File "HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Option C HTML/HL-paper3html
File size: 310.97 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>The linear attenuation coefficient <em>μ</em> of a material is affected by the energy of the X-ray beam and by the density <em>ρ</em> of the material. The mass absorption coefficient is equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\mu }{\rho }">
<mfrac>
<mi>μ<!-- μ --></mi>
<mi>ρ<!-- ρ --></mi>
</mfrac>
</math></span> to take into account the density of the material.</p>
<p>The graph shows the variation of mass absorption coefficient with energy of the X-ray beam for both muscle and bone.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the attenuation coefficient for bone of density 1800 kg m<sup>–3</sup>, for X-rays of 20 keV, is about 7 cm<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The density of muscle is 1200 kg m<sup>–3</sup>. Calculate the ratio of intensities to compare, for a beam of 20 keV, the attenuation produced by 1 cm of bone and 1 cm of muscle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why more energetic beams of about 150 keV would be unsuitable for imaging a bone–muscle section of a body.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The density of muscle is 1075 kg m<sup>–3</sup> and the speed of ultrasound in muscle is 1590 m s<sup>–1</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a typical frequency used in medical ultrasound imaging.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how an ultrasound transducer produces ultrasound.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the acoustic impedance <em>Z</em> of muscle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ultrasound of intensity 0.012 W<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>cm<sup>–2</sup> is incident on a water–muscle boundary. The acoustic impedance of water is 1.50 x 10<sup>6</sup> kg<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>–2</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>s<sup>–1</sup>.</p>
<p>The fraction of the incident intensity that is reflected is given by</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left( {{Z_2} - {Z_1}} \right)}^2}}}{{{{\left( {{Z_2} + {Z_1}} \right)}^2}}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msub>
<mi>Z</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>Z</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msub>
<mi>Z</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>Z</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>where<em> Z</em><sub>1</sub> and <em>Z</em><sub>2</sub> are the acoustic impedances of medium 1 and medium 2.</p>
<p>Calculate the intensity of the reflected signal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In the context of nuclear magnetic resonance (NMR) imaging explain the role of</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the fracture in a broken bone can be seen in a medical X-ray image.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows X-rays incident on tissue and bone.</p>
<p><img src=""></p>
<p>The thicknesses of bone and tissue are both 0.054 m.</p>
<p>The intensity of X-rays transmitted through bone is <em>I</em><sub>b</sub> and the intensity transmitted through tissue is <em>I</em><sub>t</sub>.</p>
<p>The following data are available.</p>
<p>Mass absorption coefficient for bone = mass absorption<br>coefficient for tissue = 1.2 × 10<sup>–2</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>2</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>kg<sup>–1</sup><br>Density of bone = 1.9 × 103 kg<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>–3</sup><br>Density of tissue = 1.1 × 103 kg<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>–3</sup></p>
<p>Calculate the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{I_{\text{b}}}}}{{{I_{\text{t}}}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>I</mi>
<mrow>
<mtext>b</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>I</mi>
<mrow>
<mtext>t</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the large uniform magnetic field applied to the patient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the radio-frequency signal emitted towards the patient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the non-uniform magnetic field applied to the patient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The table shows the speed of ultrasound and the acoustic impedance for different media.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_15.56.54.png" alt="M18/4/PHYSI/HP3/ENG/TZ1/14.d"></p>
<p>The fraction F of the intensity of an ultrasound wave reflected at the boundary between two media having acoustic impedances Z<sub>1</sub> and Z<sub>2</sub> is given by F = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{({{\text{Z}}_1} - {{\text{Z}}_2})}^2}}}{{{{({{\text{Z}}_1} + {{\text{Z}}_2})}^2}}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mrow>
<mtext>Z</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mo>−<!-- − --></mo>
<mrow>
<msub>
<mrow>
<mtext>Z</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mrow>
<mtext>Z</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mrow>
<mtext>Z</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how ultrasound is generated for medical imaging.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>one </strong>advantage and <strong>one </strong>disadvantage of using high frequencies ultrasound over low frequencies ultra sound for medical imaging.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one </strong>reason why doctors use ultrasound rather than X-rays to monitor the development of a fetus. </p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the density of skin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with appropriate calculations, why a gel is used between the transducer and the skin.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The attenuation values for fat and muscle at different X-ray energies are shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_09.40.21.png" alt="M18/4/PHYSI/HP3/ENG/TZ2/15.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the formation of a B scan in medical ultrasound imaging.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by half-value thickness in X-ray imaging.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A monochromatic X-ray beam of energy 20 keV and intensity <em>I</em><sub>0</sub> penetrates 5.00 cm of fat and then 4.00 cm of muscle.</p>
<p> <img src="images/Schermafbeelding_2018-08-14_om_10.35.20.png" alt="M18/4/PHYSI/HP3/ENG/TZ2/X15.b.ii"></p>
<p>Calculate, in terms of <em>I</em><sub>0</sub>, the final beam intensity that emerges from the muscle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare the use of high and low energy X-rays for medical imaging.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Some optic fibres consist of a core surrounded by cladding as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum angle <em>β</em> for light to travel through the fibre.</p>
<p>Refractive index of core = 1.50<br>Refractive index of cladding = 1.48</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the combination of core and cladding reduces the overall dispersion in the optic fibres.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The photograph shows an X-ray image of a hand.</p>
<p style="text-align: center;"><img style="display: block; margin-left: auto; margin-right: auto;" src="">© International Baccalaureate Organization 2020.</p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how attenuation causes the contrast between soft tissue and bone in the image.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>X-ray images of other parts of the body require the contrast to be enhanced. State <strong>one</strong> technique used in X-ray medical imaging to enhance contrast.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In nuclear magnetic resonance imaging (NMR) a patient is exposed to a strong external magnetic field so that the spin of the protons in the body align parallel or antiparallel to the magnetic field. A pulse of a radio frequency (RF) electromagnetic wave is then directed at the patient.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the effect of the RF signal on the protons in the body.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the measurement that needs to be made after the RF signal is turned off.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the measurement in (b) provides diagnostic information for the doctor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how ultrasound, in a medical context, is produced.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the advantage in medical diagnosis of using ultrasound of frequency 1 MHz rather than 0.1 MHz.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ultrasound can be used to measure the dimensions of a blood vessel. Suggest why a B scan is preferable to an A scan for this application.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An X-ray beam of intensity <em>I</em><sub>0</sub> is incident on lead. After travelling a distance <em>x</em> through the lead the intensity of the beam is reduced to <em>I</em>.</p>
<p>The graph shows the variation of ln<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{I}{{{I_0}}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>I</mi>
<mrow>
<mrow>
<msub>
<mi>I</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> with <em>x.</em></p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the attenuation coefficient of lead is 60 cm<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A technician operates an X-ray machine that takes 100 images each day. Estimate the width of the lead screen that is required so that the total exposure of the technician in 250 working days is equal to the exposure that the technician would receive from one X-ray exposure without the lead screen.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">An ultrasound A-scan is performed on a patient.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The graph shows a received signal incident upon a transducer to produce an A-scan. The density of the soft tissue being examined is approximately 1090 kg m<sup>-3</sup>.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">State <strong>one</strong> advantage and <strong>one</strong> disadvantage of using ultrasound imaging in medicine compared to using x-ray imaging.</span></p>
<p><span style="background-color:#ffffff;">Advantage: </span></p>
<p> </p>
<p><span style="background-color:#ffffff;">Disadvantage: </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest why ultrasound gel is necessary during an ultrasound examination.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Ultrasound of intensity 50 mW m<sup>-2</sup> is incident on a muscle. The reflected intensity is 10 mW m<sup>-2</sup>. Calculate the relative intensity level between the reflected and transmitted signals.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">aiii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The acoustic impedance of soft tissue is 1.65 × 106 kg m<sup>-2</sup> s<sup>-1</sup>. Show that the speed of sound in the soft tissue is approximately 1500 m s<sup>–1</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Estimate, using data from the graph, the depth of the organ represented by the dashed line.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">In the ultrasound scan the frequency is chosen so that the distance between the transducer and the organ is at least 200 ultrasound wavelengths. Estimate, based on your response to (b)(ii), the minimum ultrasound frequency that is used.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">biii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">A physician has a range of frequencies available for ultrasound. Comment on the use of higher frequency sound waves in an ultrasound imaging study.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">biv.</div>
</div>
<br><hr><br><div class="specification">
<p>A beam of ultrasound of intensity <em>I</em><sub>0</sub> enters a layer of muscle of thickness 4.1 cm.</p>
<p style="text-align: center;"><img src=""></p>
<p>The fraction of the intensity that is reflected at a boundary is</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\left( {\frac{{{Z_1} - {Z_2}}}{{{Z_1} + {Z_2}}}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>Z</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>−<!-- − --></mo>
<mrow>
<msub>
<mi>Z</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>Z</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>Z</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>where <em>Z</em><sub>1</sub> and <em>Z</em><sub>2</sub> are the acoustic impedances of the two media at the boundary. After travelling a distance <em>x </em>in a medium the intensity of ultrasound is reduced by a factor <em>e</em><sup>–μ<em>x</em></sup> where <em>μ</em> is the absorption coefficient.</p>
<p>The following data are available.</p>
<p style="padding-left: 210px;">Acoustic impedance of muscle = 1.7 × 10<sup>6 </sup>kg m<sup>–2 </sup>s<sup>–1</sup></p>
<p style="padding-left: 210px;">Acoustic impedance of bone = 6.3 × 10<sup>6 </sup>kg m<sup>–2 </sup>s<sup>–1</sup></p>
<p style="padding-left: 210px;">Absorption coefficient of muscle = 23 m<sup>–1</sup></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in terms of <em>I</em><sub>0</sub>, the intensity of ultrasound that is incident on the muscle–bone boundary.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in terms of <em>I</em><sub>0</sub>, the intensity of ultrasound that is reflected at the muscle–bone boundary.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in terms of <em>I</em><sub>0</sub>, the intensity of ultrasound that returns to the muscle–gel boundary.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the cause of the radio-frequency emissions from a patient’s body during nuclear magnetic resonance (NMR) imaging.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how a gradient field allows NMR to be used in medical resonance imaging.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify <strong>one</strong> advantage of NMR over ultrasound in medical situations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A parallel beam of X-rays travels through 7.8 cm of tissue to reach the bowel surface. Calculate the fraction of the original intensity of the X-rays that reach the bowel surface. The linear attenuation coefficient for tissue is 0.24 cm<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The fluid in the bowel has a similar linear attenuation coefficient as the bowel surface. Gases have much lower linear attenuation coefficients than fluids. Explain why doctors will fill the bowel with air before taking an X-ray image.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">An X-ray beam, of intensity <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>0</mn></msub></math>, is used to examine the flow of blood through an artery in the leg of a patient. The beam passes through an equal thickness of blood and soft tissue.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="306" height="216"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The thickness of blood and tissue is 5.00 mm. The intensity of the X-rays emerging from the tissue is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi mathvariant="normal">t</mi></msub></math> and the intensity emerging from the blood is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi mathvariant="normal">b</mi></msub></math>.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The following data are available. </span></span></p>
<p style="padding-left: 60px;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Mass absorption coefficient of tissue = 0.379 cm<sup>2 </sup>g<sup>–1</sup><br>Mass absorption coefficient of blood = 0.385 cm<sup>2 </sup>g<sup>–1</sup><br>Density of tissue = 1.10 × 10<sup>3 </sup>kg m<sup>–3</sup><br>Density of blood = 1.06 × 10<sup>3 </sup>kg m<sup>–3</sup></span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>I</mi><mi mathvariant="normal">b</mi></msub><msub><mi>I</mi><mi mathvariant="normal">t</mi></msub></mfrac></math> is close to 1.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State and explain, with reference to you answer in (a)(i), what needs to be done to produce a clear image of the leg artery using X-rays.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">In nuclear magnetic resonance (NMR) protons inside a patient are made to emit a radio frequency electromagnetic radiation. Outline the mechanism by which this radiation is emitted by the protons.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the property of protons used in nuclear magnetic resonance (NMR) imaging.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how a gradient field and resonance are produced in NMR to allow for the formation of images at a specific plane.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram represents a simple optical astronomical reflecting telescope with the path of some light rays shown.</p>
<p style="text-align: left;"><img src=""></p>
</div>
<div class="question">
<p>It is proposed to build an array of radio telescopes such that the maximum distance between them is 3800 km. The array will operate at a wavelength of 2.1 cm.</p>
<p>Comment on whether it is possible to build an optical telescope operating at 580 nm that is to have the same resolution as the array.</p>
</div>
<br><hr><br><div class="question">
<p>In nuclear magnetic resonance (NMR) imaging radio frequency electromagnetic radiation is detected by the imaging sensors. Discuss the origin of this radiation.</p>
</div>
<br><hr><br>