at O and drawing a general parabola with no clear asymptotes.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to identify the direction of the force on the particle at position Z, but a common error was to miss that the question was about the direction as the particle was oscillating. Examiners were looking for a clear understanding that the force was always directed toward the equilibrium position, and not just at the moment shown in the diagram.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question for candidates. Most simply assumed that because the charge was oscillating that this meant the motion was simple harmonic. Some did recognize that it was not, and most of those candidates correctly identified that the relationship between force and displacement was an inverse square.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br>