File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 10 HTML/markSceme-HL-paper1html
File size: 475.46 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>An electric field acts in the space between two charged parallel plates. One plate is at zero potential and the other is at potential +<em>V</em>.</p>
<p><img src=""></p>
<p>The distance <em>x</em> is measured from point P in the direction perpendicular to the plate.</p>
<p>What is the dependence of the electric field strength <em>E</em> on <em>x</em> and what is the dependence of the electric potential <em>V</em> on <em>x</em>?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two point charges are at rest as shown.</p>
<p>At which position is the electric field strength greatest?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A charged sphere in a gravitational field is initially stationary between two parallel metal plates. There is a potential difference <em>V</em> between the plates.</p>
<p style="text-align:center;"><img src=""></p>
<p>Three changes can be made:</p>
<p style="padding-left:60px;">I. Increase the separation of the metal plates<br>II. Increase <em>V</em><br>III. Apply a magnetic field into the plane of the paper</p>
<p>What changes made separately will cause the charged sphere to accelerate?</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Option C was a very successful distractor, selected by the majority of candidates. Most candidates missed that change III ("Apply a magnetic field into the plane of the paper") can never be correct if the charge is stationary.</p>
</div>
<br><hr><br><div class="question">
<p>Which is a correct unit for gravitational potential?</p>
<p>A. m<sup>2 </sup>s<sup>−2</sup></p>
<p>B. J kg</p>
<p>C. m s<sup>−2</sup></p>
<p>D. N m<sup>−1 </sup>kg<sup>−1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two point charges <em>Q</em><sub>1</sub> and <em>Q</em><sub>2</sub> are one metre apart. The graph shows the variation of electric potential <em>V</em> with distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> from <em>Q</em><sub>1</sub>.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{Q_1}}}{{{Q_2}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>Q</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>Q</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span>?</p>
<p> </p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{16}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{4}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>4</mn>
</mrow>
</mfrac>
</math></span></p>
<p>C. 4</p>
<p>D. 16</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A moon of mass <em>M </em>orbits a planet of mass 100<em>M</em>. The radius of the planet is <em>R </em>and the distance between the centres of the planet and moon is 22<em>R</em>.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_18.53.09.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/28"></p>
<p>What is the distance from the centre of the planet at which the total gravitational potential has a maximum value?</p>
<p>A. 2<em>R</em></p>
<p>B. 11<em>R</em></p>
<p>C. 20<em>R</em></p>
<p>D. 2<em>R </em>and 20<em>R</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">An electron is fixed in position in a uniform electric field. What is the position for which the electrical potential energy of the electron is greatest?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The force acting between two point charges is <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math></em> when the separation of the charges is <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>. What is the force between the charges when the separation is increased to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi></math>?</span></p>
<p><span style="background-color: #ffffff;">A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>F</mi><mn>3</mn></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>F</mi><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>F</mi><mn>9</mn></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>F</mi><mrow><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A negative charge Q is to be moved within an electric field E, to equidistant points from its position, as shown.</p>
<p>Which path requires the most work done?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The most common answer was A, suggesting that students missed the prompt that Q is a negative charge.</p>
</div>
<br><hr><br><div class="question">
<p>What is the unit of <em>Gε</em><sub>0</sub>, where <em>G </em>is the gravitational constant and <em>ε</em><sub>0</sub> is the permittivity of free space? </p>
<p>A. C kg<sup>–1<br></sup></p>
<p>B. C<sup>2 </sup>kg<sup>–2</sup> </p>
<p>C. C kg </p>
<p>D. C<sup>2 </sup>kg<sup>2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite of mass 1500 kg is in the Earth’s gravitational field. It moves from a point where the gravitational potential is –30 MJ kg<sup>–1</sup> to a point where the gravitational potential is –20 MJ kg<sup>–1</sup>. What is the direction of movement of the satellite and the change in its gravitational potential energy?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of the gravitational potential <em>V</em> with distance <em>r</em> from the centre of a uniform spherical planet. The radius of the planet is <em>R</em>. The shaded area is <em>S</em>.</p>
<p><img src=""></p>
<p>What is the work done by the gravitational force as a point mass <em>m</em> is moved from the surface of the planet to a distance 6<em>R</em> from the centre?</p>
<p>A. <em>m</em> (<em>V</em>2 – <em>V</em>1 )</p>
<p>B. <em>m</em> (<em>V</em>1 – <em>V</em>2 )</p>
<p>C. <em>mS</em></p>
<p>D. <em>S</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two parallel metal plates are connected to a dc power supply. An electric field forms in the space between the plates as shown.</p>
<p><img src="" alt></p>
<p>What is the shape of the equipotentials surfaces that result from this arrangement?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A positive charge <em>Q</em> is deposited on the surface of a small sphere. The dotted lines represent equipotentials.</p>
<p><img src=""></p>
<p>A small positive point charge is moved from point P closer to the sphere along three different paths X, Y and Z. The work done along each path is W<sub>X</sub>, W<sub>Y</sub> and W<sub>Z</sub>. What is a correct comparison of W<sub>X</sub>, W<sub>Y</sub> and W<sub>Z</sub>?</p>
<p>A. W<sub>Z</sub> > W<sub>Y</sub> > W<sub>X</sub></p>
<p>B. W<sub>X</sub> > W<sub>Y</sub> = W<sub>Z</sub></p>
<p>C. W<sub>X</sub> = W<sub>Y</sub> = W<sub>Z</sub></p>
<p>D. W<sub>Z</sub> = W<sub>Y</sub> > W<sub>X</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>P and S are two points on a gravitational equipotential surface around a planet. Q and R are two points on a different gravitational equipotential surface at a greater distance from the planet.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="340" height="332"></p>
<p>The greatest work done by the gravitational force is when moving a mass from</p>
<p>A. P to S.</p>
<p>B. Q to R.</p>
<p>C. R to P.</p>
<p>D. S to R.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Four uniform planets have masses and radii as shown. Which planet has the smallest escape speed?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows 5 gravitational equipotential lines. The gravitational potential on each line is indicated. A point mass <em>m </em>is placed on the middle line and is then released. Values given in MJ kg<sup>–1</sup>.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_11.00.49.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/31_01"></p>
<p>Which is correct about the direction of motion and the acceleration of the point mass?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_11.01.52.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/31_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A charge of −3 C is moved from A to B and then back to A. The electric potential at A is +10 V and the electric potential at B is −20 V. What is the work done in moving the charge from A to B and the total work done?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite orbiting a planet moves from orbit X to orbit Y.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_18.58.58.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/31_01"></p>
<p>What is the change in the kinetic energy and the change in the gravitational potential energy as a result?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_19.00.39.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/31_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron of mass <em>m</em><sub><em>e </em></sub>orbits an alpha particle of mass <em>m</em><sub><em>α </em></sub>in a circular orbit of radius <em>r</em>. Which expression gives the speed of the electron?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{2k{e^2}}}{{{m_e}r}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>2</mn>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mi>e</mi>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{2k{e^2}}}{{{m_a}r}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>2</mn>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mi>a</mi>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{4k{e^2}}}{{{m_e}r}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>4</mn>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mi>e</mi>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{4k{e^2}}}{{{m_a}r}}} ">
<msqrt>
<mfrac>
<mrow>
<mn>4</mn>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mi>a</mi>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows the electric field and the electric equipotential surfaces between two charged parallel plates. The potential difference between the plates is 200 V.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_18.54.51.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/29_01"></p>
<p>What is the work done, in nJ, by the electric field in moving a negative charge of magnitude 1 nC from the position shown to X and to Y?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_18.56.05.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/29_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object of mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> is launched from the surface of the Earth. The Earth has a mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>. The acceleration due to gravity at the surface of the Earth is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>. What is the escape speed of the object from the surface of the Earth?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mi>g</mi><mi>r</mi></msqrt></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn><mi>g</mi><mi>r</mi></msqrt></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn><mi>M</mi><mi>g</mi><mi>r</mi></msqrt></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn><mi>m</mi><mi>g</mi><mi>r</mi></msqrt></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Options B and C were selected by a roughly equal number of candidates. Again, this is a situation where unit analysis is beneficial; options C and D would not produce units associated with speed (mass is already incorporated in the constant 'g').</p>
</div>
<br><hr><br><div class="question">
<p>The escape speed for the Earth is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span><sub>esc</sub>. Planet X has half the density of the Earth and twice the radius. What is the escape speed for planet X?</p>
<p> </p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_{{\text{esc}}}}}}{2}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>v</mi>
<mrow>
<mrow>
<mtext>esc</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_{{\text{esc}}}}}}{{\sqrt 2 }}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>v</mi>
<mrow>
<mrow>
<mtext>esc</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span><sub>esc</sub></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sqrt 2 }">
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span><sub>esc</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The gravitational potential at point P due to Earth is <em>V</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the definition of the gravitational potential at P?</p>
<p> </p>
<p>A. Work done per unit mass to move a point mass from infinity to P</p>
<p>B. Work done per unit mass to move a point mass from P to infinity</p>
<p>C. Work done to move a point mass from infinity to P</p>
<p>D. Work done to move a point mass from P to infinity</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite in a circular orbit around the Earth needs to reduce its orbital radius.</p>
<p>What is the work done by the satellite rocket engine and the change in kinetic energy resulting from this shift in orbital height?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was generally well answered, however a significant number of students (incorrectly) selected response A suggesting a lack of clarity around the work done as a result of changes in orbital height.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">An electron enters a uniform electric field of strength <em>E</em> with a velocity <em>v</em>. The direction of <em>v</em> is not parallel to <em>E</em>. What is the path of the electron after entering the field?</span></p>
<p><span style="background-color: #ffffff;">A. Circular<br></span></p>
<p><span style="background-color: #ffffff;">B. Parabolic<br></span></p>
<p><span style="background-color: #ffffff;">C. Parallel to <em>E</em><br></span></p>
<p><span style="background-color: #ffffff;">D. Parallel to <em>v</em></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The gravitational potential is <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math></em> at a distance <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math></em> above the surface of a spherical planet of radius <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math></em> and uniform density. What is the gravitational potential a distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>R</mi></math> above the surface of the planet?</span></p>
<p><span style="background-color: #ffffff;">A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>V</mi><mn>4</mn></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>4</mn><mi>V</mi></mrow><mn>9</mn></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>V</mi><mn>2</mn></mfrac></math></span></p>
<p><span style="background-color: #ffffff;">D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>V</mi></mrow><mn>3</mn></mfrac></math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">The escape speed from a planet of radius <em>R</em> is <em>v</em><sub>esc</sub>. A satellite orbits the planet at a distance <em>R</em> from the surface of the planet. What is the orbital speed of the satellite?</span></p>
<p><span style="background-color:#ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{v_{{\text{esc}}}}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msub>
<mi>v</mi>
<mrow>
<mrow>
<mtext>esc</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sqrt 2 }}{2}{v_{{\text{esc}}}}">
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msub>
<mi>v</mi>
<mrow>
<mrow>
<mtext>esc</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 2 {v_{{\text{esc}}}}">
<msqrt>
<mn>2</mn>
</msqrt>
<mrow>
<msub>
<mi>v</mi>
<mrow>
<mrow>
<mtext>esc</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{v_{{\text{esc}}}}">
<mn>2</mn>
<mrow>
<msub>
<mi>v</mi>
<mrow>
<mrow>
<mtext>esc</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</math></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This had a very low discrimination index with the majority of candidates choosing B, followed by C. Response A, the correct answer, was third in popularity. The candidates missed that the satellite orbits at a distance of R from the surface of a planet of radius R so the total distance to be considered was 2R.</p>
</div>
<br><hr><br><div class="question">
<p>A spacecraft moves towards the Earth under the influence of the gravitational field of the Earth.</p>
<p>The three quantities that depend on the distance <em>r</em> of the spacecraft from the centre of the Earth are the</p>
<p>I. gravitational potential energy of the spacecraft<br>II gravitational field strength acting on the spacecraft<br>III. gravitational force acting on the spacecraft.</p>
<p>Which of the quantities are proportional to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{r^2}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>?</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A particle with charge −2.5 × 10<sup>−6</sup> C moves from point X to point Y due to a uniform electrostatic field. The diagram shows some equipotential lines of the field.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is correct about the motion of the particle from X to Y and the magnitude of the work done by the field on the particle?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Four identical, positive, point charges of magnitude <em>Q </em>are placed at the vertices of a square of side 2<em>d</em>. What is the electric potential produced at the centre of the square by the four charges?</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_10.58.10.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/30"></p>
<p>A. 0</p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4kQ}}{d}">
<mfrac>
<mrow>
<mn>4</mn>
<mi>k</mi>
<mi>Q</mi>
</mrow>
<mi>d</mi>
</mfrac>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sqrt 2 kQ}}{d}">
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
<mi>k</mi>
<mi>Q</mi>
</mrow>
<mi>d</mi>
</mfrac>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\sqrt 2 kQ}}{d}">
<mfrac>
<mrow>
<mn>2</mn>
<msqrt>
<mn>2</mn>
</msqrt>
<mi>k</mi>
<mi>Q</mi>
</mrow>
<mi>d</mi>
</mfrac>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite orbits planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> with a speed <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mtext>X</mtext></msub></math> at a distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>r</mtext></math> from the centre of planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math>. Another satellite orbits planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> at a speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mtext>y</mtext></msub></math> at a distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>r</mtext></math> from the centre of planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math>. The mass of planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> and the mass of planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>M</mi></math>. What is the ratio of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>v</mi><mtext>X</mtext></msub><msub><mi>v</mi><mtext>y</mtext></msub></mfrac></math>?<br><br>A. 0.25</p>
<p>B. 0.5</p>
<p>C. 2.0</p>
<p>D. 4.0</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object of mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> released from rest near the surface of a planet has an initial acceleration <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>. What is the gravitational field strength near the surface of the planet?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>z</mi><mi>m</mi></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>z</mi></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>m</mi><mi>z</mi></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The mass of the Earth is <em>M</em><sub>E</sub> and the mass of the Moon is <em>M</em><sub>M</sub>. Their respective radii are <em>R</em><sub>E</sub> and <em>R</em><sub>M</sub>.</p>
<p>Which is the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{escape speed from the Earth}}}}{{{\text{escape speed from the Moon}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>escape speed from the Earth</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>escape speed from the Moon</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{{M_{\text{M}}}{R_{\text{M}}}}}{{{M_{\text{E}}}{R_{\text{E}}}}}} ">
<msqrt>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>M</mi>
<mrow>
<mtext>M</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mtext>M</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>M</mi>
<mrow>
<mtext>E</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mtext>E</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{{M_{\text{E}}}{R_{\text{E}}}}}{{{M_{\text{M}}}{R_{\text{M}}}}}} ">
<msqrt>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>M</mi>
<mrow>
<mtext>E</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mtext>E</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>M</mi>
<mrow>
<mtext>M</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mtext>M</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{{M_{\text{E}}}{R_{\text{M}}}}}{{{M_{\text{M}}}{R_{\text{E}}}}}} ">
<msqrt>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>M</mi>
<mrow>
<mtext>E</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mtext>M</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>M</mi>
<mrow>
<mtext>M</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mtext>E</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{{M_{\text{M}}}{R_{\text{E}}}}}{{{M_{\text{E}}}{R_{\text{M}}}}}} ">
<msqrt>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>M</mi>
<mrow>
<mtext>M</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mtext>E</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>M</mi>
<mrow>
<mtext>E</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mtext>M</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite at the surface of the Earth has a weight <em>W</em> and gravitational potential energy <em>E</em>p. The satellite is then placed in a circular orbit with a radius twice that of the Earth.</p>
<p>What is the weight of the satellite and the gravitational potential energy of the satellite when placed in orbit?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two charged parallel plates have electric potentials of 10 V and 20 V.</p>
<p style="text-align:center;"><img src=""></p>
<p>A particle with charge +2.0 μC is moved from the 10 V plate to the 20 V plate. What is the change in the electric potential energy of the particle?</p>
<p><br>A. −20 μJ</p>
<p>B. −10 μJ</p>
<p>C. 10 μJ</p>
<p>D. 20 μJ</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A positive point charge is placed above a metal plate at zero electric potential. Which diagram shows the pattern of electric field lines between the charge and the plate?</p>
<p><img src="images/Schermafbeelding_2018-08-13_om_18.57.24.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/30"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">Satellite X is in orbit around the Earth. An identical satellite Y is in a higher orbit. What is correct for the total energy and the kinetic energy of the satellite Y compared with satellite X?</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>We accept the comment from G2 forms that the wording of this question could be improved. The correct answer (B) considers the total and kinetic energies of satellite X the most popular answer.</p>
</div>
<br><hr><br><div class="question">
<p>The points X and Y are in a uniform electric field of strength <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math>. The distance OX is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and the distance OY is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<p style="text-align:center;"> <img src=""> </p>
<p>What is the magnitude of the change in electric potential between X and Y?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>x</mi></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>y</mi></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>(</mo><mi>x</mi><mo> </mo><mo>+</mo><mo> </mo><mi>y</mi><mo>)</mo></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo>+</mo><mo> </mo><msup><mi>y</mi><mn>2</mn></msup></msqrt></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite of mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> orbits a planet of mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> in a circular orbit of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>. What is the work that must be done on the satellite to increase its orbital radius to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>r</mi></math>?</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>G</mi><mi>M</mi><mi>m</mi></mrow><mi>r</mi></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>G</mi><mi>M</mi><mi>m</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>G</mi><mi>M</mi><mi>m</mi></mrow><mrow><mn>4</mn><mi>r</mi></mrow></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>G</mi><mi>M</mi><mi>m</mi></mrow><mrow><mn>8</mn><mi>r</mi></mrow></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows equipotential lines for an electric field. Which arrow represents the acceleration of an electron at point P?<br><br></p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two positive and two negative charges are located at the corners of a square as shown. Point X is the centre of the square. What is the value of the electric field <em>E</em> and the electric potential <em>V</em> at X due to the four charges?</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Candidates were unsure about this question with almost equal numbers choosing A and C. Electric potential is a scalar quantity so unaffected by the sign of the charge and can only be 0 in this arrangement removing the choice of C.</p>
</div>
<br><hr><br><div class="question">
<p>An isolated hollow metal sphere of radius <em>R</em> carries a positive charge. Which graph shows the variation of potential <em>V</em> with distance <em>x</em> from the centre of the sphere?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align:left;">The escape velocity for an object at the surface of the Earth is <em>v</em><sub>esc</sub>. The diameter of the Moon is 4 times smaller than that of the Earth and the mass of the Moon is 81 times smaller than that of the Earth. What is the escape velocity of the object on the Moon?</p>
<p style="text-align:left;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{81}">
<mfrac>
<mn>2</mn>
<mn>81</mn>
</mfrac>
</math></span><em>v</em><sub>esc</sub></p>
<p style="text-align:left;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{81}">
<mfrac>
<mn>4</mn>
<mn>81</mn>
</mfrac>
</math></span><em>v</em><sub>esc</sub></p>
<p style="text-align:left;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{9}">
<mfrac>
<mn>2</mn>
<mn>9</mn>
</mfrac>
</math></span><em>v</em><sub>esc</sub></p>
<p style="text-align:left;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{9}">
<mfrac>
<mn>4</mn>
<mn>9</mn>
</mfrac>
</math></span><em>v</em><sub>esc</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by candidates.</p>
</div>
<br><hr><br><div class="question">
<p>A planet has radius <em>R</em>. The escape speed from the surface of the planet is <em>v</em>. At what distance from the surface of the planet is the orbital speed 0.5<em>v</em>?</p>
<p>A. 0.5<em>R</em></p>
<p>B.<em> R</em></p>
<p>C. 2<em>R</em></p>
<p>D. 4<em>R</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of electric field strength <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> with distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> from a point charge.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="354" height="265"></p>
<p>The shaded area X is the area under the graph between two separations <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>2</mn></msub></math> from the charge.</p>
<p>What is X?</p>
<p>A. The electric field average between <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>2</mn></msub></math></p>
<p>B. The electric potential difference between <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>2</mn></msub></math></p>
<p>C. The work done in moving a charge from <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>1</mn></msub></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>2</mn></msub></math></p>
<p>D. The work done in moving a charge from <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>2</mn></msub></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>1</mn></msub></math> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation with distance <em>r</em> of the electric potential <em>V</em> from a charge <em>Q</em>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is the electric field strength at distance s?</p>
<p>A. The area under the graph between s and infinity</p>
<p>B. The area under the graph between 0 and s</p>
<p>C. The gradient of the tangent at s</p>
<p>D. The negative of the gradient of the tangent at s</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>