File "markSceme-SL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Option C HTML/markSceme-SL-paper3html
File size: 1.63 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>A lamp is located 6.0 m from a screen.</p>
<p><img src=""></p>
<p>Somewhere between the lamp and the screen, a lens is placed so that it produces a real inverted image on the screen. The image produced is 4.0 times larger than the lamp.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the nature of the lens.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance between the lamp and the lens.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the focal length of the lens.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The lens is moved to a second position where the image on the screen is again focused. The lamp–screen distance does not change. Compare the characteristics of this new image with the original image.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>converging/positive/biconvex/plane convex</p>
<p><em>Do not accept convex.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{u} = 4">
  <mfrac>
    <mi>v</mi>
    <mi>u</mi>
  </mfrac>
  <mo>=</mo>
  <mn>4</mn>
</math></span><br><em>Award <strong>[3]</strong> for a bald correct answer.</em></p>
<p><em>v </em>+ <em>u </em>= 6<br><em>Allow <strong>[1]</strong> if the answer is 4.8 «m».</em></p>
<p>so lens is 1.2 «m» from object <em><strong>or</strong></em> u = 1.2 «m»</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{u} + \frac{1}{v} = \frac{1}{f}">
  <mfrac>
    <mn>1</mn>
    <mi>u</mi>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mi>v</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mi>f</mi>
  </mfrac>
</math></span>, so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{1.2}} + \frac{1}{{4.8}} = \frac{1}{f}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>1.2</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>4.8</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mi>f</mi>
  </mfrac>
</math></span>, so» <em>f </em>= 0.96 «m» <em><strong>or</strong></em> 1 «m»</p>
<p><em>Watch for ECF from (b)</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>real AND inverted</p>
<p>smaller OR diminished </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Spherical converging mirrors are reflecting surfaces which are cut out of a sphere. The diagram shows a mirror, where the dot represents the centre of curvature of the mirror.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A ray of light is incident on a converging mirror. On the diagram, draw the reflection of the incident ray shown.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The incident ray shown in the diagram makes a significant angle with the optical axis.</p>
<p>(i) State the aberration produced by these kind of rays.</p>
<p>(ii) Outline how this aberration is overcome.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1 </strong></em></p>
<p>for incident ray, normal drawn which pass through C</p>
<p>reflected ray drawn such as <em>i</em>=<em>r</em></p>
<p><em>i = r by eye <br>If normal is not visibly constructed using C,do not award MP1.<br>If no normal is drawn then grazing angles must be equal for MP2. </em>  </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>drawn second ray through C, parallel to incident ray  </p>
<p>adds focal plane and draws reflected ray so that it meets 2nd ray at focal plane</p>
<p><em>Focal plane position by eye, half-way between C and mirror.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>spherical «aberration»</p>
<p> </p>
<p>ii</p>
<p>using parabolic mirror<br><em><strong>OR<br></strong></em>reducing the aperture</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Optical fibres can be classified, based on the way the light travels through them, as single-mode or multimode fibres. Multimode fibres can be classified as step-index or graded-index fibres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the main physical difference between step-index and graded-index fibres.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why graded-index fibres help reduce waveguide dispersion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>step-index fibres have constant «core» refracting index, graded index fibres have refracting index that reduces/decreases/gets smaller away from axis<br><em>OWTTE but refractive index is variable is not enough for the mark.<br>Award the mark if these ideas are evident in the answer to 14(b).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«in graded index fibres» rays travelling longer paths travel faster</p>
<p>so that rays travelling different paths arrive at same/similar time</p>
<p><em>Ignore statements about different colours/wavelengths. </em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Both optical refracting telescopes and compound microscopes consist of two converging lenses.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare the focal lengths needed for the objective lens in an refracting telescope and in a compound microscope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student has four converging lenses of focal length 5, 20, 150 and 500 mm. Determine the maximum magnification that can be obtained with a refracting telescope using <strong>two</strong> of the lenses.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are optical telescopes which have diameters about 10 m. There are radio telescopes with single dishes of diameters at least 10 times greater.</p>
<p>(i) Discuss why, for the same number of incident photons per unit area, radio telescopes need to be much larger than optical telescopes.</p>
<p>(ii) Outline how is it possible for radio telescopes to achieve diameters of the order of a thousand kilometres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows a schematic view of a compound microscope with the focal points <em>f</em><sub>o</sub> of the objective lens and the focal points <em>f</em><sub>e</sub> of the eyepiece lens marked on the axis.</p>
<p><img src=""></p>
<p>On the diagram, identify with an X, a suitable position for the image formed by the objective of the compound microscope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Image 1 shows details on the petals of a flower under visible light. Image 2 shows the same flower under ultraviolet light. The magnification is the same, but the resolution is higher in Image 2.</p>
<p><img src=""></p>
<p>Explain why an ultraviolet microscope can increase the resolution of a compound microscope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>fOBJECTIVE for telescope &gt; fOBJECTIVE for microscope <br>OR </p>
<p>fOBJECTIVE for telescope&gt; fEYEPIECE for telescope but fOBJECTIVE for microscope&lt; fEYEPIECE for microscope</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{500}}{5}">
  <mfrac>
    <mrow>
      <mn>500</mn>
    </mrow>
    <mn>5</mn>
  </mfrac>
</math></span><br><em><strong>OR</strong></em><br>100 times</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i <br>RF photons have smaller energy, so signal requires larger dish</p>
<p>RF waves have greater wavelength, good resolution requires larger dish <br><em>Must see both, reason and explanation. </em><br><br>ii <br>use of an array of dishes/many mutually connected antennas «so the effective diameter equals to the distance between the furthest antennas» <br><br></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>between <em>f</em><sub>e</sub> and eyepiece lens, on its left</p>
<p><img src=""></p>
<p><em>Accept any clear indication of the image (eg: X, arrow, dot).</em><br><em>Accept positions which are slightly off axis.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>resolution improves as wavelength decreases AND wavelength of UV is smaller<br>OR<br> gives resolution formula AND adds that λ is smaller for UV </p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram is a partially-completed ray diagram for a compound microscope that consists of two thin converging lenses. The objective lens L<sub>1</sub> has a focal length&nbsp;of 3.0 cm. The object is placed 4.0 cm to the left of L<sub>1</sub>. The final virtual image is formed at the near point of the observer, a distance of 24 cm from the eyepiece lens L<sub>2</sub>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-26_om_15.46.06.png" alt="M17/4/PHYSI/SP3/ENG/TZ1/7a"></p>
</div>

<div class="specification">
<p>Two converging lenses are used to make an astronomical telescope. The focal length of the objective is 85.0 cm and that of the eyepiece is 2.50 cm. The telescope is used to form a final image of the Moon at infinity.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a virtual image.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the image of the object formed by L<sub>1</sub> is 12 cm to the right of L<sub>1</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The distance between the lenses is 18 cm. Determine the focal length of L<sub>2</sub>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram draw rays to locate the focal point of L<sub>2</sub>. Label this point F.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why, for the final image to form at infinity, the distance between the lenses must be 87.5 cm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The angular diameter of the Moon at the naked eye is 7.8 × 10<sup>–3</sup> rad.</p>
<p>Calculate the angular diameter of the final image of the Moon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By reference to chromatic aberration, explain <strong>one</strong> advantage of a reflecting telescope over a refracting telescope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>an image formed by extensions of rays, not rays themselves<br><em><strong>OR</strong></em><br>an image that cannot be projected on a screen</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{v} = \frac{1}{{3.0}} - \frac{1}{{4.0}}">
  <mfrac>
    <mn>1</mn>
    <mi>v</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>3.0</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>4.0</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>«<em>v</em> = 12 cm»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>u</em> = 18&nbsp;– 12 = 6.0&nbsp;«cm»</p>
<p><em>v</em> =&nbsp;–24&nbsp;«cm»</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{f} = \frac{1}{{6.0}} - \frac{1}{{24}} \Rightarrow ">
  <mfrac>
    <mn>1</mn>
    <mi>f</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>6.0</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>24</mn>
    </mrow>
  </mfrac>
  <mo stretchy="false">⇒</mo>
</math></span>» <em>f</em> = 8.0&nbsp;«cm»</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2 max]</strong> for answer of 4.8 cm.</em><br><em>Minus sign required for MP2.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line parallel to principal axis from intermediate image meeting eyepiece lens at P</p>
<p>line from arrow of final image to P intersecting principal axis at F</p>
<p><img src=""></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>object is far away so intermediate image forms at focal plane of objective</p>
<p>for final image at infinity object must also be at focal point of eyepiece</p>
<p>«hence 87.5 cm»</p>
<p>&nbsp;</p>
<p><em>No mark for simple addition of focal lengths without explanation.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>angular magnification = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{85.0}}{{2.50}}">
  <mfrac>
    <mrow>
      <mn>85.0</mn>
    </mrow>
    <mrow>
      <mn>2.50</mn>
    </mrow>
  </mfrac>
</math></span> = 34</p>
<p>angular diameter 3.4 × 7.8 × 10<sup>−3</sup> = 0.2652 ≈ 0.27 «rad»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chromatic aberration is the dependence of refractive index on wavelength</p>
<p>but mirrors rely on reflection<br><em><strong>OR</strong></em><br>mirrors do not involve refraction</p>
<p>«so do not suffer chromatic aberration»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows planar wavefronts incident on a converging lens. The focal point of the&nbsp;lens is marked with the letter F.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_08.02.15.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/08"></p>
<p>Wavefront X is incomplete. Point Q and point P lie on the surface of the lens and the&nbsp;principal axis.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, sketch the&nbsp;part of wavefront X that is inside the lens.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, sketch the wavefront in air that passes through point P. Label this wavefront Y.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain your sketch in (a)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two parallel rays are incident on a system consisting of a diverging lens of&nbsp;focal length 4.0 cm and a converging lens of focal length 12 cm.</p>
<p><img src=""></p>
<p>The rays emerge parallel from the converging lens. Determine the distance between&nbsp;the two lenses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>line of correct curvature as shown</p>
<p><img src=""></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line of approximately correct curvature as shown</p>
<p><img src=""></p>
<p>&nbsp;</p>
<p><em>Judged by eye.</em></p>
<p><em>Allow second wavefront Y, to have “passed” P as this is how this&nbsp;question is being interpreted by some.</em></p>
<p><em>Ignore any waves beyond Y.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wave travels slower in glass than in air<br><em><strong>OR</strong></em><br>RI greater for glass<br><br>wavelength less in glass than air</p>
<p>hence wave from Q will cover a shorter distance «than in air»&nbsp;causing the curvature shown</p>
<p>&nbsp;</p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>realization that the two lenses must have a common focal point</p>
<p>distance is 12 – 4.0 =&nbsp;8.0 «cm»</p>
<p>&nbsp;</p>
<p><em>Accept MP1 from a separate diagram or a sketch on&nbsp;the original diagram.</em></p>
<p><em>A valid reason from MP1 is expected.</em></p>
<p><em>Award <strong>[1 max]</strong> for a bald answer of 12 – 4 =&nbsp;8 «cm».</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Communication signals are transmitted through optic fibres using infrared radiation.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> advantages of optic fibres over coaxial cables for these transmissions.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why infrared radiation rather than visible light is used in these transmissions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A signal with an input power of 15 mW is transmitted along an optic fibre which has an attenuation per unit length of 0.30 dB<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>km<sup>–1</sup>. The power at the receiver is 2.4 mW.</p>
<p>Calculate the length of the fibre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain why it is an advantage for the core of an optic fibre to be&nbsp;extremely thin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>longer distance without amplification</p>
<p>signal cannot easily be interfered with</p>
<p>less noise</p>
<p>no cross talk</p>
<p>higher data transfer rate</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>infrared radiation suffers lower attenuation</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>loss = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10\log \frac{{2.4}}{{15}}">
  <mn>10</mn>
  <mi>log</mi>
  <mo>⁡</mo>
  <mfrac>
    <mrow>
      <mn>2.4</mn>
    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp;«= −7.959 dB»</p>
<p>length =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7.959}}{{0.30}} = ">
  <mfrac>
    <mrow>
      <mn>7.959</mn>
    </mrow>
    <mrow>
      <mn>0.30</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 26.53 ≈ 27&nbsp;«km»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a thin core means that rays follow essentially the same path / OWTTE</p>
<p>and so waveguide (modal) dispersion is minimal / OWTTE</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two converging lenses placed a distance 90 cm apart are used as a simple astronomical&nbsp;refracting telescope at normal adjustment. The angular magnification of this arrangement&nbsp;is 17.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the focal length of each lens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The telescope is used to form an image of the Moon. The angle subtended by the&nbsp;image of the Moon at the eyepiece is 0.16 rad. The distance to the Moon is 3.8 x&nbsp;10<sup>8</sup> m.&nbsp;Estimate the diameter of the Moon.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> advantages of the use of satellite-borne telescopes compared to&nbsp;Earth-based telescopes.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>states <em>f</em><sub>o</sub> +&nbsp;<em>f</em><sub>e</sub> =&nbsp;90 <em><strong>AND</strong> </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{f_{\text{o}}}}}{{{f_{\text{e}}}}} = 17">
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>f</mi>
          <mrow>
            <mtext>o</mtext>
          </mrow>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>f</mi>
          <mrow>
            <mtext>e</mtext>
          </mrow>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>17</mn>
</math></span></p>
<p>solves to give <em>f</em><sub>o</sub>&nbsp;= 85 <em><strong>AND</strong> f</em><sub>e</sub>&nbsp;= 5 «cm»</p>
<p>&nbsp;</p>
<p><em>Both needed.</em></p>
<p><em>Both needed.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>angle subtended by Moon is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.16}}{{17}} = 0.0094">
  <mfrac>
    <mrow>
      <mn>0.16</mn>
    </mrow>
    <mrow>
      <mn>17</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.0094</mn>
</math></span>&nbsp;«rad»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0094 = \frac{D}{{3.8 \times {{10}^8}}}">
  <mn>0.0094</mn>
  <mo>=</mo>
  <mfrac>
    <mi>D</mi>
    <mrow>
      <mn>3.8</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p><em>D</em> = 3.6 x 10<sup>6&nbsp;</sup>«m»</p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1.</em></p>
<p><em>Allow <strong>[2]</strong> for an answer of 6.1 x 10<sup>7</sup>&nbsp;«m» if the factor of&nbsp;17 is missing in MP1.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>operation day and night</p>
<p>operation at all wavelengths/no atmospheric absorption</p>
<p>operation without atmospheric turbulence/light pollution</p>
<p>&nbsp;</p>
<p><em>Accept any other sensible advantages.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of monochromatic light from infinity is incident on a converging lens A. The diagram shows three wavefronts of the light and the focal point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> of the lens.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the diagram the three wavefronts after they have passed through the lens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lens A has a focal length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>cm</mi></math>. An object is placed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>50</mn><mo> </mo><mi>cm</mi></math> to the left of A. Show by calculation that a screen should be placed about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi mathvariant="normal">m</mi></math> from A to display a focused image.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The screen is removed and the image is used as the object for a second diverging lens B, to form a final image. Lens B has a focal length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>cm</mi></math> and the final real image is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>cm</mi></math> from the lens. Calculate the distance between lens A and lens B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total magnification of the object by the lens combination.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">wavefront separation identical and equal to separation before the lens </span><span class="fontstyle2">✓<br></span></p>
<p><span class="fontstyle0">wavefronts converging, approximately centered on </span><span class="fontstyle3"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> </span><span class="fontstyle2">✓</span></p>
<p><img src=""></p>
<p>&nbsp;</p>
<p><em><span class="fontstyle0">By eye.</span></em></p>
<p><em><span class="fontstyle0">Dotted construction lines are not required, allow wavefronts to extend beyond or be inside the dotted lines here.</span></em></p>
<p><em><span class="fontstyle0">Allow </span><strong><span class="fontstyle2">[1 max] </span></strong><span class="fontstyle0">if only two wavefronts drawn.</span></em>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>v</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mo>.</mo><mn>00</mn></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mo>.</mo><mn>50</mn></mrow></mfrac></math>&nbsp;✓</span></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>36</mn><mo>.</mo><mn>0</mn><mo>&nbsp;</mo><mo>«</mo><mi>cm</mi><mo>»</mo></math>&nbsp;✓</span></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">A</mi><mo>:</mo><mo> </mo><mfrac><mn>1</mn><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mi>u</mi></mfrac></math>&nbsp;✓</span></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>&nbsp;</mo><mo>«</mo><mi>cm</mi><mo>»</mo><mo>&nbsp;</mo></math>&nbsp;✓</span></p>
<p><span class="fontstyle0">distance necessary =</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&nbsp;</mo><mo>«</mo><mn>36</mn><mo>.</mo><mn>0</mn><mo>-</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>=</mo><mo>»</mo><mn>34</mn><mo>.</mo><mn>4</mn><mo>&nbsp;</mo><mo>«</mo><mi>cm</mi><mo>»</mo></math> <span class="fontstyle4">✓</span></p>
<p>&nbsp;</p>
<p><em><span class="fontstyle0">Allow </span><strong><span class="fontstyle2">[2 max] </span></strong><span class="fontstyle0">for ECF for no negative in MP1. Gives <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mn mathvariant="italic">2</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">7</mn></math> and distance of&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">38</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">7</mn><mo>«</mo><mi>cm</mi><mo>»</mo></math></em></p>
<p><em><span class="fontstyle0">Allow ECF from (b) in MP3.EG use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">0</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">4</mn><mo mathvariant="italic"> </mo><mi>m</mi><mo mathvariant="italic">/</mo><mn mathvariant="italic">40</mn><mo mathvariant="italic"> </mo><mi>c</mi><mi>m</mi></math>.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mfrac><mi>i</mi><mi>o</mi></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>36</mn></mrow><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfrac><mo>&nbsp;</mo></math>&nbsp;for A or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>8</mn></mrow><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></mfrac></math>&nbsp;for B»</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi mathvariant="normal">A</mi></msub><mo>=</mo><mo>«</mo><mo>–</mo><mo>»</mo><mn>8</mn></math>&nbsp;&nbsp;<em><strong>OR</strong></em>&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi mathvariant="normal">B</mi></msub><mo>=</mo><mo>«</mo><mo>+</mo><mo>»</mo><mn>5</mn></math>&nbsp;✓</p>
<p>total magnification&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>«</mo><mo>–</mo><mo>»</mo><mo>&nbsp;</mo><mn>40</mn></math>&nbsp;✓</p>
<p>&nbsp;</p>
<p><em><span class="fontstyle0">Allow </span><strong><span class="fontstyle2">[2] </span></strong><span class="fontstyle0">marks for a bald correct answer<br></span></em></p>
<p><em><span class="fontstyle0">Allow ECF from (b) and (c).<br></span></em></p>
<p><em><span class="fontstyle0">Eg if </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mn mathvariant="italic">2</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">7</mn><mo mathvariant="italic"> </mo><mi>c</mi><mi>m</mi></math> <span class="fontstyle0">in (c) then </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi mathvariant="italic">B</mi></msub><mo mathvariant="italic">=</mo><mn mathvariant="italic">3</mn></math><span class="fontstyle0"> and total <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo mathvariant="italic">=</mo><mn mathvariant="italic">24</mn></math></span></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The graphs show the variation with time of the intensity of a signal that is being&nbsp;transmitted through an optic fibre. Graph 1 shows the input signal to the fibre and&nbsp;Graph 2 shows the output signal from the fibre. The scales of both graphs are&nbsp;identical.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows a ray of light in air that enters the core of an optic fibre.</p>
<p><img src=""></p>
<p>The ray makes an angle <em>A</em> with the normal at the air–core boundary. The refractive&nbsp;index of the core is 1.52 and that of the cladding is 1.48.</p>
<p>Determine the largest angle <em>A</em> for which the light ray will stay within the core of&nbsp;the fibre.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the features of the output signal that indicate the presence of attenuation&nbsp;and dispersion.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The length of the optic fibre is 5.1 km. The input power of the signal is 320 mW.&nbsp;The output power is 77 mW. Calculate the attenuation per unit length of the fibre&nbsp;in dB<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>km<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>calculation of critical angle at core–cladding boundary «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.52 \times \sin {\theta _{\text{C}}} = 1.48">
  <mn>1.52</mn>
  <mo>×</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mrow>
    <msub>
      <mi>θ</mi>
      <mrow>
        <mtext>C</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>1.48</mn>
</math></span>» <em>θ</em><sub>C </sub>= 76.8<sup>º</sup></p>
<p>refraction angle at air–core boundary 90<sup>º&nbsp;</sup>–&nbsp;76.8<sup>º</sup> = 13.2<sup>º</sup></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.52 \times \sin 13.2^\circ &nbsp;= \;\sin A">
  <mn>1.52</mn>
  <mo>×</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>13.2</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mspace width="thickmathspace"></mspace>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>A</mi>
</math></span>» <em>A</em>&nbsp;= 20.3<sup>º</sup></p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1 to MP2 to MP3.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>attenuation:</em> output signal has smaller area</p>
<p><em>dispersion:</em> output signal is wider than input signal</p>
<p>&nbsp;</p>
<p><em>OWTTE</em></p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attenuation = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10\log \frac{I}{{{I_0}}} = 10\log \frac{{77}}{{320}} = ">
  <mn>10</mn>
  <mi>log</mi>
  <mo>⁡</mo>
  <mfrac>
    <mi>I</mi>
    <mrow>
      <mrow>
        <msub>
          <mi>I</mi>
          <mn>0</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>10</mn>
  <mi>log</mi>
  <mo>⁡</mo>
  <mfrac>
    <mrow>
      <mn>77</mn>
    </mrow>
    <mrow>
      <mn>320</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>»&nbsp;«–» 6.2 «dB»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 6.2}}{{5.1}}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>6.2</mn>
    </mrow>
    <mrow>
      <mn>5.1</mn>
    </mrow>
  </mfrac>
</math></span> =&nbsp;«–» 1.2 «dB<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>km<sup>–1</sup>»</p>
<p>&nbsp;</p>
<p><em>Allow intensity ratio to be inverted.</em></p>
<p><em>Allow ECF from MP1 to MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A magnifying glass is constructed from a thin converging lens.</p>
</div>

<div class="specification">
<p>A converging lens can also be used to produce an image of a distant object. The base&nbsp;of the object is positioned on the principal axis of the lens at a distance of 10.0 m from&nbsp;the centre of the lens. The lens has a focal length of 2.0 m.</p>
</div>

<div class="specification">
<p>The object is replaced with an L shape that is positioned 0.30 m vertically above&nbsp;the principal axis as shown. A screen is used to form a focused image of part of&nbsp;the L shape. Two points P and Q on the base of the L shape and R on its top,&nbsp;are indicated on the diagram. Point Q is 10.0 m away from the same lens as used in part (b).</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a ray diagram to show how the magnifying glass produces an upright image.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the maximum possible distance from an object to the lens in order for the lens to produce an upright image.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the position of the image.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>three</strong> characteristics of the image.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw <strong>two</strong> rays to locate the point Q′ on the image that corresponds to point Q on the L shape.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the vertical distance of point Q′ from the principal axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A screen is positioned to form a focused image of point Q. State the direction, relative to Q, in which the screen needs to be moved to form a focused imaged of point R.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The screen is now correctly positioned to form a focused image of point R. However, the top of the L shape looks distorted. Identify and explain the reason for this distortion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>with object placed between lens and focus</p>
<p>two rays correctly drawn</p>
<p><img src=""></p>
<p><em>Backwards extrapolation of refracted rays can be dashes or solid lines</em></p>
<p><em>Do not penalize extrapolated rays which would meet beyond the edge of page</em></p>
<p><em>Image need not be shown</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«just less than» the focal length <em><strong>or</strong> f</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{10}} + \frac{1}{v} = \frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mi>v</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p><em>v</em> = 2.5 «m»</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>real, smaller, inverted</p>
<p><em>All three required — OWTTE</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two correct rays coming from Q</p>
<p>locating Q′ below the main axis <em><strong>AND</strong> </em>beyond <em>f</em> to the right of lens <em><strong>AND</strong> </em>at intercept of rays</p>
<p><em>Allow any <strong>two</strong> of the three conventional rays.</em></p>
<p><img src=""></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><strong>OR</strong></em></p>
<p>2.5 <em><strong>or</strong></em> 10 × 0.3 «m»</p>
<p>«–» 0.075 «m»</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>towards Q</p>
<p><em>Accept move to the left</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>spherical aberration</p>
<p>top of the shape «R» is far from axis so no paraxial rays</p>
<p><em>For MP2 accept rays far from the centre converge at different points</em></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the meaning of normal adjustment for a compound microscope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a ray diagram to find the position of the images for both lenses in the compound microscope at normal adjustment. The object is at O and the focal lengths of the objective and eyepiece lenses are shown.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the final image lies at the near point </span><span class="fontstyle2">«</span><span class="fontstyle0">often assumed to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo> </mo><mi>cm</mi></math></span><span class="fontstyle2">» </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">any 2 correct rays from O for objective lens </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle2"><br></span><span class="fontstyle0">forming an intermediate image at approximate position shown<br></span><span class="fontstyle3"><em><strong>OR</strong></em><br></span><span class="fontstyle0">use of image from objective lens as object for eyepiece lens </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle2"><br></span><span class="fontstyle0">any 2 correct rays for eyepiece lens from intermediate image </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">ray extension to form a final image </span><span class="fontstyle2">✓</span></p>
<p><img src=""></p>
<p> </p>
<p><em><span class="fontstyle0">Allow ECF for MP2, MP3 &amp; MP4 for badly drawn rays.</span></em></p>
<p><em><span class="fontstyle0">MP4 allow final image to be off the page</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An optic fibre of length 185 km has an attenuation of 0.200 dB km<sup>–1</sup>. The input power to&nbsp;the cable is 400.0 μW. The output power from the cable must not fall below 2.0 μW.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An optic fibre of refractive index 1.4475 is surrounded by air. The critical angle for&nbsp;the core – air boundary interface is 44°. Suggest, with a calculation, why the use of&nbsp;cladding with refractive index 1.4444 improves the performance of the optic fibre.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum attenuation allowed for the signal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An amplifier can increase the power of the signal by 12 dB. Determine the&nbsp;minimum number of amplifiers required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation with wavelength of the refractive index of the glass&nbsp;from which the optic fibre is made.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src="images/Schermafbeelding_2018-08-13_om_09.07.29.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/10.b.ii"></p>
<p>Two light rays enter the fibre at the same instant along the axes. Ray A has a&nbsp;wavelength of <em>λ</em><sub>A</sub> and ray B has a wavelength of <em>λ</em><sub>B</sub>. Discuss the effect that the&nbsp;difference in wavelength has on the rays as they pass along the fibre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In many places clad optic fibres are replacing copper cables. State <strong>one </strong>example of&nbsp;how fibre optic technology has impacted society.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>sin&nbsp;<em>c</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.4444}}{{1.4475}}">
  <mfrac>
    <mrow>
      <mn>1.4444</mn>
    </mrow>
    <mrow>
      <mn>1.4475</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp;<strong><em>or</em></strong>&nbsp;sin&nbsp;<em>c</em> =&nbsp;0.9978</p>
<p>critical angle = 86.2<strong>«</strong>°<strong>»</strong></p>
<p>with cladding only rays travelling nearly parallel to fibre axis are transmitted</p>
<p><strong><em>OR</em></strong></p>
<p>pulse broadening/dispersion will be reduced</p>
<p>&nbsp;</p>
<p><em>OWTTE</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attenuation =&nbsp;<strong>«</strong>10 log<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{I}{{{I_0}}}">
  <mfrac>
    <mi>I</mi>
    <mrow>
      <mrow>
        <msub>
          <mi>I</mi>
          <mn>0</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong>&nbsp;= 10 log<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.0 \times {{10}^{ - 6}}}}{{400 \times {{10}^{ - 6}}}}">
  <mfrac>
    <mrow>
      <mn>2.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>400</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>attenuation =&nbsp;<strong>«</strong>–<strong>»</strong>23<strong> «</strong>dB<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Accept 10 log</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{400}}{{2.0}}">
  <mfrac>
    <mrow>
      <mn>400</mn>
    </mrow>
    <mrow>
      <mn>2.0</mn>
    </mrow>
  </mfrac>
</math></span><em>&nbsp;for first marking point</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>185 ×&nbsp;0.200 = 37 loss over length of cable</p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{37 - 23}}{{12}}">
  <mfrac>
    <mrow>
      <mn>37</mn>
      <mo>−</mo>
      <mn>23</mn>
    </mrow>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
</math></span> = 1.17<strong>»</strong>&nbsp;so two amplifiers are sufficient</p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mention of material dispersion</p>
<p>mention that rays become separated in time</p>
<p><strong><em>OR</em></strong></p>
<p>mention that ray A travels slower/arrives later than ray B</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>high bandwidth/data transfer rates</p>
<p>low distortion/Low noise/Faithful reproduction</p>
<p>high security</p>
<p>fast <strong>«</strong>fibre<strong>» </strong>broadband/internet</p>
<p>high quality optical audio</p>
<p>medical endoscopy</p>
<p>&nbsp;</p>
<p><em>Allow any other verifiable sensible advantage</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A ray of light travelling in an optic fibre undergoes total internal reflection at point P.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.49.40.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/09"></p>
<p>The refractive index of the core is 1.56 and that of the cladding 1.34.</p>
</div>

<div class="specification">
<p>The input signal in the fibre has a power of 15.0 mW and the attenuation per unit length is 1.24 dB km<sup>–1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the critical angle at the core−cladding boundary.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The use of optical fibres has led to a revolution in communications across the globe. Outline <strong>two </strong>advantages of optical fibres over electrical conductors for the purpose of data transfer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the axes an output signal to illustrate the effect of waveguide dispersion.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the power of the output signal after the signal has travelled a distance of 3.40 km in the fibre.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the use of a graded-index fibre will improve the performance of this fibre optic system.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>sin <em>c</em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.34}}{{1.56}}">
  <mfrac>
    <mrow>
      <mn>1.34</mn>
    </mrow>
    <mrow>
      <mn>1.56</mn>
    </mrow>
  </mfrac>
</math></span><strong>»</strong></p>
<p><em>c</em> = 59.2<strong>«</strong>°<strong>»</strong>&nbsp;</p>
<p>&nbsp;</p>
<p><em>Accept values in the range: 59.0 to 59.5.</em></p>
<p><em>Accept answer 1.0 rad.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>optic fibres are not susceptible to earthing problems</p>
<p>optic fibres are very thin and so do not require the physical space of electrical cables</p>
<p>optic fibres offer greater security as the lines cannot be tapped</p>
<p>optic fibres are not affected by external electric/magnetic fields/interference</p>
<p>optic fibres have lower attenuation than electrical conductors/require less energy</p>
<p>the bandwidth of an optic fibre is large and so it can carry many communications at once/in a shorter time interval/faster data transfer</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a signal that is wider and lower, not necessarily rectangular, but not a larger area</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attenuation = –1.24 ×&nbsp;3.4&nbsp;<strong>«</strong>= –4.216 dB<strong>»</strong></p>
<p>–4.216 = 10 log<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{I}{{15}}">
  <mfrac>
    <mi>I</mi>
    <mrow>
      <mn>15</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><em>I</em> =&nbsp;5.68 <strong>«</strong>mW<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Need negative attenuation for MP1, may be shown in MP2.</em></p>
<p><em>For mp3 answer must be less than 15 mW (even with ECF) to earn mark.</em></p>
<p><em>Allow </em><strong><em>[3] </em></strong><em>for BCA.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>refractive index near the edge of the core is less than at the centre</p>
<p>speed of rays which are reflected from the cladding are greater than the speed of rays which travel along the centre of the core</p>
<p>the time difference for the rays that reflect from the cladding layer compared to those that travel along the centre of the core is less</p>
<p><strong><em>OR</em></strong></p>
<p>the signal will remain more compact/be less spread out/dispersion is lower</p>
<p>bit rate of the system may be greater</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The refractive index of glass decreases with increasing wavelength. The diagram shows&nbsp;rays of light incident on a converging lens made of glass. The light is a mixture of red and&nbsp;blue light.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw lines to show the rays after they have refracted through the lens. Label the refracted red rays with the letter R and the refracted blue rays with the letter B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the refracted rays in (a) are modified when the converging lens is&nbsp;replaced by a diverging lens.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state how the defect of the converging lens in (a) may be corrected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>each incident ray shown splitting into two ✔</p>
<p>each pair symmetrically intersecting each other on principal axis ✔</p>
<p>for red, intersection further to the right ✔</p>
<p><img src=""></p>
<p><em>For MP3, at least one of the rays must be labelled.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rays diverge after passing through lens</p>
<p><em><strong>OR</strong></em></p>
<p>the extension of the rays will intersect the principal axis on the side of incident rays/as if they were coming from the focal point/points in the left side/OWTTE ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>by placing a diverging lens next to the converging lens</p>
<p><em><strong>OR</strong></em></p>
<p>make an achromatic doublet ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram represents a simple optical astronomical reflecting telescope with the path of&nbsp;some light rays shown.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with the letter X, the position of the focus of the primary mirror.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This arrangement using the secondary mirror is said to increase the focal length of the&nbsp;primary mirror. State why this is an advantage.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between this mounting and the Newtonian mounting.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A radio telescope also has a primary mirror. Identify <strong>one </strong>difference in the way radiation&nbsp;from this primary mirror is detected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>where the extensions of the reflected rays from the primary mirror would meet, with construction lines</p>
<p>&nbsp;</p>
<p><em>eg:</em></p>
<p><img src="images/Schermafbeelding_2018-08-13_om_08.46.36.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/09.a/M"></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>greater magnification</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Newtonian mount has</p>
<p>plane/not curved <strong>«</strong>secondary<strong>» </strong>mirror</p>
<p><strong>«</strong>secondary<strong>» </strong>mirror at angle/45° to axis</p>
<p>eyepiece at side/at 90° to axis</p>
<p>mount shown is Cassegrain</p>
<p>&nbsp;</p>
<p><em>OWTTE</em></p>
<p><em>Accept these marking points in diagram form</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>waves collected above mirror/dish</p>
<p>waves collected at the focus of the mirror/dish</p>
<p>waves detected by radio receiver/antenna</p>
<p>waves converted to electrical signals</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The refractive index <span style="display: inline !important; float: none; background-color: #ffffff; color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span></span> of a material is the ratio of the speed of light in a vacuum <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>, to the speed of light in the material <span style="display: inline !important; float: none; background-color: #ffffff; color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = \frac{c}{v}">
  <mi>n</mi>
  <mo>=</mo>
  <mfrac>
    <mi>c</mi>
    <mi>v</mi>
  </mfrac>
</math></span>.<br></span></p>
<p><span style="background-color: #ffffff;">The speed of light in a vacuum <span style="display: inline !important; float: none; background-color: #ffffff; color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span></span> is 2.99792 × 10<sup>8</sup> m s<sup>-1</sup>. The following data are available for the refractive indices of the fibre core for two wavelengths of light:</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Outline the differences between step-index and graded-index optic fibres.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine the difference between the speed of light corresponding to these two wavelengths in the core glass.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">An input signal to the fibre consists of wavelengths that range from 1299 nm to 1301 nm. The diagram shows the variation of intensity with time of the input signal.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Sketch, on the axes, the variation of signal intensity with time after the signal has travelled a long distance along the fibre.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Explain the shape of the signal you sketched in (b)(ii).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">A signal consists of a series of pulses. Outline how the length of the fibre optic cable limits the time between transmission of pulses in a practical system.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">refractive index of step index fibre is constant ✔<br></span></p>
<p><span style="background-color:#ffffff;">refractive index of graded index fibre decreases with distance from axis/centre ✔<br></span></p>
<p><span style="background-color:#ffffff;">graded index fibres have less dispersion ✔<br></span></p>
<p><span style="background-color:#ffffff;">step index fibre: path of rays is in a zig-zag manner ✔<br></span></p>
<p><span style="background-color:#ffffff;">graded index fibre: path of rays is in curved path ✔</span><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><br></span></span></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">For MP2 do not accept vague statements such as “index increases/varies with distance from centre”.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \frac{c}{n} = {v_{1299}} = \frac{{2.99792 \times {{10}^8}}}{{1.45061}} = 2.06666 \times {10^8}">
  <mi>v</mi>
  <mo>=</mo>
  <mfrac>
    <mi>c</mi>
    <mi>n</mi>
  </mfrac>
  <mo>=</mo>
  <mrow>
    <msub>
      <mi>v</mi>
      <mrow>
        <mn>1299</mn>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2.99792</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.45061</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>2.06666</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>8</mn>
    </msup>
  </mrow>
</math></span> «ms<sup>–1</sup>» <em><strong>AND</strong></em></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_{1301}} = \frac{{2.99792 \times 10{}^8}}{{1.45059}} = 2.06669 \times {10^8}">
  <mrow>
    <msub>
      <mi>v</mi>
      <mrow>
        <mn>1301</mn>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2.99792</mn>
      <mo>×</mo>
      <mn>10</mn>
      <msup>
        <mrow>

        </mrow>
        <mn>8</mn>
      </msup>
    </mrow>
    <mrow>
      <mn>1.45059</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>2.06669</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>8</mn>
    </msup>
  </mrow>
</math></span>«ms<sup>–1</sup>»</span></span></p>
<p><em><strong>OR</strong></em></p>
<p><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta v = \left( {\frac{1}{{1.45059}} - \frac{1}{{1.45061}}} \right) \times 2.99792 \times {10^8}">
  <mi mathvariant="normal">Δ</mi>
  <mi>v</mi>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>1.45059</mn>
        </mrow>
      </mfrac>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>1.45061</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>×</mo>
  <mn>2.99792</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>8</mn>
    </msup>
  </mrow>
</math></span> &nbsp;✔</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta v = 2.85 \times {10^3}">
  <mi mathvariant="normal">Δ</mi>
  <mi>v</mi>
  <mo>=</mo>
  <mn>2.85</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> <em><strong>OR</strong></em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 \times {10^3}">
  <mn>3</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>«ms<sup><span style="font-size:small;">–1</span></sup>»✔</span></span></p>
<p>&nbsp;</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">pulse wider ✔<br></span></p>
<p><span style="background-color:#ffffff;">pulse area smaller ✔</span></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">For MP2 do not accept lower amplitude unless pulse area is also smaller.</span></span></em></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">reference to dispersion<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">reference to time/speed/path difference ✔<br></span></p>
<p><span style="background-color:#ffffff;">reference to power loss/energy loss/scattering/attenuation ✔</span></p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">longer cables give wider pulses ✔<br></span></p>
<p><span style="background-color:#ffffff;">which overlap/interfere if <em>T</em> too small/<em>f</em> too high ✔</span></p>
<p><em><span style="background-color:#ffffff;">OWTTE</span></em></p>
<div class="question_part_label">biv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The differences between step index fibres and graded index fibres seem well-known.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The calculation of the difference in the speed of light for two different wavelengths was well answered. Candidates often rounded answers to a small number of significant figures when finding the individual speeds.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly drew a wider pulse with smaller area.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Correct answers mentioning dispersion and attenuation were common but few candidates were able to relate those phenomena to the shape of the pulse drawn.</p>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates did not mention the fact that if the time between pulses was too small then the pulses would overlap for longer fibres.</p>
<div class="question_part_label">biv.</div>
</div>
<br><hr><br><div class="specification">
<p>A ray diagram for a converging lens is shown. The object is labelled O and the image is&nbsp;labelled I.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="specification">
<p>Using the ray diagram,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the focal length of the lens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>calculate the linear magnification.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows an incomplete ray diagram which consists of a red ray of light and&nbsp;a blue ray of light which are incident on a converging glass lens. In this glass lens the&nbsp;refractive index for blue light is greater than the refractive index for red light.</p>
<p><img src=""></p>
<p>Using the diagram, outline the phenomenon of chromatic aberration.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>constructs ray parallel to principal axis and then to image position</p>
<p><strong><em>OR</em></strong></p>
<p>u = 8 cm and v = 24 cm and lens formula</p>
<p>6 <strong>«</strong>cm<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>eg:&nbsp;<img src="images/Schermafbeelding_2018-08-13_om_08.38.23.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/08.a.i/M"></em></p>
<p><em>Allow answers in the range of 5.6 to 6.4 cm</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m</em> =&nbsp;<strong>«</strong>–<strong>»</strong>3.0</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>completes diagram with blue focal point closer to lens</p>
<p>&nbsp;</p>
<p>blue light/rays refracted/deviated more</p>
<p><strong><em>OR</em></strong></p>
<p>speed of blue light is less than speed of red light</p>
<p><strong><em>OR</em></strong></p>
<p>different colors/wavelengths have different focal points/converge at different points</p>
<p>&nbsp;</p>
<p><em>First marking point can be explained in words or seen on diagram</em></p>
<p><img src=""></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An optic fibre consists of a glass core of refractive index 1.52 surrounded by cladding&nbsp;of refractive index <em>n</em>. The critical angle at the glass–cladding boundary is 84°.</p>
</div>

<div class="specification">
<p>The diagram shows the longest and shortest paths that a ray can follow inside the fibre.</p>
<p style="text-align: center;"><img src=""></p>
<p>For the longest path the rays are incident at the core–cladding boundary at an angle&nbsp;just slightly greater than the critical angle. The optic fibre has a length of 12 km.</p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <em>n</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The refractive indices of the glass and cladding are only slightly different. Suggest why this is desirable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the longest path is 66 m longer than the shortest path.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time delay between the arrival of signals created by the extra&nbsp;distance in (b)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest whether this fibre could be used to transmit information at a frequency of 100 MHz.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,{\theta _{\text{c}}} = \frac{{{n_1}}}{{{n_2}}}">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msub>
      <mi>θ</mi>
      <mrow>
        <mtext>c</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>n</mi>
          <mn>1</mn>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mi>n</mi>
          <mn>2</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span>»&nbsp;<em>n</em><sub>1</sub>&nbsp;= 1.52&nbsp;× sin 84.0°&nbsp;✔</p>
<p>&nbsp;</p>
<p><em>n</em><sub>1</sub> =&nbsp;1.51 ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to have a critical angle close to 90° ✔</p>
<p>so only rays parallel to the axis are transmitted ✔</p>
<p>to reduce waveguide/modal dispersion ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>long path is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12 \times {{10}^3}}}{{{\text{sin}}\,84^\circ }}">
  <mfrac>
    <mrow>
      <mn>12</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>sin</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <msup>
        <mn>84</mn>
        <mo>∘</mo>
      </msup>
    </mrow>
  </mfrac>
</math></span>&nbsp;✔</p>
<p>= 12066 «m» ✔</p>
<p>«so 66 m longer»</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed of light in core is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.0 \times {{10}^8}}}{{1.52}} = 1.97 \times {10^8}">
  <mfrac>
    <mrow>
      <mn>3.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.52</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>1.97</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>8</mn>
    </msup>
  </mrow>
</math></span> «m s<sup>−1</sup>» ✔</p>
<p>time delay is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{66}}{{1.97 \times {{10}^8}}} = 3.35 \times {10^{ - 7}}">
  <mfrac>
    <mrow>
      <mn>66</mn>
    </mrow>
    <mrow>
      <mn>1.97</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>3.35</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>7</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> «s» ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no, period of signal is 1 × 10<sup>−8</sup> «s» which is smaller than the time delay/OWTTE ✔</p>
<p> </p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A small object is placed at a distance of 2.0 cm from the objective lens of an optical compound microscope in normal adjustment.</span></p>
<p><span style="background-color: #ffffff;">The following data are available.</span></p>
<p style="padding-left: 60px;"><span style="background-color: #ffffff;">Magnification of the microscope &nbsp; = 70<br>Focal length of the eyepiece &nbsp; &nbsp; &nbsp; &nbsp; = 3.0 cm<br>Near point distance&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= 24 cm</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State what is meant by normal adjustment when applied to a compound microscope.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, in cm, the distance between the eyepiece and the image formed by the objective lens.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine, in cm, the focal length of the objective lens.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«the final» image is formed at the near point of the eye ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«image is virtual so»&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>-</mo><mn>24</mn></math> «cm»&nbsp;✔</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>u</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mn>3</mn><mo>.</mo><mn>0</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>24</mn></mfrac></math>» so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mn>27</mn></math>&nbsp;«cm»&nbsp;✔</span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi mathvariant="normal">e</mi></msub><mo>=</mo><mfrac><mi>v</mi><mi>u</mi></mfrac><mo>=</mo><mfrac><mn>24</mn><mrow><mn>2</mn><mo>.</mo><mn>66</mn></mrow></mfrac><mo>=</mo><mn>9</mn><mo>.</mo><mn>0</mn></math>&nbsp;&nbsp;<em><strong>AND&nbsp;&nbsp;</strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi mathvariant="normal">o</mi></msub><mo>=</mo><mfrac><mrow><mn>7</mn><mo>.</mo><mn>0</mn></mrow><mrow><mn>9</mn><mo>.</mo><mn>0</mn></mrow></mfrac><mo>=</mo><mn>7</mn><mo>.</mo><mn>8</mn></math>&nbsp;<span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mn>0</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>15</mn><mo>.</mo><mn>6</mn><mo> </mo><mo>«</mo><mi>cm</mi><mo>»</mo></math>&nbsp;<span style="background-color: #ffffff;">✔</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mn>1</mn><mi>f</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>16</mn></mfrac><mo>»</mo></math> so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi>cm</mi><mo>»</mo></math>&nbsp;<span style="background-color: #ffffff;">✔</span></p>
<p><em>NOTE: MP1 allow&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi mathvariant="normal">e</mi></msub><mo>=</mo><mfrac><mi>D</mi><mi>f</mi></mfrac><mo mathvariant="italic">+</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">=</mo><mn mathvariant="italic">9</mn></math></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A converging (convex) lens forms an image of an object on a screen.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify whether the image is real or virtual.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The lens is 18 cm from the screen and the image is 0.40 times smaller than the object. Calculate the power of the lens, in cm<sup>–1</sup>.&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light passing through this lens is subject to chromatic aberration. Discuss the effect that chromatic aberration has on the image formed on the screen.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A system consisting of a converging lens of focal length F<sub>1</sub> (lens 1) and a diverging lens (lens 2) are used to obtain the image of an object as shown on the scaled diagram. The focal length of lens 1 (F<sub>1</sub>) is 30 cm.</p>
<p><img src=""></p>
<p>Determine, using the ray diagram, the focal length of the diverging lens.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>image is real <strong>«</strong>as projected on a screen<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{18}}{u} = &nbsp;- 0.40">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>18</mn>
    </mrow>
    <mi>u</mi>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.40</mn>
</math></span>»</p>
<p><em>u</em> = 45</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{45}} + \frac{1}{{18}} = \frac{1}{f}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>45</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>18</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mi>f</mi>
  </mfrac>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p><em>f</em> = 13&nbsp;<strong>«</strong>cm<strong>»</strong></p>
<p><em>P</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{f}">
  <mfrac>
    <mn>1</mn>
    <mi>f</mi>
  </mfrac>
</math></span> =&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{13}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
</math></span><strong>»</strong> = 0.078 <strong>«</strong>cm<sup>–1</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Accept answer 7.7</em><strong><em>«</em></strong><em>D</em><strong><em>».</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>refractive index depends on wavelength</p>
<p>light of different wavelengths have different focal points / refract differently</p>
<p>there will be coloured fringes around the image <strong>/ </strong>image will be blurred</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any 2 correct rays to find image from lens 1</p>
<p>ray to locate F<sub>2</sub></p>
<p>focal length = <strong>«</strong>–<strong>»</strong>70 <strong>«</strong>cm<strong>»</strong></p>
<p><img src="images/Schermafbeelding_2018-08-12_om_07.38.29.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/08.b/M"></p>
<p>&nbsp;</p>
<p><em>Accept values in the range: 65 cm to 75 cm.</em></p>
<p><em>Accept correct MP3 from accepted range also if working is incorrect or unclear, award </em><strong><em>[1]</em></strong><em>.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Communication signals are transmitted over long distances through optic fibres.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">A signal is transmitted along an optic fibre with attenuation per unit length of 0.40 dB km<sup>–1</sup>. The signal must be amplified when the power of the signal has fallen to 0.02 % of the input power.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe why a higher data transfer rate is possible in optic fibres than in twisted pair cables.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> cause of attenuation in the optic fibre.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the distance at which the signal must be amplified.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">fibres have broader bandwidth than cables ✔<br>therefore can carry multiple signals simultaneously ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">absorption/scattering of light<br><em><strong>OR</strong></em><br>impurities in the «glass core of the» fibre ✔</span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">attenuation =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mi>log</mi><mfenced><mrow><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></mrow></mfenced><mo>=</mo><mo>-</mo><mn>37</mn></math> «dB» ✔<br>amplification required after&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>37</mn><mrow><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfrac><mo>=</mo><mn>92</mn></math> <em><strong>or</strong></em> 93 «km» ✔<br><em>NOTE: Allow ECF from mp1 for wrong dB value.(eg: 42 km if % symbol ignored).</em></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows two light rays that form an intermediate image by the objective lens&nbsp;of an optical compound microscope. These rays are incident on the eyepiece lens.&nbsp;The focal points of the two lenses are marked.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The object O is placed at a distance of 24.0 mm from the objective lens and the&nbsp;final image is formed at a distance 240 mm from the eyepiece lens. The focal length&nbsp;of the objective lens is 20.0 mm and that of the eyepiece lens is 60.0 mm. The&nbsp;near point of the observer is at a distance of 240 mm from the eyepiece lens.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw rays on the diagram to show the formation of the final image.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the distance between the lenses.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the magnification of the microscope.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>proper construction lines ✔</p>
<p>image at intersection of proper construction lines ✔</p>
<p> </p>
<p><img src=""></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>distance of intermediate image from objective is&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{v} = \frac{1}{{20}} - \frac{1}{{24}}">
  <mfrac>
    <mn>1</mn>
    <mi>v</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>20</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>24</mn>
    </mrow>
  </mfrac>
</math></span> <em>ie:</em> <em>v</em> = 120 «mm» ✔</p>
<p>distance of intermediate image from eyepiece is</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{u} = \frac{1}{{60}} - \left( { - \frac{1}{{240}}} \right)">
  <mfrac>
    <mn>1</mn>
    <mi>u</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>60</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>240</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;<em>ie:</em>&nbsp;<em>u</em>&nbsp;= 48 «mm» ✔</p>
<p>lens separation 168 «mm»&nbsp;✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>eyepiece: <em>m</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - v}}{u} = \frac{{240}}{{28}}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mi>v</mi>
    </mrow>
    <mi>u</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>240</mn>
    </mrow>
    <mrow>
      <mn>28</mn>
    </mrow>
  </mfrac>
</math></span> = 5&nbsp;✔</p>
<p><em><strong>AND</strong></em></p>
<p>objective&nbsp;<em>m</em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - v}}{u} = \frac{{ - 120}}{{24}}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mi>v</mi>
    </mrow>
    <mi>u</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>120</mn>
    </mrow>
    <mrow>
      <mn>24</mn>
    </mrow>
  </mfrac>
</math></span> =&nbsp;−5&nbsp;✔</p>
<p>Total&nbsp;<em>m</em>&nbsp;=&nbsp;−5&nbsp;× 5 =&nbsp;−25&nbsp;✔</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><em>m</em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{240}}{{60}} + 1} \right) \times \left( { - \frac{{120}}{{24}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>240</mn>
        </mrow>
        <mrow>
          <mn>60</mn>
        </mrow>
      </mfrac>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>×</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mfrac>
        <mrow>
          <mn>120</mn>
        </mrow>
        <mrow>
          <mn>24</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;✔</p>
<p><em>m</em>&nbsp;=&nbsp;−25&nbsp;✔</p>
<p>&nbsp;</p>
<p><em>Accept positive or negative values throughout.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student places an object 5.0 cm from a converging lens of focal length 10.0 cm.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The student mounts the same lens on a ruler and light from a distant object is incident on the lens.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Construct rays, on the diagram, to locate the image of this object formed by the lens. Label this with the letter I.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine, by calculation, the linear magnification produced in the above diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest an application for the lens used in this way.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">aiii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Identify, with a vertical line, the position of the focussed image. Label the position I.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The image at I is the object for a second converging lens. This second lens forms a final image at infinity with an overall angular magnification for the two lens arrangement of 5. Calculate the distance between the two converging lenses.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">A new object is placed a few meters to the left of the original lens. The student adjusts spacing of the lenses to form a virtual image at infinity of the new object. Outline, without calculation, the required change to the lens separation.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">any two correct rays with extensions ✔<br></span></p>
<p><span style="background-color:#ffffff;">extensions converging to locate an upward virtual image labelled I with position within shaded region around focal point on diagram ✔</span></p>
<p><span style="background-color:#ffffff;"><img src="" width="451" height="194"></span></p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span style="background-color:#ffffff;">v&nbsp;= «–» 10«cm»&nbsp;✔&nbsp;</span></em></p>
<p><em><span style="background-color:#ffffff;">M «= –<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{u}">
  <mfrac>
    <mi>v</mi>
    <mi>u</mi>
  </mfrac>
</math></span>=–<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{–10}{5}">
  <mfrac>
    <mrow>
      <mo>–</mo>
      <mn>10</mn>
    </mrow>
    <mn>5</mn>
  </mfrac>
</math></span>» = «+» 2 ✔</span></em></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">magnifying glass<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">Simple microscope<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">eyepiece lens ✔</span></p>
<div class="question_part_label">aiii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">I labelled at 25 cm mark ✔</span></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">the second lens has&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f «= \frac{{10}}{5} » = 2">
  <mi>f</mi>
  <mrow>
    <mo>«</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>10</mn>
    </mrow>
    <mn>5</mn>
  </mfrac>
  <mrow>
    <mo>»</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
</math></span>&nbsp;<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«cm»</span></span><span style="background-color:#ffffff;"> ✔<br></span></p>
<p><span style="background-color:#ffffff;">«so for telescope image to be at infinity»<br></span></p>
<p><span style="background-color:#ffffff;">the second lens is placed at 27 «cm»<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">separation becomes 12 «cm» ✔</span></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">image formed by 10 cm lens is greater than 10 cm/further to the right of the first lens ✔<br></span></p>
<p><span style="background-color:#ffffff;">so second lens must also move to the right OR lens separation increases ✔</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><em>Award <strong>[1 max]</strong> for bald “separation increases”.</em><br></span></span></p>
<div class="question_part_label">biii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The simple ray diagram was constructed well by most candidates, especially compared to previous years.</p>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The very simple calculation of magnification was done well by nearly everybody.</p>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Using a converging lens as a magnifying glass was the most common correct answer.</p>
<div class="question_part_label">aiii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another very easy and well answered ray diagram question.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only candidates who realised that a simple telescope was being constructed were able to answer the question correctly. Most candidates realised that the focal lenses need to be added but few found the focal lens of the second lens correctly.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates did not read the question carefully and provided totally incorrect answers. It does not seem to be generally well known that if a distant object is moved to the right, for a converging lens, then the real image must also move to the right.</p>
<div class="question_part_label">biii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The diagram, drawn to scale, shows an object O placed in front of a converging mirror. The focal point of the mirror is labelled F.</span></p>
<p><img src=""></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">A planar wavefront of white light, labelled A, is incident on a converging lens. Point P is on the surface of the lens and the principal axis. The <strong>blue</strong> component of the transmitted wavefront, labelled B, is passing through point P.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Construct a ray diagram in order to locate the position of the image formed by the mirror. Label the image <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Estimate the linear magnification of the image.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>two</strong> features of the image.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sketch, on the diagram, the wavefront of <strong>red</strong> light passing through point P. Label this wavefront R.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain chromatic aberration, with reference to your diagram in (b)(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An achromatic doublet reduces the effect of chromatic aberration. Describe an achromatic doublet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><span style="background-color: #ffffff;">correctly draws any 2 of the 4 conventional rays from the object tip ✔<br>correctly extends reflections to form virtual upright image <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math> in approximate position shown ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE:&nbsp;No ECF for incorrect rays in MP1. <br>Award <strong>[0]</strong> for rays of converging lens or diverging mirror.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">1.5 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: For “correct” image position in (a)(i) allow 1.3 to 1.7</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>virtual <em><strong>OR</strong> </em>upright <em><strong>OR</strong> </em>larger than the object ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="477" height="254"></p>
<p><span style="background-color: #ffffff;">“circular” wave front through P: symmetric about the principal axis <em><strong>AND</strong> </em>of greater radius than B ✔</span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">red and blue wave fronts have different curvature/radius<br><em><strong>OR</strong></em><br>red and blue waves are refracted differently/have different speeds ✔</span></p>
<p><span style="background-color: #ffffff;">so different colors have different foci/do not focus to one point<br><em><strong>OR</strong></em><br>so image is multi-coloured/blurred ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: MP1 is for the reason for the aberration, MP2 is for the effect.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mention combination of converging and diverging lenses ✔<br>of different refractive index/material ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Achromatic doublet is in the question, so no marks for mentioning this.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>An astronomical reflecting telescope is being used to observe the night sky.</p>
<p>The diagram shows an incomplete reflecting telescope.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the diagram, with a Newtonian mounting, continuing the <strong>two</strong> rays to show how they pass through the eyepiece.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the Earth-Moon distance is 363 300 km, the Moon is observed using the telescope. The mean radius of the Moon is 1737 km. Determine the focal length of the mirror used in this telescope when the diameter of the Moon’s image formed by the main mirror is 1.20 cm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The final image of the Moon is observed through the eyepiece. The focal length of the eyepiece is 5.0 cm. Calculate the magnification of the telescope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Hubble Space reflecting telescope has a Cassegrain mounting. Outline the main optical difference between a Cassegrain mounting and a Newtonian mounting.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>plane mirror to the left of principal focus tilted anti-clockwise</p>
<p>two rays which would go through the principal focus</p>
<p>two rays cross between mirror and eyepiece <em><strong>AND</strong> </em>passing through the eyepiece</p>
<p><em>eg:</em></p>
<p><em><img src=""></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2 \times 1737}}{{363300}} = \frac{{0.0120}}{f}">
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mo>×</mo>
      <mn>1737</mn>
    </mrow>
    <mrow>
      <mn>363300</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.0120</mn>
    </mrow>
    <mi>f</mi>
  </mfrac>
</math></span></p>
<p><em>f</em> = 1.25 «m»</p>
<p><em>Allow ECF if factor of 2 omitted answer is 2.5m</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>M = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.25}}{{0.05}}">
  <mfrac>
    <mrow>
      <mn>1.25</mn>
    </mrow>
    <mrow>
      <mn>0.05</mn>
    </mrow>
  </mfrac>
</math></span> = 25</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>parabolic/convex mirror instead of flat mirror</p>
<p>eyepiece/image axis same as mirror</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>A single pulse of light enters an optic fibre which contains small impurities that scatter the light. Explain the effect of these impurities on the pulse.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="fontstyle0">mention of attenuation </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">mention of dispersion or pulse broadening </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">gives explanation for at least one of above </span><span class="fontstyle2">✓</span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The diagram represents a diverging mirror being used to view an object.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Construct a single ray showing one path of light between the eye, the mirror and the object, to view the object.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The image observed is virtual. Outline the meaning of virtual image.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">attempt to connect object and eye with ray showing equal angles of reflection such that reflection occurs within 1 hatch mark of position shown </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">construction showing normal at point of reflection </span><span class="fontstyle2">✓</span></p>
<p><img src=""></p>
<p> </p>
<p><em><span class="fontstyle0">Allow rays that are drawn freehand without a ruler - use judgement</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">light rays do not pass through the image<br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">do not form an image on a screen<br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">appear to have come from a point<br></span><span class="fontstyle2"><em><strong>OR</strong></em><br></span><span class="fontstyle0">formed by extension of rays </span><span class="fontstyle3">✓</span></p>
<p> </p>
<p><em><span class="fontstyle4">OWTTE.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>