File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 1 HTML/markSceme-SL-paper1html
File size: 233.14 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p><img src=""></p>
<p>What is a possible pulse shape when the pulses overlap?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A car moves north at a constant speed of 3m s<sup>–1</sup> for 20s and then east at a constant speed of 4m s<sup>–1</sup> for 20s. What is the average speed of the car during this motion?</p>
<p>A. 7.0m s<sup>–1 <br></sup>B. 5.0m s<sup>–1<br></sup>C. 3.5m s<sup>–1</sup> <br>D. 2.5m s<sup>–1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Light of wavelength 400nm is incident on two slits separated by 1000µm. The interference pattern from the slits is observed from a satellite orbiting 0.4Mm above the Earth. The distance between interference maxima as detected at the satellite is</p>
<p>A. 0.16Mm.<br>B. 0.16km. <br>C. 0.16m. <br>D. 0.16mm.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A boy jumps from a wall 3m high. What is an estimate of the change in momentum of the boy when he lands without rebounding?</p>
<p>A. 5×10<sup>0 </sup>kg m s<sup>–1</sup> </p>
<p>B. 5×10<sup>1 </sup>kg m s<sup>–1</sup> </p>
<p>C. 5×10<sup>2 </sup>kg m s<sup>–1</sup> </p>
<p>D. 5×10<sup>3 </sup>kg m s<sup>–1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which lists one scalar and two vector quantities?</p>
<p>A. Mass, momentum, potential difference</p>
<p>B. Mass, power, velocity</p>
<p>C. Power, intensity, velocity</p>
<p>D. Power, momentum, velocity</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object is positioned in a gravitational field. The measurement of gravitational force acting on the object has an uncertainty of 3 % and the uncertainty in the mass of the object is 9 %. What is the uncertainty in the gravitational field strength of the field?</p>
<p>A. 3 %</p>
<p>B. 6 %</p>
<p>C. 12 %</p>
<p>D. 27 %</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows an analogue meter with a mirror behind the pointer.</p>
<p><img src=""></p>
<p>What is the main purpose of the mirror?</p>
<p>A. To provide extra light when reading the scale</p>
<p>B. To reduce the risk of parallax error when reading the scale</p>
<p>C. To enable the pointer to be seen from different angles</p>
<p>D. To magnify the image of the pointer</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the unit of power expressed in fundamental SI units?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>kg m s</mtext><mrow><mo>-</mo><mn>3</mn></mrow></msup></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>kg m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>kg m</mtext><mn>2</mn></msup><msup><mtext> s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>kg m</mtext><mn>2</mn></msup><msup><mtext> s</mtext><mrow><mo>-</mo><mn>3</mn></mrow></msup></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A student measures the radius <em>r </em>of a sphere with an absolute uncertainty Δ<em>r</em>. What is the fractional uncertainty in the volume of the sphere?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{{\Delta r}}{r}} \right)^3}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>r</mi>
</mrow>
<mi>r</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\frac{{\Delta r}}{r}">
<mn>3</mn>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>r</mi>
</mrow>
<mi>r</mi>
</mfrac>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\pi \frac{{\Delta r}}{r}">
<mn>4</mn>
<mi>π</mi>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>r</mi>
</mrow>
<mi>r</mi>
</mfrac>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\pi {\left( {\frac{{\Delta r}}{r}} \right)^3}">
<mn>4</mn>
<mi>π</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>r</mi>
</mrow>
<mi>r</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A ball of mass (50 ± 1) g is moving with a speed of (25 ± 1) m s<sup>−1</sup>. What is the fractional uncertainty in the momentum of the ball?</p>
<p><br>A. 0.02</p>
<p>B. 0.04</p>
<p>C. 0.06</p>
<p>D. 0.08</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A student measures the length <em>l</em> and width <em>w</em> of a rectangular table top.</p>
<p>What is the absolute uncertainty of the perimeter of the table top?</p>
<p> <img src=""></p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mtext>cm</mtext></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>6</mn><mo> </mo><mtext>cm</mtext></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>1.2</mtext><mo> </mo><mtext>cm</mtext></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>2.4</mtext><mo> </mo><mtext>cm</mtext></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The radius of a circle is measured to be (10.0 ± 0.5) cm. What is the area of the circle?</p>
<p>A. (314.2 ± 0.3) cm<sup>2</sup></p>
<p>B. (314 ± 1) cm<sup>2</sup></p>
<p>C. (314 ± 15) cm<sup>2</sup></p>
<p>D. (314 ± 31) cm<sup>2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question discriminated well at both HL and SL with many candidates choosing the correct option D. However, option B was also a popular choice particularly at SL. Candidates need to be aware that when performing a calculation e.g. the area as here, the uncertainty also has to be propagated - so a 5% uncertainty in the radius becomes a 10% uncertainty in the area. There were some comments on the G2s that the uncertainty should only have been given to 1sf but this is not always correct as uncertainties are given to the precision of the value, depending on the percentage calculated in the propagation.</p>
</div>
<br><hr><br><div class="question">
<p>Which is a unit of force?</p>
<p>A. J m</p>
<p>B. J m<sup>–1</sup></p>
<p>C. J m s<sup>–1</sup></p>
<p>D. J m<sup>–1</sup> s</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">What is the unit of electrical potential difference expressed in fundamental SI units?<br></span></p>
<p><span style="background-color:#ffffff;">A. kg m s<sup>-1</sup> C<sup>-1</sup><br></span></p>
<p><span style="background-color:#ffffff;">B. kg m<sup>2</sup> s<sup>-2</sup> C<sup>-1</sup><br></span></p>
<p><span style="background-color:#ffffff;">C. kg m<sup>2</sup> s<sup>-3</sup> A<sup>-1</sup><br></span></p>
<p><span style="background-color:#ffffff;">D. kg m<sup>2</sup> s<sup>-1</sup> A</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The most popular answer was B giving a low discrimination index for this question. It should be a relatively straightforward question provided the candidate can remember which of ‘C’ or ‘A’ is the fundamental unit.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A student measures the radius <em>R</em> of a circular plate to determine its area. The absolute uncertainty in <em>R</em> is Δ<em>R</em>.</span></p>
<p><span style="background-color:#ffffff;">What is the <strong>fractional</strong> uncertainty in the area of the plate?</span></p>
<p><span style="background-color:#ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\Delta R}}{R}">
<mfrac>
<mrow>
<mn>2</mn>
<mi mathvariant="normal">Δ</mi>
<mi>R</mi>
</mrow>
<mi>R</mi>
</mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;">B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{{\Delta R}}{R}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>R</mi>
</mrow>
<mi>R</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></span></p>
<p><span style="background-color:#ffffff;">C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi \Delta R}}{R}">
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
<mi mathvariant="normal">Δ</mi>
<mi>R</mi>
</mrow>
<mi>R</mi>
</mfrac>
</math></span></span></p>
<p><span style="background-color:#ffffff;">D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {\left( {\frac{{\Delta R}}{R}} \right)^2}">
<mi>π</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>R</mi>
</mrow>
<mi>R</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></span></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">An object has a weight of 6.10 × 10<sup>2</sup> N. What is the change in gravitational potential energy of the object when it moves through 8.0 m vertically?<br></span></p>
<p><span style="background-color:#ffffff;">A. 5 kJ<br></span></p>
<p><span style="background-color:#ffffff;">B. 4.9 kJ<br></span></p>
<p><span style="background-color:#ffffff;">C. 4.88 kJ<br></span></p>
<p><span style="background-color:#ffffff;">D. 4.880 kJ</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>At SL, more candidates chose C with B the second most popular response. This question was about significant figures and candidates should be reminded that on the multiple choice paper they are not expected to perform detailed calculations. In this case 6.10 (to 3 sig figs) times 8.0 (to 2 sig figs) produces an answer to 2 sig figs giving B as the correct response. All answers are equivalent from a numerical point of view with the difference being the number of sig figs used.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which quantity has the fundamental SI units of kg m<sup>–1</sup> s<sup>–2</sup>?<br></span></p>
<p><span style="background-color: #ffffff;">A. Energy<br>B. Force<br>C. Momentum<br>D. Pressure</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A student measures the time for 20 oscillations of a pendulum. The experiment is repeated four times. The measurements are:</p>
<p style="padding-left:150px;">10.45 s</p>
<p style="padding-left:150px;">10.30 s</p>
<p style="padding-left:150px;">10.70 s</p>
<p style="padding-left:150px;">10.55 s</p>
<p>What is the best estimate of the uncertainty in the average time for 20 oscillations?</p>
<p>A. 0.01 s</p>
<p>B. 0.05 s</p>
<p>C. 0.2 s</p>
<p>D. 0.5 s</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered, although option B was a significant distractor for candidates focusing on the last significant digit.</p>
</div>
<br><hr><br><div class="question">
<p>What is the order of magnitude of the wavelength of visible light?</p>
<p>A. 10<sup>−10 </sup>m</p>
<p>B. 10<sup>−7 </sup>m</p>
<p>C. 10<sup>−4 </sup>m</p>
<p>D. 10<sup>−1 </sup>m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was correctly answered by the majority of SL candidates.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">An object is held in equilibrium by three forces of magnitude <em>F, G</em> and <em>H</em> that act at a point in the same plane.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="218" height="192"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Three equations for these forces are<br></span></span></p>
<p style="padding-left:90px;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">I. <em>F</em> cos <em>θ</em> = <em>G</em><br>II. <em>F</em> = <em>G</em> cos <em>θ</em> + <em>H</em> sin <em>θ</em><br>III.<em> F</em> = <em>G + H</em></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Which equations are correct?<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. I and II only<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. I and III only<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. II and III only<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. I, II and III</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The velocities <strong><em>v</em></strong><sub>X</sub> and <strong><em>v</em></strong><sub>Y</sub> of two boats, X and Y, are shown.</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_09.03.42.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/02_01"></p>
<p>Which arrow represents the direction of the vector <strong><em>v</em></strong><sub>X</sub> – <strong><em>v</em></strong><sub>Y</sub>?</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_09.04.57.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/02_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A stone falls from rest to the bottom of a water well of depth <em>d</em>. The time t taken to fall is 2.0 ±0.2 s. The depth of the well is calculated to be 20 m using <em>d</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>at </em><sup>2</sup>. The uncertainty in a is negligible.</p>
<p>What is the absolute uncertainty in <em>d</em>?</p>
<p>A. ± 0.2 m</p>
<p>B. ± 1 m</p>
<p>C. ± 2 m</p>
<p>D. ± 4 m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the unit of power expressed in fundamental SI units?</p>
<p> </p>
<p>A. kg m s<sup>–2</sup></p>
<p>B. kg m<sup>2 </sup>s<sup>–2</sup></p>
<p>C. kg m s<sup>–3</sup></p>
<p>D. kg m<sup>2 </sup>s<sup>–3</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two parallel wires are perpendicular to the page. The wires carry equal currents in opposite directions. Point S is at the same distance from both wires. What is the direction of the magnetic field at point S?</p>
<p style="text-align: center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which quantity has the same units as those for energy stored per unit volume?</p>
<p>A. Density</p>
<p>B. Force</p>
<p>C. Momentum</p>
<p>D. Pressure</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The length of the side of a cube is 2.0 cm ± 4 %. The mass of the cube is 24.0 g ± 8 %. What is the percentage uncertainty of the density of the cube?</p>
<p> </p>
<p>A. ± 2 %</p>
<p>B. ± 8 %</p>
<p>C. ± 12 %</p>
<p>D. ± 20 %</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two sets of data, shown below with circles and squares, are obtained in two experiments. The size of the error bars is the same for all points.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is correct about the absolute uncertainty and the fractional uncertainty of the <em>y</em> intercept of the two lines of best fit?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is a vector quantity?</p>
<p>A. Acceleration</p>
<p>B. Energy</p>
<p>C. Pressure</p>
<p>D. Speed</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A student wants to determine the angular speed ω of a rotating object. The period T is 0.50 s ±5 %. The angular speed ω is</p>
<p style="text-align:center;"><span style="background-color:#ffffff;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\omega = \frac{{2\pi }}{T}">
<mi>ω</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mi>T</mi>
</mfrac>
</math></span></span> </p>
<p>What is the percentage uncertainty of ω?</p>
<p>A. 0.2 %</p>
<p>B. 2.5 %</p>
<p>C. 5 %</p>
<p>D. 10 %</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by candidates.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What are the units of specific energy and energy density?</span></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A list of four physical quantities is</p>
<ul>
<li>acceleration</li>
<li>energy</li>
<li>mass</li>
<li>temperature</li>
</ul>
<p>How many scalar quantities are in this list?</p>
<p>A. 1</p>
<p>B. 2</p>
<p>C. 3</p>
<p>D. 4</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A river flows north. A boat crosses the river so that it only moves in the direction east of its starting point.</p>
<p>What is the direction in which the boat must be steered?</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_15.46.12.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the unit of electrical energy in fundamental SI units?</p>
<p>A. kg m<sup>2</sup> C<sup>–1</sup> s<br>B. kg m s<sup>–2</sup><br>C. kg m<sup>2</sup> s<sup>–2</sup><br>D. kg m<sup>2</sup> s<sup>–1</sup> A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the best estimate for the diameter of a helium nucleus?</p>
<p>A. 10<sup>–21</sup> m</p>
<p>B. 10<sup>–18</sup> m</p>
<p>C. 10<sup>–15</sup> m</p>
<p>D. 10<sup>–10</sup> m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The magnitude of the resultant of two forces acting on a body is 12 N. Which pair of forces acting on the body can combine to produce this resultant?</p>
<p>A. 1 N and 2 N</p>
<p>B. 1 N and 14 N</p>
<p>C. 5 N and 6 N</p>
<p>D. 6 N and 7 N</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by HL and SL candidates. There was a higher number of blanks (no response) among SL students than is typical this early in the exam paper.</p>
</div>
<br><hr><br><div class="question">
<p>A student models the relationship between the pressure <em>p</em> of a gas and its temperature <em>T</em> as <em>p</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>T.</p>
<p>The units of <em>p</em> are pascal and the units of <em>T</em> are kelvin. What are the fundamental SI units of <em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span></em> and<em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span></em>?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two different experiments, P and Q, generate two sets of data to confirm the proportionality of variables <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> and <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math></em>. The graphs for the data from P and Q are shown. The maximum and minimum gradient lines are shown for both sets of data.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>What is true about the systematic error and the uncertainty of the gradient when P is compared to Q?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is a scalar quantity?</p>
<p>A. Velocity<br>B. Momentum<br>C. Kinetic energy<br>D. Acceleration</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graphs show the variation of the displacement <em>y</em> of a medium with distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and with time <em>t</em> for a travelling wave.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">What is the speed of the wave?</p>
<p style="text-align: left;"> </p>
<p style="text-align: left;">A. 0.6 m s<sup>–1</sup></p>
<p style="text-align: left;">B. 0.8 m s<sup>–1</sup></p>
<p style="text-align: left;">C. 600 m s<sup>–1</sup></p>
<p style="text-align: left;">D. 800 m s<sup>–1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>How many significant figures are there in the number 0.0450?</p>
<p>A. 2</p>
<p>B. 3</p>
<p>C. 4</p>
<p>D. 5</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is a vector quantity?</p>
<p>A. Pressure</p>
<p>B. Electric current</p>
<p>C. Temperature</p>
<p>D. Magnetic field</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>