File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 1 HTML/markSceme-HL-paper2html
File size: 349.74 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>The ball is now displaced through a small distance <em>x </em>from the bottom of the bowl and is&nbsp;then released from rest.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.19.20.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d"></p>
<p>The magnitude of the force on the ball towards the equilibrium position is given by</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{mgx}}{R}">
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
      <mi>x</mi>
    </mrow>
    <mi>R</mi>
  </mfrac>
</math></span></p>
<p>where <em>R </em>is the radius of the bowl.</p>
</div>

<div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a&nbsp;frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>θ</em> to the horizontal.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the&nbsp;weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following&nbsp;equation.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="F = \frac{{mg}}{{\tan \theta }}">
  <mi>F</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the&nbsp;radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ball will perform simple harmonic oscillations about the&nbsp;equilibrium position.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the period of oscillation of the ball is about 6 s.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The amplitude of oscillation is 0.12 m. On the axes, draw a graph to show the&nbsp;variation with time <em>t </em>of the velocity <strong><em>v </em></strong>of the ball during one period.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced&nbsp;so that its height from the horizontal is equal to 8.0 m.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain&nbsp;in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>towards the centre <strong>«</strong>of the circle<strong>» </strong>/ horizontally to the right</p>
<p>&nbsp;</p>
<p><em>Do not accept towards the centre of the bowl</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward vertical arrow of any length</p>
<p>arrow of correct length</p>
<p>&nbsp;</p>
<p><em>Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required</em></p>
<p><em>eg</em>:&nbsp;<img src="images/Schermafbeelding_2018-08-12_om_13.22.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>F</em> = <em>N</em>&nbsp;cos&nbsp;<em>θ</em></p>
<p><em>mg</em> =&nbsp;<em>N</em> sin&nbsp;<em>θ</em></p>
<p>dividing/substituting to get result</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>right angle triangle drawn with <em>F</em>, <em>N </em>and <em>W/mg </em>labelled</p>
<p>angle correctly labelled and arrows on forces in correct directions</p>
<p>correct use of trigonometry leading to the required relationship</p>
<p>&nbsp;</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_13.28.39.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em>tan&nbsp;θ</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{O}}}{A} = \frac{{mg}}{F}">
  <mfrac>
    <mrow>
      <mtext>O</mtext>
    </mrow>
    <mi>A</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mi>F</mi>
  </mfrac>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg}}{{\tan \theta }}">
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span> =&nbsp;<em>m</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{r}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>r</mi>
  </mfrac>
</math></span></p>
<p><em>r</em> = <em>R</em> cos&nbsp;<em>θ</em></p>
<p><em>v</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{gR{{\cos }^2}\theta }}{{\sin \theta }}} /\sqrt {\frac{{gR\cos \theta }}{{\tan \theta }}} /\sqrt {\frac{{9.81 \times 8.0\cos 22}}{{\tan 22}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mi>g</mi>
        <mi>R</mi>
        <mrow>
          <msup>
            <mrow>
              <mi>cos</mi>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
        <mi>θ</mi>
      </mrow>
      <mrow>
        <mi>sin</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>g</mi>
        <mi>R</mi>
        <mi>cos</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
      <mrow>
        <mi>tan</mi>
        <mo>⁡</mo>
        <mi>θ</mi>
      </mrow>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>/</mo>
  </mrow>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>9.81</mn>
        <mo>×</mo>
        <mn>8.0</mn>
        <mi>cos</mi>
        <mo>⁡</mo>
        <mn>22</mn>
      </mrow>
      <mrow>
        <mi>tan</mi>
        <mo>⁡</mo>
        <mn>22</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span></p>
<p><em>v</em> = 13.4/13&nbsp;<strong>«</strong><em>ms&nbsp;<sup>–</sup></em><em><sup>1</sup></em><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for a bald correct answer&nbsp;</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for an answer of 13.9/14 </em><strong>«</strong><em>ms&nbsp;<sup>–</sup></em><em><sup>1</sup></em><strong>»</strong><em>. MP2 omitted</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is no force to balance the weight/N is horizontal</p>
<p>so no / it is not possible</p>
<p>&nbsp;</p>
<p><em>Must see correct justification to award MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the <strong>«</strong>restoring<strong>» </strong>force/acceleration is proportional to displacement</p>
<p>&nbsp;</p>
<p><em>Direction is not required</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ω</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{g}{R}} ">
  <msqrt>
    <mfrac>
      <mi>g</mi>
      <mi>R</mi>
    </mfrac>
  </msqrt>
</math></span><strong>»</strong> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{9.81}}{{8.0}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>9.81</mn>
      </mrow>
      <mrow>
        <mn>8.0</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span>&nbsp;<strong>«</strong>= 1.107 s<sup>–1</sup><strong>»</strong></p>
<p><em>T</em> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{\omega }">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mi>ω</mi>
  </mfrac>
</math></span> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{{1.107}}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mn>1.107</mn>
    </mrow>
  </mfrac>
</math></span> =<strong>»</strong> 5.7&nbsp;<strong>«</strong>s<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow use of </em>or <em>g&nbsp;= 9.8 or 10</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for a substitution into T = 2π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{I}{g}} ">
  <msqrt>
    <mfrac>
      <mi>I</mi>
      <mi>g</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sine graph</p>
<p>correct amplitude <strong>«</strong>0.13 m s<sup>–1</sup><strong>»</strong></p>
<p>correct period and only 1 period shown</p>
<p>&nbsp;</p>
<p><em>Accept ± sine for shape of the graph. Accept 5.7 s or 6.0 s for the correct period.</em></p>
<p><em>Amplitude should be correct to ±</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;<em>square for MP2</em></p>
<p><em>eg: v /</em>m s<sup>–1&nbsp;&nbsp;</sup>&nbsp;<img src="images/Schermafbeelding_2018-08-14_om_06.59.06.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d.iii"></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed before collision&nbsp;<em>v</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gR} "> <msqrt> <mn>2</mn> <mi>g</mi> <mi>R</mi> </msqrt> </math></span> =<strong>»</strong> 12.5&nbsp;<strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>from conservation of momentum<strong>» </strong>common speed after collision is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>&nbsp;initial speed&nbsp;<strong>«</strong><em>v<sub>c</sub></em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12.5}}{2}"> <mfrac> <mrow> <mn>12.5</mn> </mrow> <mn>2</mn> </mfrac> </math></span> = 6.25 ms<sup>–1</sup><strong>»</strong></p>
<p><em>h =&nbsp;</em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v_c}^2}}{{2g}} = \frac{{{{6.25}^2}}}{{2 \times 9.81}}"> <mfrac> <mrow> <msup> <mrow> <msub> <mi>v</mi> <mi>c</mi> </msub> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>g</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>6.25</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>9.81</mn> </mrow> </mfrac> </math></span><strong>»</strong> 2.0&nbsp;<strong>«</strong>m<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Allow 12.5 from incorrect use of kinematics equations</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for mg(8)&nbsp;=&nbsp;2mgh leading to h = 4 m if done in one step.</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Allow ECF from MP2</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical wall carries a uniform positive charge on its surface. This produces a uniform&nbsp;horizontal electric field perpendicular to the wall. A small, positively-charged ball is&nbsp;suspended in equilibrium from the vertical wall by a thread of negligible mass.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>The centre of the ball, still carrying a charge of 1.2 × 10<sup>−6 </sup>C, is now placed 0.40 m from&nbsp;a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.</p>
<p>P is the point on the line joining the charges where the electric field strength is zero.&nbsp;The distance PQ is 0.22 m.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge per unit area on the surface of the wall is<em> σ</em>. It can be shown that the&nbsp;electric field strength <em>E</em> due to the charge on the wall is given by the equation</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ε</mi><mn>0</mn></msub></mrow></mfrac></math>.</p>
<p>Demonstrate that the units of the quantities in this equation are consistent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread makes an angle of 30° with the vertical wall. The ball has a mass&nbsp;of 0.025 kg.</p>
<p>Determine the horizontal force that acts on the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The charge on the ball is 1.2 × 10<sup>−6 </sup>C. Determine <em>σ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The thread breaks. Explain the initial subsequent motion of the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the charge on Q. State your answer to an appropriate number of&nbsp;significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, without calculation, whether or not the electric potential at P is zero.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>identifies units of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>C</mi><msup><mi>m</mi><mn>2</mn></msup></mfrac><mo>×</mo><mfrac><mrow><mi>N</mi><msup><mi>m</mi><mn>2</mn></msup></mrow><msup><mi>C</mi><mn>2</mn></msup></mfrac></math>&nbsp;seen and reduced to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>N C</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;<strong>✓</strong></p>
<p>&nbsp;</p>
<p><em>Accept any analysis (eg dimensional) that yields answer correctly</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal force <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> on ball&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>T</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>30</mn></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mrow><mi>m</mi><mi>g</mi></mrow><mrow><mi>cos</mi><mo> </mo><mn>30</mn></mrow></mfrac></math>&nbsp;<strong>✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>&nbsp;</mo><mo>«</mo><mo>=</mo><mi>m</mi><mi>g</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>025</mn><mo>×</mo><mo>&nbsp;</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>&nbsp;</mo><mo>×</mo><mi>tan</mi><mo> </mo><mn>30</mn><mo>»</mo><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>14</mn><mo>&nbsp;</mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em><br>Allow g = 10 N kg<sup>−1</sup></em></p>
<p><em>Award <strong>[3] marks</strong> for a bald correct answer.</em></p>
<p><em>Award <strong>[1max]</strong> for an answer of zero, interpreting that the horizontal force refers to the horizontal component of the net force.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>»</mo></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>85</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>12</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>14</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><msup><mtext>C m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math>&nbsp;<strong>✓</strong></p>
<p><em> <br>Allow <strong>ECF</strong> from the calculated F in (b)(i)</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal/repulsive force and vertical force/pull of gravity act on the ball <strong>✓</strong></p>
<p>so ball has constant acceleration/constant net force <strong>✓</strong></p>
<p>motion is in a straight line <strong>✓</strong></p>
<p>at 30° to vertical away from wall/along original line of thread <strong>✓</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>Q</mi><mrow><mn>0</mn><mo>.</mo><msup><mn>22</mn><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>18</mn><mn>2</mn></msup></mrow></mfrac></math><strong>&nbsp;✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>+</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mo>«</mo><mtext>C</mtext><mo>»</mo></math><strong>✓</strong></p>
<p>2sf<strong> ✓</strong></p>
<p><em><br>Do not award <strong>MP2</strong> if charge is negative </em></p>
<p><em>Any answer given to 2 sig figs scores <strong>MP3</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>work must be done to move a «positive» charge from infinity to P «as both charges are positive»<br><em><strong>OR</strong></em><br>reference to both potentials positive and added<br><em><strong>OR</strong></em><br>identifies field as gradient of potential and with zero value <strong>✓</strong></p>
<p>therefore, point P is at a positive / non-zero potential<strong>&nbsp;✓</strong></p>
<p><em><br>Award <strong>[0]</strong> for bald answer that P has non-zero potential</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A pipe is open at both ends. A first-harmonic standing wave is set up in the pipe.&nbsp;The diagram shows the variation of displacement of air molecules in the pipe with&nbsp;distance along the pipe at time <em>t</em> = 0. The frequency of the first harmonic is <em>f</em>.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>A transmitter of electromagnetic waves is next to a long straight vertical wall that acts&nbsp;as a plane mirror to the waves. An observer on a boat detects the waves both directly&nbsp;and as an image from the other side of the wall. The diagram shows one ray from the&nbsp;transmitter reflected at the wall and the position of the image.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the diagram, the variation of displacement of the air molecules with distance along the pipe when <em>t</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{4f}}">
  <mfrac>
    <mn>3</mn>
    <mrow>
      <mn>4</mn>
      <mi>f</mi>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An air molecule is situated at point X in the pipe at <em>t</em> = 0. Describe the motion of this air molecule during one complete cycle of the standing wave beginning from <em>t</em> = 0.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed of sound <em>c</em> for longitudinal waves in air is given by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = \sqrt {\frac{K}{\rho }} ">
  <mi>c</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mi>K</mi>
      <mi>ρ</mi>
    </mfrac>
  </msqrt>
</math></span></p>
<p>where <em>ρ</em> is the density of the air and <em>K</em> is a constant.</p>
<p>A student measures <em>f</em> to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m<sup>–3</sup>. Determine the value of <em>K</em> for air. State your answer with the appropriate fundamental (SI) unit.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate, using a second ray, that the image appears to come from the position indicated.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the observer detects a series of increases and decreases in the intensity of the received signal as the boat moves along the line XY.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>horizontal line shown in centre of pipe ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«air molecule» moves to the right and then back to the left ✔</p>
<p>returns to X/original position ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength = 2 × 1.4 «= 2.8 m» ✔</p>
<p><em>c</em> = «<em>f λ</em> =» 120 × 2.8 «= 340 m s<sup>−1</sup>» ✔</p>
<p><em>K</em> = «<em>ρc</em><sup>2</sup> = 1.3 × 340<sup>2</sup> =» 1.5 × 10<sup>5</sup> ✔</p>
<p>kg m<sup>–1 </sup>s<sup>–2</sup> ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>construction showing formation of image ✔</p>
<p><em>Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>interference pattern is observed</p>
<p><em><strong>OR</strong></em></p>
<p>interference/superposition mentioned ✔</p>
<p><br>maximum when two waves occur in phase/path difference is nλ</p>
<p><em><strong>OR</strong></em></p>
<p>minimum when two waves occur 180° out of phase/path difference is (n + ½)λ ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A lighting system consists of two long metal rods with a potential difference maintained&nbsp;between them. Identical lamps can be connected between the rods as required.</p>
<p style="text-align: center;"><img src=""></p>
<p>The following data are available for the lamps when at their working temperature.</p>
<p>&nbsp;</p>
<p style="padding-left: 90px;">Lamp specifications&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 24 V, 5.0 W</p>
<p style="padding-left: 90px;">Power supply emf&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;24 V</p>
<p style="padding-left: 90px;">Power supply maximum current&nbsp; &nbsp;8.0 A</p>
<p style="padding-left: 90px;">Length of each rod&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;12.5 m</p>
<p style="padding-left: 90px;">Resistivity of rod metal&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;7.2 × 10<sup>–7</sup> Ω m</p>
</div>

<div class="specification">
<p>A step-down transformer is used to transfer energy to the two rods. The primary coil&nbsp;of this transformer is connected to an alternating mains supply that has an emf of&nbsp;root mean square (rms) magnitude 240 V. The transformer is 95 % efficient.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum number of lamps that can be connected between the rods. Neglect the resistance of the rods.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One advantage of this system is that if one lamp fails then the other lamps in the circuit remain lit. Outline <strong>one</strong> other electrical advantage of this system compared to one in which the lamps are connected in series.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how eddy currents reduce transformer efficiency.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the peak current in the primary coil when operating with the maximum number of lamps.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt {\frac{{\rho l}}{{\pi {\text{R}}}}} ">
  <mi>r</mi>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mi>ρ</mi>
        <mi>l</mi>
      </mrow>
      <mrow>
        <mi>π</mi>
        <mrow>
          <mtext>R</mtext>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
</math></span> <em><strong>OR </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{7.2 \times {{10}^{ - 7}} \times 12.5}}{{\pi  \times 0.1}}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>7.2</mn>
        <mo>×</mo>
        <mrow>
          <msup>
            <mrow>
              <mn>10</mn>
            </mrow>
            <mrow>
              <mo>−</mo>
              <mn>7</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>×</mo>
        <mn>12.5</mn>
      </mrow>
      <mrow>
        <mi>π</mi>
        <mo>×</mo>
        <mn>0.1</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span> ✔</p>
<p><em>r</em> = 5.352 × 10<sup>−3</sup> ✔</p>
<p>5.4 × 10<sup>−3 </sup>«m» ✔</p>
<p> </p>
<p><em>For MP2 accept any SF </em></p>
<p><em>For MP3 accept only 2 SF </em></p>
<p><em>For MP3 accept <strong>ANY</strong> answer given to 2 SF</em></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \frac{{7.2 \times {{10}^{ - 7}} \times 12.5}}{{0.1}}">
  <mi>A</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>7.2</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>12.5</mn>
    </mrow>
    <mrow>
      <mn>0.1</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p><em>r</em> = 5.352 × 10<sup>−3</sup> ✔</p>
<p>5.4 × 10<sup>−3 </sup>«m» ✔</p>
<p> </p>
<p><em>For MP2 accept any SF </em></p>
<p><em>For MP3 accept only 2 SF </em></p>
<p><em>For MP3 accept <strong>ANY</strong> answer given to 2 SF</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>current in lamp = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{24}}">
  <mfrac>
    <mn>5</mn>
    <mrow>
      <mn>24</mn>
    </mrow>
  </mfrac>
</math></span> «= 0.21» «A»</p>
<p><em><strong>OR</strong></em></p>
<p><em>n</em> = 24 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{8}{{5}}">
  <mfrac>
    <mn>8</mn>
    <mrow>
      <mn>5</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p> </p>
<p>so «38.4 and therefore» 38 lamps ✔</p>
<p> </p>
<p><em>Do not award ECF from MP1</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when adding more lamps in parallel the brightness stays the same ✔</p>
<p>when adding more lamps in parallel the pd across each remains the same/at the operating value/24 V ✔</p>
<p>when adding more lamps in parallel the current through each remains the same ✔</p>
<p>lamps can be controlled independently ✔</p>
<p>the pd across each bulb is larger in parallel ✔</p>
<p>the current in each bulb is greater in parallel ✔</p>
<p>lamps will be brighter in parallel than in series ✔</p>
<p>In parallel the pd across the lamps will be the operating value/24 V ✔</p>
<p> </p>
<p><em>Accept converse arguments for adding lamps in series:</em></p>
<p><em>when adding more lamps in series the brightness decreases</em></p>
<p><em>when adding more lamps in series the pd decreases</em></p>
<p><em>when adding more lamps in series the current decreases</em></p>
<p><em>lamps can’t be controlled independently</em></p>
<p><em>the pd across each bulb is smaller in series</em></p>
<p><em>the current in each bulb is smaller in series</em></p>
<p> </p>
<p><em>in series the pd across the lamps will less than the operating value/24 V</em></p>
<p><em>Do not accept statements that only compare the overall resistance of the combination of bulbs.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«as flux linkage change occurs in core, induced emfs appear so» <span style="text-decoration: underline;">current</span> is <span style="text-decoration: underline;">induced</span> ✔</p>
<p>induced currents give rise to resistive forces ✔</p>
<p>eddy currents cause thermal energy losses «in conducting core» ✔</p>
<p>power dissipated by eddy currents is drawn from the primary coil/reduces power delivered to the secondary ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>power = 190 <em><strong>OR</strong> </em>192 «W» ✔</p>
<p>required power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 190 \times \frac{{100}}{{95}}">
  <mo>=</mo>
  <mn>190</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>95</mn>
    </mrow>
  </mfrac>
</math></span> «200 <em><strong>or</strong> </em>202 W» ✔</p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{200}}{{240}} = 0.83">
  <mfrac>
    <mrow>
      <mn>200</mn>
    </mrow>
    <mrow>
      <mn>240</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.83</mn>
</math></span> <em><strong>OR</strong> </em>0.84 «A rms» ✔</p>
<p>peak current = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.83 \times \sqrt 2 ">
  <mn>0.83</mn>
  <mo>×</mo>
  <msqrt>
    <mn>2</mn>
  </msqrt>
</math></span> <em><strong>OR</strong> </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.84 \times \sqrt 2 ">
  <mn>0.84</mn>
  <mo>×</mo>
  <msqrt>
    <mn>2</mn>
  </msqrt>
</math></span>» = 1.2/1.3 «A» ✔</p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A fixed horizontal coil is connected to an ideal voltmeter. A bar magnet is released from rest&nbsp;so that it falls vertically through the coil along the central axis of the coil.</p>
<p style="text-align: center;"><img src=""></p>
<p>The variation with time<em> t</em> of the emf induced in the coil is shown.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum magnitude of the rate of change of flux linked with the coil.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the fundamental SI unit for your answer to (a)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the graph becomes negative.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Part of the graph is above the <em>t</em>-axis and part is below. Outline why the areas between the <em>t</em>-axis and the curve for these two parts are likely to be the same.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the changes to the graph when the magnet is dropped from a lower height above the coil.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«−» 5.0 «mV»  <em><strong>OR</strong>  </em>5.0 × 10<sup>−3</sup> «V» ✓</p>
<p> </p>
<p><em>Accept 5.1</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>kg m<sup>2 </sup>A<sup>−1 </sup>s<sup>−3</sup> ✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>Flux linkage is represented by magnetic field lines through the coil ✓</p>
<p>when magnet has passed through the coil / is moving away ✓</p>
<p>flux «linkage» is decreasing ✓</p>
<p>suitable comment that it is the opposite when above ✓</p>
<p>when the magnet goes through the midpoint the induced emf is zero ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>reference to / states Lenz’s law ✓</p>
<p>when magnet has passed through the coil / is moving away ✓</p>
<p>«coil attracts outgoing S pole so» induced field is downwards ✓</p>
<p>before «coil repels incoming N pole so» induced field is upwards<br><em><strong>OR</strong></em><br>induced field has reversed ✓</p>
<p>when the magnet goes through the midpoint the induced emf is zero ✓</p>
<p> </p>
<p><em><strong>OWTTE</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>area represents the total change in flux «linkage» ✓</p>
<p>the change in flux is the same going in and out ✓</p>
<p>«when magnet is approaching» flux increases to a maximum ✓</p>
<p>«when magnet is receding» flux decreases to zero ✓</p>
<p>«so areas must be the same»</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>magnet moves slower ✓</p>
<p>overall time «for interaction» will be longer ✓</p>
<p>peaks will be smaller ✓</p>
<p>areas will be the same as before ✓</p>
<p> </p>
<p><em>Allow a graphical interpretation for <strong>MP2</strong> as “graph more spread out”</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>ai<br>Well answered, with wrong answers stating 8 for the difference or 3 without realising that the sign does not matter.</p>
<p>aii<br>Very few candidates managed to get the correct fundamental SI unit for V. All kinds of errors were observed, from power errors to the use of C as a fundamental unit instead of A.</p>
<p>bi) Most scored best by marking using an alternative method introduced to the markscheme in standardisation. There were some confused and vague comments. Clear, concise answers were rare.</p>
<p>bii) It was common to see conservation of energy invoked here with suggestions that energy was the area under the graph. Many candidates described the shapes to explain why the areas were the same rather than talking about the physics e.g. one peak is short and fat and the other is tall and thin so they balance out.</p>
<p>c) A surprising number didn't pick up on the fact that the magnet would be moving slower. As a result, they discussed everything happening sooner, i.e. the interaction with the magnet and the coil, and that led onto things happening quicker so peaks being bigger.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The table gives data for Jupiter and three of its moons, including the radius <em>r</em> of each object.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A spacecraft is to be sent from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math> to infinity.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the surface of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>, the gravitational field strength <em>g</em><sub>Io</sub> due to the mass of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>.&nbsp;State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>gravitational</mi><mo>&nbsp;</mo><mi>potential</mi><mo>&nbsp;</mo><mi>due</mi><mo>&nbsp;</mo><mi>to</mi><mo>&nbsp;</mo><mi>Jupiter</mi><mo>&nbsp;</mo><mi>at</mi><mo>&nbsp;</mo><mi>the</mi><mo>&nbsp;</mo><mi>orbit</mi><mo>&nbsp;</mo><mi>of</mi><mo>&nbsp;</mo><mi>Io</mi></mrow><mrow><mo>&nbsp;</mo><mi>gravitational</mi><mo>&nbsp;</mo><mi>potential</mi><mo>&nbsp;</mo><mi>due</mi><mo>&nbsp;</mo><mi>to</mi><mo>&nbsp;</mo><mi>Io</mi><mo>&nbsp;</mo><mi>at</mi><mo>&nbsp;</mo><mi>the</mi><mo>&nbsp;</mo><mi>surface</mi><mo>&nbsp;</mo><mi>of</mi><mo>&nbsp;</mo><mi>Io</mi></mrow></mfrac></math>&nbsp;is about 80.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using (b)(i), why it is not correct to use the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>2</mn><mi>G</mi><mo>×</mo><mtext>mass&nbsp;of&nbsp;Io</mtext></mrow><mtext>radius&nbsp;of&nbsp;Io</mtext></mfrac></msqrt></math>&nbsp;to&nbsp;calculate the speed required for the spacecraft to reach infinity from the surface&nbsp;of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An engineer needs to move a space probe of mass 3600 kg from Ganymede to Callisto.&nbsp;Calculate the energy required to move the probe from the orbital radius of Ganymede&nbsp;to the orbital radius of Callisto. Ignore the mass of the moons in your calculation.&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfenced><mn>2</mn></msup></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn></math><strong>&nbsp;✓</strong></p>
<p>N kg<sup>−1&nbsp;&nbsp;</sup><em><strong>OR</strong>&nbsp;&nbsp;</em>m s<sup>−2</sup><strong>&nbsp; ✓</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>27</mn></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></mfrac></math><strong>&nbsp;&nbsp;<em>AND&nbsp;</em>&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math><strong>&nbsp;</strong>seen<strong> ✓</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>27</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>78</mn></math><strong>&nbsp; ✓</strong></p>
<p><em><br>For <strong>MP1</strong>, potentials can be seen individually or as a ratio.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«this is the escape speed for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math> alone but» gravitational potential / field of Jupiter must be taken into account<strong>&nbsp; ✓</strong></p>
<p><em><strong><br>OWTTE</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>G</mi><msub><mi>M</mi><mtext>Jupiter</mtext></msub><mfenced><mrow><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>88</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>06</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></mrow></mfenced><mo>=</mo><mo>«</mo><mn>5</mn><mo>.</mo><mn>21</mn><mo>×</mo><msup><mn>10</mn><mn>7</mn></msup><mo> </mo><msup><mtext>J kg</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math><strong>&nbsp; ✓</strong></p>
<p>« multiplies by 3600 kg to get » 1.9 × 10<sup>11 </sup>«J»&nbsp;<strong>✓</strong></p>
<p><em><br>Award <strong>[2]</strong> marks if factor of ½ used, taking into account orbital kinetic energies, leading to a final answer of 9.4 x 10<sup>10 </sup>«J».</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>
<p><em>Award <strong>[2] marks</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student strikes a tennis ball that is initially at rest so that it leaves the racquet at a speed of 64 m s<sup>–1</sup>. The ball has a mass of 0.058 kg and the contact between the ball and the racquet lasts for 25 ms.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The student strikes the tennis ball at point P. The tennis ball is initially directed at an angle of 7.00° to the horizontal.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The following data are available.<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Height of P = 2.80 m<br>Distance of student from net = 11.9 m<br>Height of net = 0.910 m<br>Initial speed of tennis ball = 64 m s<sup>-1</sup></span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the average force exerted by the racquet on the ball.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the average power delivered to the ball during the impact.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the time it takes the tennis ball to reach the net.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the tennis ball passes over the net.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine the speed of the tennis ball as it strikes the ground.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">A student models the bounce of the tennis ball to predict the angle<em> θ</em> at which the ball leaves a surface of clay and a surface of grass.</span></p>
<p><img src=""></p>
<p><span style="background-color:#ffffff;">The model assumes</span></p>
<p><span style="background-color:#ffffff;">• during contact with the surface the ball slides.<br>• the sliding time is the same for both surfaces.<br>• the sliding frictional force is greater for clay than grass.<br>• the normal reaction force is the same for both surfaces.</span></p>
<p><span style="background-color:#ffffff;">Predict for the student’s model, without calculation, whether <em>θ</em> is greater for a clay surface <strong>or</strong> for a grass surface.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F = \frac{{\Delta mv}}{{\Delta t}}/m\frac{{\Delta v}}{{\Delta t}}/\frac{{0.058 \times 64.0}}{{25 \times {{10}^{ - 3}}}}">
  <mi>F</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>m</mi>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mi>m</mi>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mn>0.058</mn>
      <mo>×</mo>
      <mn>64.0</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔</span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
  <mi>F</mi>
</math></span></span><em><span style="background-color:#ffffff;"> = </span></em><span style="background-color:#ffffff;">148&nbsp;«N»≈150<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«N</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">» &nbsp;✔</span></span></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 1</strong></em></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = \frac{{\frac{1}{2}m{v^2}}}{t}/\frac{{\frac{1}{2} \times 0.058 \times {{64.0}^2}}}{{25 \times {{10}^{ - 3}}}}">
  <mi>P</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mi>m</mi>
      <mrow>
        <msup>
          <mi>v</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mi>t</mi>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mo>×</mo>
      <mn>0.058</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>64.0</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>25</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp;✔</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 4700/4800">
  <mi>P</mi>
  <mo>=</mo>
  <mn>4700</mn>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>4800</mn>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{W}}">
  <mrow>
    <mtext>W</mtext>
  </mrow>
</math></span>»</span></span><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">&nbsp; <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></span></p>
<p>&nbsp;</p>
<p><span style="background-color:#ffffff;"><em><strong>ALTERNATIVE 2</strong></em></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = {\text{average}}Fv{\text{ / 148}} \times \frac{{64.0}}{2}">
  <mi>P</mi>
  <mo>=</mo>
  <mrow>
    <mtext>average</mtext>
  </mrow>
  <mi>F</mi>
  <mi>v</mi>
  <mrow>
    <mtext>&nbsp;/ 148</mtext>
  </mrow>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>64.0</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></span> <em><strong><span style="background-color:#ffffff;">&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></strong></em></span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 4700/4800">
  <mi>P</mi>
  <mo>=</mo>
  <mn>4700</mn>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>4800</mn>
</math></span>«<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{W}}">
  <mrow>
    <mtext>W</mtext>
  </mrow>
</math></span></span>»</span><span style="background-color:#ffffff;">&nbsp;</span><span style="background-color:#ffffff;"><em><strong><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">&nbsp;</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></strong></em></span></p>
<p><span style="background-color:#ffffff;">&nbsp;</span></p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">horizontal component of velocity is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="64.0 \times \cos 7^\circ&nbsp; = 63.52">
  <mn>64.0</mn>
  <mo>×</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>7</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mn>63.52</mn>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m }}{{\text{s}}^{ - 1}}">
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;&nbsp;✔&nbsp;<br></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = ">
  <mi>t</mi>
  <mo>=</mo>
</math></span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{11.9}}{{63.52}}">
  <mfrac>
    <mrow>
      <mn>11.9</mn>
    </mrow>
    <mrow>
      <mn>63.52</mn>
    </mrow>
  </mfrac>
</math></span>»<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{0}}{\text{.187/0}}{\text{.19}}">
  <mrow>
    <mtext>0</mtext>
  </mrow>
  <mrow>
    <mtext>.187/0</mtext>
  </mrow>
  <mrow>
    <mtext>.19</mtext>
  </mrow>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{s}}">
  <mrow>
    <mtext>s</mtext>
  </mrow>
</math></span>» &nbsp;✔</span></span></span></p>
<p>&nbsp;</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span style="background-color:#ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p><em><span style="background-color:#ffffff;">u<sub>y</sub></span></em>=64sin7/7.80«ms<sup>–1</sup>»&nbsp; <span style="background-color:#ffffff;">✔</span></p>
<p><span style="background-color:#ffffff;">decrease in height = 7.80&nbsp;× 0.187 +&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;× 9.81&nbsp;× 0.187<sup>2 </sup></span>/ 1.63«m» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></p>
<p>final height =&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«2.80 – 1.63</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">»</span> = 1.1/1.2<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«m</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">» &nbsp;✔</span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;">«higher than net so goes over»</span></p>
<p><span style="background-color:#ffffff;"><br><em><strong>ALTERNATIVE 2</strong></em></span></p>
<p>vertical distance to fall to net&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«=2.80 – 0.91</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">» = 1.89«m» &nbsp;✔</span></p>
<p><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">time to fall this distance found using&nbsp;«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.89 = 7.8t + \frac{1}{2} \times 9.81 \times {t^2}">
  <mn>1.89</mn>
  <mo>=</mo>
  <mn>7.8</mn>
  <mi>t</mi>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>9.81</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></span>»</span></p>
<p><span style="font-size:14px;"><span style="text-align:left;color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-variant:normal;font-weight:400;text-decoration:none;display:inline;white-space:normal;float:none;background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span></span> = 0.21<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«s</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">» &nbsp;✔</span></span></span></p>
<p><span style="font-size:14px;"><span style="text-align:left;color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-variant:normal;font-weight:400;text-decoration:none;display:inline;white-space:normal;float:none;background-color:#ffffff;"><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">0.21«s» &gt; 0.187«s» &nbsp;&nbsp;✔</span></span></span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;">«reaches the net before it has fallen far enough so goes over»</span></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span style="background-color:#ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p><span style="background-color:#ffffff;">Initial KE + PE = final KE /</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 0.058 \times {64^2} + 0.058 \times 9.81 \times 2.80 = \frac{1}{2} \times 0.058 \times {v^2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>0.058</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>64</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>0.058</mn>
  <mo>×</mo>
  <mn>9.81</mn>
  <mo>×</mo>
  <mn>2.80</mn>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>0.058</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>v</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> &nbsp;✔</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 64.4">
  <mi>v</mi>
  <mo>=</mo>
  <mn>64.4</mn>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m }}{{\text{s}}^{ - 1}}">
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></span><span style="background-color:#ffffff;"><br></span></p>
<p><span style="background-color:#ffffff;"><br><em><strong>ALTERNATIVE 2</strong></em></span></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_v} = ">
  <mrow>
    <msub>
      <mi>v</mi>
      <mi>v</mi>
    </msub>
  </mrow>
  <mo>=</mo>
</math></span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{7.8}^2} + 2 \times 9.81 \times 2.8} ">
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mn>7.8</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>2</mn>
    <mo>×</mo>
    <mn>9.81</mn>
    <mo>×</mo>
    <mn>2.8</mn>
  </msqrt>
</math></span>» = 10.8«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m }}{{\text{s}}^{ - 1}}">
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;✔</span></span></p>
<p><span style="background-color:#ffffff;"><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \sqrt {{{63.5}^2} + {{10.8}^2}} ">
  <mi>v</mi>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mn>63.5</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10.8</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span>»</span></span></p>
<p><span style="background-color:#ffffff;"><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 64.4">
  <mi>v</mi>
  <mo>=</mo>
  <mn>64.4</mn>
</math></span>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m }}{{\text{s}}^{ - 1}}">
  <mrow>
    <mtext>m&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>» &nbsp;✔</span></span></span></p>
<p><span style="background-color:#ffffff;">&nbsp;</span></p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">so horizontal velocity component at lift off for clay is smaller ✔<br></span></p>
<p><span style="background-color:#ffffff;">normal force is the same so vertical component of velocity is the same ✔<br></span></p>
<p><span style="background-color:#ffffff;">so bounce angle on clay is greater ✔</span><span style="background-color:#ffffff;"><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>At both HL and SL many candidates scored both marks for correctly answering this. A straightforward start to the paper. For those not gaining both marks it was possible to gain some credit for calculating either the change in momentum or the acceleration. At SL some used 64 ms-1 as a value for a and continued to use this value over the next few parts to the question.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered although a significant number of candidates approached it using P = Fv but forgot to divide v by 2 to calculated the average velocity. This scored one mark out of 2.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question scored well at HL but less so at SL. One common mistake was to calculate the direct distance to the top of the net and assume that the ball travelled that distance with constant speed. At SL particularly, another was to consider the motion only when the ball is in contact with the racquet.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were a number of approaches students could take to answer this and examiners saw examples of them all. One approach taken was to calculate the time taken to fall the distance to the top of the net and to compare this with the time calculated in bi) for the ball to reach the net. This approach, which is shown in the mark scheme, required solving a quadratic in t which is beyond the mathematical requirements of the syllabus. This mathematical technique was only required if using this approach and not required if, for example, calculating heights.</p>
<p>A common mistake was to forget that the ball has a vertical acceleration. Examiners were able to award credit/ECF for correct parts of an otherwise flawed method.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This proved difficult for candidates at both HL and SL. Many managed to calculate the final vertical component of the velocity of the ball.</p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>As the command term in this question is ‘predict’ a bald answer of clay was acceptable for one mark. This was a testing question that candidates found demanding but there were some very well-reasoned answers. The most common incorrect answer involved suggesting that the greater frictional force on the clay court left the ball with less kinetic energy and so a smaller angle. At SL many gained the answer that the angle on clay would be greater with the argument that frictional force is greater and so the distance the ball slides is less.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment a beam of electrons with energy 440&thinsp;MeV are incident on oxygen-16 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>O</mtext><mprescripts></mprescripts><mn>8</mn><mn>16</mn></mmultiscripts></mfenced></math>&nbsp;nuclei. The variation with scattering angle of the relative intensity of the scattered electrons&nbsp;is shown.<br><br></p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a property of electrons demonstrated by this experiment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy <em>E</em> of each electron in the beam is about 7 × 10<sup>−11 </sup>J.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The de Broglie wavelength for an electron is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>E</mi></mfrac></math>. Show that the diameter of an oxygen-16 nucleus is about 4 fm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the result in (a)(iii), the volume of a tin-118 <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>Sn</mtext><mprescripts></mprescripts><mn>50</mn><mn>118</mn></mmultiscripts></mfenced></math> nucleus. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>wave properties ✓</p>
<p><em><br>Accept reference to diffraction or interference.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>440 x 10<sup>6</sup> x 1.6 x 10<sup>-19</sup>  <em><strong>OR</strong>  </em>7.0 × 10<sup>-11</sup> «J» ✓</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow><mrow><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow></mfrac></math>  <em><strong>OR </strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>440</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math>  <em><strong>OR </strong> </em>2.8 × 10<sup>-15 </sup>«m» seen ✓</p>
<p>read off graph as 46° ✓</p>
<p>«Use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>=</mo><mfrac><mi>λ</mi><mrow><mi>sin</mi><mi>θ</mi></mrow></mfrac></math>=» 3.9 × 10<sup>-15</sup> m ✓</p>
<p> </p>
<p><em>Accept an angle between 45 and 47 degrees.</em></p>
<p><em>Allow <strong>ECF</strong> from <strong>MP2</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>∝</mo><msup><mi>A</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></math>   <em><strong>OR  </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>∝</mo><mi>A</mi></math> ✓</p>
<p>volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Sn</mtext><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>π</mi><mfenced><mfrac><msub><mi>A</mi><mrow><mi>S</mi><mi>n</mi></mrow></msub><msub><mi>A</mi><mi>O</mi></msub></mfrac></mfenced><msubsup><mi>r</mi><mi>O</mi><mrow><mo> </mo><mn>3</mn></mrow></msubsup></math> or equivalent working ✓</p>
<p>2.3 to 2.5 × 10<sup>-43 </sup>«m<sup>3</sup>»✓</p>
<p>answer to 1 or 2sf ✓</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><msub><mi>R</mi><mtext>o</mtext></msub><mo>×</mo><msup><mi>A</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></math> ✓</p>
<p>volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Sn</mtext><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>π</mi><msup><mi>R</mi><mn>3</mn></msup></math>  <em><strong>OR</strong>  </em>5.9 x 10<sup>-15</sup> seen ✓</p>
<p>8.5 × 10<sup>-43</sup> «m<sup>3</sup>»✓</p>
<p>answer to 1 or 2sf ✓</p>
<p> </p>
<p><em>Although the question expects candidates to work from the oxygen radius found, allow <strong>ALT 2</strong> working from the Fermi radius.</em></p>
<p><em><strong>MP4</strong> is for any answer stated to 1 or 2 significant figures.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>ai) Well answered.</p>
<p>aii) Well answered.</p>
<p>aiii) This was generally well done but quite a few attempted the small angle approximation. Probably worth a mention in the report.</p>
<p>b) Most gained credit from the first alternative solution, trying to use the data as the question intended. There were the inevitable slips and calculator mistakes. Most got the fourth mark.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>