File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 1 HTML/markSceme-HL-paper1html
File size: 27.67 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>The intensity of a wave can be defined as the energy per unit area per unit time. What is the unit of intensity expressed in fundamental SI units?</p>
<p>A.  kg m<sup>−2 </sup>s<sup>−1</sup></p>
<p>B.  kg m<sup>2 </sup>s<sup>−3</sup></p>
<p>C.  kg s<sup>−2</sup></p>
<p>D.  kg s<sup>−3</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The unit analysis in this question proved tricky for many HL candidates, with option A being the most common (incorrect) answer. The high discrimination index suggests that this question was more problematic for weaker candidates.</p>
</div>
<br><hr><br><div class="question">
<p>A student is verifying the equation</p>
<p style="text-align:center;"><span style="background-color:#ffffff;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="x = \frac{{2\lambda Y}}{z}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>λ</mi>
      <mi>Y</mi>
    </mrow>
    <mi>z</mi>
  </mfrac>
</math></span></span></p>
<p style="text-align:left;">The percentage uncertainties are:</p>
<p style="text-align:center;">&nbsp;</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">What is the percentage uncertainty in x?</p>
<p style="text-align:left;">A. 5 %</p>
<p style="text-align:left;">B. 15 %</p>
<p style="text-align:left;">C. 25 %</p>
<p style="text-align:left;">D. 30 %</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was well answered by candidates, as shown by a high difficulty index.</p>
</div>
<br><hr><br><div class="question">
<p>Four particles, two of charge +Q and two of charge −Q, are positioned on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis as shown. A particle P with a positive charge is placed on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis. What is the direction of the net electrostatic force on this particle?</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The uncertainty in reading a laboratory thermometer is 0.5 °C. The temperature of a liquid falls from 20 °C to 10 °C as measured by the thermometer. What is the percentage uncertainty in the change in temperature?</p>
<p>A.  2.5 %</p>
<p>B.  5 %</p>
<p>C.  7.5 %</p>
<p>D.  10 %</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Many candidates failed to recognize that the uncertainty in this error propagation question would affect both the initial and final temperature readings. The most common answer (option B) was incorrect, and only a minority of students correctly selected option D.</p>
</div>
<br><hr><br><div class="question">
<p>What is a correct value for the charge on an electron?</p>
<p>A. 1.60 x 10<sup>–12</sup> μC</p>
<p>B. 1.60 x 10<sup>–15</sup> mC</p>
<p>C. 1.60 x 10<sup>–22</sup> kC</p>
<p>D. 1.60 x 10<sup>–24</sup> MC</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is a correct unit for gravitational potential?</p>
<p>A. m<sup>2 </sup>s<sup>−2</sup></p>
<p>B. J kg</p>
<p>C. m s<sup>−2</sup></p>
<p>D. N m<sup>−1 </sup>kg<sup>−1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color:#ffffff;">A proton has momentum 10<sup>-20</sup> N s and the uncertainty in the position of the proton is 10<sup>-10</sup> m. What is the minimum <strong>fractional</strong> uncertainty in the momentum of this proton?<br></span></p>
<p><span style="background-color:#ffffff;">A. 5 × 10<sup>-25</sup><br></span></p>
<p><span style="background-color:#ffffff;">B. 5 × 10<sup>-15</sup><br></span></p>
<p><span style="background-color:#ffffff;">C. 5 × 10<sup>-5</sup><br></span></p>
<p><span style="background-color:#ffffff;">D. 2 × 10<sup>4</sup></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Over 100 candidates left this blank. It is testing fractional uncertainty and also involves the Heisenberg uncertainty principle.</p>
</div>
<br><hr><br>