File "markSceme-SL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Option B HTML/markSceme-SL-paper3html
File size: 714.28 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>An ideal nuclear power plant can be modelled as a heat engine that operates between a hot temperature of 612°C and a cold temperature of 349°C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Carnot efficiency of the nuclear power plant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with a reason, why a real nuclear power plant operating between the stated temperatures cannot reach the efficiency calculated in (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nuclear power plant works at 71.0% of the Carnot efficiency. The power produced is 1.33 GW. Calculate how much waste thermal energy is released per hour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the production of waste heat by the power plant with reference to the first law and the second law of thermodynamics.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct conversion to K «622 K cold, 885 K hot»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\eta _{{\rm{Carnot}}}} = 1 - \frac{{{T_{{\rm{cold}}}}}}{{{T_{{\rm{hot}}}}}} = 1 - \frac{{622}}{{885}} = 0.297">
<mrow>
<msub>
<mi>η</mi>
<mrow>
<mrow>
<mrow>
<mi mathvariant="normal">C</mi>
<mi mathvariant="normal">a</mi>
<mi mathvariant="normal">r</mi>
<mi mathvariant="normal">n</mi>
<mi mathvariant="normal">o</mi>
<mi mathvariant="normal">t</mi>
</mrow>
</mrow>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mrow>
<mrow>
<mi mathvariant="normal">c</mi>
<mi mathvariant="normal">o</mi>
<mi mathvariant="normal">l</mi>
<mi mathvariant="normal">d</mi>
</mrow>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mrow>
<mrow>
<mi mathvariant="normal">h</mi>
<mi mathvariant="normal">o</mi>
<mi mathvariant="normal">t</mi>
</mrow>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>622</mn>
</mrow>
<mrow>
<mn>885</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.297</mn>
</math></span> <em><strong>or</strong></em> 29.7%</p>
<p><em>Award <strong>[1 max]</strong> if temperatures are not converted to K, giving result 0.430.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the Carnot efficiency is the maximum possible</p>
<p>the Carnot cycle is theoretical/reversible/impossible/infinitely slow</p>
<p>energy losses to surroundings «friction, electrical losses, heat losses, sound energy»</p>
<p><em>OWTTE</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.71 × 0.297 = 0.211</p>
<p><em>Allow solution utilizing wasted power «78.9%».</em></p>
<p>1.33/0.211 × 0.789 = 4.97 «GW»</p>
<p>4.97 GW × 3600 = 1.79 × 10<sup>13</sup> «J» </p>
<p>Award <strong>[2 max]</strong> if 71% used as the overall efficiency giving an answer of 1.96 × 10<sup>12</sup> J.</p>
<p><em>Award <strong>[3]</strong> for bald correct answer.<br></em></p>
<p><em>Watch for ECF from (a).</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Law 1: net thermal energy flow is <em>Q</em><sub>IN</sub>–<em>Q</em><sub>OUT</sub></p>
<p><em>Q</em><sub>OUT</sub><em> refers to “waste heat”</em> </p>
<p>Law 1: <em>Q</em><sub>IN</sub>–<em>Q</em><sub>OUT</sub> = ∆<em>Q</em>=∆<em>W</em> as ∆<em>U</em> is zero</p>
<p>Law 2: does not forbid <em>Q</em><sub>OUT</sub>=0</p>
<p>Law 2: no power plant can cover 100% of <em>Q</em><sub>IN</sub> into work</p>
<p>Law 2: total entropy must increase so some <em>Q</em> must enter surroundings </p>
<p><em>OWTTE</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A flywheel consists of a solid cylinder, with a small radial axle protruding from its centre.</p>
<p style="text-align: center;"><img src=""></p>
<p>The following data are available for the flywheel.</p>
<table style="width: 396.667px;">
<tbody>
<tr>
<td style="width: 207px; padding-left: 90px;">Flywheel mass <em>M</em></td>
<td style="width: 208.667px;">= 1.22 kg</td>
</tr>
<tr>
<td style="width: 207px; padding-left: 90px;">Small axle radius <em>r</em></td>
<td style="width: 208.667px;">= 60.0 mm</td>
</tr>
<tr>
<td style="width: 207px; padding-left: 90px;">Flywheel radius <em>R</em></td>
<td style="width: 208.667px;">= 240 mm</td>
</tr>
<tr>
<td style="width: 207px; padding-left: 90px;">Moment of inertia</td>
<td style="width: 208.667px;">= 0.5 MR<sup>2</sup></td>
</tr>
</tbody>
</table>
<p><br>An object of mass <em>m</em> is connected to the axle by a light string and allowed to fall vertically from rest, exerting a torque on the flywheel.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The velocity of the falling object is 1.89 m s<sup>–1</sup> at 3.98 s. Calculate the average angular acceleration of the flywheel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the torque acting on the flywheel is about 0.3 Nm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the tension in the string.</p>
<p>(ii) Determine the mass <em>m</em> of the falling object.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\omega _{{\text{final}}}} = \frac{v}{r} = 31.5">
<mrow>
<msub>
<mi>ω</mi>
<mrow>
<mrow>
<mtext>final</mtext>
</mrow>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mi>v</mi>
<mi>r</mi>
</mfrac>
<mo>=</mo>
<mn>31.5</mn>
</math></span> «rad s<sup>–1</sup>»</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega = {\omega _o} + \alpha t">
<mi>ω</mi>
<mo>=</mo>
<mrow>
<msub>
<mi>ω</mi>
<mi>o</mi>
</msub>
</mrow>
<mo>+</mo>
<mi>α</mi>
<mi>t</mi>
</math></span> so» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = \frac{\omega }{t} = \frac{{31.5}}{{3.98}} = 7.91">
<mi>α</mi>
<mo>=</mo>
<mfrac>
<mi>ω</mi>
<mi>t</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>31.5</mn>
</mrow>
<mrow>
<mn>3.98</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>7.91</mn>
</math></span> «rad s<sup>–2</sup>»</p>
<p><em><strong>ALTERNATIVE 2</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{1.89}}{{3.98}} = 0.4749">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1.89</mn>
</mrow>
<mrow>
<mn>3.98</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.4749</mn>
</math></span> «m s<sup>–2</sup>»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = \frac{a}{r} = \frac{{0.4749}}{{0.060}} = 7.91">
<mi>α</mi>
<mo>=</mo>
<mfrac>
<mi>a</mi>
<mi>r</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.4749</mn>
</mrow>
<mrow>
<mn>0.060</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>7.91</mn>
</math></span> «rad s<sup>–2</sup>»</p>
<p><em>Award <strong>[1 max]</strong> for r = 0.24 mm used giving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> = 1.98 «rad s<sup>–2</sup>».</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Gamma = \frac{1}{2}{\rm{M}}{{\rm{R}}^{\rm{2}}}\alpha = \frac{1}{2} \times 1.22 \times {0.240^2} \times 7.91">
<mi mathvariant="normal">Γ</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mrow>
<mi mathvariant="normal">M</mi>
</mrow>
</mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mi mathvariant="normal">R</mi>
</mrow>
</mrow>
<mrow>
<mrow>
<mn>2</mn>
</mrow>
</mrow>
</msup>
</mrow>
<mi>α</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>1.22</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>0.240</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>7.91</mn>
</math></span></p>
<p>= 0.278 «Nm»</p>
<p><em>At least two significant figures required for MP2, as question is a “Show”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{F_T} = \frac{\Gamma }{r}">
<mrow>
<msub>
<mi>F</mi>
<mi>T</mi>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mi mathvariant="normal">Γ</mi>
<mi>r</mi>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{F_T} = 4.63">
<mrow>
<msub>
<mi>F</mi>
<mi>T</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>4.63</mn>
</math></span> «N»</p>
<p><em>Allow 5 «N» if Γ= 0.3 Νm is used.</em></p>
<p> </p>
<p>ii</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{F_T} = mg - ma">
<mrow>
<msub>
<mi>F</mi>
<mi>T</mi>
</msub>
</mrow>
<mo>=</mo>
<mi>m</mi>
<mi>g</mi>
<mo>−</mo>
<mi>m</mi>
<mi>a</mi>
</math></span> so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = \frac{{4.63}}{{9.81 - 0.475}}">
<mi>m</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.63</mn>
</mrow>
<mrow>
<mn>9.81</mn>
<mo>−</mo>
<mn>0.475</mn>
</mrow>
</mfrac>
</math></span><br><em>m </em>= 0.496 «kg»</p>
<p><em>Allow ECF</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A horizontal rigid bar of length 2<em>R</em> is pivoted at its centre. The bar is free to rotate in a horizontal plane about a vertical axis through the pivot. A point particle of mass <em>M</em> is attached to one end of the bar and a container is attached to the other end of the bar.</p>
<p>A point particle of mass <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{M}{3}">
<mfrac>
<mi>M</mi>
<mn>3</mn>
</mfrac>
</math></span> moving with speed <em>v</em> at right angles to the rod collides with the container and gets stuck in the container. The system then starts to rotate about the vertical axis.</p>
<p>The mass of the rod and the container can be neglected.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A torque of 0.010 N m brings the system to rest after a number of revolutions. For this case <em>R</em> = 0.50 m, <em>M</em> = 0.70 kg and <em>v</em> = 2.1 m s<sup>–1</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of <em>M</em>, <em>v</em> and <em>R</em>, for the angular momentum of the system about the vertical axis just before the collision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Just after the collision the system begins to rotate about the vertical axis with angular velocity <em>ω</em>. Show that the angular momentum of the system is equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}M{R^2}\omega ">
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>M</mi>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>ω</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega = \frac{v}{{4R}}">
<mi>ω</mi>
<mo>=</mo>
<mfrac>
<mi>v</mi>
<mrow>
<mn>4</mn>
<mi>R</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine in terms of <em>M</em> and <em>v</em> the energy lost during the collision.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the angular deceleration of the system is 0.043 rad<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>s<sup>–2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of revolutions made by the system before it comes to rest.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{M}{3}vR">
<mfrac>
<mi>M</mi>
<mn>3</mn>
</mfrac>
<mi>v</mi>
<mi>R</mi>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>evidence of use of:</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = I\omega = \left( {M{R^2} + \frac{M}{3}{R^2}} \right)\omega ">
<mi>L</mi>
<mo>=</mo>
<mi>I</mi>
<mi>ω</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>M</mi>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mi>M</mi>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mi>ω</mi>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of use of conservation of angular momentum, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{MvR}}{3} = \frac{4}{3}M{R^2}\omega ">
<mfrac>
<mrow>
<mi>M</mi>
<mi>v</mi>
<mi>R</mi>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>M</mi>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>ω</mi>
</math></span></p>
<p>«rearranging to get <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega = \frac{v}{{4R}}">
<mi>ω</mi>
<mo>=</mo>
<mfrac>
<mi>v</mi>
<mrow>
<mn>4</mn>
<mi>R</mi>
</mrow>
</mfrac>
</math></span>»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>initial KE = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{M{v^2}}}{6}">
<mfrac>
<mrow>
<mi>M</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>6</mn>
</mfrac>
</math></span></p>
<p>final KE = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{M{v^2}}}{{24}}">
<mfrac>
<mrow>
<mi>M</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span></p>
<p>energy loss = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{M{v^2}}}{8}">
<mfrac>
<mrow>
<mi>M</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>8</mn>
</mfrac>
</math></span></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}\frac{\Gamma }{{M{R^2}}}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mfrac>
<mi mathvariant="normal">Γ</mi>
<mrow>
<mi>M</mi>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>» = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}\frac{{0.01}}{{0.7 \times {{0.5}^2}}}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mfrac>
<mrow>
<mn>0.01</mn>
</mrow>
<mrow>
<mn>0.7</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>0.5</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>«to give <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> = 0.04286 rad<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>s<sup>−2</sup>»</p>
<p> </p>
<p><em>Working <strong>OR</strong> answer to at least 3 SF must be shown</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{{\omega _i^2}}{{2\alpha }}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>i</mi>
<mn>2</mn>
</msubsup>
</mrow>
<mrow>
<mn>2</mn>
<mi>α</mi>
</mrow>
</mfrac>
</math></span> «from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega _f^2 = \omega _i^2 + 2\alpha \theta ">
<msubsup>
<mi>ω</mi>
<mi>f</mi>
<mn>2</mn>
</msubsup>
<mo>=</mo>
<msubsup>
<mi>ω</mi>
<mi>i</mi>
<mn>2</mn>
</msubsup>
<mo>+</mo>
<mn>2</mn>
<mi>α</mi>
<mi>θ</mi>
</math></span>»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ</mi>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{v^2}}}{{32{R^2}\alpha }} = \frac{{{{2.1}^2}}}{{32 \times {{0.5}^2} \times 0.043}}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>32</mn>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>α</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mn>2.1</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>32</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>0.5</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>0.043</mn>
</mrow>
</mfrac>
</math></span>» = 12.8 <em><strong>OR</strong> </em>12.9 «rad»</p>
<p>number of rotations «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12.9}}{{2\pi }}">
<mfrac>
<mrow>
<mn>12.9</mn>
</mrow>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span>» = 2.0 revolutions</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The <em>P–V</em> diagram of the Carnot cycle for a monatomic ideal gas is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The system consists of 0.150 mol of a gas initially at A. The pressure at A is 512 k Pa and the volume is 1.20 × 10<sup>–3</sup> m<sup>3</sup>.</p>
</div>
<div class="specification">
<p>At C the volume is <em>V</em><sub>C</sub> and the temperature is <em>T</em><sub>C</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by an adiabatic process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the two isothermal processes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the temperature of the gas at A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The volume at B is 2.30 × 10<sup>–3</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>3</sup>. Determine the pressure at B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_B}V_B^{\frac{5}{3}} = nR{T_C}V_C^{\frac{2}{3}}">
<mrow>
<msub>
<mi>P</mi>
<mi>B</mi>
</msub>
</mrow>
<msubsup>
<mi>V</mi>
<mi>B</mi>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
<mo>=</mo>
<mi>n</mi>
<mi>R</mi>
<mrow>
<msub>
<mi>T</mi>
<mi>C</mi>
</msub>
</mrow>
<msubsup>
<mi>V</mi>
<mi>C</mi>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
</math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The volume at C is 2.90 × 10<sup>–3</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>3</sup>. Calculate the temperature at C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why a Carnot cycle is of little use for a practical heat engine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«a process in which there is» no thermal energy transferred between the system and the surroundings</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A to B <em><strong>AND</strong> </em>C to D</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = \frac{{PV}}{{nR}}">
<mi>T</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>P</mi>
<mi>V</mi>
</mrow>
<mrow>
<mi>n</mi>
<mi>R</mi>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T\left( { = \frac{{512 \times {{10}^3} \times 1.20 \times {{10}^{ - 3}}}}{{0.150 \times 8.31}}} \right) \approx 493">
<mi>T</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>512</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>1.20</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>0.150</mn>
<mo>×</mo>
<mn>8.31</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>≈</mo>
<mn>493</mn>
</math></span> «K»</p>
<p> </p>
<p><em>The first mark is for rearranging.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_B} = \frac{{{P_a}{V_A}}}{{{V_B}}}">
<mrow>
<msub>
<mi>P</mi>
<mi>B</mi>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>P</mi>
<mi>a</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>V</mi>
<mi>A</mi>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>V</mi>
<mi>B</mi>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_B} = 267{\text{ KPa}}">
<mrow>
<msub>
<mi>P</mi>
<mi>B</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>267</mn>
<mrow>
<mtext> KPa</mtext>
</mrow>
</math></span></p>
<p> </p>
<p><em>The first mark is for rearranging.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«B to C adiabatic so» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_{\text{B}}}V_{\text{B}}^{\frac{5}{3}} = {P_{\text{C}}}V_{\text{C}}^{\frac{5}{3}}">
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>B</mtext>
</mrow>
</msub>
</mrow>
<msubsup>
<mi>V</mi>
<mrow>
<mtext>B</mtext>
</mrow>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
<mo>=</mo>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<msubsup>
<mi>V</mi>
<mrow>
<mtext>C</mtext>
</mrow>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
</math></span> <em><strong>AND</strong></em> <em>P</em><sub>C</sub><em>V</em><sub>C</sub> = <em>nRT</em><sub>C</sub> «combining to get result»</p>
<p> </p>
<p><em>It is essential to see these 2 relations to award the mark.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_{\text{C}}} = \left( {\frac{{{P_{\text{B}}}V_{\text{B}}^{\frac{5}{3}}}}{{nR}}} \right)V_{\text{C}}^{\frac{{ - 2}}{3}}">
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>B</mtext>
</mrow>
</msub>
</mrow>
<msubsup>
<mi>V</mi>
<mrow>
<mtext>B</mtext>
</mrow>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
</mrow>
<mrow>
<mi>n</mi>
<mi>R</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<msubsup>
<mi>V</mi>
<mrow>
<mtext>C</mtext>
</mrow>
<mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_{\text{C}}} = ">
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{267 \times {{10}^3} \times {{\left( {2.30 \times {{10}^{ - 3}}} \right)}^{\frac{5}{3}}}}}{{0.150 \times 8.31}}} \right){\left( {2.90 \times {{10}^{ - 3}}} \right)^{\frac{{ - 2}}{3}}}">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>267</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2.30</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>0.150</mn>
<mo>×</mo>
<mn>8.31</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>2.90</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>» = 422 «K»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the isothermal processes would have to be conducted very slowly / OWTTE</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A bar rotates horizontally about its centre, reaching a maximum angular velocity in six complete rotations from rest. The bar has a constant angular acceleration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>110</mn><mo> </mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>. The moment of inertia of the bar about the axis of rotation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0216</mn><mo> </mo><mi>kg</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the final angular velocity of the bar is about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo> </mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the variation with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> of the angular displacement <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> of the bar during the acceleration.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the torque acting on the bar while it is accelerating.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The torque is removed. The bar comes to rest in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> complete rotations with constant angular deceleration. Determine the time taken for the bar to come to rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>ω</mi><mi>f</mi></msub><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>110</mn><mo>×</mo><mn>6</mn><mo>×</mo><mn>2</mn><mi mathvariant="normal">π</mi></math> ✓</span></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>ω</mi><mi>f</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>88</mn><mo> </mo><mo>«</mo><mtext>rad</mtext><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><span class="fontstyle0">Other methods are possible.<br>Answer 3 given so look for correct working<br>At least 2 sig figs for MP2.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">concave up from origin </span><span class="fontstyle2">✓</span></p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> <span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Γ</mi><mo>=</mo><mo>«</mo><mi mathvariant="normal">I</mi><mo> </mo><mi mathvariant="normal">α</mi><mo> </mo><mi>so</mi><mo> </mo><mi mathvariant="normal">Γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>110</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0216</mn><mo>=</mo><mo>»</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo> </mo><mi mathvariant="normal">m</mi><mo>»</mo></math> ✓</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><msup><mn>9</mn><mn>2</mn></msup></mrow><mrow><mn>2</mn><mo>×</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>30</mn></mrow></mfrac><mo>=</mo></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>022</mn><mo> </mo><mo>«</mo><mi>rad</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math> ✓</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo> </mo><mo>«</mo><mo>=</mo><mfrac><mrow><msub><mi>ω</mi><mi>f</mi></msub><mo>-</mo><msub><mi>ω</mi><mi>i</mi></msub></mrow><mi>α</mi></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>9</mn></mrow><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>0220</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>130</mn><mo>«</mo><mi mathvariant="normal">s</mi><mo>»</mo></math>✓</p>
<p> </p>
<p><em><span class="fontstyle0">Other methods are possible.</span></em></p>
<p><em><span class="fontstyle0">Allow <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">131</mn><mo> </mo><mi mathvariant="normal">s</mi></math> </span></em><em><span class="fontstyle0">if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">2</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">88</mn></math> used</span></em></p>
<p><em><span class="fontstyle0">Allow <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">126</mn><mo> </mo><mi mathvariant="normal">s</mi></math> </span></em><em><span class="fontstyle0">if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">3</mn></math> used</span></em></p>
<p><em><span class="fontstyle0">Award </span><strong><span class="fontstyle3">[2] </span></strong><span class="fontstyle0">marks for a bald correct answer</span></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylindrical space probe of mass 8.00 x 10<sup>2</sup> kg and diameter 12.0 m is at rest in outer space.</p>
<p style="text-align: center;"><img src=""></p>
<p>Rockets at opposite points on the probe are fired so that the probe rotates about its axis. Each rocket produces a force <em>F</em> = 9.60 x 10<sup>3</sup> N. The moment of inertia of the probe about its axis is 1.44 x 10<sup>4</sup> kg<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>2</sup>.</p>
</div>
<div class="specification">
<p>The diagram shows a satellite approaching the rotating probe with negligibly small speed. The satellite is not rotating initially, but after linking to the probe they both rotate together.</p>
<p style="text-align: center;"><img src=""></p>
<p>The moment of inertia of the satellite about its axis is 4.80 x 10<sup>3</sup> kg<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>2</sup>. The axes of the probe and of the satellite are the same.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the linear acceleration of the centre of mass of the probe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the resultant torque about the axis of the probe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The forces act for 2.00 s. Show that the final angular speed of the probe is about 16 rad<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the final angular speed of the probe–satellite system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the loss of rotational kinetic energy due to the linking of the probe with the satellite.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>zero</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the torque of each force is 9.60 x 10<sup>3</sup> x 6.0 = 5.76 x 10<sup>4</sup> «Nm»</p>
<p>so the net torque is 2 x 5.76 x 10<sup>4</sup> = 1.15 x 10<sup>5</sup> «Nm»</p>
<p> </p>
<p><em>Allow a one-step solution.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the angular acceleration is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.15 \times {{10}^5}}}{{1.44 \times {{10}^4}}}">
<mfrac>
<mrow>
<mn>1.15</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.44</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> «= 8.0 s<sup>–2</sup>»</p>
<p><em>ω</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span><em>t</em> = 8.0 x 2.00 =» 16 «s<sup>–1</sup>»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.44 x 10<sup>4</sup> x 16.0 = (1.44 x 10<sup>4</sup> + 4.80 x 10<sup>3</sup>) x <em>ω</em></p>
<p><em>ω</em> = 12.0 «s<sup>–1</sup>»</p>
<p> </p>
<p><em>Allow ECF from (b).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>initial KE <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 1.44 \times {10^4} \times {16.0^2} = 1.843 \times {10^6}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>1.44</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>4</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>16.0</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>1.843</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
</math></span> «J»</p>
<p>final KE <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \left( {1.44 \times {{10}^4} + 4.80 \times {{10}^3}} \right) \times {12.0^2} = 1.382 \times {10^6}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.44</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4.80</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>12.0</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>1.382</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
</math></span> «J»</p>
<p>loss of KE = 4.6 x 10<sup>5</sup> «J»</p>
<p> </p>
<p><em>Allow ECF from part (c)(i).</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two of the brightest objects in the night sky are the planet Jupiter and the star Vega.<br>The light observed from Jupiter has a similar brightness to that received from Vega.</p>
</div>
<div class="specification">
<p>Vega is found in the constellation Lyra. The stellar parallax angle of Vega is about 0.13 arc sec.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the mechanism leading stars to produce the light they emit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the light detected from Jupiter and Vega have a similar brightness, according to an observer on Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by a constellation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the stellar parallax angle is measured.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the distance to Vega from Earth is about 25 ly.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«nuclear» fusion</p>
<p><em>Do not accept “burning’’</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>brightness depends on luminosity and distance/<em>b</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{L}{{4\pi {d^2}}}">
<mfrac>
<mi>L</mi>
<mrow>
<mn>4</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>d</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>Vega is much further away but has a larger luminosity</p>
<p><em>Accept answer in terms of Jupiter for MP2</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a group of stars forming a pattern on the sky <em><strong>AND</strong> </em>not necessarily close in distance to each other</p>
<p><em>OWTTE</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the star’s position is observed at two times, six months apart, relative to distant stars</p>
<p>parallax angle is half the angle of shift</p>
<p><img src=""></p>
<p><em>Answers may be given in diagram form, so allow the marking points if clearly drawn</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{0.13}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.13</mn>
</mrow>
</mfrac>
</math></span> = 7.7 «pc»</p>
<p>so <em>d</em> = 7.7 x 3.26 = 25.1 «ly»</p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A train is passing through a tunnel of proper length 80 m. The proper length of the train is 100 m. According to an observer at rest relative to the tunnel, when the front of the train coincides with one end of the tunnel, the rear of the train coincides with the other end of the tunnel.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what is meant by proper length.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a spacetime diagram for this situation according to an observer at rest relative to the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of the train, according to an observer at rest relative to the tunnel, at which the train fits the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For an observer on the train, it is the tunnel that is moving and therefore will appear length contracted. This seems to contradict the observation made by the observer at rest to the tunnel, creating a paradox. Explain how this paradox is resolved. You may refer to your spacetime diagram in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the length of an object in its rest frame</p>
<p><em><strong>OR</strong></em></p>
<p>the length of an object measured when at rest relative to the observer</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>world lines for front and back of tunnel parallel to <em>ct</em> axis</p>
<p>world lines for front and back of train</p>
<p>which are parallel to <em>ct′</em> axis</p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>realizes that gamma = 1.25</p>
<p>0.6<em>c</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>indicates the two simultaneous events for <em>t</em> frame</p>
<p>marks on the diagram the different times «for both spacetime points» on the <em>ct′</em> axis «shown as Δ<em>t′</em> on each diagram»</p>
<p><img src=""></p>
<p><em><strong>ALTERNATIVE 2: (no diagram reference)</strong></em></p>
<p>the two events occur at different points in space</p>
<p>statement that the two events are not simultaneous in the <em>t′</em> frame</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>An astronomical reflecting telescope is being used to observe the night sky.</p>
<p>The diagram shows an incomplete reflecting telescope.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the diagram, with a Newtonian mounting, continuing the <strong>two</strong> rays to show how they pass through the eyepiece.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the Earth-Moon distance is 363 300 km, the Moon is observed using the telescope. The mean radius of the Moon is 1737 km. Determine the focal length of the mirror used in this telescope when the diameter of the Moon’s image formed by the main mirror is 1.20 cm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The final image of the Moon is observed through the eyepiece. The focal length of the eyepiece is 5.0 cm. Calculate the magnification of the telescope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Hubble Space reflecting telescope has a Cassegrain mounting. Outline the main optical difference between a Cassegrain mounting and a Newtonian mounting.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>plane mirror to the left of principal focus tilted anti-clockwise</p>
<p>two rays which would go through the principal focus</p>
<p>two rays cross between mirror and eyepiece <em><strong>AND</strong> </em>passing through the eyepiece</p>
<p><em>eg:</em></p>
<p><em><img src=""></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2 \times 1737}}{{363300}} = \frac{{0.0120}}{f}">
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>1737</mn>
</mrow>
<mrow>
<mn>363300</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.0120</mn>
</mrow>
<mi>f</mi>
</mfrac>
</math></span></p>
<p><em>f</em> = 1.25 «m»</p>
<p><em>Allow ECF if factor of 2 omitted answer is 2.5m</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>M = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.25}}{{0.05}}">
<mfrac>
<mrow>
<mn>1.25</mn>
</mrow>
<mrow>
<mn>0.05</mn>
</mrow>
</mfrac>
</math></span> = 25</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>parabolic/convex mirror instead of flat mirror</p>
<p>eyepiece/image axis same as mirror</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A heat engine operates on the cycle shown in the pressure–volume diagram. The cycle consists of an isothermal expansion AB, an isovolumetric change BC and an adiabatic compression CA. The volume at B is double the volume at A. The gas is an ideal monatomic gas.</p>
<p style="text-align: center;"><img src=""></p>
<p>At A the pressure of the gas is 4.00 x 10<sup>6</sup> Pa, the temperature is 612 K and the volume is 1.50 x 10<sup>–4</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>3</sup>. The work done by the gas during the isothermal expansion is 416 J.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why the thermal energy supplied during the expansion AB is 416 J.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the temperature of the gas at C is 386 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the thermal energy removed from the gas for the change BC is approximately 330 J.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the efficiency of the heat engine.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain at which point in the cycle ABCA the entropy of the gas is the largest.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>U</em> = 0 so <em>Q</em> = Δ<em>U</em> + <em>W</em> = 0 + 416 = 416 «J»</p>
<p> </p>
<p><em>Answer given, mark is for the proof.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p{V^{\frac{5}{3}}} = c">
<mi>p</mi>
<mrow>
<msup>
<mi>V</mi>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mi>c</mi>
</math></span> to get <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T{V^{\frac{2}{3}}} = c">
<mi>T</mi>
<mrow>
<msup>
<mi>V</mi>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mi>c</mi>
</math></span></p>
<p>hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_{\text{C}}} = {T_{\text{A}}}{\left( {\frac{{{V_{\text{A}}}}}{{{V_{\text{C}}}}}} \right)^{\frac{2}{3}}} = 612 \times {0.5^{\frac{2}{3}}} = 385.54">
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>612</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>0.5</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>385.54</mn>
</math></span></p>
<p>«<em>T</em><sub>C</sub> ≈ 386K»</p>
<p> <em><strong>ALTERNATIVE 2</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_{\text{C}}}{V_{\text{C}}}^\gamma = {P_{\text{A}}}{V_{\text{A}}}^\gamma ">
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<msup>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mi>γ</mi>
</msup>
<mo>=</mo>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
<msup>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
<mi>γ</mi>
</msup>
</math></span> giving <em>P</em><sub>C</sub> = 1.26 x 10<sup>6</sup> «Pa»</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{P_{\text{C}}}{V_{\text{C}}}}}{{{T_{\text{C}}}}} = \frac{{{P_{\text{A}}}{V_{\text{A}}}}}{{{T_{\text{A}}}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span> giving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_{\text{C}}} = 1.26 \times \frac{{612}}{2} = 385.54">
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mn>1.26</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mn>612</mn>
</mrow>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mn>385.54</mn>
</math></span> «K»</p>
<p>«<em>T</em><sub>C</sub> ≈ 386K»</p>
<p> </p>
<p><em>Answer of 386K is given. Look carefully for correct working if answers are to 3 SF.</em></p>
<p><em>There are other methods:</em></p>
<p><em>Allow use of P</em><sub>B</sub><em> = 2 x 10<sup>6</sup> «Pa» and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{P}{T}">
<mfrac>
<mi>P</mi>
<mi>T</mi>
</mfrac>
</math></span> is constant for BC.</em></p>
<p><em>Allow use of n = 0.118 and T</em><sub>C</sub><em> = </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{P_{\text{C}}}{V_{\text{C}}}}}{{nR}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mi>n</mi>
<mi>R</mi>
</mrow>
</mfrac>
</math></span></p>
<p><em><strong>[2 marks]</strong></em> </p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = \Delta U + W = \frac{3}{2}\frac{{{P_{\text{A}}}{V_{\text{A}}}}}{{{T_{\text{A}}}}}\Delta T + 0">
<mi>Q</mi>
<mo>=</mo>
<mi mathvariant="normal">Δ</mi>
<mi>U</mi>
<mo>+</mo>
<mi>W</mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mrow>
<mtext>A</mtext>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
<mi mathvariant="normal">Δ</mi>
<mi>T</mi>
<mo>+</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = \frac{3}{2} \times \frac{{4.00 \times {{10}^6} \times 1.50 \times {{10}^{ - 4}}}}{{612}} \times \left( {386 - 612} \right)">
<mi>Q</mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>4.00</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>1.50</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>612</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>386</mn>
<mo>−</mo>
<mn>612</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>«–332 J»</p>
<p> </p>
<p><em>Answer of 330 J given in the question.</em><br><em>Look for correct working or more than 2 SF.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{e}} = \frac{{{Q_{{\text{in}}}} - {Q_{{\text{out}}}}}}{{{Q_{i{\text{n}}}}}} = \frac{{412 - 332}}{{416}}">
<mrow>
<mtext>e</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>Q</mi>
<mrow>
<mrow>
<mtext>in</mtext>
</mrow>
</mrow>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>Q</mi>
<mrow>
<mrow>
<mtext>out</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>Q</mi>
<mrow>
<mi>i</mi>
<mrow>
<mtext>n</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>412</mn>
<mo>−</mo>
<mn>332</mn>
</mrow>
<mrow>
<mn>416</mn>
</mrow>
</mfrac>
</math></span></p>
<p>e = 0.20</p>
<p> </p>
<p><em>Allow </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{416 - 330}}{{416}}">
<mfrac>
<mrow>
<mn>416</mn>
<mo>−</mo>
<mn>330</mn>
</mrow>
<mrow>
<mn>416</mn>
</mrow>
</mfrac>
</math></span>.</p>
<p><em>Allow e = 0.21.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>entropy is largest at B</p>
<p>entropy increases from A to B because <em>T</em> = constant but volume increases so more disorder <em><strong>or </strong></em>Δ<em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{Q}{T}">
<mfrac>
<mi>Q</mi>
<mi>T</mi>
</mfrac>
</math></span> and <em>Q</em> > 0 so Δ<em>S </em>> 0</p>
<p>entropy is constant along CA because it is adiabatic,<em> Q</em> = 0 and so<em> ΔS = </em>0<em><br><strong>OR</strong><br></em>entropy decreases along BC since energy has been removed, Δ<em>Q</em> < 0<em> so ΔS <</em> 0</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A solid sphere of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> and mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> is released from rest and rolls down a slope, without slipping. The vertical height of the slope is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>. The moment of inertia <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> of this sphere about an axis through its centre is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>5</mn></mfrac><mi>m</mi><msup><mi>r</mi><mn>2</mn></msup></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p>Show that the linear velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> of the sphere as it leaves the slope is <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>10</mn><mi>g</mi><mi>h</mi></mrow><mn>7</mn></mfrac></msqrt></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="fontstyle0">conservation of rotational and linear energy</span></p>
<p><em><strong>OR<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>g</mi><mi>h</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>I</mi><msup><mi>ω</mi><mn>2</mn></msup></math> ✓</p>
<p> </p>
<p><span class="fontstyle0">using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mfrac><mn>2</mn><mn>5</mn></mfrac><mi>m</mi><msup><mi>r</mi><mn>2</mn></msup></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><mfrac><mi>v</mi><mi>r</mi></mfrac></math> ✓</span></p>
<p><span class="fontstyle0">with </span><strong><span class="fontstyle2">correct manipulation </span></strong><span class="fontstyle0">to find the requested relationship </span><span class="fontstyle3">✓</span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows two methods of pedalling a bicycle using a force <em>F</em>.</p>
<p><img src=""></p>
<p>In method 1 the pedal is always horizontal to the ground. A student claims that method 2 is better because the pedal is always parallel to the crank arm. Explain why method 2 is more effective.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>in method 1 the perpendicular distance varies from 0 to a maximum value, in method 2 this distance is constant at the maximum value<br><em><strong>OR<br></strong></em>angle between <em>F</em> and <em>r</em> is 90° in method 2 and less in method 1<br><em><strong>OR<br></strong>Γ</em> = <em>F</em> × perpendicular distance</p>
<p>perpendicular distance/ torque is greater in method 2</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A constant force of 50.0 N is applied tangentially to the outer edge of a merry-go-round. The following diagram shows the view from above.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.31.00.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/06"></p>
<p>The merry-go-round has a moment of inertia of 450 kg m<sup>2</sup> about a vertical axis. The merry-go-round has a diameter of 4.00 m.</p>
</div>
<div class="specification">
<p>A child of mass 30.0 kg is now placed onto the edge of the merry-go-round. No external torque acts on the system.</p>
</div>
<div class="specification">
<p>The child now moves towards the centre.</p>
</div>
<div class="specification">
<p>The merry-go-round starts from rest and the force is applied for one complete revolution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the angular acceleration of the merry-go-round is 0.2 rad s<sup>–2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the merry-go-round after one revolution, the angular speed. </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the merry-go-round after one revolution, the angular momentum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the new angular speed of the rotating system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the angular speed will increase.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the work done by the child in moving from the edge to the centre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Γ<strong> «</strong>= <em>Fr</em> = 50 × 2<strong>»</strong> = 100 <strong>«</strong>Nm<strong>»</strong></p>
<p>α <strong>«</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\Gamma }{I} = \frac{{100}}{{450}}">
<mo>=</mo>
<mfrac>
<mi mathvariant="normal">Γ</mi>
<mi>I</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>100</mn>
</mrow>
<mrow>
<mn>450</mn>
</mrow>
</mfrac>
</math></span> <strong>»</strong> =0.22 <strong>«</strong>rads<sup>–2</sup><strong>»</strong></p>
<p> </p>
<p><em>Final value to at least 2 sig figs, </em><strong><em>OR </em></strong><em>clear working with substitution required for mark.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega _t^2 - \omega _0^2 = 2\alpha \Delta \theta ">
<msubsup>
<mi>ω</mi>
<mi>t</mi>
<mn>2</mn>
</msubsup>
<mo>−</mo>
<msubsup>
<mi>ω</mi>
<mn>0</mn>
<mn>2</mn>
</msubsup>
<mo>=</mo>
<mn>2</mn>
<mi>α</mi>
<mi mathvariant="normal">Δ</mi>
<mi>θ</mi>
</math></span><strong>»</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega _t^2 - 0 = 2 \times 0.22 \times 2\pi ">
<msubsup>
<mi>ω</mi>
<mi>t</mi>
<mn>2</mn>
</msubsup>
<mo>−</mo>
<mn>0</mn>
<mo>=</mo>
<mn>2</mn>
<mo>×</mo>
<mn>0.22</mn>
<mo>×</mo>
<mn>2</mn>
<mi>π</mi>
</math></span><strong>»</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\omega _t} = 1.7">
<mrow>
<msub>
<mi>ω</mi>
<mi>t</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>1.7</mn>
</math></span> <strong>«</strong>rads<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em>Accept BCA, values in the range: 1.57 to 1.70.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>L</em> = <em>Iω = </em>450 × 1.66<strong>»</strong></p>
<p>= 750 <strong>«</strong>kgm<sup>2</sup> rads<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em>Accept BCA, values in the range: 710 to 780.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>I</em> = 450 + <em>mr</em><sup>2</sup><strong>»</strong></p>
<p><em>I</em><strong> «</strong>= 450 + 30 × 2<sup>2</sup><strong>»</strong> = 570 <strong>«</strong>kgm<sup>2</sup><strong>»</strong></p>
<p><strong>«</strong><em>L</em> = 570 × <em>ω</em> = 747<strong>»</strong></p>
<p><em>ω</em> = 1.3 <strong>«</strong>rads<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em>Watch for ECF from (a) and (b).</em></p>
<p><em>Accept BCA, values in the range: 1.25 to 1.35.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>moment of inertia will decrease</p>
<p>angular momentum will be constant <strong>«</strong>as the system is isolated<strong>»</strong></p>
<p><strong>«</strong>so the angular speed will increase<strong>»</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ω<sub>t</sub></em> = 1.66 from bi <strong><em>AND</em></strong> <em>W</em> = ΔE<sub><em>k</em></sub></p>
<p><em>W</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 450 × 1.66<sup>2</sup> – <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 570 × 1.31<sup>2</sup> = 131 <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>ECF from 8bi</em></p>
<p><em>Accept BCA, value depends on the answers in previous questions.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A hoop of mass <em>m</em>, radius <em>r</em> and moment of inertia <em>mr</em><sup>2</sup> rests on a rough plane inclined at an angle <em>θ</em> to the horizontal. It is released so that the hoop gains linear and angular acceleration by rolling, without slipping, down the plane.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label the forces acting on the hoop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the linear acceleration <em>a</em> of the hoop is given by the equation shown.</p>
<p><em>a</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{g \times \sin q}}{2}">
<mfrac>
<mrow>
<mi>g</mi>
<mo>×</mo>
<mi>sin</mi>
<mo></mo>
<mi>q</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the acceleration of the hoop when <em>θ</em> = 20°. Assume that the hoop continues to roll without slipping.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the relationship between the force of friction and the angle of the incline.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The angle of the incline is slowly increased from zero. Determine the angle, in terms of the coefficient of friction, at which the hoop will begin to slip.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>weight, normal reaction and friction in correct direction</p>
<p>correct points of application for at least two correct forces</p>
<p><em>Labelled on diagram.</em></p>
<p><img src=""></p>
<p><em>Allow different wording and symbols</em></p>
<p><em>Ignore relative lengths</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE</strong> <strong>1</strong></em></p>
<p><em>ma</em> = <em>mg</em> sin <em>θ</em> – <em>F</em><sub>f</sub></p>
<p><em>I</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> = <em>F</em><sub>f</sub> x <em>r</em></p>
<p><em><strong>OR</strong></em></p>
<p><em>mr </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> = <em>F</em><sub>f</sub></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{a}{r}">
<mfrac>
<mi>a</mi>
<mi>r</mi>
</mfrac>
</math></span></p>
<p><em>ma</em> = <em>mg</em> sin <em>θ – mr <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{a}{r}">
<mfrac>
<mi>a</mi>
<mi>r</mi>
</mfrac>
</math></span> → </em>2<em>a</em> = <em>g</em> sin <em>θ</em></p>
<p><em>Can be in any order</em></p>
<p><em>No mark for re-writing given answer<br></em></p>
<p><em>Accept answers using the parallel axis theorem (with I = 2mr<sup>2</sup>) only if clear and explicit mention that the only torque is from the weight<br></em></p>
<p><em>Answer given look for correct working</em></p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><em>mgh = </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>Iω</em><sup>2</sup> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <em>mv</em><sup>2</sup></p>
<p>substituting <em>ω =</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{r}">
<mfrac>
<mi>v</mi>
<mi>r</mi>
</mfrac>
</math></span> «giving <em>v</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {gh} ">
<msqrt>
<mi>g</mi>
<mi>h</mi>
</msqrt>
</math></span>»</p>
<p>correct use of a kinematic equation</p>
<p>use of trigonometry to relate displacement and height «<em>s</em> = <em>h</em> sin <em>θ</em>»</p>
<p><em>For alternative 2, MP3 and MP4 can only be awarded if the previous marking points are present</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.68 «ms<sup>–2</sup>»</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><em>N</em> = <em>mg</em> cos <em>θ</em></p>
<p><em>F</em><sub>f</sub> ≤ <em>μmg</em> cos<em> θ</em></p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><em>F</em><sub>f</sub> = <em>ma</em> «from 7(b)»</p>
<p>so <em>F</em><sub>f</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg\sin \theta }}{2}">
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>F</em><sub>f</sub> = <em>μmg</em> cos <em>θ</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{mg\sin \theta }}{2}">
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> = <em>mg</em> sin <em>θ </em>– <em>μmg</em> cos <em>θ</em></p>
<p><em><strong>OR</strong></em></p>
<p><em>mg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin \theta }}{2}">
<mfrac>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> = <em>μmg</em> cos <em>θ</em></p>
<p>algebraic manipulation to reach tan <em>θ</em> = 2<em>μ</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A monatomic ideal gas is confined to a cylinder with volume 2.0 x 10<sup>–3</sup> m<sup>3</sup>. The initial pressure of the gas is 100 kPa. The gas undergoes a three-step cycle. First, the gas pressure increases by a factor of five under constant volume. Then, the gas expands adiabatically to its initial pressure. Finally it is compressed at constant pressure to its initial volume.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of the gas at the end of the adiabatic expansion is approximately 5.3 x 10<sup>–3</sup> m<sup>3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the axes, sketch the three-step cycle.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The initial temperature of the gas is 290 K. Calculate the temperature of the gas at the start of the adiabatic expansion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your sketched graph in (b), identify the feature that shows that net work is done by the gas in this three-step cycle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000 \times {\left( {2 \times {{10}^{ - 3}}} \right)^{\frac{5}{3}}} = 100\,000 \times {V^{\frac{5}{3}}}">
<mn>500</mn>
<mspace width="thinmathspace"></mspace>
<mn>000</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>100</mn>
<mspace width="thinmathspace"></mspace>
<mn>000</mn>
<mo>×</mo>
<mrow>
<msup>
<mi>V</mi>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><em>V</em> = 5.3 x 10<sup>–3</sup> «m<sup>3</sup>»</p>
<p><em>Look carefully for correct use of pV<sup>γ</sup> = constant</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct vertical and horizontal lines</p>
<p>curve between B and C</p>
<p> </p>
<p><em>Allow tolerance ±1 square for A, B and C</em></p>
<p><em>Allow ECF for MP2</em></p>
<p><em>Points do not need to be labelled for marking points to be awarded</em></p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>PV</em> = <em>nRT</em> <em><strong>OR</strong></em> use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{P}{T}">
<mfrac>
<mi>P</mi>
<mi>T</mi>
</mfrac>
</math></span> = constant</p>
<p><em>T</em> = «5 x 290 =» 1450 «K»</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>area enclosed</p>
<p>work is done by the gas during expansion</p>
<p><em><strong>OR</strong></em></p>
<p>work is done on the gas during compression</p>
<p>the area under the expansion is greater than the area under the compression</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The first diagram shows a person standing on a turntable which can rotate freely. The person is stationary and holding a bicycle wheel. The wheel rotates anticlockwise when seen from above.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;">© International Baccalaureate Organization 2020.</p>
<p>The wheel is flipped, as shown in the second diagram, so that it rotates clockwise when seen from above.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;">© International Baccalaureate Organization 2020.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the direction in which the person-turntable system starts to rotate.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the changes to the rotational kinetic energy in the person-turntable system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«person rotates» anticlockwise </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">the person gains angular momentum «in the opposite direction to the new wheel motion</span><span class="fontstyle3">» </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">so that the total angular momentum is conserved </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><em><span class="fontstyle4">OWTTE</span></em></p>
<p><em><span class="fontstyle4">Award </span><strong><span class="fontstyle5">[1 max] </span></strong><span class="fontstyle4">for a bald statement of conservation of angular momentum</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">the rotational kinetic energy has increased </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">energy is provided by the person doing work </span><span class="fontstyle3">«</span><span class="fontstyle0">flipping the wheel</span><span class="fontstyle3">» </span><span class="fontstyle2">✓ </span></p>
<p> </p>
<p><em><span class="fontstyle4">OWTTE</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The <em>pV</em> diagram of a heat engine using an ideal gas consists of an isothermal expansion A → B, an isobaric compression B → C and an adiabatic compression C → A.</p>
<p style="text-align: center;"><img src=""></p>
<p>The following data are available:</p>
<p style="padding-left: 180px;">Temperature at A = 385 K</p>
<p style="padding-left: 180px;">Pressure at A = 2.80 × 10<sup>6 </sup>Pa</p>
<p style="padding-left: 180px;">Volume at A = 1.00 × 10<sup>–4 </sup>m<sup>3</sup></p>
<p style="padding-left: 180px;">Volume at B = 2.80 × 10<sup>–4 </sup>m<sup>3</sup></p>
<p style="padding-left: 180px;">Volume at C = 1.85 × 10<sup>–4 </sup>m<sup>3</sup></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that at C the pressure is 1.00 × 10<sup>6 </sup>Pa.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that at C the temperature is 254 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the thermal energy transferred from the gas during the change B → C is 238 J.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The work done by the gas from A → B is 288 J. Calculate the efficiency of the cycle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, without calculation, during which change (A → B, B → C or C → A) the entropy of the gas decreases.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_c} = {P_B} = \frac{{{P_A}{V_A}}}{{{V_B}}}">
<mrow>
<msub>
<mi>P</mi>
<mi>c</mi>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>P</mi>
<mi>B</mi>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>P</mi>
<mi>A</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>V</mi>
<mi>A</mi>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>V</mi>
<mi>B</mi>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span> ✔</p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.8 \times {{10}^6} \times 1 \times {{10}^{ - 4}}}}{{2.8 \times {{10}^{ - 4}}}}">
<mfrac>
<mrow>
<mn>2.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>6</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> «= 1.00 × 10<sup>6 </sup>Pa» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.8 \times {10^6} \times {1.00^{\frac{5}{3}}} = {P_c} \times {1.85^{\frac{5}{3}}}">
<mn>2.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>1.00</mn>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>P</mi>
<mi>c</mi>
</msub>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>1.85</mn>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> ✔</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_c} = 2.8 \times {10^6} \times \frac{{{{1.00}^{\frac{5}{3}}}}}{{{{1.85}^{\frac{5}{3}}}}}">
<mrow>
<msub>
<mi>P</mi>
<mi>c</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>2.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>6</mn>
</msup>
</mrow>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mn>1.00</mn>
</mrow>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mn>1.85</mn>
</mrow>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> «= 1.00 × 10<sup>6 </sup>Pa» ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>Since <em>T<sub>B</sub></em> = <em>T<sub>A</sub></em> then <em>T<sub>c</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{V_c}{T_B}}}{{{V_B}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>V</mi>
<mi>c</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>T</mi>
<mi>B</mi>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>V</mi>
<mi>B</mi>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span> ✔</p>
<p> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.85 \times 385}}{{2.8}}">
<mfrac>
<mrow>
<mn>1.85</mn>
<mo>×</mo>
<mn>385</mn>
</mrow>
<mrow>
<mn>2.8</mn>
</mrow>
</mfrac>
</math></span> «= 254.4<sup> </sup>K» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.80 \times 1.00}}{{385}} = \frac{{1.00 \times 1.85}}{{{T_c}}}">
<mfrac>
<mrow>
<mn>2.80</mn>
<mo>×</mo>
<mn>1.00</mn>
</mrow>
<mrow>
<mn>385</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1.00</mn>
<mo>×</mo>
<mn>1.85</mn>
</mrow>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mi>c</mi>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span> «K»✔</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_c} = 385 \times \frac{{1.00 \times 1.85}}{{2.80}}">
<mrow>
<msub>
<mi>T</mi>
<mi>c</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>385</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mn>1.00</mn>
<mo>×</mo>
<mn>1.85</mn>
</mrow>
<mrow>
<mn>2.80</mn>
</mrow>
</mfrac>
</math></span> «= 254.4<sup> </sup>K» ✔</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>work done = «<em>p</em>Δ<em>V</em> = 1.00 × 10<sup>6</sup> × (1.85 × 10<sup>−4</sup> − 2.80 × 10<sup>−4</sup> =» −95 «J» ✔</p>
<p>change in internal energy = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</math></span><em>p</em>Δ<em>V</em> = −<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</math></span> × 95 =» −142.5 «J» ✔</p>
<p><em>Q</em> = −95 − 142.5 ✔</p>
<p>«−238 J»</p>
<p> </p>
<p><em>Allow positive values.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>net work is 288 −238 = 50 «J» ✔</p>
<p>efficiency = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{288 - 238}}{{288}}">
<mfrac>
<mrow>
<mn>288</mn>
<mo>−</mo>
<mn>238</mn>
</mrow>
<mrow>
<mn>288</mn>
</mrow>
</mfrac>
</math></span> =» 0.17 ✔</p>
<p> </p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>along B→C ✔</p>
<p> </p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A uniform rod of weight 36.0 N and length 5.00 m rests horizontally. The rod is pivoted at its left-hand end and is supported at a distance of 4.00 m from the frictionless pivot.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The support is suddenly removed and the rod begins to rotate clockwise about the pivot point. The moment of inertia of the rod about the pivot point is 30.6 kg m<sup>2</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the force the support exerts on the rod.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in rad s<sup>–2</sup>, the initial angular acceleration <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> of the rod.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After time <em>t</em> the rod makes an angle <em>θ</em> with the horizontal. Outline why the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{1}{2}\alpha {t^2}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>α</mi>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> <strong>cannot</strong> be used to find the time it takes <em>θ</em> to become <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}">
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span> (that is for the rod to become vertical for the first time).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the instant the rod becomes vertical show that the angular speed is <em>ω</em> = 2.43 rad s<sup>–1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the instant the rod becomes vertical calculate the angular momentum of the rod.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>taking torques about the pivot <em>R</em> × 4.00 = 36.0 × 2.5 ✔</p>
<p><em>R </em>= 22.5 «N» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>36.0 × 2.50 = 30.6 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> ✔</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> = 2.94 «rad s<sup>–2</sup>» ✔</p>
<p> </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the equation can be applied only when the angular acceleration is constant ✔</p>
<p>any reasonable argument that explains torque is not constant, giving non constant acceleration ✔</p>
<p> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«from conservation of energy» Change in GPE = Change in rotational KE ✔</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W\frac{L}{2} = \frac{1}{2}I{\omega ^2}">
<mi>W</mi>
<mfrac>
<mi>L</mi>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>I</mi>
<mrow>
<msup>
<mi>ω</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> ✔</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\omega = \sqrt {\frac{{36.0 \times 5.00}}{{30.6}}} ">
<mi>ω</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mn>36.0</mn>
<mo>×</mo>
<mn>5.00</mn>
</mrow>
<mrow>
<mn>30.6</mn>
</mrow>
</mfrac>
</msqrt>
</math></span> ✔</p>
<p>«<em>ω</em> = 2.4254 rad s<sup>–1</sup>»</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>L</em> = 30.6 × 2.43 = 74.4 «J s» ✔</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A wheel of mass 0.25 kg consists of a cylinder mounted on a central shaft. The shaft has a radius of 1.2 cm and the cylinder has a radius of 4.0 cm. The shaft rests on two rails with the cylinder able to spin freely between the rails.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_16.44.54.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/06"></p>
</div>
<div class="specification">
<p>The stationary wheel is released from rest and rolls down a slope with the shaft rolling on the rails without slipping from point A to point B.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_16.47.09.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/06.a"></p>
</div>
<div class="specification">
<p>The wheel leaves the rails at point B and travels along the flat track to point C. For a short time the wheel slips and a frictional force <em>F </em>exists on the edge of the wheel as shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_16.49.45.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/06.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The moment of inertia of the wheel is 1.3 × 10<sup>–4</sup> kg m<sup>2</sup>. Outline what is meant by the moment of inertia.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In moving from point A to point B, the centre of mass of the wheel falls through a vertical distance of 0.36 m. Show that the translational speed of the wheel is about 1 m s<sup>–1</sup> after its displacement.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the angular velocity of the wheel at B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the effect of <em>F </em>on the linear speed of the wheel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the effect of <em>F </em>on the angular speed of the wheel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>an object’s resistance to change in rotational motion</p>
<p><strong><em>OR</em></strong></p>
<p>equivalent of mass in rotational equations</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ΔKE + Δrotational KE = ΔGPE</p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>mv</em><sup>2</sup> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>I</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{{{r^2}}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = <em>mgh</em></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 0.250 × <em>v</em><sup>2</sup> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 1.3 × 10<sup>–4</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{v^2}}}{{1.44 \times {{10}^{ - 4}}}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.44</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = 0.250 × 9.81 × 0.36</p>
<p><em>v</em> = 1.2 <strong>«</strong>m s<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ω</em> <strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.2}}{{0.012}}">
<mfrac>
<mrow>
<mn>1.2</mn>
</mrow>
<mrow>
<mn>0.012</mn>
</mrow>
</mfrac>
</math></span><strong>»</strong> = 100 <strong>«</strong>rad s<sup>–1</sup><strong>»</strong></p>
<p><strong><em>[1 mark]</em><br></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force in direction of motion</p>
<p>so linear speed increases</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>force gives rise to anticlockwise/opposing torque on</p>
<p>wheel ✓ so angular speed decreases ✓</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylinder is fitted with a piston. A fixed mass of an ideal gas fills the space above the piston.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_16.52.30.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/07._01"></p>
<p>The gas expands isobarically. The following data are available.</p>
<p style="text-align: center;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{Amount of gas}}}&{ = 243{\text{ mol}}} \\ {{\text{Initial volume of gas}}}&{ = 47.1{\text{ }}{{\text{m}}^3}} \\ {{\text{Initial temperature of gas}}}&{ = -12.0{\text{ °C}}} \\ {{\text{Final temperature of gas}}}&{ = + 19.0{\text{ °C}}} \\ {{\text{Initial pressure of gas}}}&{ = 11.2{\text{ kPa}}} \end{array}">
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Amount of gas</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>243</mn>
<mrow>
<mtext> mol</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Initial volume of gas</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>47.1</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Initial temperature of gas</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>12.0</mn>
<mrow>
<mtext> °C</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Final temperature of gas</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mo>+</mo>
<mn>19.0</mn>
<mrow>
<mtext> °C</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>Initial pressure of gas</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>11.2</mn>
<mrow>
<mtext> kPa</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</math></span></p>
</div>
<div class="specification">
<p>The gas returns to its original state by an adiabatic compression followed by cooling at constant volume.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the final volume of the gas is about 53 m<sup>3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the work done by the gas during this expansion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the thermal energy which enters the gas during this expansion.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the <em>pV </em>diagram, the complete cycle of changes for the gas, labelling the changes clearly. The expansion shown in (a) and (b) is drawn for you.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the change in entropy of the gas during the cooling at constant volume.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are various equivalent versions of the second law of thermodynamics. Outline the benefit gained by having alternative forms of a law.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><strong>«</strong>Using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{V_1}}}{{{T_1}}} = \frac{{{V_2}}}{{{T_2}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>V</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>V</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong></p>
<p><em>V</em><sub>2</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{47.1 \times (273 + 19)}}{{(273 - 12)}}">
<mfrac>
<mrow>
<mn>47.1</mn>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mn>273</mn>
<mo>+</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>273</mn>
<mo>−</mo>
<mn>12</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</math></span></p>
<p><em>V</em><sub>2</sub> = 52.7 <strong>«</strong>m<sup>3</sup><strong>»</strong></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><strong>«</strong>Using <em>PV</em> = <em>nRT</em><strong>»</strong></p>
<p><em>V</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{243 \times 8.31 \times (273 + 19)}}{{11.2 \times {{10}^3}}}">
<mfrac>
<mrow>
<mn>243</mn>
<mo>×</mo>
<mn>8.31</mn>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mn>273</mn>
<mo>+</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mn>11.2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p><em>V</em> = 52.6 <strong>«</strong>m<sup>3</sup><strong>»</strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>W</em> <strong>«</strong>= <em>P</em>Δ<em>V</em><strong>»</strong> = 11.2 × 10<sup>3</sup> × (52.7 – 47.1)</p>
<p><em>W</em> = 62.7 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Accept 66.1 × 10<sup>3</sup> J if 53 used</em></p>
<p><em>Accept 61.6 × 10<sup>3</sup> J if 52.6 used</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>U</em> <strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</math></span><em>nR</em>Δ<em>T</em><strong>»</strong> = 1.5 × 243 × 8.31 × (19 – (–12)) = 9.39 × 10<sup>4</sup></p>
<p><em>Q</em> <strong>«</strong>= Δ<em>U</em> + <em>W</em><strong>»</strong> = 9.39 × 10<sup>4</sup> + 6.27 × 10<sup>4</sup></p>
<p><em>Q</em> = 1.57 × 10<sup>5</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Accept 1.60 × 10<sup>5</sup> if 66.1 × 10<sup>3</sup> J used</em></p>
<p><em>Accept 1.55 × 10<sup>5</sup> if 61.6 × 10<sup>3</sup> J used</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>concave curve from RHS of present line to point above LHS of present line</p>
<p>vertical line from previous curve to the beginning</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-13_om_08.30.16.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/07.d.i/M"></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy is removed from the gas and so entropy decreases</p>
<p><strong><em>OR</em></strong></p>
<p>temperature decreases <strong>«</strong>at constant volume (less disorder)<strong>» </strong>so entropy decreases</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>different paradigms/ways of thinking/modelling/views</p>
<p>allows testing in different ways</p>
<p>laws can be applied different situations</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A heat pump is modelled by the cycle A→B→C→A.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The heat pump transfers thermal energy to the interior of a building during processes C→A and A→B and absorbs thermal energy from the environment during process B→C. The working substance is an ideal gas.</span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the work done on the gas for the isothermal process C→A is approximately 440 J.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the change in internal energy of the gas for the process A→B.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the temperature at A if the temperature at B is <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">−</span>40°C.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine, using the first law of thermodynamics, the total thermal energy transferred to the building during the processes C→A and A→B.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest why this cycle is not a suitable model for a working heat pump.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">evidence of work done equals area between AC and the Volume axis ✓<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">reasonable method to estimate area giving a value 425 to 450 J ✓</span></p>
<p style="text-align:left;"><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Answer 440 J is given, check for valid working.<br></span></span></em></p>
<p style="text-align:left;"><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Examples of acceptable methods for MP2:<br></span></span></em></p>
<p style="text-align:left;"><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">- estimates 17 to18 small squares x 25 J per square = 425 to 450 J.<br>- 250 J for area below BC plus a triangle of dimensions 5 × 3, 3 × 5, or 4 × 4 small square edges giving 250 J + 187.5 J or 250 J + 200 J.<br></span></span></em></p>
<p style="text-align:left;"><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Accurate integration value is 438 J - if method seen award <strong>[2]</strong>.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">«use of <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U = \frac{3}{2}nRT">
<mi>U</mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mi>n</mi>
<mi>R</mi>
<mi>T</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="pV = nRT">
<mi>p</mi>
<mi>V</mi>
<mo>=</mo>
<mi>n</mi>
<mi>R</mi>
<mi>T</mi>
</math></span> to give»</span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta U = \frac{3}{2}\Delta pV">
<mi mathvariant="normal">Δ</mi>
<mi>U</mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mi mathvariant="normal">Δ</mi>
<mi>p</mi>
<mi>V</mi>
</math></span> ✔</p>
<p>«<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{3}{2} \times - 2.5 \times {10^5} \times 1 \times {10^{ - 3}}">
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mo>−</mo>
<mn>2.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>5</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>1</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>»</span></p>
<p><span style="background-color:#ffffff;">=«–»375«J» ✔</span></p>
<p style="text-align:left;"><em><span style="background-color:#ffffff;">Another method is possible: eg realisation that ΔU for BC has same magnitude, so ΔU = 3/2 PΔV.</span></em></p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;"><em>T</em><sub>A</sub> = 816<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">K</span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">»</span> <em><strong>OR </strong> </em>543«<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">°C</span>»</span><em><span style="background-color:#ffffff;">✔</span></em></p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">for CA Δ<em>U</em> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:italic;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">=</span> 0 so <em>Q = W</em> = −440 «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">J</span>» ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">for AB <em>W</em> = 0 so <em>Q</em> = <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">Δ</span>U = <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">−</span>375 «J» ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">815 «J» transferred to the building ✔</span></p>
<p style="text-align:left;"><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Must use the first law of thermodynamics for MP1 and MP2.</span></span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">the temperature changes in the cycle are too large ✔<br></span></p>
<p><span style="background-color:#ffffff;">the cycle takes too long «because it contains an isothermal stage» ✔<br></span></p>
<p><span style="background-color:#ffffff;">energy/power output would be too small ✔</span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>At SL, Correct answers were rare and very few candidates used the fact the work done was area under the curve, and even fewer could estimate this area. At HL, the question was better answered. Candidates used a range of methods to estimate the area including counting the squares, approximating the area using geometrical shapes and on a few occasions using integral calculus.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Not very many candidates seem to know the generalised formula ΔU =1.5(P2V2 -P1V1) however many correct answers were seen.</p>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The temperature at A was found correctly by most candidates.</p>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The main problem here was deciding whether each Q was positive or negative. But the question was quite well answered.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Because the question was about a heat pump rather than a heat engine very few answers were correct. Only a very small number of candidates mentioned the fact that the isothermal change would take an impracticably long time.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">An ideal gas consisting of 0.300 mol undergoes a process ABCD. AB is an adiabatic expansion from the initial volume <em>V</em><sub>A</sub> to the volume 1.5 <em>V</em><sub>A</sub>. BC is an isothermal compression. The pressures at C and D are the same as at A.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The following data are available.</span></span></p>
<p style="padding-left: 90px;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Pressure at A = 250 kPa<br>Volume at C = 3.50 × 10<sup>–3</sup> m<sup>3</sup><br>Volume at D = 2.00 × 10<sup>–3</sup> m<sup>3</sup></span></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The gas at C is further compressed to D at a constant pressure. During this compression the temperature decreases by 150 K.</span></p>
<p><span style="background-color: #ffffff;">For the compression CD,</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the pressure at B is about 130 kPa.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>V</mi><mi mathvariant="normal">A</mi></msub><msub><mi>V</mi><mi mathvariant="normal">C</mi></msub></mfrac></math>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">determine the thermal energy removed from the system.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">explain why the entropy of the gas decreases.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">state and explain whether the second law of thermodynamics is violated.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi mathvariant="normal">B</mi></msub><mo>=</mo><mfrac><mrow><mn>250</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><msup><mn>5</mn><mstyle displaystyle="true"><mfrac><mn>5</mn><mn>3</mn></mfrac></mstyle></msup></mrow></mfrac><mo> </mo><mo>«</mo><mi>from</mi><mo> </mo><msub><mi>P</mi><mi mathvariant="normal">B</mi></msub><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><msub><mi>V</mi><mi mathvariant="normal">A</mi></msub></mrow></mfenced><mfrac><mn>5</mn><mn>3</mn></mfrac></msup><mo>=</mo><mn>250</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>×</mo><msup><msub><mi>V</mi><mi mathvariant="normal">A</mi></msub><mfrac><mn>5</mn><mn>3</mn></mfrac></msup><mo>»</mo></math> <span style="background-color: #ffffff;">✔</span></p>
<p>= 127 kPa <span style="background-color: #ffffff;">✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>127</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><msub><mi>V</mi><mi mathvariant="normal">A</mi></msub><mo>=</mo><mn>250</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo> </mo><msub><mi>V</mi><mi mathvariant="normal">C</mi></msub><mo>»</mo></math></p>
<p><span style="background-color: #ffffff;">1.31 ✔</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>work done <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>W</mi><mo>=</mo><mo>«</mo><mo>-</mo><mo>»</mo><mn>250</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mo>«</mo><mo>-</mo><mo>»</mo><mn>375</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> <span style="background-color: #ffffff;">✔</span></p>
<p>change in internal energy <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>U</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>300</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>31</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mn>150</mn></mrow></mfenced><mo>=</mo><mo>«</mo><mo>-</mo><mo>»</mo><mn>561</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math><br><em><strong>OR<br></strong></em><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>U</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>P</mi><mo>∆</mo><mi>V</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>×</mo><mn>375</mn><mo>=</mo><mo>«</mo><mo>-</mo><mo>»</mo><mn>563</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> </strong></em><span style="background-color: #ffffff;">✔</span></p>
<p>thermal energy removed <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>Q</mi><mo>=</mo><mn>375</mn><mo>+</mo><mn>561</mn><mo>=</mo><mn>936</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math><br><em><strong>OR<br></strong></em><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>Q</mi><mo>=</mo><mn>375</mn><mo>+</mo><mn>563</mn><mo>=</mo><mn>938</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> </strong></em><span style="background-color: #ffffff;">✔</span></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>Q</mi><mo>=</mo><mo>«</mo><mi>n</mi><mi>C</mi><mi>p</mi><mo>∆</mo><mi>T</mi><mo>=</mo><mo>»</mo><mfrac><mn>5</mn><mn>2</mn></mfrac><mo>×</mo><mi>n</mi><mi>R</mi><mi>T</mi></math> <span style="background-color: #ffffff;">✔</span></p>
<p>thermal energy removed <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>Q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>300</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>31</mn><mo>×</mo><mn>150</mn></math> <span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>935</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math></span><span style="background-color: #ffffff;"> ✔</span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span style="background-color: #ffffff;">«from b(i)» <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>Q</mi></math> is negative <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>S</mi><mo>=</mo><mfrac><mrow><mo>∆</mo><mi>Q</mi></mrow><mi>T</mi></mfrac></math> <em><strong>AND <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>S</mi></math> </strong></em>is negative <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></span></p>
<p> </p>
<p><strong>ALTERNATIVE 2</strong></p>
<p><em>T</em> and/or <em>V</em> decreases ✔</p>
<p>less disorder/more order «so <em>S</em> decreases» ✔</p>
<p> </p>
<p><strong>ALTERNATIVE 3</strong></p>
<p><em>T</em> decreases ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>S</mi><mo>=</mo><mi>K</mi><mo>×</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>T</mi><mn>2</mn></mrow><mrow><mi>T</mi><mn>1</mn></mrow></mfrac></mfenced><mo><</mo><mn>0</mn></math> ✔</p>
<p><em> </em></p>
<p><em>NOTE: Answer given, look for a valid reason that S decreases.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">not violated ✔</span></p>
<p><span style="background-color: #ffffff;">the entropy of the surroundings must have increased<br><em><strong>OR</strong></em><br>the overall entropy of the system and the surroundings is the same or increased ✔</span></p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>The pressure–volume (<em>pV</em>) diagram shows a cycle ABCA of a heat engine. The working substance of the engine is 0.221 mol of ideal monatomic gas.</p>
<p style="text-align: left;"><img src=""></p>
<p>At A the temperature of the gas is 295 K and the pressure of the gas is 1.10 × 10<sup>5</sup> Pa. The process from A to B is adiabatic.</p>
</div>
<div class="specification">
<p>The process from B to C is replaced by an isothermal process in which the initial state is the same and the final volume is 5.00 × 10<sup>–3<sub> </sub></sup>m<sup>3</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the pressure at B is about 5 × 10<sup>5</sup> Pa.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the process BC, calculate, in J, the work done by the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the process BC, calculate, in J, the change in the internal energy of the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the process BC, calculate, in J, the thermal energy transferred to the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, without any calculation, why the pressure after this change would belower if the process was isothermal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, without any calculation, whether the net work done by the engine during one full cycle would increase or decrease.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why an efficiency calculation is important for an engineer designing a heat engine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_1}V_1^{\frac{5}{3}} = {p_2}V_2^{\frac{5}{3}}">
<mrow>
<msub>
<mi>p</mi>
<mn>1</mn>
</msub>
</mrow>
<msubsup>
<mi>V</mi>
<mn>1</mn>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
<mo>=</mo>
<mrow>
<msub>
<mi>p</mi>
<mn>2</mn>
</msub>
</mrow>
<msubsup>
<mi>V</mi>
<mn>2</mn>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
</math></span><strong>»</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.1 \times {10^5} \times {5^{\frac{5}{3}}} = {p_2} \times {2^{\frac{5}{3}}}">
<mn>1.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>5</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>5</mn>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>p</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><em>p</em><sub>2</sub> <strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.1 \times {{10}^5} \times {5^{\frac{5}{3}}}}}{{{{2.5}^{\frac{5}{3}}}}}">
<mfrac>
<mrow>
<mn>1.1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>5</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mn>5</mn>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mn>2.5</mn>
</mrow>
<mrow>
<mfrac>
<mn>5</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong> = 5.066 × 10<sup>5</sup> <strong>«</strong>Pa<strong>»</strong></p>
<p> </p>
<p><em>Volume may be in litres or m<sup>3</sup>.</em></p>
<p><em>Value to at least 2 sig figs, </em><strong><em>OR </em></strong><em>clear working with substitution required for mark.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>W = <em>p</em>Δ<em>V</em><strong>»</strong></p>
<p><strong>«</strong>= 5.07 × 10<sup>5</sup> × (5 × 10<sup>–3</sup> – 2 × 10<sup>–3</sup>)<strong>» </strong></p>
<p>= 1.52 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[0] </em></strong><em>if POT mistake.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>U</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</math></span><em>p</em>Δ<em>V</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</math></span>5.07 × 10<sup>5</sup> × 3 × 10<sup>–3</sup> = 2.28 × 10<sup>–3</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Accept alternative solution via T</em><sub><em>c</em></sub><em>.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Q</em><strong> «</strong>= (1.5 + 2.28) × 10<sup>3</sup> =<strong>»</strong> 3.80 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Watch for ECF from (b)(i) and (b)(ii).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for isothermal process, PV = constant / ideal gas laws mentioned</p>
<p>since V<sub>C</sub> > V<sub>B</sub>, P<sub>C</sub> must be smaller than P<sub>B</sub></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the area enclosed in the graph would be smaller</p>
<p>so the net work done would decrease</p>
<p> </p>
<p><em>Award MP2 only if MP1 is awarded.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to reduce energy loss; increase engine performance; improve mpg <em>etc</em></p>
<p> </p>
<p><em>Allow any sensible answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A flywheel is made of a solid disk with a mass <em>M</em> of 5.00 kg mounted on a small radial axle. The mass of the axle is negligible. The radius<em> R</em> of the disk is 6.00 cm and the radius<em> r</em> of the </span><span style="background-color: #ffffff;">axle is 1.20 cm.<br></span></p>
<p><span style="background-color: #ffffff;">A string of negligible thickness is wound around the axle. The string is pulled by an electric motor that exerts a vertical tension force <em>T</em> on the flywheel. The diagram shows the forces acting on the flywheel. <em>W</em> is the weight and<em> N</em> is the normal reaction force from the support of the flywheel.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The moment of inertia of the flywheel about the axis is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>M</mi><msup><mi>R</mi><mn>2</mn></msup></math>.</span></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The flywheel is initially at rest. At time <em>t</em> = 0 the motor is switched on and a time-varying tension force acts on the flywheel. The torque <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Γ</mi></math></em> exerted on the flywheel by the tension force in the string varies with<em> t</em> as shown on the graph.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">At<em> t</em> = 5.00 s the string becomes fully unwound and it disconnects from the flywheel. The flywheel remains spinning around the axle.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the torque provided by the force <em>W</em> about the axis of the flywheel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the physical quantity represented by the area under the graph.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Show that the angular velocity of the flywheel at <em>t</em> = 5.00 s is 200 rad s<sup>–1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the maximum tension in the string.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The flywheel is in translational equilibrium. Distinguish between translational equilibrium and rotational equilibrium.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">At <em>t</em> = 5.00 s the flywheel is spinning with angular velocity 200 rad s<sup>–1</sup>. The support bearings exert a constant frictional torque on the axle. The flywheel comes to rest after 8.00 × 10<sup>3</sup> revolutions. Calculate the magnitude of the frictional torque exerted on the flywheel.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">zero ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«change in» angular momentum ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Allow angular impulse.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">use of <em>L = lω </em>= area under graph = 1.80 «kg m<sup>2 </sup>s<sup>–1</sup>» ✔<br></span></p>
<p><span style="background-color: #ffffff;">rearranges «to give <em>ω=</em> area/I» 1.80 = 0.5 × 5.00 × 0.060<sup>2 </sup></span>×<span style="background-color: #ffffff;"><em> ω</em> ✔<br></span></p>
<p><span style="background-color: #ffffff;">«to get <em>ω </em>= 200 rad s<sup>–1 </sup>»</span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>40</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>012</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mn>33</mn><mo>.</mo><mn>3</mn><mo> </mo><mi mathvariant="normal">N</mi></math> <span style="background-color: #ffffff;">✔</span></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">translational equilibrium is when the sum of all the forces on a body is zero ✔<br></span></p>
<p><span style="background-color: #ffffff;">rotational equilibrium is when the sum of all the torques on a body is zero ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span style="background-color: #ffffff;">ALTERNATIVE 1</span></strong></em></p>
<p><em><strong><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><msup><mn>200</mn><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo>×</mo><mi>α</mi><mo>×</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>8000</mn></math> </span></strong></em><span style="background-color: #ffffff;">✔</span></p>
<p><em><strong><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mo>«</mo><mo>-</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>398</mn><mo> </mo><mo>«</mo><mi>rad</mi><mo> </mo><msup><mi>s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math> </span></strong></em><span style="background-color: #ffffff;">✔</span></p>
<p><span style="background-color: #ffffff;">torque = <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>I</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>398</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>00</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>060</mn><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>3</mn><mo>.</mo><mn>58</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo> </mo><mi mathvariant="normal">m</mi><mo>»</mo></math> ✔</span></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>change in kinetic energy <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>«</mo><mo>-</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>00</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>060</mn><mn>2</mn></msup></mrow></mfenced><mo>×</mo><msup><mn>200</mn><mn>2</mn></msup><mo>=</mo><mo>«</mo><mo>-</mo><mo>»</mo><mn>180</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo>»</mo></math> ✔</p>
<p>identifies work done = change in KE <span style="background-color: #ffffff;"><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;"><span style="background-color: #ffffff;">✔</span></span></span></p>
<p>torque = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>W</mi><mi>θ</mi></mfrac><mo>=</mo><mfrac><mn>180</mn><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>8000</mn></mrow></mfrac><mo>=</mo><mn>3</mn><mo>.</mo><mn>58</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo> </mo><mi mathvariant="normal">m</mi><mo>»</mo></math>✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram represents an ideal, monatomic gas that first undergoes a compression, then an increase in pressure.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>An adiabatic process then increases the volume of the gas to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn><mo> </mo></mrow></msup><msup><mi mathvariant="normal">m</mi><mn>3</mn></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the work done during the compression.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the work done during the increase in pressure.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pressure following this process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how an approximate adiabatic change can be achieved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">«</span><span class="fontstyle1">–</span><span class="fontstyle0">» <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></math></span><span class="fontstyle1"> </span><span class="fontstyle1">«<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">J</mi></math>» </span><span class="fontstyle3">✓</span></p>
<p> </p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">J</mi></math>» </span><span class="fontstyle2">✓ </span></p>
<p> </p>
<p><em><span class="fontstyle3">OWTTE</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><msup><mi>V</mi><mfrac><mn>5</mn><mn>3</mn></mfrac></msup></math> is constant «<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>×</mo><msup><mfenced><mrow><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfenced><mfrac><mn>5</mn><mn>3</mn></mfrac></msup><mo>=</mo><msub><mi>P</mi><mn>2</mn></msub><mo>×</mo><msup><mfenced><mrow><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfenced><mfrac><mn>5</mn><mn>3</mn></mfrac></msup></math>» </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub><mo>=</mo><mn>8</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mn>4</mn><mo> </mo></mrow></msup><mo>«</mo><mi>Pa</mi><mo>»</mo></math> <em><strong>OR</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>87</mn></math> «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>kPa</mi></math>» </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><em><span class="fontstyle0">Award </span><strong><span class="fontstyle2">[2] </span></strong><span class="fontstyle0">marks for a bald correct answer</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">adiabatic means no transfer of heat in or out of the system </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">should be fast </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">«can be slow if» the system is insulated </span><span class="fontstyle2">✓</span></p>
<p> </p>
<p><em><span class="fontstyle3">OWTTE</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A uniform ladder of weight 50.0 N and length 4.00 m is placed against a frictionless wall making an angle of 60.0° with the ground.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Outline why the normal force acting on the ladder at the point of contact with the wall is equal to the frictional force <em>F</em> between the ladder and the ground.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate <em>F.</em></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The coefficient of friction between the ladder and the ground is 0.400. Determine whether the ladder will slip.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">«translational equilibrium demands that the» </span><span style="background-color:#ffffff;">resultant force in the horizontal direction must be zero✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">«hence <em>N</em><sub>W</sub> = <em>F»</em></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em><span style="background-color:#ffffff;">Equality of forces is given, look for reason why.</span></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">«clockwise moments = anticlockwise moments»<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">50 × 2cos 60 = <em>N</em><sub>W</sub> × 4sin 60 ✔</span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{N_{\text{W}}} = F = \frac{{50 \times 2\cos 60}}{{4\sin 60}}">
<mrow>
<msub>
<mi>N</mi>
<mrow>
<mtext>W</mtext>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mi>F</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>50</mn>
<mo>×</mo>
<mn>2</mn>
<mi>cos</mi>
<mo></mo>
<mn>60</mn>
</mrow>
<mrow>
<mn>4</mn>
<mi>sin</mi>
<mo></mo>
<mn>60</mn>
</mrow>
</mfrac>
</math></span>»</span></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><em>F</em> = <span style="background-color:#ffffff;">14.4«<em>N</em>» ✔</span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;">maximum friction force = «<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">0.4 × 50N</span>» = 20«N» ✔<br></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;">14.4 <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><</span> 20 <em><strong>AND</strong> </em>so will not slip ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates stated that the resultant of all forces must be zero but failed to mention the fact that horizontal forces must balance in this particular question.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates could take moments about any point and correct answers were rare both at SL and HL.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The question about the slipping of the ladder was poorly answered. The fact that the normal reaction on the floor was 50N was not known to many.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The moment of inertia of a solid sphere is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="I = \frac{2}{5}m{r^2}">
<mi>I</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mi>m</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> where <em>m</em> is the mass of the sphere and <em>r </em>is the radius.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the total kinetic energy <em>E</em><sub>k</sub> of the sphere when it rolls, without slipping, at speed <em>v</em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E_{\text{K}}} = \frac{7}{{10}}m{v^2}">
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mtext>K</mtext>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">A solid sphere of mass 1.5 kg is rolling, without slipping, on a horizontal surface with a speed of 0.50 m s<sup>-1</sup>. The sphere then rolls, without slipping, down a ramp to reach a horizontal surface that is 45 cm lower.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Calculate the speed of the sphere at the bottom of the ramp.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><span style="background-color:#ffffff;"><em>E</em><sub>k</sub> = <em>E</em><sub>k</sub> linear + <em>E</em><sub>k</sub> rotational</span></p>
<p style="text-align:left;"><em><strong><span style="background-color:#ffffff;">OR</span></strong></em></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E_{\text{k}}} = \frac{1}{2}m{v^2} + \frac{1}{2}I{\omega ^2}">
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mtext>k</mtext>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>I</mi>
<mrow>
<msup>
<mi>ω</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></span><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"> ✔</span></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}m{v^2} + \frac{1}{2} \times \frac{2}{5}m{r^2} \times {\left( {\frac{v}{r}} \right)^2}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mi>m</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>v</mi>
<mi>r</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <span style="background-color:#ffffff;">✔</span></p>
<p><span style="background-color:#ffffff;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{7}{{10}}m{v^2}">
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mi>m</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>»</span></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Answer is given in the question so check working is correct at each stage.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">Initial <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E_K} = \frac{7}{{10}} \times 1.50 \times {0.5^2}">
<mrow>
<msub>
<mi>E</mi>
<mi>K</mi>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>1.50</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>0.5</mn>
<mn>2</mn>
</msup>
</mrow>
</math></span> «=0.26J» ✔</span></p>
<p style="text-align:left;">Final <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E_K} = 0.26 + 1.5 \times 9.81 \times 0.45">
<mrow>
<msub>
<mi>E</mi>
<mi>K</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>0.26</mn>
<mo>+</mo>
<mn>1.5</mn>
<mo>×</mo>
<mn>9.81</mn>
<mo>×</mo>
<mn>0.45</mn>
</math></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">«=6.88J» </span><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p style="text-align:left;"><span style="background-color:#ffffff;"><span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = « \sqrt {\frac{{10}}{7} \times \frac{{6.88}}{{1.5}}} =» 2.56">
<mi>v</mi>
<mo>=</mo>
<mrow>
<mo>«</mo>
</mrow>
<msqrt>
<mfrac>
<mrow>
<mn>10</mn>
</mrow>
<mn>7</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>6.88</mn>
</mrow>
<mrow>
<mn>1.5</mn>
</mrow>
</mfrac>
</msqrt>
<mo>=</mo>
<mrow>
<mo>»</mo>
</mrow>
<mn>2.56</mn>
</math></span> «m s<sup>–1</sup>» ✔</span></span></span></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><span style="background-color:#ffffff;">Other solution methods are possible.</span></p>
<p style="text-align:left;"> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The derivation of the formula for the total kinetic energy of a rolling ball was well answered.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Although there were many correct answers, many candidates forgot to include the initial kinetic energy of the ball at the top of the ramp. The process followed to obtain the answer was too often poorly presented, candidates are encouraged to explain what is being calculated rather than just writing numbers.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>