File "markSceme-SL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 1 HTML/markSceme-SL-paper3html
File size: 1.25 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>A radio wave of wavelength <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> is incident on a conductor. The graph shows the variation with&nbsp;wavelength <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> of the maximum distance <em>d</em> travelled inside the conductor.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> = 5.0 x&nbsp;10<sup>5</sup> m, calculate the</p>
</div>

<div class="specification">
<p>The graph shows the variation with wavelength <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> of <em>d </em><sup>2</sup>. Error bars are not shown and&nbsp;the line of best-fit has been drawn.</p>
<p style="text-align: center;"><img src=""></p>
<p>A student states that the equation of the line of best-fit is <em>d </em><sup>2</sup><sup>&nbsp;</sup>= <em>a</em> + <em>b</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span>. When <em>d </em><sup>2</sup>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> are expressed in terms of fundamental SI units, the student finds that <em>a</em> = 0.040 x&nbsp;10<sup>–4</sup>&nbsp;and <em>b</em> = 1.8 x&nbsp;10<sup>–11</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why it is unlikely that the relation between<em> d</em> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span> is linear.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>fractional uncertainty in <em>d</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>percentage uncertainty in <em>d </em><sup>2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the fundamental SI unit of the constant <em>a</em> and of the constant <em>b</em>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance travelled inside the conductor by very high frequency&nbsp;electromagnetic waves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>it is not possible to draw a straight line through all the&nbsp;error bars<br><em><strong>OR</strong></em><br>the line of best-fit is curved/not a straight line</p>
<p>&nbsp;</p>
<p><em>Treat as neutral any reference to the origin.</em></p>
<p><em>Allow “linear” for “straight line”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>d</em>&nbsp;= 0.35 ± 0.01 <em><strong>AND</strong></em> Δ<em>d</em>&nbsp;= 0.05 ± 0.01 «cm»</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta d}}{d} = \frac{{0.5}}{{0.35}}">
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>d</mi>
    </mrow>
    <mi>d</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.5</mn>
    </mrow>
    <mrow>
      <mn>0.35</mn>
    </mrow>
  </mfrac>
</math></span>» = 0.14</p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{7}">
  <mfrac>
    <mn>1</mn>
    <mn>7</mn>
  </mfrac>
</math></span>&nbsp;<em><strong>or</strong></em> 14% <em><strong>or</strong></em> 0.1</p>
<p>&nbsp;</p>
<p><em>Allow final answers in the range of 0.11 to 0.18.</em></p>
<p><em>Allow <strong>[1 max]</strong> for 0.03 to 0.04 if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span> = 5 × 10<sup>6</sup> m is used.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>28 to 30%</p>
<p>&nbsp;</p>
<p><em>Allow ECF from (b)(i), but only accept answer as a %</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>a:</em> m<sup>2</sup></p>
<p><em>b:</em> m</p>
<p>&nbsp;</p>
<p><em>Allow answers in words</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong> </em>– if graph on page 4 is used</p>
<p><em>d </em><sup>2</sup> =&nbsp;0.040 x 10<sup>–4</sup> «m<sup>2</sup>»</p>
<p><em>d</em> =&nbsp;0.20&nbsp;x 10<sup>–2</sup> «m»</p>
<p><em><strong>ALTERNATIVE 2</strong></em> – if graph on page 2 is used</p>
<p>any evidence that <em>d</em> intercept has been determined</p>
<p><em>d</em>&nbsp;= 0.20 ± 0.05 «cm»</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><em>For MP1 accept answers in range of 0.020 to 0.060 «cm<sup>2</sup>» if&nbsp;they fail to use given value of “a”.</em></p>
<p><em>For MP2 accept answers in range 0.14 to 0.25 «cm» .</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The equipment shown in the diagram was used by a student to investigate the variation with&nbsp;volume, of the pressure <em>p</em> of air, at constant temperature. The air was trapped in a tube of&nbsp;constant cross-sectional area above a column of oil.</p>
<p style="text-align: center;"><img src=""></p>
<p>The pump forces oil to move up the tube decreasing the volume of the trapped air.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student measured the height <em>H</em> of the air column and the corresponding air&nbsp;pressure <em>p</em>. After each reduction in the volume the student waited for some time before&nbsp;measuring the pressure. Outline why this was necessary.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following graph of <em>p</em> versus <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{H}">
  <mfrac>
    <mn>1</mn>
    <mi>H</mi>
  </mfrac>
</math></span> was obtained. Error bars were negligibly small.</p>
<p><img src=""></p>
<p>The equation of the line of best fit is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = a + \frac{b}{H}">
  <mi>p</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mo>+</mo>
  <mfrac>
    <mi>b</mi>
    <mi>H</mi>
  </mfrac>
</math></span>.</p>
<p>Determine the value of <em>b</em> including an appropriate unit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the results of this experiment are consistent with the ideal gas law at constant temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cross-sectional area of the tube is 1.3 × 10<sup>–3</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>m<sup>2</sup> and the temperature of air is 300 K. Estimate the number of moles of air in the tube.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation in (b) may be used to predict the pressure of the air at extremely large values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{H}">
  <mfrac>
    <mn>1</mn>
    <mi>H</mi>
  </mfrac>
</math></span>. Suggest why this will be an unreliable estimate of the pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>in order to keep the temperature constant</p>
<p>in order to allow the system to reach thermal equilibrium with the surroundings/OWTTE</p>
<p>&nbsp;</p>
<p>Accept answers in terms of pressure or volume changes only if clearly related to reaching thermal equilibrium with the surroundings.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizes <em>b</em> as gradient</p>
<p>calculates <em>b</em> in range 4.7 × 10<sup>4</sup> to 5.3 × 10<sup>4</sup></p>
<p>Pa<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>m</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2 max]</strong> if POT error in b.</em><br><em>Allow any correct SI unit, eg kg<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>s<sup>–2</sup>.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V \propto H">
  <mi>V</mi>
  <mo>∝</mo>
  <mi>H</mi>
</math></span> thus ideal gas law gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p \propto \frac{1}{H}">
  <mi>p</mi>
  <mo>∝</mo>
  <mfrac>
    <mn>1</mn>
    <mi>H</mi>
  </mfrac>
</math></span></p>
<p><strong>so</strong> graph<strong> should be</strong> «a straight line through origin,» as<strong> observed</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = \frac{{bA}}{{RT}}">
  <mi>n</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>b</mi>
      <mi>A</mi>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
</math></span>&nbsp;<em><strong>OR </strong></em>correct substitution of one point from the graph</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = \frac{{5 \times {{10}^4} \times 1.3 \times {{10}^{ - 3}}}}{{8.31 \times 300}} = 0.026 \approx 0.03">
  <mi>n</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>4</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>1.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>8.31</mn>
      <mo>×</mo>
      <mn>300</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.026</mn>
  <mo>≈</mo>
  <mn>0.03</mn>
</math></span></p>
<p>&nbsp;</p>
<p><em>Answer must be to 1 or 2 SF. </em></p>
<p><em>Allow ECF from (b).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>very large <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{H}">
  <mfrac>
    <mn>1</mn>
    <mi>H</mi>
  </mfrac>
</math></span> means very small volumes / very high pressures</p>
<p>at very small volumes the ideal gas does not apply<br><em><strong>OR</strong></em><br>at very small volumes some of the assumptions of the kinetic theory of gases do not hold</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>An apparatus is used to verify a gas law. The glass jar contains a fixed volume of air. Measurements can be taken using the thermometer and the pressure gauge.</p>
<p style="text-align: center;"><img src=""></p>
<p>The apparatus is cooled in a freezer and then placed in a water bath so that the temperature of the gas increases slowly. The pressure and temperature of the gas are recorded.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the data recorded.</p>
<p><img src=""></p>
<p>Identify the fundamental SI unit for the gradient of the pressure–temperature graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment is repeated using a different gas in the glass jar. The pressure for both experiments is low and both gases can be considered to be ideal.</p>
<p>(i) Using the axes provided in (a), draw the expected graph for this second experiment.</p>
<p>(ii) Explain the shape and intercept of the graph you drew in (b)(i).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>kg m<sup>–1 </sup>s<sup>–2 </sup>K<sup>–1</sup></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>any straight line that either goes or would go, if extended, through the origin</p>
<p> </p>
<p>ii</p>
<p>for ideal gas <em>p</em> is proportional to <em>T</em> / P= nRT/V</p>
<p>gradient is constant /graph is a straight line</p>
<p>line passes through origin / 0,0 </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a simple pendulum experiment, a student measures the period <em>T</em> of the pendulum many times and obtains an average value <em>T</em> = (2.540 ± 0.005) s. The length <em>L</em> of the pendulum is measured to be <em>L</em> = (1.60 ± 0.01) m.</p>
<p>Calculate, using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g = \frac{{4{\pi ^2}L}}{{{T^2}}}">
  <mi>g</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>L</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>T</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>, the value of the acceleration of free fall, including its&nbsp;uncertainty. State the value of the uncertainty to one significant figure.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a different experiment a student investigates the dependence of the period <em>T</em> of a simple pendulum on the amplitude of oscillations <em>θ</em>. The graph shows the variation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{{{T_0}}}">
  <mfrac>
    <mi>T</mi>
    <mrow>
      <mrow>
        <msub>
          <mi>T</mi>
          <mn>0</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span> with <em>θ</em>, where <em>T</em><sub>0</sub> is the period for small amplitude oscillations.</p>
<p><img src=""></p>
<p>The period may be considered to be independent of the amplitude <em>θ</em> as long as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{T - {T_0}}}{{{T_0}}} < 0.01">
  <mfrac>
    <mrow>
      <mi>T</mi>
      <mo>−</mo>
      <mrow>
        <msub>
          <mi>T</mi>
          <mn>0</mn>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>T</mi>
          <mn>0</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
  <mo>&lt;</mo>
  <mn>0.01</mn>
</math></span>. Determine the maximum value of <em>θ</em> for which the period is independent&nbsp;of the amplitude.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g = \frac{{4{\pi ^2} \times 1.60}}{{{{2.540}^2}}} = 9.7907">
  <mi>g</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mrow>
        <msup>
          <mi>π</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>1.60</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>2.540</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>9.7907</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta g = g\left( {\frac{{\Delta L}}{L} + 2 \times \frac{{\Delta T}}{T}} \right) = ">
  <mi mathvariant="normal">Δ</mi>
  <mi>g</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mi mathvariant="normal">Δ</mi>
          <mi>L</mi>
        </mrow>
        <mi>L</mi>
      </mfrac>
      <mo>+</mo>
      <mn>2</mn>
      <mo>×</mo>
      <mfrac>
        <mrow>
          <mi mathvariant="normal">Δ</mi>
          <mi>T</mi>
        </mrow>
        <mi>T</mi>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
</math></span>&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9.7907\left( {\frac{{0.01}}{{1.60}} + 2 \times \frac{{0.005}}{{2.540}}} \right) = ">
  <mn>9.7907</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>0.01</mn>
        </mrow>
        <mrow>
          <mn>1.60</mn>
        </mrow>
      </mfrac>
      <mo>+</mo>
      <mn>2</mn>
      <mo>×</mo>
      <mfrac>
        <mrow>
          <mn>0.005</mn>
        </mrow>
        <mrow>
          <mn>2.540</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
</math></span>» 0.0997</p>
<p><em><strong>OR</strong></em></p>
<p>1.0%</p>
<p>hence g = (9.8 ± 0.1) «m<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>s<sup>−2</sup>» <em><strong>OR</strong></em>&nbsp;Δ<em>g&nbsp;</em>= 0.1 «m<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>s<sup>−2</sup>»</p>
<p>&nbsp;</p>
<p><em>For the first marking point answer must be given to at least 2 dp.</em><br><em>Accept calculations based on</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g_{\max }} = 9.8908">
  <mrow>
    <msub>
      <mi>g</mi>
      <mrow>
        <mo movablelimits="true" form="prefix">max</mo>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>9.8908</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g_{\min }} = 9.6913">
  <mrow>
    <msub>
      <mi>g</mi>
      <mrow>
        <mo movablelimits="true" form="prefix">min</mo>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>9.6913</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{g_{\max }} - {g_{\min }}}}{2} = 0.099 \approx 0.1">
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>g</mi>
          <mrow>
            <mo movablelimits="true" form="prefix">max</mo>
          </mrow>
        </msub>
      </mrow>
      <mo>−</mo>
      <mrow>
        <msub>
          <mi>g</mi>
          <mrow>
            <mo movablelimits="true" form="prefix">min</mo>
          </mrow>
        </msub>
      </mrow>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>=</mo>
  <mn>0.099</mn>
  <mo>≈</mo>
  <mn>0.1</mn>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{T}{{{T_0}}} = 1.01">
  <mfrac>
    <mi>T</mi>
    <mrow>
      <mrow>
        <msub>
          <mi>T</mi>
          <mn>0</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>1.01</mn>
</math></span></p>
<p><em>θ</em><sub>max&nbsp;</sub>= 22&nbsp;«º»</p>
<p>&nbsp;</p>
<p><em>Accept answer from interval 20 to 24.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The circuit shown may be used to measure the internal resistance of a cell.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_07.51.02.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/02"></p>
</div>

<div class="specification">
<p>The ammeter used in the experiment in (b) is an analogue meter. The student takes&nbsp;measurements without checking for a “zero error” on the ammeter.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An ammeter and a voltmeter are connected in the circuit. Label the ammeter with the&nbsp;letter A and the voltmeter with the letter V.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In one experiment a student obtains the following graph showing the variation with&nbsp;current <em>I</em> of the potential difference <em>V</em> across the cell.</p>
<p><img src="images/Schermafbeelding_2017-09-27_om_08.05.10.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/02b"></p>
<p>Using the graph, determine the best estimate of the internal resistance of the cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a zero error.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After taking measurements the student observes that the ammeter has a&nbsp;positive zero error. Explain what effect, if any, this zero error will have on the&nbsp;calculated value of the internal resistance in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct labelling of both instruments</p>
<p>&nbsp;</p>
<p><img src=""></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V =&nbsp;E – Ir</em></p>
<p>large triangle to find gradient and correct read-offs&nbsp;from the line<br><em><strong>OR</strong></em><br>use of intercept <em>E</em> =&nbsp;1.5 V and another correct data&nbsp;point</p>
<p>internal resistance =&nbsp;0.60 Ω</p>
<p><em>For MP1 – do not award if only <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R = \frac{V}{I}">
  <mi>R</mi>
  <mo>=</mo>
  <mfrac>
    <mi>V</mi>
    <mi>I</mi>
  </mfrac>
</math></span> is used.</em></p>
<p><em>For MP2 points at least 1A apart must be used.</em></p>
<p><em>For MP3 accept final answers in the range of 0.55 Ω to 0.65 Ω.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a non-zero reading when a zero reading is expected/no current is&nbsp;flowing<br><em><strong>OR</strong></em><br>a calibration error</p>
<p>&nbsp;</p>
<p><em>OWTTE</em><br><em>Do not accept just “systematic error”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the error causes «all» measurements to be high/different/incorrect</p>
<p>effect on calculations/gradient will cancel out<br><em><strong>OR</strong></em><br>effect is that value for <em>r</em> is unchanged</p>
<p><em>Award <strong>[1 max]</strong> for statement of “no effect” without&nbsp;valid argument.</em></p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student studies the relationship between the centripetal force applied to an object undergoing circular motion and its period <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>The object (mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>) is attached by a light inextensible string, through a tube, to a weight <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> which hangs vertically. The string is free to move through the tube. A student swings the mass in a horizontal, circular path, adjusting the period <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>&nbsp;of the motion until the radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> is constant. The radius of the circle and the mass of the object are measured and remain constant for the entire experiment.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;">© International Baccalaureate Organization 2020.</p>
<p>The student collects the measurements of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> five times, for weight <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math>. The weight is then doubled (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>W</mi></math>) and the data collection repeated. Then it is repeated with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>W</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>W</mi></math>. The results are expected to support the relationship</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><mi>m</mi><mi>r</mi></mrow><msup><mi>T</mi><mn>2</mn></msup></mfrac><mo>.</mo></math></p>
</div>

<div class="specification">
<p>In reality, there is friction in the system, so in this case <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> is less than the total centripetal force in the system. A suitable graph is plotted to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>r</mi></math> experimentally. The value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>r</mi></math> was also calculated directly from the measured values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why the experiment is repeated with different values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict from the equation whether the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>r</mi></math> found experimentally will be larger, the same or smaller than the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>r</mi></math> calculated directly.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The measurements of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> were collected five times. Explain how repeated measurements of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> reduced the random error in the final experimental value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>r</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why repeated measurements of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> would not reduce any systematic error in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">In order to draw a graph « of </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> </span><span class="fontstyle0">versus <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi mathvariant="normal">T</mi><mn>2</mn></msup></mfrac></math> »<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span></p>
<p><span class="fontstyle0">to confirm proportionality between «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span><span class="fontstyle2"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <span class="fontstyle2">»<br></span></p>
<p><span class="fontstyle3"><em><strong>OR</strong></em><br></span></p>
<p><span class="fontstyle0">to confirm relationship between «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span><span class="fontstyle2"> </span><span class="fontstyle0">and </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> »<br></span></p>
<p><em><span class="fontstyle3"><strong>OR</strong></span></em><span class="fontstyle3"><br></span></p>
<p><span class="fontstyle0">because </span><span class="fontstyle2">W </span><span class="fontstyle0">is the independent variable in the experiment </span><span class="fontstyle4">✓</span></p>
<p> </p>
<p><em><span class="fontstyle2">OWTTE</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><strong>ALTERNATIVE 1</strong></span></p>
<p><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>+</mo><mpadded lspace="-1px"><mi>friction</mi></mpadded><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><mi>m</mi><mi>r</mi></mrow><msup><mi>T</mi><mn>2</mn></msup></mfrac></math></span></p>
<p><span class="fontstyle3"><em><strong>OR</strong></em></span></p>
<p><span class="fontstyle2">centripetal force is larger «than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math>» / <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> is smaller «than centripetal» </span><span class="fontstyle4">✓</span></p>
<p><span class="fontstyle2">«so» experimental </span><span class="fontstyle5"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>r</mi></math> </span><span class="fontstyle2">is smaller «than calculated value» </span><span class="fontstyle4">✓</span></p>
<p> </p>
<p><strong><span class="fontstyle0">ALTERNATIVE 2 </span></strong><span class="fontstyle2"><strong>(refers to graph)</strong><br></span></p>
<p><span class="fontstyle2">reference to «friction force is» a systematic error «and does not affect gradient» </span><span class="fontstyle4">✓</span></p>
<p><span class="fontstyle2">«so» </span><span class="fontstyle5"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>r</mi></math> </span><span class="fontstyle2">is the same </span><span class="fontstyle4">✓</span></p>
<p> </p>
<p><em><span class="fontstyle5">MP2 awarded only with correct justification.<br>Candidates can gain zero, MP1 alone or full marks.</span></em></p>
<p><em><span class="fontstyle5">OWTTE</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">mention of mean/average value «of </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math></span><span class="fontstyle0">» </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle0">this reduces uncertainty in </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> </span><span class="fontstyle0">/ result<br></span><span class="fontstyle4"><em><strong>OR</strong></em><br></span><span class="fontstyle0">more accurate/precise </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><em><span class="fontstyle2">Reference to “random errors average out” scores MP1</span></em></p>
<p><em><span class="fontstyle2">Accept “closer to true value”, “more reliable value” OWTTE for MP2</span></em></p>
<p> </p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">systematic errors «usually» constant/always present/ not influenced by repetition </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><em><span class="fontstyle3">OWTTE</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates scored. Different wording was used to express the aim of confirming the relationship.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most successful candidates chose to consider a single point then concluding that the calculated <em>mr</em> would&nbsp;be smaller than the real value as <em>W</em> &lt; centripetal force, or even went into analysing the dependence of the&nbsp;frictional force with <em>W</em>. Many were able to deduce this. Some candidates thought that a graph would still&nbsp;have the same gradient (if friction was constant) and mentioned systematic error, so <em>mr</em> was not changed&nbsp;which was also accepted.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates stated that the mean of 5 values of <em>T</em> was used to obtain an answer closer to the true&nbsp;value if there were no systematic errors. Some just repeated the question.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Usually very well answered acknowledging that systematic errors are constant and present throughout all&nbsp; measurements.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A student carries out an experiment to determine the variation of intensity of the light with&nbsp;distance from a point light source. The light source is at the centre of a transparent spherical&nbsp;cover of radius <em>C</em>. The student measures the distance <em>x </em>from the surface of the cover to a&nbsp;sensor that measures the intensity <em>I </em>of the light.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_15.49.35.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/02"></p>
<p>The light source emits radiation with a constant power <em>P </em>and all of this radiation is&nbsp;transmitted through the cover. The relationship between <em>I </em>and <em>x </em>is given by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="I = \frac{P}{{4\pi {{(C + x)}^2}}}">
  <mi>I</mi>
  <mo>=</mo>
  <mfrac>
    <mi>P</mi>
    <mrow>
      <mn>4</mn>
      <mi>π<!-- π --></mi>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mi>C</mi>
            <mo>+</mo>
            <mi>x</mi>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
</div>

<div class="specification">
<p>The student obtains a set of data and uses this to plot a graph of the variation of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\sqrt I }}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mi>I</mi>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>&nbsp;with <em>x</em>.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This relationship can also be written as follows.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{1}{{\sqrt I }} = Kx + KC">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mi>I</mi>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mi>K</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>K</mi>
  <mi>C</mi>
</math></span></p>
<p>Show that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="K = 2\sqrt {\frac{\pi }{P}} ">
  <mi>K</mi>
  <mo>=</mo>
  <mn>2</mn>
  <msqrt>
    <mfrac>
      <mi>π</mi>
      <mi>P</mi>
    </mfrac>
  </msqrt>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate <em>C</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <em>P</em>, to the correct number of significant figures including its unit.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the disadvantage that a graph of <em>I </em>versus <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{x^2}}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>&nbsp;has for the analysis in&nbsp;(b)(i) and (b)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>combines the two equations to obtain result</p>
<p>&nbsp;</p>
<p><strong>«</strong>for example&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{I}">
  <mfrac>
    <mn>1</mn>
    <mi>I</mi>
  </mfrac>
</math></span> =&nbsp;<em>K</em><sup>2</sup>(<em>C</em> +&nbsp;<em>x</em>)<sup>2</sup> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4\pi }}{P}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mi>π</mi>
    </mrow>
    <mi>P</mi>
  </mfrac>
</math></span>(<em>C</em> + <em>x</em>)<sup>2</sup><strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>reverse engineered solution – substitute&nbsp;<em>K</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {\frac{\pi }{P}} ">
  <mn>2</mn>
  <msqrt>
    <mfrac>
      <mi>π</mi>
      <mi>P</mi>
    </mfrac>
  </msqrt>
</math></span>&nbsp;into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{I}">
  <mfrac>
    <mn>1</mn>
    <mi>I</mi>
  </mfrac>
</math></span> = <em>K</em><sup>2</sup>(<em>C</em> +&nbsp;<em>x</em>)<sup>2</sup>&nbsp;to get <em>I</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{P}{{4\pi {{(C + x)}^2}}}">
  <mfrac>
    <mi>P</mi>
    <mrow>
      <mn>4</mn>
      <mi>π</mi>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mi>C</mi>
            <mo>+</mo>
            <mi>x</mi>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>&nbsp;</p>
<p><em>There are many ways to answer the question, look for a combination of two equations to obtain the third one</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>extrapolating line to cross <em>x</em>-axis / use of <em>x</em>-intercept</p>
<p><strong><em>OR</em></strong></p>
<p>Use <em>C</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{y{\text{ - intercept}}}}{{{\text{gradient}}}}">
  <mfrac>
    <mrow>
      <mi>y</mi>
      <mrow>
        <mtext>&nbsp;- intercept</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>gradient</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p>use of gradient and one point, correctly substituted in one of the formulae</p>
<p>&nbsp;</p>
<p>accept answers between 3.0 and 4.5 <strong>«</strong>cm<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for negative answers</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>Evidence of finding gradient using two points on the line at least 10 cm apart</p>
<p>Gradient found in range: 115–135 <strong><em>or </em></strong>1.15–1.35</p>
<p>Using <em>P</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4\pi }}{{{K^2}}}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>K</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>&nbsp;to get value between 6.9 × 10<sup>–4</sup> and 9.5 × 10<sup>–4</sup>&nbsp;<strong>«</strong>W<strong>»</strong>&nbsp;and POT correct</p>
<p>Correct unit, W <strong>and </strong>answer to 1, 2 or 3 significant figures</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>Finds <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="I\left( {\frac{1}{{{y^2}}}} \right)">
  <mi>I</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mrow>
            <msup>
              <mi>y</mi>
              <mn>2</mn>
            </msup>
          </mrow>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> from use of one point (<em>x </em>and <em>y</em>) on the line with <em>x</em> &gt; 6 cm&nbsp;and <em>C</em> from(b)(i)to use in <em>I</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{P}{{4\pi {{(C + x)}^2}}}">
  <mfrac>
    <mi>P</mi>
    <mrow>
      <mn>4</mn>
      <mi>π</mi>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mi>C</mi>
            <mo>+</mo>
            <mi>x</mi>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>&nbsp;or&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\sqrt I }}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mi>I</mi>
      </msqrt>
    </mrow>
  </mfrac>
</math></span> =&nbsp;<em>Kx</em>&nbsp;+&nbsp;<em>KC</em></p>
<p>Correct re-arrangementto get <em>P </em>between 6.9 × 10<sup>–4</sup> and 9.5 × 10<sup>–4</sup>&nbsp;<strong>«</strong>W<strong>»</strong> and POT correct</p>
<p>Correct unit, W <strong>and</strong>&nbsp;answer to 1, 2 or 3 significant figures</p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[3 max] </em></strong><em>for an answer between 6.9 W and 9.5 W (POT penalized in 3rd marking point)</em></p>
<p><em>Alternative 2 is worth </em><strong><em>[3 max]</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>this graph will be a curve / not be a straight line</p>
<p>&nbsp;</p>
<p>more difficult to determine value of <em>K</em></p>
<p><strong><em>OR</em></strong></p>
<p>more difficult to determine value of <em>C</em></p>
<p><strong><em>OR</em></strong></p>
<p>suitable mathematical argument</p>
<p>&nbsp;</p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment to measure the specific latent heat of vaporization of water <em>L</em><sub>v</sub>, a student&nbsp;uses an electric heater to boil water. A mass <em>m</em> of water vaporizes during time <em>t</em>. <em>L</em><sub>v</sub> may be&nbsp;calculated using the relation</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{L_v} = \frac{{VIt}}{m}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mi>v</mi>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>V</mi>
      <mi>I</mi>
      <mi>t</mi>
    </mrow>
    <mi>m</mi>
  </mfrac>
</math></span></p>
<p>where <em>V</em> is the voltage applied to the heater and <em>I</em> the current through it.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why, during the experiment, <em>V</em> and <em>I</em> should be kept constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether the value of <em>L</em><sub>v</sub> calculated in this experiment is expected to be larger or smaller than the actual value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student suggests that to get a more accurate value of <em>L</em><sub>v</sub> the experiment should be performed twice using different heating rates. With voltage and current <em>V</em><sub>1</sub>, <em>I</em><sub>1</sub> the mass of water that vaporized in time <em>t</em> is <em>m</em><sub>1</sub>. With voltage and current <em>V</em><sub>2</sub>, <em>I</em><sub>2</sub> the mass of water that vaporized in time <em>t</em> is <em>m</em><sub>2</sub>. The student now uses the expression</p>
<p> </p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{L_v} = \frac{{\left( {{V_1}{I_1} - {V_2}{I_2}} \right)t}}{{{m_1} - {m_2}}}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mi>v</mi>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <msub>
              <mi>V</mi>
              <mn>1</mn>
            </msub>
          </mrow>
          <mrow>
            <msub>
              <mi>I</mi>
              <mn>1</mn>
            </msub>
          </mrow>
          <mo>−</mo>
          <mrow>
            <msub>
              <mi>V</mi>
              <mn>2</mn>
            </msub>
          </mrow>
          <mrow>
            <msub>
              <mi>I</mi>
              <mn>2</mn>
            </msub>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mi>t</mi>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>1</mn>
        </msub>
      </mrow>
      <mo>−</mo>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>2</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p> </p>
<p>to calculate <em>L</em><sub>v</sub>. Suggest, by reference to heat losses, why this is an improvement.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>to provide a constant heating rate / power</p>
<p><em><strong>OR</strong></em></p>
<p>to have <em>m</em> proportional to <em>t</em> ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>due to heat losses «<em>VIt</em> is larger than heat into liquid» ✔</p>
<p><em>L</em><sub>v</sub> calculated will be larger ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>heat losses will be similar / the same for both experiments</p>
<p><em><strong>OR</strong></em></p>
<p>heat loss presents systematic error ✔</p>
<p> </p>
<p>taking the difference cancels/eliminates the effect of these losses</p>
<p><em><strong>OR</strong></em></p>
<p>use a graph to eliminate the effect ✔</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An experiment to find the internal resistance of a cell of known emf is to be set. The following equipment is available:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.19.36.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/02"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a suitable circuit diagram that would enable the internal resistance to be determined.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is noticed that the resistor gets warmer. Explain how this would affect the calculated value of the internal resistance.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how using a variable resistance could improve the accuracy of the value found for the internal resistance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-11_om_07.22.52.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/02.a/M"></p>
<p>ammeter and resistor in series</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>resistance of resistor would increase / be greater than 10 Ω</p>
<p><em>R </em>+ <em>r </em><strong>«</strong>from <em>ε</em>&nbsp;= <em><strong>I</strong></em>(<em>R</em>&nbsp;+ <em>r</em>)<strong>» </strong>would be overestimated / lower current</p>
<p>therefore calculated <em>r </em>would be larger than real</p>
<p>&nbsp;</p>
<p><em>Award MP3 only if at least one previous mark has been awarded.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>variable resistor would allow for multiple readings to be made</p>
<p>gradient of V-I graph could be found <strong>«</strong>to give <em>r</em><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for taking average of multiple.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A magnetized needle is oscillating on a string about a vertical axis in a horizontal magneticfield <em>B</em>. The time for 10 oscillations is recorded for different values of <em>B</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.15.15.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/01_01"></p>
<p>The graph shows the variation with <em>B </em>of the time for 10 oscillations together with the uncertainties in the time measurements. The uncertainty in <em>B </em>is negligible.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the graph the line of best fit for the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the time taken for one oscillation when <em>B </em>= 0.005 T with its absolute uncertainty.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student forms a hypothesis that the period of one oscillation <em>P </em>is given by:</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P = \frac{K}{{\sqrt B }}">
  <mi>P</mi>
  <mo>=</mo>
  <mfrac>
    <mi>K</mi>
    <mrow>
      <msqrt>
        <mi>B</mi>
      </msqrt>
    </mrow>
  </mfrac>
</math></span></p>
<p>where <em>K </em>is a constant.</p>
<p>Determine the value of <em>K </em>using the point for which <em>B </em>= 0.005 T.</p>
<p>State the uncertainty in <em>K </em>to an appropriate number of significant figures.&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the unit of <em>K</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student plots a graph to show how <em>P</em><sup>2</sup> varies with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{B}">
  <mfrac>
    <mn>1</mn>
    <mi>B</mi>
  </mfrac>
</math></span>&nbsp;for the data.</p>
<p>Sketch the shape of the expected line of best fit on the axes below assuming that the relationship <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = \frac{K}{{\sqrt B }}">
  <mi>P</mi>
  <mo>=</mo>
  <mfrac>
    <mi>K</mi>
    <mrow>
      <msqrt>
        <mi>B</mi>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>&nbsp;is verified. You do <strong>not </strong>have to put numbers on the axes.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the value of <em>K </em>can be obtained from the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>smooth line, not kinked, passing through all the error bars.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.84 ± 0.03&nbsp;<strong>«</strong>s<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Accept any value from the range: 0.81 to 0.87.</em></p>
<p><em>Accept uncertainty 0.03 </em><strong><em>OR </em></strong><em>0.025.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="K = \sqrt {0.005} &nbsp;\times 0.84 = 0.059">
  <mi>K</mi>
  <mo>=</mo>
  <msqrt>
    <mn>0.005</mn>
  </msqrt>
  <mo>×</mo>
  <mn>0.84</mn>
  <mo>=</mo>
  <mn>0.059</mn>
</math></span></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta K}}{K} = \frac{{\Delta P}}{P}">
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>K</mi>
    </mrow>
    <mi>K</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>P</mi>
    </mrow>
    <mi>P</mi>
  </mfrac>
</math></span><strong>»</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta K = \frac{{0.03}}{{0.84}} \times 0.0594 = 0.002">
  <mi mathvariant="normal">Δ</mi>
  <mi>K</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.03</mn>
    </mrow>
    <mrow>
      <mn>0.84</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>0.0594</mn>
  <mo>=</mo>
  <mn>0.002</mn>
</math></span></p>
<p><strong>«</strong><em>K =</em>(0.059 ± 0.002)<strong>»</strong>&nbsp;</p>
<p>uncertainty given to 1sf</p>
<p>&nbsp;</p>
<p><em>Allow ECF </em><strong><em>[3 max] </em></strong><em>if 10T is used.</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for BCA.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{s}}{{\text{T}}^{\frac{1}{2}}}">
  <mrow>
    <mtext>s</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>T</mtext>
      </mrow>
      <mrow>
        <mfrac>
          <mn>1</mn>
          <mn>2</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p>&nbsp;</p>
<p><em>Accept </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\sqrt T ">
  <mi>s</mi>
  <msqrt>
    <mi>T</mi>
  </msqrt>
</math></span><em>&nbsp;</em>or in words.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>straight <strong><em>AND </em></strong>ascending line</p>
<p>through origin</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="K = \sqrt {{\text{slope}}} ">
  <mi>K</mi>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <mtext>slope</mtext>
    </mrow>
  </msqrt>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The resistance<em> R</em> of a wire of length <em>L</em> can be measured using the circuit shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">In one experiment the wire has a uniform diameter of <em>d</em> = 0.500 mm. The graph shows data obtained for the variation of <em>R</em> with <em>L</em>.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The gradient of the line of best fit is 6.30 Ω m<sup>–1</sup>.</span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Estimate the resistivity of the material of the wire. Give your answer to an appropriate number of significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain, by reference to the power dissipated in the wire, the advantage of the fixed resistor connected in series with the wire for the measurement of<em> R</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment is repeated using a wire made of the same material but of a larger diameter than the wire in part (a). On the axes in part (a), draw the graph for this second experiment.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">evidence of use of<em> ρ</em> = given gradient × wire area<br><em><strong>OR</strong></em><br>substitution of values from a single data point with wire area ✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>=</mo><mo>«</mo><mo>=</mo><mn>6</mn><mo>.</mo><mn>30</mn><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mfenced><mfrac><mrow><mn>0</mn><mo>.</mo><mn>500</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>Ω  m</mtext><mo>»</mo></math><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Check POT is correct. <br>MP2 must be correct to exactly 3 s.f.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">measurement should be performed at a constant temperature<br><em><strong>OR</strong></em><br>resistance of wire changes with temperature ✔</span></p>
<p><span style="background-color: #ffffff;">series resistance prevents the wire from overheating<br><em><strong>OR</strong></em><br>reduces power dissipated in the wire ✔</span></p>
<p><span style="background-color: #ffffff;">by reducing voltage across/current through the wire ✔</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ANY straight line going through the origin if extrapolated ✔<br>ANY straight line below existing line with smaller gradient ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In an investigation to measure the acceleration of free fall a rod is suspended horizontally by&nbsp;two vertical strings of equal length. The strings are a distance<em> d</em> apart.</p>
<p style="text-align: center;"><img src=""></p>
<p>When the rod is displaced by a small angle and then released, simple harmonic oscillations&nbsp;take place in a horizontal plane.</p>
<p>The theoretical prediction for the period of oscillation<em> T</em> is given by the following equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = \frac{c}{{d\sqrt g }}">
  <mi>T</mi>
  <mo>=</mo>
  <mfrac>
    <mi>c</mi>
    <mrow>
      <mi>d</mi>
      <msqrt>
        <mi>g</mi>
      </msqrt>
    </mrow>
  </mfrac>
</math></span></p>
<p>where <em>c</em> is a known numerical constant.</p>
</div>

<div class="specification">
<p>In one experiment <em>d</em> was varied. The graph shows the plotted values of <em>T</em> against&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{d}">
  <mfrac>
    <mn>1</mn>
    <mi>d</mi>
  </mfrac>
</math></span>.&nbsp;Error bars are negligibly small.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the unit of <em>c</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student records the time for 20 oscillations of the rod. Explain how this procedure leads to a more precise measurement of the time for <strong>one</strong> oscillation <em>T</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line of best fit for these data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest whether the data are consistent with the theoretical prediction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The numerical value of the constant <em>c</em> in SI units is 1.67. Determine <em>g</em>, using the graph.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m^{\frac{3}{2}}}">
  <mrow>
    <msup>
      <mi>m</mi>
      <mrow>
        <mfrac>
          <mn>3</mn>
          <mn>2</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;✔</p>
<p>&nbsp;</p>
<p><em>Accept other power of tens multiples of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m^{\frac{3}{2}}}">
  <mrow>
    <msup>
      <mi>m</mi>
      <mrow>
        <mfrac>
          <mn>3</mn>
          <mn>2</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span>, eg:&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{cm^{\frac{3}{2}}}">
  <mrow>
    <mi>c</mi>
    <msup>
      <mi>m</mi>
      <mrow>
        <mfrac>
          <mn>3</mn>
          <mn>2</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>measured uncertainties «for one oscillation and for 20 oscillations» are the same/similar/OWTTE</p>
<p><em><strong>OR</strong></em></p>
<p>% uncertainty is less for 20 oscillations than for one ✔</p>
<p> </p>
<p>dividing «by 20» / finding mean reduces the random error ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Straight line touching at least 3 points drawn across the range ✔</p>
<p><img src=""></p>
<p><em>It is not required to extend the line to pass through the origin.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>theory predicts proportional relation «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T \propto \frac{1}{d}">
  <mi>T</mi>
  <mo>∝</mo>
  <mfrac>
    <mn>1</mn>
    <mi>d</mi>
  </mfrac>
</math></span>, slope = <em>Td&nbsp;</em>=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{c}{{\sqrt g }}">
  <mfrac>
    <mi>c</mi>
    <mrow>
      <msqrt>
        <mi>g</mi>
      </msqrt>
    </mrow>
  </mfrac>
</math></span> = constant » ✔</p>
<p>the graph is «straight» line <span style="text-decoration: underline;">through the origin</span> ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correctly determines gradient using points where ΔT≥1.5s</p>
<p><em><strong>OR</strong></em></p>
<p>correctly selects a single data point with T≥1.5s ✔</p>
<p> </p>
<p>manipulation with formula, any new and correct expression to enable g to be determined ✔</p>
<p>Calculation of g ✔</p>
<p>With g in range 8.6 and 10.7 «m s<sup>−2</sup>» ✔</p>
<p> </p>
<p><em>Allow range 0.51 to 0.57.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student investigates how the period<em> T</em> of a simple pendulum varies with the maximum speed <em>v</em> of the pendulum’s bob by releasing the pendulum from rest from different initial angles. A graph of the variation of <em>T</em> with <em>v</em> is plotted.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, by reference to the graph, why it is unlikely that the relationship between <em>T</em> and <em>v</em> is linear.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the fractional uncertainty in <em>v</em> when <em>T</em> = 2.115 s, correct to <strong>one</strong> significant figure.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The student hypothesizes that the relationship between <em>T</em> and <em>v</em> is <em>T = a + bv</em><sup>2</sup>, where <em>a</em> and <em>b</em> are constants. To verify this hypothesis a graph showing the variation of <em>T</em> with <em>v</em><sup>2</sup> is plotted. The graph shows the data and the line of best fit.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Determine <em>b</em>, giving an appropriate unit for <em>b</em>.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The lines of the minimum and maximum gradient are shown.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Estimate the absolute uncertainty in <em>a</em>.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">a straight line cannot be drawn through all error bars<br><em><strong>OR</strong></em><br>the graph/line of best fit is /curved/not straight/parabolic etc.<br><em><strong>OR</strong></em><br>graph has increasing/variable gradient ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Do not allow “a line cannot be drawn through all error bars” without specifying “straight”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>15</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo> </mo><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math>  <em><strong>AND </strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>v</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo> </mo><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✔</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>05</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>15</mn></mrow></mfrac><mo>=</mo></math>»0.04 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">NOTE: Accept 4 %</span></span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of 2 correct points on the line with Δ<em>v</em><sup>2 </sup>&gt; 2 ✔</p>
<p><em>b</em> in range 0.012 to 0.013 ✔</p>
<p>s<sup>3 </sup>m<sup>–2 </sup>✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>a</mi><mi>max</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>101</mn></math> «s» ±0.001 «s» <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>a</mi><mi>min</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>095</mn></math>«s» ±0.001 «s» ✔</p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>101</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>095</mn></mrow><mn>2</mn></mfrac><mo>=</mo></math>» 0.003 «s» ✔</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment to measure the acceleration of free fall a student ties two different blocks of masses <em>m</em><sub>1</sub> and <em>m</em><sub>2</sub> to the ends of a string that passes over a frictionless pulley.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The student calculates the acceleration <em>a</em> of the blocks by measuring the time taken by the heavier mass to fall through a given distance. Their theory predicts that<em>&nbsp;</em><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = g\frac{{{m_1} - {m_2}}}{{{m_1} + {m_2}}}">
  <mi>a</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>1</mn>
        </msub>
      </mrow>
      <mo>−<!-- − --></mo>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>2</mn>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>1</mn>
        </msub>
      </mrow>
      <mo>+</mo>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>2</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span></span> and this can be re-arranged to give&nbsp;<span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g = a\frac{{{m_1} + {m_2}}}{{{m_1} - {m_2}}}">
  <mi>g</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>1</mn>
        </msub>
      </mrow>
      <mo>+</mo>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>2</mn>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>1</mn>
        </msub>
      </mrow>
      <mo>−<!-- − --></mo>
      <mrow>
        <msub>
          <mi>m</mi>
          <mn>2</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</span></p>
<p style="text-align: left;">In a particular experiment the student calculates that <em>a</em> = (0.204 ±0.002) ms<sup>–2</sup> using <em>m</em><sub>1</sub> = (0.125 ±0.001) kg and <em>m</em><sub>2</sub> = (0.120 ±0.001) kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage error in the measured value of <em>g</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the value of <em>g</em> and its absolute uncertainty for this experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There is an advantage and a disadvantage in using two masses that are almost equal.</p>
<p>State and explain the advantage with reference to the magnitude of the acceleration that is obtained.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There is an advantage and a disadvantage in using two masses that are almost equal.</p>
<p>State and explain the disadvantage with reference to your answer to (a)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>error in <em>m</em><sub>1</sub> + <em>m</em><sub>2</sub> is 1 % <em><strong>OR</strong></em> error in <em>m</em><sub>1</sub> −&nbsp;<em>m</em><sub>2</sub>&nbsp;is 40 % <em><strong>OR</strong></em> error in <em>a</em> is 1 % ✔</p>
<p>adds percentage errors ✔</p>
<p>so error in g is 42 % <em><strong>OR</strong></em> 40 % <em><strong>OR</strong></em> 41.8 % ✔</p>
<p><em>Allow answer 0.42 or 0.4 or 0.418. </em></p>
<p><em>Award <strong>[0]</strong> for comparing the average value with a known value, e.g. 9.81 m s-2</em>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>g</em> = 9.996&nbsp;«m s<sup>−2</sup>» <em><strong>OR</strong></em> Δ<em>g = </em>4.20 «m s<sup>−2</sup>» ✔</p>
<p><em>g</em>&nbsp;= (10 ± 4) «m s<sup>−2</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><em>g</em>&nbsp;= (10.0 ± 4.2) «m s<sup>−2</sup>»&nbsp;✔</p>
<p><em>Award <strong>[1]</strong> max for not proper significant digits or decimals use, such as: 9.996±4.178 or 10±4.2 or 10.0±4 or 10.0±4.18« m s<sup>−2</sup> »</em> .</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the acceleration would be small/the time of fall would be large ✔</p>
<p>easier to measure /a longer time of fall reduces the % error in the time of fall and «hence acceleration» ✔</p>
<p><em>Do not accept ideas related to the mass/moment of inertia of the pulley</em>.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the percentage error in the difference of the masses is large ✔</p>
<p>leading to a large percentage error/uncertainty in g/of the experiment ✔</p>
<p><em>Do not accept ideas related to the mass/moment of inertia of the pulley.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Atwoods machine a) is a quite straightforward question that tests the ability to propagate uncertainties through calculations. Almost all candidates proved the ability to add percentages or relative calculations, however, many weaker candidates failed in the percentage uncertainty when subtracting the two masses.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many average candidates did not use the correct number of significant figures and wrote the answers inappropriately. Only the best candidates rounded out and wrote the proper answer of 10±4 ms<sup>−2</sup>. Some candidates did not propagate uncertainties and only compared the average calculated value with the known value 9.81 ms<sup>−2</sup>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Q 1 b) was quite well answered. Only the weakest candidates presented difficulty in understanding simple mechanics.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part ii) many were able to appreciate that the resultant percentage error in “g” was relatively large however linking this with what caused the large uncertainty (that is, the high % error from the small difference in masses) proved more challenging.</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student measures the refractive index of water by shining a light ray into a transparent container.</p>
<p>IO shows the direction of the normal at the point where the light is incident on the container. IX shows the direction of the light ray when the container is empty. IY shows the direction of the deviated light ray when the container is filled with water.</p>
<p>The angle of incidence&nbsp;<em>θ</em> is varied and the student determines the position of O, X and Y for each angle of incidence.</p>
<p style="text-align: center;"><img src=""></p>
<p>The table shows the data collected by the student. The uncertainty in each measurement of length is ±0.1 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline why OY has a greater percentage uncertainty than OX for each pair of data points.</p>
<p>(ii) The refractive index of the water is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\rm{OX}}}}{{{\rm{OY}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mrow>
          <mi mathvariant="normal">O</mi>
          <mi mathvariant="normal">X</mi>
        </mrow>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mrow>
          <mi mathvariant="normal">O</mi>
          <mi mathvariant="normal">Y</mi>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
</math></span>when OX is small.</p>
<p>Calculate the fractional uncertainty in the value of the refractive index of water for OX = 1.8 cm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A graph of the variation of OY with OX is plotted.<img src=""></p>
<p>(i) Draw, on the graph, the error bars for OY when OX = 1.8 cm <strong>and</strong> when OY = 5.8 cm.</p>
<p>(ii) Determine, using the graph, the refractive index of the water in the container for values of OX less than 6.0 cm.</p>
<p>(iii) The refractive index for a material is also given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin i}}{{\sin r}}">
  <mfrac>
    <mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mi>i</mi>
    </mrow>
    <mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mi>r</mi>
    </mrow>
  </mfrac>
</math></span> where <em>i</em> is the angle of incidence and <em>r</em> is the angle of refraction.</p>
<p>Outline why the graph deviates from a straight line for large values of OX.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i<br>OY always smaller than OX <em><strong>AND</strong></em> uncertainties are the same/0.1<br>« so fraction <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.1}}{{{\rm{OY}}}} &gt; \frac{{0.1}}{{{\rm{OX}}}}">
  <mfrac>
    <mrow>
      <mn>0.1</mn>
    </mrow>
    <mrow>
      <mrow>
        <mrow>
          <mi mathvariant="normal">O</mi>
          <mi mathvariant="normal">Y</mi>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
  <mo>&gt;</mo>
  <mfrac>
    <mrow>
      <mn>0.1</mn>
    </mrow>
    <mrow>
      <mrow>
        <mrow>
          <mi mathvariant="normal">O</mi>
          <mi mathvariant="normal">X</mi>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
</math></span> »</p>
<p>ii<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.1}}{{{\rm{1.3}}}}">
  <mfrac>
    <mrow>
      <mn>0.1</mn>
    </mrow>
    <mrow>
      <mrow>
        <mrow>
          <mn>1.3</mn>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
</math></span> <em><strong>AND</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.1}}{{{\rm{1.8}}}}">
  <mfrac>
    <mrow>
      <mn>0.1</mn>
    </mrow>
    <mrow>
      <mrow>
        <mrow>
          <mn>1.8</mn>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
</math></span><br>= 0.13 <em><strong>OR</strong></em> 13%</p>
<p><em>Watch for correct answer even if calculation continues to the absolute uncertainty.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>total length of bar = 0.2 cm</p>
<p><em>Accept correct error bar in one of the points: OX= 1.8 cm <strong>OR</strong> OY= 5.8 cm (which is not a measured point but is a point on the interpolated line) <strong>OR</strong> OX= 5.8 cm. <br>Ignore error bar of OX.<br>Allow range from 0.2 to 0.3 cm, by eye.</em></p>
<p> </p>
<p>ii</p>
<p>suitable line drawn extending at least up to 6 cm<br><em><strong>OR<br></strong></em>gradient calculated using two out of the first three data points</p>
<p>inverse of slope used</p>
<p> </p>
<p>value between 1.30 and 1.60</p>
<p><em>If using one value of OX and OY from the graph for any of the first three data points award <strong>[2 max]</strong>.<br>Award [<strong>3</strong>] for correct value for each of the three data points and average.<br>If gradient used, award [<strong>1 max</strong>].</em></p>
<p> </p>
<p>iii</p>
<p>«the equation <em>n</em>=<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\rm{OX}}}}{{{\rm{OY}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mrow>
          <mi mathvariant="normal">O</mi>
          <mi mathvariant="normal">X</mi>
        </mrow>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mrow>
          <mi mathvariant="normal">O</mi>
          <mi mathvariant="normal">Y</mi>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» involves a tan approximation/is true only for small θ «when sinθ = tanθ»<br><em><strong>OR<br></strong></em>«the equation <em>n</em>=<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\rm{OX}}}}{{{\rm{OY}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mrow>
          <mi mathvariant="normal">O</mi>
          <mi mathvariant="normal">X</mi>
        </mrow>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mrow>
          <mi mathvariant="normal">O</mi>
          <mi mathvariant="normal">Y</mi>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» uses OI instead of the hypotenuse of the ∆IOX or IOY</p>
<p><em>OWTTE</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">A spherical soap bubble is made of a thin film of soapy water. The bubble has an internal air pressure <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi mathvariant="normal">i</mi></msub></math></span><em><span class="fontstyle0">&nbsp;</span></em><span class="fontstyle0">and is formed in air of constant pressure </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi mathvariant="normal">o</mi></msub></math><span class="fontstyle0">. The theoretical prediction for the variation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>P</mi><mtext>i</mtext></msub><mo>-</mo><msub><mi>P</mi><mtext>o</mtext></msub></mrow></mfenced></math></span><span class="fontstyle0">&nbsp;is given by the equation</span></p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><msub><mi>P</mi><mi mathvariant="normal">i</mi></msub><mo>-</mo><msub><mi>P</mi><mi mathvariant="normal">o</mi></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">g</mi></mrow><mi>R</mi></mfrac></math></p>
<p style="text-align: left;"><span class="fontstyle0">where </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> </span><span class="fontstyle0">is a constant for the thin film and </span><span class="fontstyle3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> </span><span class="fontstyle0">is the radius of the bubble.</span></p>
<p style="text-align: left;">Data for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>P</mi><mtext>i</mtext></msub><mo>-</mo><msub><mi>P</mi><mtext>o</mtext></msub></mrow></mfenced></math><span class="fontstyle0">&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>&nbsp; were collected under controlled conditions and plotted as a graph showing the variation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>P</mi><mtext>i</mtext></msub><mo>-</mo><msub><mi>P</mi><mtext>o</mtext></msub></mrow></mfenced></math>&nbsp;with&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>R</mi></mfrac></math>.<br> </span></p>
<p style="text-align: left;"><span class="fontstyle0"><img src="" width="788" height="662"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest whether the data are consistent with the theoretical prediction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Show that the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math></span><span class="fontstyle2">  </span><span class="fontstyle0">is about 0.03.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Identify the fundamental units of </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">In order to find the uncertainty for </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math></span><span class="fontstyle0">, a maximum gradient line would be drawn. On the graph, sketch the maximum gradient line for the data.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The percentage uncertainty for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math></span><span class="fontstyle2"> </span><span class="fontstyle0">is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>%</mo></math>. State </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math></span><span class="fontstyle0">, with its absolute uncertainty.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The expected value of </span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> </span><span class="fontstyle0">is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>027</mn></math>. Comment on your result</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(v).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«theory suggests» <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi mathvariant="normal">i</mi></msub><mo>-</mo><msub><mi>P</mi><mi mathvariant="normal">o</mi></msub></math> </span><span class="fontstyle0">is proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>R</mi></mfrac></math> </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle3"><br></span><span class="fontstyle0">graph/line of best fit is straight/linear «so yes»<br></span><span class="fontstyle4"><em><strong>OR</strong></em><br></span><span class="fontstyle0">graph/line of best fit passes through the origin «so yes» </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><em><span class="fontstyle2">MP1: Accept ‘linear’<br></span></em></p>
<p><em><span class="fontstyle2">MP2 do not award if there is any contradiction<br>eg: graph not proportional, does not pass through origin.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">gradient <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math> «<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>γ</mi></math>» <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>10</mn></math><br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">use of equation with coordinates of a point </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle3"><br></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn></math> <span class="fontstyle3">✓</span></p>
<p> </p>
<p><em><span class="fontstyle5">MP1 allow gradients in range <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>098</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>102</mn></math><br></span></em></p>
<p><em><span class="fontstyle6">MP2 allow a range <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>024</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>026</mn></math> for </span><span class="fontstyle4"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math></span></em></p>
<p> </p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>kg</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <span class="fontstyle2">✓</span></p>
<p> </p>
<p><em><span class="fontstyle3">Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>kg</mi><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup></mfrac></math></span></em></p>
<p><span class="fontstyle3"> </span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">straight line, gradient <strong>g</strong></span><span class="fontstyle2"><strong>reater</strong> </span><span class="fontstyle0">than line of best fit, and within the error bars </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle3"><img src=""></span></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>%</mo></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>025</mn></math>» = <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>00375</mn></math><br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">«<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>%</mo></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>030</mn></math>» = <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0045</mn></math> </span><span class="fontstyle3">✓<br></span></p>
<p><span class="fontstyle0">rounds uncertainty to 1sf<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo><mn>0</mn><mo>.</mo><mn>004</mn></math><br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo><mn>0</mn><mo>.</mo><mn>005</mn></math> </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><em><span class="fontstyle4">Allow ECF from (b)(i)<br>Award </span><strong><span class="fontstyle2">[2] </span></strong><span class="fontstyle4">marks for a bald correct answer</span></em></p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">Experimental value matches this/correct, as expected value within the range </span><span class="fontstyle2">✓<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span><span class="fontstyle0">experimental value does not match/incorrect, as it is not within range </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">b(v).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many students obtained full marks here although a significant number did not acknowledge that the&nbsp;graph was through the origin and lost a mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very well answered either by obtaining the gradient or replacing with the coordinates of a point.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Although the question was specifically about the fundamental units, several candidates lost the mark by&nbsp;answering Pa m.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates were able to draw the correct maximum gradient line.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well answered. A significant number did not round the uncertainty to match the value of gamma.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(v).</div>
</div>
<br><hr><br><div class="specification">
<p>To determine the acceleration due to gravity, a small metal sphere is dropped from rest and&nbsp;the time it takes to fall through a known distance and open a trapdoor is measured.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_15.43.42.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/01"></p>
<p>The following data are available.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{Diameter of metal sphere}}}&amp;{ = 12.0 \pm 0.1{\text{ mm}}} \\ {{\text{Distance between the point of release and the trapdoor}}}&amp;{ = 654 \pm 2{\text{ mm}}} \\ {{\text{Measured time for fall}}}&amp;{ = 0.363 \pm 0.002{\text{ s}}} \end{array}">
  <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>Diameter of metal sphere</mtext>
          </mrow>
        </mrow>
      </mtd>
      <mtd>
        <mrow>
          <mo>=</mo>
          <mn>12.0</mn>
          <mo>±<!-- ± --></mo>
          <mn>0.1</mn>
          <mrow>
            <mtext>&nbsp;mm</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>Distance between the point of release and the trapdoor</mtext>
          </mrow>
        </mrow>
      </mtd>
      <mtd>
        <mrow>
          <mo>=</mo>
          <mn>654</mn>
          <mo>±<!-- ± --></mo>
          <mn>2</mn>
          <mrow>
            <mtext>&nbsp;mm</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>Measured time for fall</mtext>
          </mrow>
        </mrow>
      </mtd>
      <mtd>
        <mrow>
          <mo>=</mo>
          <mn>0.363</mn>
          <mo>±<!-- ± --></mo>
          <mn>0.002</mn>
          <mrow>
            <mtext>&nbsp;s</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance fallen, in m, by the centre of mass of the sphere including an&nbsp;estimate of the absolute uncertainty in your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the following equation</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{acceleration due to gravity}} = \frac{{2 \times {\text{distance fallen by centre of mass of sphere}}}}{{{{{\text{(measured time to fall)}}}^{\text{2}}}}}">
  <mrow>
    <mtext>acceleration due to gravity</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mo>×</mo>
      <mrow>
        <mtext>distance fallen by centre of mass of sphere</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mtext>(measured time to fall)</mtext>
            </mrow>
          </mrow>
          <mrow>
            <mtext>2</mtext>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>calculate, for these data, the acceleration due to gravity including an estimate of&nbsp;the absolute uncertainty in your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>distance fallen = 654 – 12 = 642 <strong>«</strong>mm<strong>»</strong></p>
<p>absolute uncertainty<strong><em>&nbsp;</em></strong>= 2&nbsp;+&nbsp;0.1 <strong>«</strong>mm<strong>»</strong> ≈ 2 × 10<sup>–3</sup> <strong>«</strong>m<strong>»&nbsp;or</strong>&nbsp;= 2.1&nbsp;× 10<sup>–3</sup> <strong>«</strong>m<strong>»&nbsp;or</strong><strong>&nbsp;</strong>2.0&nbsp;× 10<sup>–3</sup> <strong>«</strong>m<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Accept answers in mm or m</em></p>
<p><strong><em>[2 marks]</em></strong><em>&nbsp;</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>a</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2s}}{{{t^2}}} = \frac{{2 \times 0.642}}{{{{0.363}^2}}}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>s</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>t</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mo>×</mo>
      <mn>0.642</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>0.363</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong>&nbsp;= 9.744&nbsp;<strong>«</strong>ms<sup>–2</sup><strong>»</strong></p>
<p>fractional uncertainty in distance = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{{642}}">
  <mfrac>
    <mn>2</mn>
    <mrow>
      <mn>642</mn>
    </mrow>
  </mfrac>
</math></span> <em><strong>AND</strong></em> fractional uncertainty in time = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.002}}{{0.363}}">
  <mfrac>
    <mrow>
      <mn>0.002</mn>
    </mrow>
    <mrow>
      <mn>0.363</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>total fractional uncertainty = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta s}}{s} + 2\frac{{\Delta t}}{t}">
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>s</mi>
    </mrow>
    <mi>s</mi>
  </mfrac>
  <mo>+</mo>
  <mn>2</mn>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
    <mi>t</mi>
  </mfrac>
</math></span>&nbsp;<strong>«</strong>= 0.00311 + 2&nbsp;×&nbsp;0.00551<strong>»</strong></p>
<p>total absolute uncertainty = 0.1 <em><strong>or</strong></em> 0.14 <em><strong>AND</strong></em> same number of decimal places in value and uncertainty, <em>ie</em>: 9.7 ± 0.1 <strong><em>or </em></strong>9.74 ± 0.14</p>
<p>&nbsp;</p>
<p><em>Accept working in %</em>&nbsp;<em>for MP2 and MP3</em></p>
<p><em>Final uncertainty must be the absolute uncertainty</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student investigates the electromotive force (emf) <em>ε</em> and internal resistance<em> r</em> of a cell.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="213" height="196"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The current <em>I</em> and the terminal potential difference <em>V</em> are measured.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">For this circuit <em>V = ε - Ir</em> .<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The table shows the data collected by the student. The uncertainties for each measurement<br>are shown.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src=""></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The graph shows the data plotted.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src=""></span></span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The student has plotted error bars for the potential difference. Outline why no error bars are shown for the current.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine, using the graph, the emf of the cell including the uncertainty for this value. Give your answer to the correct number of significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Outline, <strong>without</strong> calculation, how the internal resistance can be determined from this graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">Δ<em>I</em> is too small to be shown/seen<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">Error bar of negligible size compared to error bar in <em>V</em> ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">evidence that ε can be determined from the y-intercept of the line of best-fit or lines of min and max gradient ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">states ε=1.59 <em><strong>OR</strong></em> 1.60 <em><strong>OR</strong> </em>1.61V«» ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">states uncertainty in ε is 0.02 V«» <em><strong>OR</strong></em> 0.03«V» ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">determine the gradient «of the line of best-fit» ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em>r</em> is the negative of this gradient ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates realised that the uncertainty in I was too small to be shown. A common mistake was to mention that since I is the independent variable the uncertainty is negligible.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The number of candidates who realised that the V intercept was EMF was disappointing. Large numbers of candidates tried to calculate ε using points on the graph, often ending up with unrealistic values. Another common mistake was not giving values of ε and Δε to the correct number of digits - 2 decimal places on this occasion. Very few candidates drew maximum and minimum gradient lines as a way of determining Δε.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student uses a Young’s double-slit apparatus to determine the wavelength of light emitted by a monochromatic source. A portion of the interference pattern is observed on a screen.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The distance <em>D</em> from the double slits to the screen is measured using a ruler with a smallest scale division of 1 mm.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The fringe separation s is measured with uncertainty ± 0.1 mm.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The slit separation d has negligible uncertainty.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The wavelength is calculated using the relationship &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda&nbsp; = \frac{{sd}}{D}">
  <mi>λ<!-- λ --></mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>s</mi>
      <mi>d</mi>
    </mrow>
    <mi>D</mi>
  </mfrac>
</math></span>.</span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">When <em>d</em> = 0.200 mm, <em>s</em> = 0.9 mm and <em>D</em> = 280 mm, determine the percentage uncertainty in the wavelength.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Explain how the student could use this apparatus to obtain a more reliable value for λ. </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">Evidence of&nbsp;<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta s}}{s}{\text{AND}}\frac{{\Delta D}}{D}">
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>s</mi>
    </mrow>
    <mi>s</mi>
  </mfrac>
  <mrow>
    <mtext>AND</mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>D</mi>
    </mrow>
    <mi>D</mi>
  </mfrac>
</math></span> used &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span><span style="background-color:#ffffff;"><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">«add fractional/% uncertainties»<br></span></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">obtains 11 % (or 0.11) <em><strong>OR</strong> </em>10 % (or 0.1) ✔</span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 1:</strong></em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">measure the combined width for several fringes<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">repeat measurements ✓<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">take the average<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">so the «percentage» uncertainties are reduced ✓<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2:</strong></em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">increase <em>D</em> «hence <em>s</em>»<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">Decrease <em>d</em> ✓<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">so the «percentage» uncertainties are reduced ✓</span></p>
<p style="text-align:left;"><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Do not accept answers which suggest using different apparatus.</span></span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A very easy question about percentage uncertainty which most candidates got completely correct. Many candidates gave the uncertainty to 4 significant figures or more. The process used to obtain the final answer was often difficult to follow.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The most common correct answer was the readings should be repeated and an average taken. Another common answer was that D could be increased to reduce uncertainties in s. The best candidates knew that it was good practice to measure many fringe spacings and find the mean value. Quite a few candidates incorrectly stated that different apparatus should be used to give more precise results.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">An experiment is conducted to determine how the fundamental frequency <em>f</em> of a vibrating wire varies with the tension <em>T</em> in the wire.<br></span></p>
<p><span style="background-color: #ffffff;">The data are shown in the graph, the uncertainty in the tension is not shown.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">It is proposed that the frequency of oscillation is given by<em> f</em><sup>2</sup> = <em>kT</em> where <em>k</em> is a constant.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Draw the line of best fit for the data.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine the fundamental SI unit for <em>k</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Write down a pair of quantities that, when plotted, enable the relationship <em>f</em><sup>2</sup> = <em>kT </em>to be verified.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Describe the key features of the graph in (b)(ii) if it is to support this relationship.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">Any curve that passes through ALL the error bars ✔<br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">kg<sup>–1</sup> m<sup>–1</sup> ✔<br></span><span style="background-color:#ffffff;"><br></span></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;"><em>f</em><sup>2</sup> AND <em>T</em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em>f</em> AND&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt T ">
  <msqrt>
    <mi>T</mi>
  </msqrt>
</math></span><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">log<em> f</em> AND log <em>T</em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">ln<em> f</em> AND ln <em>T</em> ✔</span><span style="background-color:#ffffff;"><br></span><span style="background-color:#ffffff;"><br></span></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">graph would be a straight line/constant gradient/linear ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">passing through the origin ✔</span><span style="background-color:#ffffff;"><br></span></p>
<div class="question_part_label">biii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly drew curves which passed through all the error bars, some tried to draw straight lines. Quite a few did not draw any line, leaving the question unanswered. Candidates need to make sure to check that they read the question paper carefully.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Determining the fundamental units of K (kg-1 m-1 ) was difficult for most candidates.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>These questions were not well understood, but a few candidates were able to state that a plot of f2 versus T would give a straight line through the origin.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>These questions were not well understood, but a few candidates were able to state that a plot of f2 versus T would give a straight line through the origin.</p>
<div class="question_part_label">biii.</div>
</div>
<br><hr><br><div class="specification">
<p>In an investigation a student folds paper into cylinders of the same diameter <em>D</em> but different heights. Beginning with the shortest cylinder they applied the same fixed load to each of the cylinders one by one. They recorded the height <em>H</em> of the first cylinder to collapse.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">They then repeat this process with cylinders of different diameters.</p>
<p style="text-align: left;">The graph shows the data plotted by the student and the line of best fit.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Theory predicts that <em>H</em> = <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c{D^{\frac{2}{3}}}">
  <mi>c</mi>
  <mrow>
    <msup>
      <mi>D</mi>
      <mrow>
        <mfrac>
          <mn>2</mn>
          <mn>3</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span> </span>where <em>c</em> is a constant.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the student’s data supports the theoretical prediction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <em>c</em>. State an appropriate unit for <em>c</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <em>c</em>. State an appropriate unit for <em>c</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify <strong>one</strong> factor that determines the value of <em>c</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>theory «<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H = c{D^{\left( {\frac{2}{3}} \right)}}">
  <mi>H</mi>
  <mo>=</mo>
  <mi>c</mi>
  <mrow>
    <msup>
      <mi>D</mi>
      <mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mfrac>
              <mn>2</mn>
              <mn>3</mn>
            </mfrac>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
    </msup>
  </mrow>
</math></span></span>» predicts that <em>H</em><sup>3</sup> ∝ <em>D</em><sup>2&nbsp;</sup>✔</p>
<p>graph «of <em>H</em><sup>3</sup> vs <em>D</em><sup>2</sup> » is a straight line through&nbsp;the origin/graph of proportionality ✔</p>
<p><em>Allow <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H = c{D^{\left( {\frac{2}{3}} \right)}}">
  <mi>H</mi>
  <mo>=</mo>
  <mi>c</mi>
  <mrow>
    <msup>
      <mi>D</mi>
      <mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mfrac>
              <mn>2</mn>
              <mn>3</mn>
            </mfrac>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
    </msup>
  </mrow>
</math></span></span> gives H<sup>3</sup> = c<sup>3</sup>D<sup>2</sup> for MP1.</em></p>
<p><em>Do not award MP2 for “the graph is linear” without mention of origin</em>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of gradient calculation to give gradient = 3.0 ✔</p>
<p><em>c</em><sup>3</sup> = 3.0 ⇒ <em>c =&nbsp;</em>1.4 ✔</p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m^{\frac{1}{3}}}">
  <mrow>
    <msup>
      <mi>m</mi>
      <mrow>
        <mfrac>
          <mn>1</mn>
          <mn>3</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of gradient calculation to give gradient = 3.0 ✔</p>
<p><em>c</em><sup>3</sup> = 3.0 ⇒ <em>c =&nbsp;</em>1.4 ✔</p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m^{\frac{1}{3}}}">
  <mrow>
    <msup>
      <mi>m</mi>
      <mrow>
        <mfrac>
          <mn>1</mn>
          <mn>3</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
</math></span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the load/the thickness of paper/the type of paper/ the number of times the paper is rolled to form a cylinder ✔</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Load on a cylinder. The question was successful for candidates well prepared to write conclusions in their lab reports. Theory in the stem of the question predicts a directly proportional relationship between <em>H</em> and <em>D</em><sup>2/3</sup>, which graphed are <em>H</em><sup>3</sup> and <em>D</em><sup>2</sup>. Well prepared candidates were able to identify, that the theory predicts that <em>H</em><sup>3</sup> should be directly proportional to <em>D</em><sup>2</sup> and that this proportionality can be seen from the graph. Many candidates were able to mention that the relationship was linear and passed through the origin (as an alternative to proportional). However, a common response mentioned only linear or linear regression which is not sufficient to fully demonstrate proportionality.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part b) was the most difficult part of section A, but still accessible. Many candidates only calculated the slope of the graph and did not realise that the third root of the slope is the constant c. Some students who were able to achieve the numerical value of c=1.4 struggled to establish the correct unit - perhaps lacking confidence or familiarity with the notion that a unit could be raised to a fractional index.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part b) was the most difficult part of section A, but still accessible. Many candidates only calculated the slope of the graph and did not realise that the third root of the slope is the constant c. Some students who were able to achieve the numerical value of c=1.4 struggled to establish the correct unit - perhaps lacking confidence or familiarity with the notion that a unit could be raised to a fractional index.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In c) most of the candidates well identified the load or the type of the paper as possible controlled variables. A common mistake here was answer discussing the height or the diameter of the cylinders.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>