File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 1 HTML/markSceme-SL-paper2html
File size: 457.74 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A vertical wall carries a uniform positive charge on its surface. This produces a uniform&nbsp;horizontal electric field perpendicular to the wall. A small, positively-charged ball is&nbsp;suspended in equilibrium from the vertical wall by a thread of negligible mass.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge per unit area on the surface of the wall is<em> σ</em>. It can be shown that the&nbsp;electric field strength <em>E</em> due to the charge on the wall is given by the equation</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ε</mi><mn>0</mn></msub></mrow></mfrac></math>.</p>
<p>Demonstrate that the units of the quantities in this equation are consistent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread makes an angle of 30° with the vertical wall. The ball has a mass&nbsp;of 0.025 kg.</p>
<p>Determine the horizontal force that acts on the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge on the ball is 1.2 × 10<sup>−6 </sup>C. Determine <em>σ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The centre of the ball, still carrying a charge of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mtext>C</mtext></math>, is now placed&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>40</mn><mo> </mo><mtext>m</mtext></math> from&nbsp;a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.</p>
<p>P is the point on the line joining the charges where the electric field strength is zero.<br>The distance PQ is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>22</mn><mo> </mo><mtext>m</mtext></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Calculate the charge on Q. State your answer to an appropriate number of&nbsp;significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies units of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>&nbsp;as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>C</mi><msup><mi>m</mi><mn>2</mn></msup></mfrac><mo>×</mo><mfrac><mrow><mi>N</mi><msup><mi>m</mi><mn>2</mn></msup></mrow><msup><mi>C</mi><mn>2</mn></msup></mfrac></math>&nbsp;seen and reduced to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>N C</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p>&nbsp;</p>
<p><em>Accept any analysis (eg dimensional) that yields answer correctly</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal force&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math>&nbsp;on the ball<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>T</mi><mo>&nbsp;</mo><mi>sin</mi><mo> </mo><mn>30</mn></math>&nbsp;✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mi>m</mi><mi>g</mi></mrow><mrow><mi>cos</mi><mo> </mo><mn>30</mn></mrow></mfrac></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>«</mo><mo>=</mo><mi>m</mi><mi>g</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>×</mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo> </mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em><br>Allow g = 10 N kg<sup>−1</sup></em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer.</em></p>
<p><em>Award <strong>[1max]</strong> for an answer of zero, interpreting that the horizontal force refers to the horizontal component of the net force.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>»</mo></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>85</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>12</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em> <br>Allow <strong>ECF</strong> from the calculated F in (b)(i)</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>Q</mi><mrow><mn>0</mn><mo>.</mo><msup><mn>22</mn><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>18</mn><mn>2</mn></msup></mrow></mfrac></math>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>+</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>C</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p>2sf&nbsp;<strong>✓</strong></p>
<p><em><br>Do not award <strong>MP2</strong> if charge is negative </em></p>
<p><em>Any answer given to 2 sig figs scores <strong>MP3</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A sample of vegetable oil, initially in the liquid state, is placed in a freezer that transfers thermal energy from the sample at a constant rate. The graph shows how temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> of the sample varies with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="515" height="299"></p>
<p>The following data are available.</p>
<p style="padding-left: 30px;">Mass of the sample <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>32</mn><mo> </mo><mi>kg</mi></math><br>Specific latent heat of fusion of the oil <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>130</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><br>Rate of thermal energy transfer <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>15</mn><mo> </mo><mi mathvariant="normal">W</mi></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the thermal energy transferred from the sample during the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the specific heat capacity of the oil in its liquid phase. State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sample begins to freeze during the thermal energy transfer. Explain, in terms of the molecular model of matter, why the temperature of the sample remains constant during freezing.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of the oil that remains unfrozen after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>15</mn><mo>×</mo><mn>30</mn><mo>×</mo><mn>60</mn><mo>»</mo><mo>=</mo><mn>27000</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> ✓</span></p>
<p> </p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>32</mn><mo>×</mo><mi>c</mi><mo>×</mo><mfenced><mrow><mn>290</mn><mo>-</mo><mn>250</mn></mrow></mfenced></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2100</mn></math> ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>OR</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mo> </mo><mn>0</mn></msup><msup><mi mathvariant="normal">C</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> ✓</p>
<p><span class="fontstyle0"><em><br>Allow any appropriate unit that is</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>g</mi><mi>y</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>s</mi><mi>s</mi><mo>×</mo><mi>t</mi><mi>e</mi><mi>r</mi><mi>m</mi><mi>p</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi></mrow></mfrac></math></span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«intermolecular» bonds are formed during freezing </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0"><br>bond-forming process releases energy<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span><span class="fontstyle4">«</span><span class="fontstyle0">intermolecular</span><span class="fontstyle4">» </span><span class="fontstyle0">PE decreases </span><span class="fontstyle4">«</span><span class="fontstyle0">and the difference is transferred as heat</span><span class="fontstyle4">» </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle2"><br></span><span class="fontstyle4">«</span><span class="fontstyle0">average random</span><span class="fontstyle4">» </span><span class="fontstyle0">KE of the molecules does not decrease/change </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle2"><br></span><span class="fontstyle0">temperature is related to «average» KE of the molecules «hence unchanged» </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><em><span class="fontstyle5">To award MP3 or MP4 molecules/particles/atoms must be mentioned.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">mass of frozen oil <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>27</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mrow><mn>130</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>21</mn><mo> </mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">unfrozen mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>32</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>21</mn><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>11</mn><mo> </mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two players are playing table tennis. Player A hits the ball at a height of 0.24 m above the&nbsp;edge of the table, measured from the top of the table to the bottom of the ball. The initial&nbsp;speed of the ball is 12.0 m s<sup>−1</sup> horizontally. Assume that air resistance is negligible.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>The ball bounces and then reaches a peak height of 0.18 m above the table with a&nbsp;horizontal speed of 10.5 m s<sup>−1</sup>. The mass of the ball is 2.7 g.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the time taken for the ball to reach the surface of the table is about 0.2 s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph showing the variation with time of the vertical component of velocity <em>v</em><sub>v</sub> of the ball until it reaches the table surface. Take <em>g</em> to be +10 m s<sup>−2</sup>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The net is stretched across the middle of the table. The table has a length of 2.74 m&nbsp;and the net has a height of 15.0 cm.</p>
<p>Show that the ball will go over the net.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the kinetic energy of the ball immediately after the bounce.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Player B intercepts the ball when it is at its peak height. Player B holds a paddle&nbsp;(racket) stationary and vertical. The ball is in contact with the paddle for 0.010 s.&nbsp;Assume the collision is elastic.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Calculate the average force exerted by the ball on the paddle. State your answer&nbsp;to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>t</em> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mi>g</mi></mfrac></msqrt></math>=» 0.22 «s»<br><strong><em>OR</em></strong></p>
<p><em>t</em> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>24</mn></mrow><mrow><mn>9</mn><mo>.</mo><mn>8</mn></mrow></mfrac></msqrt></math>&nbsp; <strong>✓</strong>&nbsp;</p>
<p><em>Answer to 2 or more significant figures or formula with variables replaced by correct values.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>increasing straight line from zero up to 0.2 s in <em>x</em>-axis <strong>✓</strong></p>
<p>with gradient = 10 <strong>✓</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1&nbsp;</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>37</mn></mrow><mn>12</mn></mfrac><mo>=</mo></math>«0.114 s» ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>10</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>114</mn><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>065</mn></math> m ✓</p>
<p>so (0.24 − 0.065) = 0.175 &gt; 0.15&nbsp;&nbsp;<em><strong>OR</strong>&nbsp;&nbsp;</em>0.065 &lt; (0.24 − 0.15) «so it goes over the net» <strong>✓</strong></p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>«0.24 − 0.15 = 0.09 = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>10</mn><mo>×</mo><msup><mi>t</mi><mn>2</mn></msup></math>&nbsp;so» <em>t&nbsp;</em>= 0.134 s <strong>✓</strong></p>
<p>0.134 × 12 = 1.6 m&nbsp;<strong>✓</strong></p>
<p>1.6 &gt; 1.37 «so ball passed the net already»&nbsp;&nbsp;<strong>✓</strong></p>
<p>&nbsp;</p>
<p><em>Allow use of g = 9.8.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1&nbsp;</strong></em></p>
<p>KE = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math><em>mv</em><sup>2</sup> + <em>mgh</em> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>0.0027 ×10.5<sup>2</sup>&nbsp;+ 0.0027 × 9.8 × 0.18 <strong>✓</strong></p>
<p>0.15 «J» <strong>✓</strong></p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>Use of <em>v</em><sub>x</sub> = 10.5 <em><strong>AND</strong></em>&nbsp;<em>v</em><sub>y </sub><em>= </em>1.88 to get&nbsp;<em>v</em> = «<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>10</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mn>1</mn><mo>.</mo><msup><mn>88</mn><mn>2</mn></msup></msqrt></math>» = 10.67 «m s<sup>−1</sup>»&nbsp;<strong>✓</strong></p>
<p>KE =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp;× 0.0027 × 10.67<sup>2</sup> = 0.15 «J»&nbsp;&nbsp;<strong>✓</strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mi>v</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>21</mn></math>&nbsp;«m s<sup>−1</sup>»&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0027</mn><mo>&nbsp;</mo><mo>×</mo><mn>21</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>01</mn></mrow></mfrac></math></p>
<p><em><strong>OR</strong></em></p>
<p>5.67 «N»&nbsp;<strong>✓</strong></p>
<p>any answer to 2 significant figures «N»&nbsp;<strong>✓</strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A pipe is open at both ends. A first-harmonic standing wave is set up in the pipe.&nbsp;The diagram shows the variation of displacement of air molecules in the pipe with&nbsp;distance along the pipe at time <em>t</em> = 0. The frequency of the first harmonic is <em>f</em>.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>A transmitter of electromagnetic waves is next to a long straight vertical wall that acts&nbsp;as a plane mirror to the waves. An observer on a boat detects the waves both directly&nbsp;and as an image from the other side of the wall. The diagram shows one ray from the&nbsp;transmitter reflected at the wall and the position of the image.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An air molecule is situated at point X in the pipe at <em>t</em> = 0. Describe the motion of this air molecule during one complete cycle of the standing wave beginning from <em>t</em> = 0.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed of sound <em>c</em> for longitudinal waves in air is given by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = \sqrt {\frac{K}{\rho }} ">
  <mi>c</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mi>K</mi>
      <mi>ρ</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p>where <em>ρ</em> is the density of the air and <em>K</em> is a constant.</p>
<p>A student measures <em>f</em> to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m<sup>–3</sup>. Determine, in kg m<sup>–1</sup> s<sup>–2</sup>, the value of <em>K</em> for air.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate, using a second ray, that the image appears to come from the position indicated.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the observer detects a series of increases and decreases in the intensity of the received signal as the boat moves along the line XY.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«air molecule» moves to the right and then back to the left ✔</p>
<p>returns to X/original position ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength = 2 × 1.4 = «2.8 m» ✔</p>
<p><em>c</em> = «<em>f λ</em> =» 120 × 2.8 «= 340 m s<sup>−1</sup>» ✔</p>
<p><em>K</em> = «<em>ρc</em><sup>2</sup> = 1.3 × 340<sup>2</sup> =» 1.5 × 10<sup>5</sup> ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>construction showing formation of image ✔</p>
<p><em>Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>interference pattern is observed</p>
<p><em><strong>OR</strong></em></p>
<p>interference/superposition mentioned ✔</p>
<p><br>maximum when two waves occur in phase/path difference is nλ</p>
<p><em><strong>OR</strong></em></p>
<p>minimum when two waves occur 180° out of phase/path difference is (n + ½)λ ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student uses a load to pull a box up a ramp inclined at 30&deg;. A string of constant length&nbsp;and negligible mass connects the box to the load that falls vertically. The string passes&nbsp;over a pulley that runs on a frictionless axle. Friction acts between the base of the box and&nbsp;the ramp. Air resistance is negligible.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The load has a mass of 3.5&thinsp;kg and is initially 0.95&thinsp;m above the floor. The mass of the box is 1.5&thinsp;kg.</p>
<p>The load is released and accelerates downwards.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> differences between the momentum of the box and the momentum of the load at the same instant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The vertical acceleration of the load downwards is 2.4 m s<sup>−2</sup>.</p>
<p>Calculate the tension in the string.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the load when it hits the floor is about 2.1 m s<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the pulley is 2.5 cm. Calculate the angular speed of rotation of the pulley as the load hits the floor. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After the load has hit the floor, the box travels a further 0.35 m along the ramp before coming to rest. Determine the average frictional force between the box and the surface of the ramp.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student then makes the ramp horizontal and applies a constant horizontal force to the box. The force is just large enough to start the box moving. The force continues to be applied after the box begins to move.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Explain, with reference to the frictional force acting, why the box accelerates once it has started to move. </p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>direction of motion is different / <em><strong>OWTTE</strong> </em>✓</p>
<p><em>mv</em> / magnitude of momentum is different «even though <em>v</em> the same» ✓</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>ma = mg − T</em> «3.5 x 2.4 = 3.5<em>g − T</em> »</p>
<p><em><strong>OR</strong></em></p>
<p><em>T </em>= 3.5(<em>g − </em>2.4) ✓</p>
<p>26 «N» ✓</p>
<p> </p>
<p><em>Accept 27 N from g = 10 m s<sup>−2</sup></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>proper use of kinematic equation ✓</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfenced><mrow><mn>2</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>95</mn></mrow></mfenced></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>14</mn></math> «m s<sup>−1</sup>» ✓</p>
<p> </p>
<p><em>Must see either the substituted values <strong>OR</strong> a value for v to at least three s.f. for <strong>MP2</strong>.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><mfrac><mi>v</mi><mi>r</mi></mfrac></math> to give 84 «rad s<sup>−1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>/</mo><mn>0</mn><mo>.</mo><mn>025</mn></math> to give 84 «rad s<sup>−1</sup>» ✓</p>
<p> </p>
<p>quoted to 2sf only✓</p>
<p> </p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><msup><mi>u</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>s</mi><mo>⇒</mo><mn>0</mn><mo>=</mo><mn>2</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>35</mn></math>» leading to <em>a </em>= 6.3 «m s<sup>-2</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p>« <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn><mfenced><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow></mfenced><mi>t</mi></math> » leading to <em>t</em> = 0.33 « s » ✓</p>
<p><em><br></em><em>F</em><sub>net</sub> = « <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>6</mn><mo>.</mo><mn>3</mn></math> = » 9.45 «N» ✓</p>
<p>Weight down ramp = 1.5 x 9.8 x sin(30) = 7.4 «N» ✓</p>
<p>friction force = net force – weight down ramp = 2.1 «N» ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>kinetic energy initial = work done to stop 0.5 x 1.5 x (2.1)<sup>2</sup> = <em>F</em><sub>NET</sub> x 0.35 ✓</p>
<p><em>F</em><sub>net</sub> = 9.45 «N» ✓</p>
<p>Weight down ramp = 1.5 x 9.8 x sin(30) = 7.4 «N» ✓</p>
<p>friction force = net force – weight down ramp = 2.1 «N» ✓</p>
<p> </p>
<p><em>Accept 1.95 N from g = 10 </em>m s<sup>-2</sup><em>.</em><br><em>Accept 2.42 N from u = 2.14 </em>m s<sup>-1</sup><em>.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>static coefficient of friction &gt; dynamic/kinetic coefficient of friction / μ<sub>s</sub> &gt; μ<sub>k</sub> ✓</p>
<p>«therefore» force of dynamic/kinetic friction will be less than the force of static friction ✓</p>
<p><br>there will be a net / unbalanced forward force once in motion «which results in acceleration»</p>
<p><em><strong>OR</strong></em></p>
<p>reference to net F = ma ✓</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many students recognized the vector nature of momentum implied in the question, although some focused on the forces acting on each object rather than discussing the momentum.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some students simply calculated the net force acting on the load and did not recognize that this was not the tension force. Many set up a net force equation but had the direction of the forces backwards. This generally resulted from sloppy problem solving.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a "show that" questions, so examiners were looking for a clear equation leading to a clear substitution of values leading to an answer that had more significant digits than the given answer. Most candidates successfully selected the correct equation and showed a proper substitution. Some candidates started with an energy approach that needed modification as it clearly led to an incorrect solution. These responses did not receive full marks.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This SL only question was generally well done. Despite some power of 10 errors, many candidates correctly reported final answer to 2 sf.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates struggled with this question. Very few drew a clear free-body diagram and many simply calculated the acceleration of the box from the given information and used this to calculate the net force on the box, confusing this with the frictional force.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was an "explain" question, so examiners were looking for a clear line of discussion starting with a comparison of the coefficients of friction, leading to a comparison of the relative magnitudes of the forces of friction and ultimately the rise of a net force leading to an acceleration. Many candidates recognized that this was a question about the comparison between static and kinetic/dynamic friction but did not clearly specify which they were referring to in their responses. Some candidates clearly did not read the stem carefully as they referred to the mass being on an incline.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A girl rides a bicycle that is powered by an electric motor. A battery transfers energy to the electric motor. The emf of the battery is 16 V and it can deliver a charge of 43 kC when discharging completely from a full charge.</p>
<p>The maximum speed of the girl on a horizontal road is 7.0 m s<sup>–1</sup> with energy from the battery alone. The maximum distance that the girl can travel under these conditions is 20 km.</p>
</div>

<div class="specification">
<p>The bicycle and the girl have a total mass of 66 kg. The girl rides up a slope that is at an angle of 3.0° to the horizontal.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The bicycle has a meter that displays the current and the terminal potential difference (pd) for the battery when the motor is running. The diagram shows the meter readings at one instant. The emf of the cell is 16 V.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The battery is made from an arrangement of 10 identical cells as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the time taken for the battery to discharge is about 3 × 10<sup>3</sup> s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the average power output of the battery is about 240 W.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Friction and air resistance act on the bicycle and the girl when they move. Assume that all the energy is transferred from the battery to the electric motor. Determine the total average resistive force that acts on the bicycle and the girl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the component of weight for the bicycle and girl acting down the slope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The battery continues to give an output power of 240 W. Assume that the resistive forces are the same as in (a)(iii).</p>
<p>Calculate the maximum speed of the bicycle and the girl up the slope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On another journey up the slope, the girl carries an additional mass. Explain whether carrying this mass will change the maximum distance that the bicycle can travel along the slope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the internal resistance of the battery.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the emf of <strong>one</strong> cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the internal resistance of <strong>one</strong> cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>time taken <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.0 \times {{10}^4}}}{7}">
  <mfrac>
    <mrow>
      <mn>2.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>4</mn>
        </msup>
      </mrow>
    </mrow>
    <mn>7</mn>
  </mfrac>
</math></span></span>«= 2860 s» = 2900«s» ✔</p>
<p><em>Must see at least two s.f.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of E = qV <em><strong>OR</strong></em> energy = 4.3 × 10<sup>3</sup> × 16 «= 6.88 × 10<sup>5</sup> J» ✔</p>
<p>power = 241 «W» ✔</p>
<p><em>Accept 229 W − 241 W depending on the exact value of t used from ai.</em></p>
<p><em>Must see at least three s.f</em>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of power = force × speed <em><strong>OR</strong></em> <em>force × distance</em> = <em>power × time</em> ✔</p>
<p>«34N» ✔</p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p><em>Accept 34 N – 36 N.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>66 g sin(3°) = 34 «N» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total force 34 + 34 = 68 «N» ✔<br>3.5 «ms<sup>-1</sup>»✔</p>
<p><em>If you suspect that the incorrect reference in this question caused confusion for a particular candidate, please refer the response to the PE.</em></p>
<p><em>Look for ECF from aiii and bi.</em></p>
<p><em>Accept 3.4 − 3.5 «ms<sup>-1</sup>».</em></p>
<p><em>Award <strong>[0]</strong> for solutions involving use of KE.</em></p>
<p><em>Award <strong>[0]</strong> for v = 7 ms<sup>-1</sup>.</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«maximum» distance will decrease <em><strong>OWTTE</strong></em> ✔</p>
<p>because opposing/resistive force has increased<br><em><strong>OR</strong></em><br>because more energy is transferred to GPE<br><em><strong>OR</strong></em><br>because velocity has decreased<br><em><strong>OR</strong></em><br>increased mass means more work required «to move up the hill» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>V dropped across battery <em><strong>OR</strong></em> R<sub>circuit</sub> = 1.85 Ω ✔</p>
<p>so internal resistance = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4.0}{6.5}">
  <mfrac>
    <mn>4.0</mn>
    <mn>6.5</mn>
  </mfrac>
</math></span> = 0.62«Ω» ✔</p>
<p><em>For MP1 allow use of internal resistance equations that leads to 16V − 12V (=4V).</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{16}{5}">
  <mfrac>
    <mn>16</mn>
    <mn>5</mn>
  </mfrac>
</math></span> = 3.2 «V» ✔</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em>:</p>
<p>2.5<em>r</em> = 0.62 ✔</p>
<p><em>r</em> = 0.25 «Ω» ✔</p>
<p><em><strong>ALTERNATIVE 2</strong></em>:</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{0.62}{5}">
  <mfrac>
    <mn>0.62</mn>
    <mn>5</mn>
  </mfrac>
</math></span> = 0.124 «Ω» ✔</p>
<p><em>r</em> = 2(0.124)= 0.248 «Ω» ✔</p>
<p><em>Allow ECF from (d) and/or e(i)</em>.</p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was generally well answered. Candidates should be reminded on questions where a given value is being calculated that they should include an unrounded answer. This whole question set was a blend of electricity and mechanics concepts, and it was clear that some candidates struggled with applying the correct concepts in the various sub-questions.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates struggled with this question. They either simply calculated the weight, used the cosine rather than the sine function, or failed to multiply by the acceleration due to gravity. Candidates need to be able to apply free-body diagram skills in a variety of “real world” situations.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered in general, with the vast majority of candidates specifying that the maximum distance would decrease. This is an “explain” command term, so the examiners were looking for a detailed reason why the distance would decrease for the second marking point. Unfortunately, some candidates simply wrote that because the mass increased so did the weight without making it clear why this would change the maximum distance.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A football player kicks a stationary ball of mass 0.45 kg towards a wall. The initial speed of&nbsp;the ball after the kick is 19 m s<sup>−1</sup> and the ball does not rotate. Air resistance is negligible and&nbsp;there is no wind.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The player’s foot is in contact with the ball for 55 ms. Calculate the average force that&nbsp;acts on the ball due to the football player.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The ball leaves the ground at an angle of 22°. The horizontal distance from the&nbsp;initial position of the edge of the ball to the wall is 11 m. Calculate the time taken&nbsp;for the ball to reach the wall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The top of the wall is 2.4 m above the ground. Deduce whether the ball will hit&nbsp;the wall.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In practice, air resistance affects the ball. Outline the effect that air resistance has on the vertical acceleration of the ball. Take the direction of the acceleration due to gravity to be positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The player kicks the ball again. It rolls along the ground without sliding with a horizontal&nbsp;velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>40</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>. The radius of the ball is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>11</mn><mo> </mo><mtext>m</mtext></math>. Calculate the angular velocity of&nbsp;the ball. State an appropriate SI unit for your answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>19</mn><mo>&nbsp;</mo><mtext mathvariant="bold-italic">OR&nbsp;&nbsp;</mtext><mi>a</mi><mo>&nbsp;</mo><mo>=</mo><mfrac><mn>19</mn><mrow><mn>0</mn><mo>.</mo><mn>055</mn></mrow></mfrac></math>&nbsp;<strong>✓</strong>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>=</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>19</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>055</mn></mrow></mfrac><mo>»</mo><mn>160</mn><mo>&nbsp;</mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em>Allow <strong>[2]</strong> marks for a bald correct answer.</em></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong> if 19 sin22 <strong>OR</strong> 19 cos22 used.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>horizontal&nbsp;speed&nbsp;=</mtext><mo>&nbsp;</mo><mn>19</mn><mo>×</mo><mi>cos</mi><mo> </mo><mn>22</mn><mo>&nbsp;</mo><mo>«</mo><mo>=</mo><mn>17</mn><mo>.</mo><mn>6</mn><msup><mtext> m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math>&nbsp;<strong>✓</strong>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>time</mtext><mo>=</mo><mo>«</mo><mfrac><mtext>distance</mtext><mtext>speed</mtext></mfrac><mo>=</mo><mfrac><mn>11</mn><mrow><mn>19</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>22</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>62</mn><mo> </mo><mo>«</mo><mtext>s</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>initial&nbsp;vertical&nbsp;speed</mtext><mo>=</mo><mn>19</mn><mo>×</mo><mi>sin</mi><mo> </mo><mn>22</mn><mo>&nbsp;</mo><mo>«</mo><mo>=</mo><mo>&nbsp;</mo><mn>7</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math>&nbsp;<strong>✓</strong>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>7</mn><mo>.</mo><mn>12</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>624</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>624</mn><mn>2</mn></msup><mo>=</mo><mo>»</mo><mo>&nbsp;</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo> </mo><mo>«</mo><mtext>m</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p>ball does not hit wall <em><strong>OR</strong> </em>2.5 «m» &gt; 2.4 «m»&nbsp;<strong>✓</strong></p>
<p><em><br>Allow <strong>ECF</strong> from (b)(i) and from <strong>MP1</strong> </em></p>
<p><em>Allow g = 10 m s<sup>−2</sup></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>air resistance opposes «direction of» motion<br><em><strong>OR</strong></em><br>air resistance opposes velocity <strong>✓</strong></p>
<p>on the way up «vertical» acceleration is increased <em><strong>OR</strong> </em>greater than g <strong>✓</strong></p>
<p>on the way down «vertical» acceleration is decreased <em><strong>OR</strong> </em>smaller than g <strong>✓</strong></p>
<p><em><br>Allow deceleration/acceleration but meaning must be clear</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mo>«</mo><mtext>rad</mtext><mo>»</mo><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><strong>✓</strong></p>
<p><em><br>Unit must be seen for mark</em></p>
<p><em>Accept Hz</em></p>
<p><em>Accept&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>&nbsp;</mo><mi>π</mi><mo> </mo><mo>«</mo><mtext>rad</mtext><mo>»</mo><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A glider is an aircraft with no engine. To be launched, a glider is uniformly accelerated from&nbsp;rest by a cable pulled by a motor that exerts a horizontal force on the glider throughout&nbsp;the launch.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The glider reaches its launch speed of 27.0 m s<sup>–1</sup> after accelerating for 11.0 s.&nbsp;Assume that the glider moves horizontally until it leaves the ground. Calculate the&nbsp;total distance travelled by the glider before it leaves the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The glider and pilot have a total mass of 492 kg. During the acceleration the glider&nbsp;is subject to an average resistive force of 160 N. Determine the average tension in&nbsp;the cable as the glider accelerates.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable is pulled by an electric motor. The motor has an overall efficiency of 23 %. Determine the average power input to the motor.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable is wound onto a cylinder of diameter 1.2 m. Calculate the angular velocity&nbsp;of the cylinder at the instant when the glider has a speed of 27 m s<sup>–1</sup>. Include an&nbsp;appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After takeoff the cable is released and the unpowered glider moves horizontally at&nbsp;constant speed. The wings of the glider provide a lift force. The diagram shows the&nbsp;lift force acting on the glider and the direction of motion of the glider.</p>
<p><img src=""></p>
<p>Draw the forces acting on the glider to complete the free-body diagram. The dotted lines&nbsp;show the horizontal and vertical directions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using appropriate laws of motion, how the forces acting on the glider maintain it in level flight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a particular instant in the flight the glider is losing 1.00 m of vertical height for&nbsp;every 6.00 m that it goes forward horizontally. At this instant, the horizontal speed of&nbsp;the glider is 12.5 m s<sup>–1</sup>. Calculate the <strong>velocity</strong> of the glider. Give your answer to an&nbsp;appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct use of kinematic equation/equations</p>
<p>148.5 <em><strong>or</strong> </em>149 <em><strong>or</strong> </em>150 «m»</p>
<p>&nbsp;</p>
<p><em>Substitution(s) must be correct.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>a</em>&nbsp;= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27}}{{11}}">
  <mfrac>
    <mrow>
      <mn>27</mn>
    </mrow>
    <mrow>
      <mn>11</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp;<em><strong>or</strong></em> 2.45 «m s<sup>–2</sup>»</p>
<p><em>F</em> – 160 =&nbsp;492 ×&nbsp;2.45</p>
<p>1370 «N»</p>
<p>&nbsp;</p>
<p><em>Could be seen in part (a).</em><br><em>Award <strong>[0]</strong> for solution that uses a = 9.81 m s<sup>–2</sup></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«work done to launch glider» = 1370 x 149 «= 204 kJ»</p>
<p>«work done by motor»&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{204 \times 100}}{{23}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>204</mn>
      <mo>×</mo>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>23</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>«power input to motor»&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{204 \times 100}}{{23}} \times \frac{1}{{11}} = 80">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>204</mn>
      <mo>×</mo>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>23</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>11</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>80</mn>
</math></span> <em><strong>or</strong> </em>80.4 <em><strong>or</strong> </em>81 k«W»</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>use of average speed 13.5 m s<sup>–1</sup></p>
<p>«useful power output» =&nbsp;&nbsp;force&nbsp;x average speed&nbsp;«=&nbsp;1370 x 13.5»</p>
<p>power input =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1370 \times 13.5 \times \frac{{100}}{{23}} = ">
  <mn>1370</mn>
  <mo>×</mo>
  <mn>13.5</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>23</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 80&nbsp;<em><strong>or</strong>&nbsp;</em>80.4&nbsp;<em><strong>or</strong>&nbsp;</em>81 k«W»</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p>work required from motor =&nbsp;KE +&nbsp;work done against&nbsp;friction&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.5 \times 492 \times {27^2} + \left( {160 \times 148.5} \right)">
  <mo>=</mo>
  <mn>0.5</mn>
  <mo>×</mo>
  <mn>492</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>27</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>160</mn>
      <mo>×</mo>
      <mn>148.5</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>» = 204&nbsp;«kJ»</p>
<p>«energy input» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{work required from motor}} \times 100}}{{23}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>work required from motor</mtext>
      </mrow>
      <mo>×</mo>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>23</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>power input&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{883000}}{{11}} = 80.3">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>883000</mn>
    </mrow>
    <mrow>
      <mn>11</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>80.3</mn>
</math></span>&nbsp;k«W»</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2 max]</strong> for an answer of 160 k«W».</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega &nbsp;= ">
  <mi>ω</mi>
  <mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{r} = ">
  <mfrac>
    <mi>v</mi>
    <mi>r</mi>
  </mfrac>
  <mo>=</mo>
</math></span>»&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27}}{{0.6}} = 45">
  <mfrac>
    <mrow>
      <mn>27</mn>
    </mrow>
    <mrow>
      <mn>0.6</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>45</mn>
</math></span></p>
<p>rad s<sup>–1</sup></p>
<p>&nbsp;</p>
<p><em>Do not accept Hz.</em><br><em>Award <strong>[1 max]</strong> if unit is missing.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>drag correctly labelled and in correct direction</p>
<p>weight correctly labelled and in correct direction <em><strong>AND</strong></em>&nbsp;no other incorrect force shown</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> if forces do not touch the dot, but are otherwise OK.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>name Newton's first law</p>
<p>vertical/all forces are in equilibrium/balanced/add to zero<br><em><strong>OR</strong></em><br>vertical component of lift mentioned</p>
<p>as equal to weight</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any speed and any direction quoted together as the answer</p>
<p>quotes their answer(s) to 3 significant figures</p>
<p>speed =&nbsp;12.7 m s<sup>–1</sup> <em><strong>or</strong></em> direction =&nbsp;9.46<sup>º</sup> <em><strong>or</strong></em> 0.165 rad «below the horizontal» <em><strong>or&nbsp;</strong></em>gradient of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{1}{6}">
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
</math></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a&nbsp;frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>θ</em> to the horizontal.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the&nbsp;weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following&nbsp;equation.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="F = \frac{{mg}}{{\tan \theta }}">
  <mi>F</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the&nbsp;radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced&nbsp;so that its height from the horizontal is equal to 8.0 m.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain&nbsp;in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>towards the centre <strong>«</strong>of the circle<strong>» </strong>/ horizontally to the right</p>
<p>&nbsp;</p>
<p><em>Do not accept towards the centre of the bowl</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward vertical arrow of any length</p>
<p>arrow of correct length</p>
<p>&nbsp;</p>
<p><em>Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required</em></p>
<p><em>eg</em>:&nbsp;<img src="images/Schermafbeelding_2018-08-12_om_13.22.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>F</em> = <em>N</em>&nbsp;cos&nbsp;<em>θ</em></p>
<p><em>mg</em> =&nbsp;<em>N</em> sin&nbsp;<em>θ</em></p>
<p>dividing/substituting to get result</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>right angle triangle drawn with <em>F</em>, <em>N </em>and <em>W/mg </em>labelled</p>
<p>angle correctly labelled and arrows on forces in correct directions</p>
<p>correct use of trigonometry leading to the required relationship</p>
<p>&nbsp;</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_13.28.39.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em>tan&nbsp;θ</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{O}}}{A} = \frac{{mg}}{F}">
  <mfrac>
    <mrow>
      <mtext>O</mtext>
    </mrow>
    <mi>A</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mi>F</mi>
  </mfrac>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg}}{{\tan \theta }}">
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span> =&nbsp;<em>m</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span></p>
<p><em>r</em> = <em>R</em> cos&nbsp;<em>θ</em></p>
<p><em>v</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{gR{{\cos }^2}\theta }}{{\sin \theta }}} /\sqrt {\frac{{gR\cos \theta }}{{\tan \theta }}} /\sqrt {\frac{{9.81 \times 8.0\cos 22}}{{\tan 22}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mi>g</mi>
        <mi>R</mi>
        <mrow>
          <msup>
            <mrow>
              <mi>cos</mi>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
        <mi>θ</mi>
      </mrow>
      <mrow>
        <mi>sin</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>g</mi>
        <mi>R</mi>
        <mi>cos</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
      <mrow>
        <mi>tan</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>9.81</mn>
        <mo>×</mo>
        <mn>8.0</mn>
        <mi>cos</mi>
        <mo>⁡</mo>
        <mn>22</mn>
      </mrow>
      <mrow>
        <mi>tan</mi>
        <mo>⁡</mo>
        <mn>22</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span></p>
<p><em>v</em> = 13.4/13&nbsp;<strong>«</strong><em>ms&nbsp;<sup>–</sup></em><em><sup>1</sup></em><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for a bald correct answer&nbsp;</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for an answer of 13.9/14 </em><strong>«</strong><em>ms&nbsp;<sup>–</sup></em><em><sup>1</sup></em><strong>»</strong><em>. MP2 omitted</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is no force to balance the weight/N is horizontal</p>
<p>so no / it is not possible</p>
<p>&nbsp;</p>
<p><em>Must see correct justification to award MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed before collision&nbsp;<em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gR} ">
  <msqrt>
    <mn>2</mn>
    <mi>g</mi>
    <mi>R</mi>
  </msqrt>
</math></span> =<strong>»</strong> 12.5&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>from conservation of momentum<strong>» </strong>common speed after collision is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;initial speed&nbsp;<strong>«</strong><em>v<sub>c</sub></em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12.5}}{2}">
  <mfrac>
    <mrow>
      <mn>12.5</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span> = 6.25 ms<sup>–1</sup><strong>»</strong></p>
<p><em>h =&nbsp;</em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_c}^2}}{{2g}} = \frac{{{{6.25}^2}}}{{2 \times 9.81}}">
  <mfrac>
    <mrow>
      <msup>
        <mrow>
          <msub>
            <mi>v</mi>
            <mi>c</mi>
          </msub>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mi>g</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>6.25</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mo>×</mo>
      <mn>9.81</mn>
    </mrow>
  </mfrac>
</math></span><strong>»</strong> 2.0&nbsp;<strong>«</strong>m<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow 12.5 from incorrect use of kinematics equations</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for mg(8)&nbsp;=&nbsp;2mgh leading to h = 4 m if done in one step.</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Allow ECF from MP2</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student strikes a tennis ball that is initially at rest so that it leaves the racquet at a speed of 64 m s<sup>–1</sup>. The ball has a mass of 0.058 kg and the contact between the ball and the racquet lasts for 25 ms.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The student strikes the tennis ball at point P. The tennis ball is initially directed at an angle of 7.00° to the horizontal.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The following data are available.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Height of P = 2.80 m<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Distance of student from net = 11.9 m<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Height of net = 0.910 m<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Initial speed of tennis ball = 64 m s<sup>-1</sup></span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the average force exerted by the racquet on the ball.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the average power delivered to the ball during the impact.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the time it takes the tennis ball to reach the net.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the tennis ball passes over the net.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine the speed of the tennis ball as it strikes the ground.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The student models the bounce of the tennis ball to predict the angle <em>θ</em> at which the ball leaves a surface of clay and a surface of grass.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">The model assumes<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">• during contact with the surface the ball slides.<br>• the sliding time is the same for both surfaces.<br>• the sliding frictional force is greater for clay than grass.<br>• the normal reaction force is the same for both surfaces.<br></span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Predict for the student’s model, without calculation, whether θ is greater for a clay surface or for a grass surface.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F = \frac{{\Delta mv}}{{\Delta t}}/m\frac{{\Delta v}}{{\Delta t}}/\frac{{0.058 \times 64.0}}{{25 \times {{10}^{ - 3}}}}">
  <mi>F</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>m</mi>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mi>m</mi>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>0.058</mn>
      <mo>×</mo>
      <mn>64.0</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔</span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
  <mi>F</mi>
</math></span></span><em><span style="background-color:#ffffff;"> =</span></em><span style="background-color:#ffffff;"> 148«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{N}}">
  <mrow>
    <mtext>N</mtext>
  </mrow>
</math></span>»≈150«<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{N}}">
  <mrow>
    <mtext>N</mtext>
  </mrow>
</math></span></span>» &nbsp;✔</span></p>
<p>&nbsp;</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span style="background-color:#ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = \frac{{\frac{1}{2}m{v^2}}}{t}/\frac{{\frac{1}{2} \times 0.058 \times {{64.0}^2}}}{{25 \times {{10}^{ - 3}}}}">
  <mi>P</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mi>m</mi>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>t</mi>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mo>×</mo>
      <mn>0.058</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>64.0</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp;<strong>✔</strong></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 4700/4800«{\text{W}}">
  <mi>P</mi>
  <mo>=</mo>
  <mn>4700</mn>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>4800</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>W</mtext>
  </mrow>
</math></span>» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<p>&nbsp;</p>
<p><em><strong><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">ALTERNATIVE 2</span></span></strong></em></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = {\text{average}}Fv/148 \times \frac{{64.0}}{2}">
  <mi>P</mi>
  <mo>=</mo>
  <mrow>
    <mtext>average</mtext>
  </mrow>
  <mi>F</mi>
  <mi>v</mi>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>148</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>64.0</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span> &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 4700/4800«{\text{W}}">
  <mi>P</mi>
  <mo>=</mo>
  <mn>4700</mn>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>4800</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>W</mtext>
  </mrow>
</math></span>» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p>&nbsp;</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">horizontal component of velocity is 64.0 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> cos7° = 63.52 «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">ms<sup>−</sup></span><sup>1</sup>» ✔</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = « \frac{{11.9}}{{63.52}} =» 0.187/0.19 « {\text{s}}">
  <mi>t</mi>
  <mo>=</mo>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>11.9</mn>
    </mrow>
    <mrow>
      <mn>63.52</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mn>0.187</mn>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>0.19</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>s</mtext>
  </mrow>
</math></span>» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"> ✔</span></span></span></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Do not award BCA. Check working.<br></span></span></em></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Do not award ECF from using 64 m s<sup>-1</sup>.</span></span></em></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span style="background-color:#ffffff;"><strong>ALTERNATIVE 1</strong><br></span></em></p>
<p><em><span style="background-color:#ffffff;">u<sub>y </sub></span></em><span style="background-color:#ffffff;">= 64 </span><span style="background-color:#ffffff;">sin7</span><span style="background-color:#ffffff;">/7.80</span><em><span style="background-color:#ffffff;"> «</span></em><span style="background-color:#ffffff;">ms</span><sup><span style="background-color:#ffffff;"><span style="text-align:left;color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-variant:normal;font-weight:400;text-decoration:none;display:inline !important;white-space:normal;float:none;background-color:#ffffff;">−</span></span><span style="background-color:#ffffff;">1</span></sup><em><span style="background-color:#ffffff;">»</span></em><span style="background-color:#ffffff;">✔</span><em><span style="background-color:#ffffff;"><br></span></em></p>
<p><span style="background-color:#ffffff;">decrease in height = 7.80 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 0.187 +&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 9.81 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 0.187<sup>2</sup>/1.63 «m» ✔<br></span></p>
<p><span style="background-color:#ffffff;">final height = «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">2.80 − 1.63</span>» = 1.1/1.2 «m» ✔<br></span></p>
<p><span style="background-color:#ffffff;">«higher than net so goes over»<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">vertical distance to fall to net <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«</span>= <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">2.80 − 0.91</span>» = 1.89 «m»✔<br></span></p>
<p><span style="background-color:#ffffff;">time to fall this distance found using <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«</span>=1.89 = 7.8<em>t</em> +&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 9.81 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span><em>t</em><sup>2</sup>»<br></span></p>
<p><span style="background-color:#ffffff;"><em>t </em>= 0.21 «s»✔<br></span></p>
<p><span style="background-color:#ffffff;">0.21 «s» &gt; 0.187 «s» ✔<br></span></p>
<p><span style="background-color:#ffffff;">«reaches the net before it has fallen far enough so goes over»</span><em><span style="background-color:#ffffff;"><br></span></em></p>
<p><em><span style="background-color:#ffffff;">Other alternatives are possible<br></span></em></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span style="background-color:#ffffff;"><strong>ALTERNATIVE 1</strong><br></span></em></p>
<p><span style="background-color:#ffffff;">Initial KE + PE = final KE /</span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> × 0.058 × 64<sup>2</sup> + 0.058 × 9.81 × 2.80 =&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> 0.058 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">×</span> <em>v</em><sup>2</sup> ✔<br></span></p>
<p><span style="background-color:#ffffff;"><em>v</em> = 64.4 «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">ms<sup>−1</sup></span>» ✔</span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br></span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_v} = « \sqrt {{{7.8}^2} + 2 \times 9.81 \times 2.8} » = 10.8 « {\text{m}} {{\text{s}}^{ - 1}}">
  <mrow>
    <msub>
      <mi>v</mi>
      <mi>v</mi>
    </msub>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>«</mo>
  </mrow>
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mn>7.8</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>2</mn>
    <mo>×</mo>
    <mn>9.81</mn>
    <mo>×</mo>
    <mn>2.8</mn>
  </msqrt>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mo>=</mo>
  <mn>10.8</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>m</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span>&nbsp;</span></p>
<p><span style="background-color:#ffffff;">«&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {{{63.5}^2} + {{10.8}^2}} ">
  <mi>v</mi>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mn>63.5</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10.8</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span> »</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 64.4 « {\text{m}} {{\text{s}}^{ - 1}}">
  <mi>v</mi>
  <mo>=</mo>
  <mn>64.4</mn>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mrow>
    <mtext>m</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></p>
<p><em><span style="background-color:#ffffff;">&nbsp;</span></em></p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">so horizontal velocity component at lift off for clay is smaller ✔<br></span></p>
<p><span style="background-color:#ffffff;">normal force is the same so vertical component of velocity is the same ✔<br></span></p>
<p><span style="background-color:#ffffff;">so bounce angle on clay is greater ✔</span><em><span style="background-color:#ffffff;"><br></span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>At both HL and SL many candidates scored both marks for correctly answering this. A straightforward start to the paper. For those not gaining both marks it was possible to gain some credit for calculating either the change in momentum or the acceleration. At SL some used 64 ms-1 as a value for a and continued to use this value over the next few parts to the question.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered although a significant number of candidates approached it using P = Fv but forgot to divide v by 2 to calculated the average velocity. This scored one mark out of 2.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question scored well at HL but less so at SL. One common mistake was to calculate the direct distance to the top of the net and assume that the ball travelled that distance with constant speed. At SL particularly, another was to consider the motion only when the ball is in contact with the racquet.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were a number of approaches students could take to answer this and examiners saw examples of them all. One approach taken was to calculate the time taken to fall the distance to the top of the net and to compare this with the time calculated in bi) for the ball to reach the net. This approach, which is shown in the mark scheme, required solving a quadratic in t which is beyond the mathematical requirements of the syllabus. This mathematical technique was only required if using this approach and not required if, for example, calculating heights.</p>
<p>A common mistake was to forget that the ball has a vertical acceleration. Examiners were able to award credit/ECF for correct parts of an otherwise flawed method.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This proved difficult for candidates at both HL and SL. Many managed to calculate the final vertical component of the velocity of the ball.</p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>As the command term in this question is ‘predict’ a bald answer of clay was acceptable for one mark. This was a testing question that candidates found demanding but there were some very well-reasoned answers. The most common incorrect answer involved suggesting that the greater frictional force on the clay court left the ball with less kinetic energy and so a smaller angle. At SL many gained the answer that the angle on clay would be greater with the argument that frictional force is greater and so the distance the ball slides is less.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Cold milk enters a small sterilizing unit and flows over an electrical heating element.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The temperature of the milk is raised from 11&thinsp;&deg;C to 84&thinsp;&deg;C. A mass of 55&thinsp;g of milk enters&nbsp;the sterilizing unit every second.</p>
<p style="padding-left: 210px;">Specific heat capacity of milk = 3.9&thinsp;kJ&thinsp;kg<sup>&minus;1&thinsp;</sup>K<sup>&minus;1</sup></p>
</div>

<div class="specification">
<p>The milk flows out through an insulated metal pipe. The pipe is at a temperature&nbsp;of 84&thinsp;&deg;C. A small section of the insulation has been removed from around the pipe.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power input to the heating element. State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether your answer to (a) is likely to overestimate or underestimate the power input.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, with reference to the molecules in the liquid, the difference between milk at 11 °C and milk at 84 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how energy is transferred from the inside of the metal pipe to the outside of the metal pipe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The missing section of insulation is 0.56 m long and the external radius of the pipe is 0.067 m. The emissivity of the pipe surface is 0.40. Determine the energy lost every second from the pipe surface. Ignore any absorption of radiation by the pipe surface.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>one</strong> other method by which significant amounts of energy can be transferred from the pipe to the surroundings.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>energy required for milk entering in 1 s = mass x specific heat x 73 ✓</p>
<p>16 kW <em><strong>OR</strong> </em>16000 W ✓</p>
<p> </p>
<p><em><strong>MP1</strong> is for substitution into mcΔT regardless of power of ten.</em></p>
<p><em>Allow any correct unit of power (such as </em>J s<sup>-1</sup><em> OR </em>kJ s<sup>-1</sup><em>) if paired with an answer to the correct power of 10 for <strong>MP2</strong>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Underestimate / more energy or power required ✓</p>
<p>because energy transferred as heat / thermal energy is lost «to surroundings or electrical components» ✓</p>
<p> </p>
<p><em>Do not allow general term “energy” or “power” for <strong>MP2</strong>.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the temperature has increased so the internal energy / « average » KE «of the molecules» has increased <em><strong>OR</strong></em> temperature is proportional to average KE «of the molecules». ✓</p>
<p>«therefore» the «average» speed of the molecules or particles is higher <em><strong>OR</strong> </em>more frequent collisions « between molecules » <em><strong>OR</strong> </em>spacing between molecules has increased <em><strong>OR</strong> </em>average force of collisions is higher <em><strong>OR</strong> </em>intermolecular forces are less <em><strong>OR</strong> </em>intermolecular bonds break and reform at a higher rate <em><strong>OR</strong> </em>molecules are vibrating faster. ✓</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>conduction/conducting/conductor «through metal» ✓</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mi>e</mi><mi>σ</mi><mi>A</mi><msup><mi>T</mi><mn>4</mn></msup></math> where <em>T</em> = 357 K ✓</p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>2</mn><mi>π</mi><mo> </mo><mi>r</mi><mo> </mo><mi>l</mi></math> « = 0.236 m<sup>2</sup>» ✓</p>
<p><em>P</em> = 87 «W» ✓</p>
<p> </p>
<p><em>Allow 85 – 89 W for <strong>MP3</strong>.</em></p>
<p><em>Allow ECF for <strong>MP3</strong>.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>convection «is likely to be a significant loss» ✓</p>
<p><br>«due to reduction in density of air near pipe surface» hot air rises «and is replaced by cooler air from elsewhere»</p>
<p><em><strong>OR</strong></em></p>
<p>«due to» conduction «of heat or thermal energy» from pipe to air ✓</p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates recognized that this was a specific heat question and set up a proper calculation, but many struggled to match their answer to an appropriate unit. A common mistake was to leave the answer in some form of an energy unit and others did not match the power of ten of the unit to their answer (e.g. 16 W).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates recognized that this was an underestimate of the total energy but failed to provide an adequate reason. Many gave generic responses (such as "some power will be lost"/not 100% efficient) without discussing the specific form of energy lost (e.g. heat energy).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally well answered. Most HL candidates linked the increase in temperature to the increase in the kinetic energy of the molecules and were able to come up with a consequence of this change (such as the molecules moving faster). SL candidates tended to focus more on consequences, often neglecting to mention the change in KE.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates recognized that heat transfer by conduction was the correct response. This was a "state" question, so candidates were not required to go beyond this.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates at both levels were able to recognize that this was a blackbody radiation question. One common mistake candidates made was not calculating the area of a cylinder properly. It is important to remind candidates that they are expected to know how to calculate areas and volumes for basic geometric shapes. Other common errors included the use of T in Celsius and neglecting to raise T ^4. Examiners awarded a large number of ECF marks for candidates who clearly showed work but made these fundamental errors.</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A few candidates recognized that convection was the third source of heat loss, although few managed to describe the mechanism of convection properly for MP2. Some candidates did not read the question carefully and instead wrote about methods to increase the rate of heat loss (such as removing more insulation or decreasing the temperature of the environment).</p>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A lighting system consists of two long metal rods with a potential difference maintained&nbsp;between them. Identical lamps can be connected between the rods as required.</p>
<p style="text-align: center;"><img src=""></p>
<p>The following data are available for the lamps when at their working temperature.</p>
<p>&nbsp;</p>
<p style="padding-left: 90px;">Lamp specifications&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 24 V, 5.0 W</p>
<p style="padding-left: 90px;">Power supply emf&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;24 V</p>
<p style="padding-left: 90px;">Power supply maximum current&nbsp; &nbsp;8.0 A</p>
<p style="padding-left: 90px;">Length of each rod&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;12.5 m</p>
<p style="padding-left: 90px;">Resistivity of rod metal&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;7.2 × 10<sup>–7</sup> Ω m</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum number of lamps that can be connected between the rods. Neglect the resistance of the rods.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One advantage of this system is that if one lamp fails then the other lamps in the circuit remain lit. Outline <strong>one</strong> other electrical advantage of this system compared to one in which the lamps are connected in series.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt {\frac{{\rho l}}{{\pi {\text{R}}}}} ">
  <mi>r</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>ρ</mi>
        <mi>l</mi>
      </mrow>
      <mrow>
        <mi>π</mi>
        <mrow>
          <mtext>R</mtext>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span> <em><strong>OR </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{7.2 \times {{10}^{ - 7}} \times 12.5}}{{\pi  \times 0.1}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>7.2</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>7</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>×</mo>
        <mn>12.5</mn>
      </mrow>
      <mrow>
        <mi>π</mi>
        <mo>×</mo>
        <mn>0.1</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span> ✔</p>
<p><em>r</em> = 5.352 × 10<sup>−3</sup> ✔</p>
<p>5.4 × 10<sup>−3 </sup>«m» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \frac{{7.2 \times {{10}^{ - 7}} \times 12.5}}{{0.1}}">
  <mi>A</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>7.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>12.5</mn>
    </mrow>
    <mrow>
      <mn>0.1</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p><em>r</em> = 5.352 × 10<sup>−3</sup> ✔</p>
<p>5.4 × 10<sup>−3 </sup>«m» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>current in lamp = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{24}}">
  <mfrac>
    <mn>5</mn>
    <mrow>
      <mn>24</mn>
    </mrow>
  </mfrac>
</math></span> «= 0.21» «A»</p>
<p><em><strong>OR</strong></em></p>
<p><em>n</em> = 24 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{8}{{5}}">
  <mfrac>
    <mn>8</mn>
    <mrow>
      <mn>5</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p> </p>
<p>so «38.4 and therefore» 38 lamps ✔</p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when adding more lamps in parallel the brightness stays the same ✔</p>
<p>when adding more lamps in parallel the pd across each remains the same/at the operating value/24 V ✔</p>
<p>when adding more lamps in parallel the current through each remains the same ✔</p>
<p>lamps can be controlled independently ✔</p>
<p>the pd across each bulb is larger in parallel ✔</p>
<p>the current in each bulb is greater in parallel ✔</p>
<p>lamps will be brighter in parallel than in series ✔</p>
<p>In parallel the pd across the lamps will be the operating value/24 V ✔</p>
<p> </p>
<p><em>Accept converse arguments for adding lamps in series:</em></p>
<p><em>when adding more lamps in series the brightness decreases</em></p>
<p><em>when adding more lamps in series the pd decreases</em></p>
<p><em>when adding more lamps in series the current decreases</em></p>
<p><em>lamps can’t be controlled independently</em></p>
<p><em>the pd across each bulb is smaller in series</em></p>
<p><em>the current in each bulb is smaller in series</em></p>
<p> </p>
<p><em>in series the pd across the lamps will less than the operating value/24 V</em></p>
<p><em>Do not accept statements that only compare the overall resistance of the combination of bulbs.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>