File "markSceme-HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Option B HTML/markSceme-HL-paper3html
File size: 590.12 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>A mass-spring system is forced to vibrate vertically at the resonant frequency of the system. The motion of the system is damped using a liquid.</p>
<p style="text-align: center;"><img src=""></p>
<p>At time <em>t</em>=0 the vibrator is switched on. At time <em>t</em><sub>B</sub> the vibrator is switched off and the system comes to rest. The graph shows the variation of the vertical displacement of the system with time until <em>t</em><sub>B</sub>.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to energy in the system, the amplitude of oscillation between</p>
<p>(i) <em>t </em>= 0 and <em>t</em><sub>A</sub>.</p>
<p>(ii) <em>t</em><sub>A</sub> and <em>t</em><sub>B</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The system is critically damped. Draw, on the graph, the variation of the displacement with time from <em>t</em><sub>B</sub> until the system comes to rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>amplitude is increasing as energy is added</p>
<p> </p>
<p>ii</p>
<p>energy input = energy lost due to damping</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve from time <em>t</em><sub>B</sub> reaching zero displacement</p>
<p>in no more than one cycle</p>
<p><img src=""></p>
<p><em>Award zero if displacement after t<sub>B</sub> goes to negative values.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A ball is moving in still air, spinning clockwise about a horizontal axis through its centre. The diagram shows streamlines around the ball.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-26_om_10.55.18.png" alt="M17/4/PHYSI/HP3/ENG/TZ2/10"></p>
</div>
<div class="specification">
<p>The surface area of the ball is 2.50 x 10<sup>–2</sup> m<sup>2</sup>. The speed of air is 28.4 m<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>s<sup>–1</sup> under the ball and 16.6 m<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>s<sup>–1</sup> above the ball. The density of air is 1.20 kg<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>m<sup>–3</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the magnitude of the force on the ball, ignoring gravity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw an arrow to indicate the direction of this force.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> assumption you made in your estimate in (a)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>p</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\rho \left( {{v_T}^2 - {v_L}^2} \right) = \frac{1}{2} \times 1.20 \times \left( {{{28.4}^2} - {{16.6}^2}} \right) = ">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>ρ</mi>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mrow>
<msub>
<mi>v</mi>
<mi>T</mi>
</msub>
</mrow>
<mn>2</mn>
</msup>
<mo>−</mo>
<msup>
<mrow>
<msub>
<mi>v</mi>
<mi>L</mi>
</msub>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>1.20</mn>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mn>28.4</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mn>16.6</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
</math></span>» 318.6 «Pa»</p>
<p><em>F</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="318.6 \times \frac{{2.50 \times {{10}^{ - 2}}}}{4} = ">
<mn>318.6</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mn>2.50</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
<mo>=</mo>
</math></span>» 1.99 «N»</p>
<p><br><em>Allow ECF from MP1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward arrow of any length or position</p>
<p><em>Accept any downward arrow not just vertical.</em></p>
<p><em><img src=""></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>flow is laminar/non-turbulent<br><em><strong>OR</strong></em><br>Bernoulli’s equation holds<br><em><strong>OR</strong></em><br>pressure is uniform on each hemisphere<br><em><strong>OR</strong></em><br>diameter of ball can be ignored /<em>ρ</em>gz = constant</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph below shows the displacement <em>y</em> of an oscillating system as a function of time <em>t</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by damping.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <em>Q</em> factor for the system.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <em>Q</em> factor of the system increases. State and explain the change to the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the loss of energy in an oscillating system</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = 2\pi \frac{{{{16}^2}}}{{{{16}^2} - {{10.3}^2}}} \approx 11">
<mi>Q</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mn>16</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mn>16</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mn>10.3</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>≈</mo>
<mn>11</mn>
</math></span></p>
<p> </p>
<p><em>Accept calculation based on any two correct values giving answer from interval 10 to 13.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the amplitude decreases at a slower rate</p>
<p>a higher <em>Q</em> factor would mean that less energy is lost per cycle</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A solid cube of side 0.15 m has an average density of 210 kg m<sup>–3</sup>.</p>
<p>(i) Calculate the weight of the cube.</p>
<p>(ii) The cube is placed in gasoline of density 720 kg m<sup>–3</sup>. Calculate the proportion of the volume of the cube that is above the surface of the gasoline.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Water flows through a constricted pipe. Vertical tubes A and B, open to the air, are located along the pipe.</p>
<p><img src=""></p>
<p>Describe why tube B has a lower water level than tube A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i<br><em>F</em><sub>weight </sub>= «<em>ρgV</em><sub>cube </sub>= 210×9.81×0.15<sup>3 </sup>=» 6.95«N»<br><br></p>
<p>ii<br><em>F</em><sub>buoyancy </sub>= 6.95 = <em>ρgV</em> gives <em>V </em>= 9.8×10<sup>−4</sup></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{9.8 \times {{10}^{ - 4}}}}{{{{\left( {0.15} \right)}^3}}}">
<mfrac>
<mrow>
<mn>9.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.15</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>=0.29 so 0.71 <em><strong>or</strong></em> 71% of the cube is above the gasoline</p>
<p><em>Award<strong> [2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«from continuity equation» <em>v</em> is greater at B<br><em><strong>OR<br></strong></em>area at B is smaller thus «from continuity equation» velocity at B is greater</p>
<p>increase in speed leads to reduction in pressure «through Bernoulli effect»</p>
<p>pressure related to height of column<br><em><strong>OR<br></strong>p=<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\rho ">
<mi>ρ</mi>
</math></span>gh </em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An air bubble has a radius of 0.25 mm and is travelling upwards at its terminal speed in a liquid of viscosity 1.0 × 10<sup>–3</sup> Pa s.</p>
<p>The density of air is 1.2 kg m<sup>–3</sup> and the density of the liquid is 1200 kg m<sup>–3</sup>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the origin of the buoyancy force on the air bubble.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to the ratio of weight to buoyancy force, show that the weight of the air bubble can be neglected in this situation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the terminal speed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>ALTERNATIVE 1</strong></p>
<p>pressure in a liquid increases with depth</p>
<p>so pressure at bottom of bubble greater than pressure at top</p>
<p><strong>ALTERNATIVE 2</strong></p>
<p>weight of liquid displaced</p>
<p>greater than weight of bubble</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{weight}}}}{{{\text{bouyancy}}}}\left( { = \frac{{V{\rho _a}g}}{{V{\rho _l}g}} = \frac{{{\rho _a}}}{{{\rho _l}}} = \frac{{1.2}}{{1200}}} \right) = {10^{ - 3}}">
<mfrac>
<mrow>
<mrow>
<mtext>weight</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>bouyancy</mtext>
</mrow>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>V</mi>
<mrow>
<msub>
<mi>ρ</mi>
<mi>a</mi>
</msub>
</mrow>
<mi>g</mi>
</mrow>
<mrow>
<mi>V</mi>
<mrow>
<msub>
<mi>ρ</mi>
<mi>l</mi>
</msub>
</mrow>
<mi>g</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>ρ</mi>
<mi>a</mi>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>ρ</mi>
<mi>l</mi>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1.2</mn>
</mrow>
<mrow>
<mn>1200</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>since the ratio is very small, the weight can be neglected</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> if only mass of the bubble is calculated and identified as negligible to mass of liquid displaced.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of equating the buoyancy and the viscous force «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rho _l}\frac{4}{3}\pi {r^3}g = 6\pi \eta r{v_t}">
<mrow>
<msub>
<mi>ρ</mi>
<mi>l</mi>
</msub>
</mrow>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mi>g</mi>
<mo>=</mo>
<mn>6</mn>
<mi>π</mi>
<mi>η</mi>
<mi>r</mi>
<mrow>
<msub>
<mi>v</mi>
<mi>t</mi>
</msub>
</mrow>
</math></span>»</p>
<p><em>v</em><sub>t</sub> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{9}\frac{{1200 \times 9.81}}{{1 \times {{10}^{ - 3}}}}{\left( {0.25 \times {{10}^{ - 3}}} \right)^2} = ">
<mfrac>
<mn>2</mn>
<mn>9</mn>
</mfrac>
<mfrac>
<mrow>
<mn>1200</mn>
<mo>×</mo>
<mn>9.81</mn>
</mrow>
<mrow>
<mn>1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.25</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
</math></span>» 0.16 «ms<sup>–1</sup>»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A sphere is dropped into a container of oil.<br>The following data are available.</p>
<p>Density of oil<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>915</mn><mo> </mo><mi>kg</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></math><br>Viscosity of oil<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>37</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>Pas</mi></math><br>Volume of sphere<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>7</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">m</mi><mn>3</mn></msup></math><br>Mass of sphere<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>12</mn><mo>.</mo><mn>6</mn><mo> </mo><mi mathvariant="normal">g</mi></math></p>
</div>
<div class="specification">
<p>The sphere is now suspended from a spring so that the sphere is below the surface of the oil.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> properties of an ideal fluid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the terminal velocity of the sphere.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the force exerted by the spring on the sphere when the sphere is at rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sphere oscillates vertically within the oil at the natural frequency of the sphere-spring system. The energy is reduced in each cycle by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mo>%</mo></math>. Calculate the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Q</mi></math> factor for this system.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the effect on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Q</mi></math> of changing the oil to one with greater viscosity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">incompressible </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">non-viscous </span><span class="fontstyle2">✓</span></p>
<p><span class="fontstyle0">laminar/streamlined flow </span><span class="fontstyle2">✓</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>radius of sphere<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>012</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo>»</mo></math> ✓</p>
<p> </p>
<p>weight of sphere<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>6</mn><mi>π</mi><mi>η</mi><mi>r</mi><mi>v</mi><mo>+</mo><mi>ρ</mi><mi>V</mi><mi>g</mi></math></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>1</mn><mo>.</mo><mn>26</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>-</mo><mn>915</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow></mfenced><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mrow><mn>6</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>37</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfrac></math> ✓</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>84</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>–</mo><mn>1</mn></mrow></msup><mo>»</mo><mo> </mo></math> ✓</p>
<p> </p>
<p><em><span class="fontstyle0">Accept use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo mathvariant="italic">=</mo><mn mathvariant="italic">10</mn></math> leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo mathvariant="italic">=</mo><mn mathvariant="italic">7</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">0</mn><mo mathvariant="italic"> </mo><mo>«</mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>–</mo><mn>1</mn></mrow></msup><mo>»</mo></math></span></em></p>
<p><em><span class="fontstyle0">Allow implicit calculation of radius for MP1</span></em></p>
<p><em><span class="fontstyle0">Do not allow ECF for MP3 if buoyant force omitted.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>m</mi><mi>g</mi><mo>-</mo><mi>ρ</mi><mi>V</mi><mi>g</mi></math></p>
<p><em><strong>OR</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0126</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>915</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow></mfenced></math> </strong></em>✓</p>
<p> </p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>86</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo> </mo><mo>«</mo><mi mathvariant="normal">N</mi><mo>»</mo></math> ✓</span></p>
<p> </p>
<p><em><span class="fontstyle0">Accept use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo mathvariant="italic">=</mo><mn mathvariant="italic">10</mn></math> leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mn mathvariant="italic">6</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">0</mn><mo mathvariant="italic">×</mo><msup><mn mathvariant="italic">10</mn><mrow><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn></mrow></msup><mo mathvariant="italic"> </mo><mi>N</mi></math></span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mo>«</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mfrac><mrow><mi>energy</mi><mo> </mo><mi>stored</mi></mrow><mrow><mi>energy</mi><mo> </mo><mi>lost</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mfrac><mn>100</mn><mn>10</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>63</mn></math> ✓</span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="fontstyle0">drag force increases </span><em><span class="fontstyle2"><strong>OR</strong> </span></em><span class="fontstyle0">damping increases </span><em><span class="fontstyle2"><strong>OR</strong> </span></em><span class="fontstyle0">more energy lost per cycle </span><span class="fontstyle3">✓</span></p>
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Q</mi></math> will decrease </span><span class="fontstyle3">✓</span></p>
<div class="question_part_label">c(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The properties of fluids proved to be a very well-studied topic.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only those candidates who forgot to include the buoyant force missed marks here.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Continuing from b, most candidates scored full marks.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The calculation needed to obtain the Q-factor proved to be known by many.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very well answered.</p>
<div class="question_part_label">c(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>The graph below represents the variation with time <em>t </em>of the horizontal displacement <em>x </em>of a mass attached to a vertical spring.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_15.49.15.png" alt="M18/4/PHYSI/HP3/ENG/TZ1/11"></p>
</div>
<div class="specification">
<p>The total mass for the oscillating system is 30 kg. For this system</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the motion of the spring-mass system.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the initial energy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>calculate the Q at the start of the motion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>damped oscillation / <em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em> <strong>«</strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 30 × <em>π</em><sup>2</sup> × 0.8<sup>2</sup><strong>»</strong> = 95 <strong>«</strong>J<strong>»</strong></p>
<p> </p>
<p><em>Allow initial amplitude between 0.77 to 0.80, giving range between: 88 to 95 J.</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>E</em> = 95 – <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 30 × <em>π</em><sup>2</sup> × 0.72<sup>2</sup> = 18 <strong>«</strong>J<strong>»</strong></p>
<p><em>Q = </em><strong>«</strong> 2<em>π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{95}}{{18}}">
<mfrac>
<mrow>
<mn>95</mn>
</mrow>
<mrow>
<mn>18</mn>
</mrow>
</mfrac>
</math></span> =<strong>»</strong> 33</p>
<p> </p>
<p><em>Accept values between 0.70 and 0.73, giving a range of</em> Δ<em>E between 22 and 9, giving Q between 27 and 61.</em></p>
<p><em>Watch for ECF from (b)(i).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two tubes, A and B, are inserted into a fluid flowing through a horizontal pipe of diameter 0.50 m. The openings X and Y of the tubes are at the exact centre of the pipe. The liquid rises to a height of 0.10 m in tube A and 0.32 m in tube B. The density of the fluid = 1.0 × 10<sup>3</sup> kg m<sup>–3</sup>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_09.34.50.png" alt="M18/4/PHYSI/HP3/ENG/TZ2/10"></p>
</div>
<div class="specification">
<p>The viscosity of water is 8.9 × 10<sup>–4</sup> Pa s.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the velocity of the fluid at X is about 2 ms<sup>–1</sup>, assuming that the flow is laminar.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the Reynolds number for the fluid in your answer to (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether your answer to (a) is valid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\rho v_{\text{X}}^2 = {p_{\text{Y}}} - {p_{\text{X}}} = \rho g\Delta h">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>ρ</mi>
<msubsup>
<mi>v</mi>
<mrow>
<mtext>X</mtext>
</mrow>
<mn>2</mn>
</msubsup>
<mo>=</mo>
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mtext>Y</mtext>
</mrow>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mtext>X</mtext>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mi>ρ</mi>
<mi>g</mi>
<mi mathvariant="normal">Δ</mi>
<mi>h</mi>
</math></span></p>
<p><em>v</em><sub>X</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2 \times 9.8 \times (0.32 - 0.10)} ">
<msqrt>
<mn>2</mn>
<mo>×</mo>
<mn>9.8</mn>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mn>0.32</mn>
<mo>−</mo>
<mn>0.10</mn>
<mo stretchy="false">)</mo>
</msqrt>
</math></span></p>
<p><em>v</em><sub>x</sub> = 2.08 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>R</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{vr\rho }}{\eta } = \frac{{2.1 \times 0.25 \times {{10}^3}}}{{8.9 \times {{10}^{ - 4}}}}">
<mfrac>
<mrow>
<mi>v</mi>
<mi>r</mi>
<mi>ρ</mi>
</mrow>
<mi>η</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2.1</mn>
<mo>×</mo>
<mn>0.25</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>8.9</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong> 5.9 × 10<sup>5</sup></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>R > </em>1000) flow is not laminar, so assumption is invalid</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A driven system is lightly damped. The graph shows the variation with driving frequency <em>f</em> of the amplitude <em>A</em> of oscillation.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-26_om_11.02.12.png" alt="M17/4/PHYSI/HP3/ENG/TZ2/11"></p>
</div>
<div class="specification">
<p>A mass on a spring is forced to oscillate by connecting it to a sine wave vibrator. The graph shows the variation with time <em>t</em> of the resulting displacement <em>y</em> of the mass. The sine wave vibrator has the same frequency as the natural frequency of the spring–mass system.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph, sketch a curve to show the variation with driving frequency of the amplitude when the damping of the system <strong>increases</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the displacement of the sine wave vibrator at <em>t</em> = 8.0 s.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The vibrator is switched off and the spring continues to oscillate. The <em>Q</em> factor is 25.</p>
<p>Calculate the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{energy stored}}}}{{{\text{power loss}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>energy stored</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>power loss</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> for the oscillations of the spring–mass system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>lower peak </p>
<p>identical behaviour to original curve at extremes </p>
<p>peak frequency shifted to the left</p>
<p><img src=""></p>
<p> </p>
<p><em>Award <strong>[0]</strong> if peak is higher.</em></p>
<p><em>For MP2 do not accept curves which cross.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>displacement of vibrator is 0</p>
<p>because phase difference is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}">
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>or</strong></em> 90<sup>º</sup> <em><strong>or</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> period</p>
<p> </p>
<p><em>Do not penalize sign of phase difference.</em></p>
<p><em>Do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{4}">
<mfrac>
<mi>λ</mi>
<mn>4</mn>
</mfrac>
</math></span> for MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>resonant <em>f</em> = 0.125 « Hz »</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{25}}{{\left( {2\pi \times 0.125} \right)}}">
<mfrac>
<mrow>
<mn>25</mn>
</mrow>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>π</mi>
<mo>×</mo>
<mn>0.125</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> = 32 «s»</p>
<p> </p>
<p><em>Watch for ECF from MP1 to MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a simplified model of a Galilean thermometer. The thermometer consists of a sealed glass cylinder that contains ethanol, together with glass spheres. The spheres are filled with different volumes of coloured water. The mass of the glass can be neglected as well as any expansion of the glass through the temperature range experienced. Spheres have tags to identify the temperature. The mass of the tags can be neglected in all calculations.</p>
<p style="text-align: center;"><img src=""></p>
<p>Each sphere has a radius of 3.0 cm and the spheres, due to the different volumes of water in them, are of varying densities. As the temperature of the ethanol changes the individual spheres rise or fall, depending on their densities, compared with that of the ethanol.</p>
</div>
<div class="specification">
<p>The graph shows the variation with temperature of the density of ethanol.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the graph, determine the buoyancy force acting on a sphere when the ethanol is at a temperature of 25 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the ethanol is at a temperature of 25 °C, the 25 °C sphere is just at equilibrium. This sphere contains water of density 1080 kg m<sup>–3</sup>. Calculate the percentage of the sphere volume filled by water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The room temperature slightly increases from 25 °C, causing the buoyancy force to decrease. For this change in temperature, the ethanol density decreases from 785.20 kg m<sup>–3</sup> to 785.16 kg m<sup>–3</sup>. The average viscosity of ethanol over the temperature range covered by the thermometer is 0.0011 Pa s. Estimate the steady velocity at which the 25 °C sphere falls.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>density = 785 «kgm<sup>−3</sup>»</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}\pi {\left( {0.03} \right)^3} \times 785 \times 9.8">
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.03</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>785</mn>
<mo>×</mo>
<mn>9.8</mn>
</math></span> =» 0.87 «N»</p>
<p><em>Accept answer in the range 784 to 786</em></p>
<p> </p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.87}}{{\frac{4}{3}\pi {{\left( {0.03} \right)}^3} \times 1080 \times 9.8}}">
<mfrac>
<mrow>
<mn>0.87</mn>
</mrow>
<mrow>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.03</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>1080</mn>
<mo>×</mo>
<mn>9.8</mn>
</mrow>
</mfrac>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.87}}{{1080 \times 1.13 \times {{10}^{ - 4}}}}">
<mfrac>
<mrow>
<mn>0.87</mn>
</mrow>
<mrow>
<mn>1080</mn>
<mo>×</mo>
<mn>1.13</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{785}}{{1080}}">
<mfrac>
<mrow>
<mn>785</mn>
</mrow>
<mrow>
<mn>1080</mn>
</mrow>
</mfrac>
</math></span></p>
<p>0.727 <em><strong>or</strong> </em>73%</p>
<p><em>Allow ECF from (a)(i)</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of drag force to obtain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{4}{3}\pi }">
<mrow>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
</mrow>
</math></span><em>r</em><sup>3</sup> x 0.04 x <em>g</em> = 6 x <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> x 0.0011 x <em>r</em> x <em>v</em></p>
<p><em>v = </em>0.071 «ms<sup>–1</sup>»</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_15.42.28.png" alt="M18/4/PHYSI/HP3/ENG/TZ1/10"></p>
</div>
<div class="specification">
<p>The following data are available:</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{density of water}}}&{ = 1.00 \times {{10}^3}{\text{ kg }}{{\text{m}}^{ - 3}}} \\ {{\text{viscosity of water}}}&{ = 1.31 \times {{10}^{ - 3}}{\text{ Pa s}}} \\ {{\text{diameter of the outlet pipe}}}&{ = 0.600{\text{ m}}} \\ {{\text{velocity of water at outlet pipe}}}&{ = 59.4{\text{ m}}{{\text{s}}^{ - 1}}} \end{array}">
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>density of water</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>1.00</mn>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<mtext> kg </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>viscosity of water</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>1.31</mn>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> Pa s</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>diameter of the outlet pipe</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>0.600</mn>
<mrow>
<mtext> m</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>velocity of water at outlet pipe</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>=</mo>
<mn>59.4</mn>
<mrow>
<mtext> m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the difference in terms of the velocity of the water between laminar and turbulent flow.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The water level is a height <em>H </em>above the turbine. Assume that the flow is laminar in the outlet pipe.</p>
<p>Show, using the Bernouilli equation, that the speed of the water as it enters the turbine is given by <em>v</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gH} ">
<msqrt>
<mn>2</mn>
<mi>g</mi>
<mi>H</mi>
</msqrt>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Reynolds number for the water flow.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether it is reasonable to assume that flow is laminar in this situation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>in laminar flow, the velocity of the fluid is constant <strong>«</strong>at any point in the fluid<strong>» «</strong>whereas it is not constant for turbulent flow<strong>»</strong></p>
<p> </p>
<p><em>Accept any similarly correct answers.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>P<sub>S</sub></em> = <em>P<sub>T</sub></em> <strong>«</strong>as both are exposed to atmospheric pressure<strong>»</strong></p>
<p>then <em>V<sub>T</sub></em> = 0 <strong>«</strong>if the surface area ofthe reservoir is large<strong>»</strong></p>
<p><strong>«</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\rho v_s^2">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>ρ</mi>
<msubsup>
<mi>v</mi>
<mi>s</mi>
<mn>2</mn>
</msubsup>
</math></span> + <em>ρgz<sub>S</sub></em> = <em>ρgz<sub>T</sub></em><strong>»</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}v_S^2">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<msubsup>
<mi>v</mi>
<mi>S</mi>
<mn>2</mn>
</msubsup>
</math></span> = <em>g</em>(<em>z<sub>T</sub></em> – <em>z<sub>S</sub></em>) = <em>gH</em></p>
<p>and so <em>v<sub>S</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2gH} ">
<msqrt>
<mn>2</mn>
<mi>g</mi>
<mi>H</mi>
</msqrt>
</math></span></p>
<p> </p>
<p><em>MP1 and MP2 may be implied by the correct substitution showing line 3 in the mark scheme.</em></p>
<p><em>Do not accept simple use of</em> <em>v</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {2{\text{as}}} ">
<msqrt>
<mn>2</mn>
<mrow>
<mtext>as</mtext>
</mrow>
</msqrt>
</math></span><em>.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>R</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{59.4 \times 0.6 \times 1 \times {{10}^3}}}{{1.31 \times {{10}^{ - 3}}}}">
<mfrac>
<mrow>
<mn>59.4</mn>
<mo>×</mo>
<mn>0.6</mn>
<mo>×</mo>
<mn>1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.31</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = 2.72 × 10<sup>7</sup></p>
<p> </p>
<p><em>Accept use of radius 0.3 m giving value 1.36 × 10</em><sup><em>7</em></sup><em>.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>as <em>R</em> > 1000 it is not reasonable to assume laminar flow</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A railway track passes over a bridge that has a span of 20 m.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The bridge is subject to a periodic force as a train crosses, this is caused by the weight of the train acting through the wheels as they pass the centre of the bridge.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The wheels of the train are separated by 25 m.</span></span></p>
</div>
<div class="specification">
<p><span style="display: inline !important; float: none; background-color: #ffffff; color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;">The graph shows the variation of the amplitude of vibration </span><em style="color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: italic; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;">A</em><span style="display: inline !important; float: none; background-color: #ffffff; color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;"> of the bridge with driving frequency </span><em style="color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: italic; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;">f</em><sub style="color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 11.6px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;">D</sub><span style="display: inline !important; float: none; background-color: #ffffff; color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;">, when the damping of the bridge system is small.</span></p>
<p><span style="display: inline !important; float: none; background-color: #ffffff; color: #000000; font-family: Verdana,Arial,Helvetica,sans-serif; font-size: 14px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;"><img src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that, when the speed of the train is 10 m s-1, the frequency of the periodic force is 0.4 Hz.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Outline, with reference to the curve, why it is unsafe to drive a train across the bridge at 30 m s<sup>-1</sup> for this amount of damping.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The damping of the bridge system can be varied. Draw, on the graph, a second curve when the damping is larger.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">time period </span></p>
<p><em><span style="background-color:#ffffff;">T = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{25}{10}">
<mfrac>
<mn>25</mn>
<mn>10</mn>
</mfrac>
</math></span>» </span></em><span style="background-color:#ffffff;">= 2.5 s</span><em><span style="background-color:#ffffff;"> <strong>AND</strong> f = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{T}">
<mfrac>
<mn>1</mn>
<mi>T</mi>
</mfrac>
</math></span></span></em></p>
<p><strong><em><span style="background-color:#ffffff;">OR</span></em></strong></p>
<p><em><span style="background-color:#ffffff;">evidence of f = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{10}{25}">
<mfrac>
<mn>10</mn>
<mn>25</mn>
</mfrac>
</math></span>✔</span></em></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Answer 0.4 Hz is given, check correct working is shown.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">30 m s<sup>–1</sup> corresponds to <em>f</em> = 1.2 Hz ✔<br></span></p>
<p><span style="background-color:#ffffff;">the amplitude of vibration is a maximum for this speed<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">corresponds to the resonant frequency ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">similar shape with lower amplitude ✔<br></span></p>
<p><span style="background-color:#ffffff;">maximum shifted slightly to left of the original curve ✔</span></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Amplitude must be lower than the original, but allow the amplitude to be equal at the extremes.</span></span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The question was correctly answered by almost all candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The answers to this question were generally well presented and a correct argument was presented by almost all candidates. Resonance was often correctly referred to.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A correct curve, with lower amplitude and shifted left, was drawn by most candidates.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A mass is attached to a vertical spring. The other end of the spring is attached to the driver of an oscillator.</p>
<p style="text-align: center;"><img src=""></p>
<p>The mass is performing very lightly damped harmonic oscillations. The frequency of the driver is <strong>higher</strong> than the natural frequency of the system. At one instant the driver is moving downwards.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the direction of motion of the mass at this instant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The oscillator is switched off. The system has a <em>Q</em> factor of 22. The initial amplitude is 10 cm. Determine the amplitude after <strong>one</strong> complete period of oscillation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>because the mass and the driver are out of phase «by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span>» ✔</p>
<p>so upwards ✔</p>
<p> </p>
<p><em>Justification needed for MP2</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = 2\pi \frac{{A_0^2}}{{A_0^2 - A_1^2}}">
<mi>Q</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mfrac>
<mrow>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mn>2</mn>
</msubsup>
</mrow>
<mrow>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mn>2</mn>
</msubsup>
<mo>−</mo>
<msubsup>
<mi>A</mi>
<mn>1</mn>
<mn>2</mn>
</msubsup>
</mrow>
</mfrac>
</math></span>» ⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{A_1^2}}{{A_0^2}} = 1 - \frac{{2\pi }}{Q}">
<mfrac>
<mrow>
<msubsup>
<mi>A</mi>
<mn>1</mn>
<mn>2</mn>
</msubsup>
</mrow>
<mrow>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mn>2</mn>
</msubsup>
</mrow>
</mfrac>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mi>Q</mi>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{A_1}}}{{{A_0}}} = ">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>A</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {1 - \frac{{2\pi }}{{22}}} ">
<msqrt>
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>22</mn>
</mrow>
</mfrac>
</msqrt>
</math></span> =» <em>A</em><sub>1</sub> = 8.5 «cm»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>driver amplitude is constant ✔</p>
<p>so mass amplitude is unchanged at 10 cm ✔</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A pendulum bob is displaced until its centre is 30 mm above its rest position and then released. The motion of the pendulum is lightly damped.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="243" height="244"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe what is meant by damped motion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">After one complete oscillation, the height of the pendulum bob above the rest position has decreased to 28 mm. Calculate the <em>Q</em> factor.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The point of suspension now vibrates horizontally with small amplitude and frequency 0.80 Hz, which is the natural frequency of the pendulum. The amount of damping is unchanged.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="192" height="277"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">When the pendulum oscillates with a constant amplitude the energy stored in the system is 20 mJ. Calculate the average power, in W, delivered to the pendulum by the driving force.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">a situation in which a resistive force opposes the motion<br><em><strong>OR</strong></em><br>amplitude/energy decreases with time ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mfrac><mn>30</mn><mrow><mn>30</mn><mo>-</mo><mn>28</mn></mrow></mfrac><mo>=</mo><mn>94</mn><mo>.</mo><mn>25</mn><mo>≈</mo><mn>94</mn></math> ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>94</mn><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo>×</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow><mrow><mi>power</mi><mo> </mo><mi>loss</mi></mrow></mfrac></math><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span></p>
<p>power added <span style="background-color: #ffffff;">= <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></math> «W» ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Gasoline of density 720 kg m<sup>–3</sup> flows in a pipe of constant diameter.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> condition that must be satisfied for the Bernoulli equation</p>
<p style="text-align:center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <em>ρv</em><sup>2</sup> + <em>ρgz</em> + <em>ρ</em> = constant</p>
<p style="text-align:left;">to apply</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the speed of the gasoline at X is the same as that at Y.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the difference in pressure between X and Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diameter at Y is made smaller than that at X. Explain why the pressure difference between X and Y will increase.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>flow must be laminar/steady/not turbulent ✔</p>
<p>fluid must be incompressible/have constant density ✔</p>
<p>fluid must be non viscous ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«continuity equation says» <em>Av</em> = constant «and the areas are the same» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Bernoulli: «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\rho v_x^2">
<mi>ρ</mi>
<msubsup>
<mi>v</mi>
<mi>x</mi>
<mn>2</mn>
</msubsup>
</math></span></span> + 0 + <em>P<span style="font-size:11.6667px;"><sub>x</sub></span></em> =<em> </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em> </em><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\rho v_y^2">
<mi>ρ</mi>
<msubsup>
<mi>v</mi>
<mi>y</mi>
<mn>2</mn>
</msubsup>
</math></span></span> +<em> pgH + P<sub>y</sub> » gives P<sub>x</sub> − P<sub>y</sub> = pgH </em>✔</p>
<p><em>P</em><sub>x</sub> − <em>P</em><sub>y </sub>= 720 × 9.81 × 1.2 = 8.5 «kPa» ✔</p>
<p><em>Award <strong>[2]</strong> for bald correct answer.</em></p>
<p><em>Watch for POT mistakes.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the fluid speed at Y will be greater «than that at X» ✔</p>
<p>reducing the pressure at Y<br><em><strong>OR</strong></em><br>the formula used to show that the difference is increased ✔</p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Gasoline in a pipe. In a), most of the candidates well noted that for the Bernoulli equation, the fluid must be” non-viscous”, some noted, “laminar” and a few, “incompressible”. Some students stated vaguer and less concrete responses such as “the fluid must be ideal”.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In b) most candidates well noted and understood the application of the continuity equation.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In b) most candidates well noted and understood the application of the continuity equation and successfully went on to correctly calculate the pressure difference.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Sub-question iii) well discriminated between the better and weaker candidates. As weaker candidates often wrote that “lower diameter means higher pressure” without a direct reference to the greater speed at Y implying reduced pressure.</p>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A solid sphere is released from rest <strong>below</strong> the surface of a fluid and begins to fall.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Draw and label the forces acting on the sphere at the <strong>instant</strong> when it is released.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Explain why the sphere will reach a terminal speed.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The weight of the sphere is 6.16 mN and the radius is 5.00 × 10<sup>-3</sup> m. For a fluid of density 8.50 × 10<sup>2</sup> kg m<sup>-3</sup>, the terminal speed is found to be 0.280 m s<sup>-1</sup>. Calculate the viscosity of the fluid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="303" height="124"></p>
<p><em><span style="background-color:#ffffff;">Both forces must be suitably labeled. </span></em></p>
<p><em><span style="background-color:#ffffff;">Do not accept just ‘gravity’ </span></em></p>
<p><em><span style="background-color:#ffffff;">Award <strong>[0]</strong> if a third force is shown.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">«as the ball falls» there is a drag force ✔<br></span></p>
<p><span style="background-color:#ffffff;">when drag force+buoyant force/upthrust =«-» weight<br></span></p>
<p><span style="background-color:#ffffff;"><em><strong>OR</strong></em><br></span></p>
<p><span style="background-color:#ffffff;">When net/resultant force =0 ✔<br></span></p>
<p><span style="background-color:#ffffff;">«terminal speed occurs»</span></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">OWTTE<br></span></span></em></p>
<p><em><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Terminal speed is mentioned in the question, so no additional marks for reference to it.</span></span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color:#ffffff;">any evidence (numerical or algebraic) of a realisation that</span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6\pi \eta rv + \rho gV = W">
<mn>6</mn>
<mi>π</mi>
<mi>η</mi>
<mi>r</mi>
<mi>v</mi>
<mo>+</mo>
<mi>ρ</mi>
<mi>g</mi>
<mi>V</mi>
<mo>=</mo>
<mi>W</mi>
</math></span> ✔</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\eta = \frac{{6.16 \times {{10}^{ - 3}} - 4.366 \times {{10}^{ - 3}}}}{{6\pi \times 0.005 \times 0.280}}">
<mi>η</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6.16</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>4.366</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>6</mn>
<mi>π</mi>
<mo>×</mo>
<mn>0.005</mn>
<mo>×</mo>
<mn>0.280</mn>
</mrow>
</mfrac>
</math></span>»</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\eta = 0.0680">
<mi>η</mi>
<mo>=</mo>
<mn>0.0680</mn>
</math></span>«Pas»<span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></span></span></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The question was generally well answered but many candidates did not realise that the drag force would only be present when the ball starts moving.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates could explain correctly that the drag force would increase as the speed increases and that the weight would be balanced by the buoyant force and the drag force.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>When the condition for forces in equilibrium was correctly formed, many candidates managed to obtain the correct answer. The working was often poorly presented making it difficult to mark or award marks for the process.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows the variation with time<em> t</em> of the total energy <em>E</em> of a damped oscillating system.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Q factor for the system is 25. Determine the period of oscillation for this system.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another system has the same initial total energy and period as that in (a) but its <em>Q</em> factor is greater than 25. Without any calculations, draw on the graph, the variation with time of the total energy of this system.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span style="background-color:#ffffff;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = 2\pi \frac{{{E_0}}}{{{E_0} - {E_1}}} » \Rightarrow {E_1} = \left( {1 - \frac{{2\pi }}{Q}} \right){E_0}">
<mi>Q</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>E</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>E</mi>
<mn>0</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>E</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mrow>
<mo>»</mo>
</mrow>
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>E</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mi>Q</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msub>
<mi>E</mi>
<mn>0</mn>
</msub>
</mrow>
</math></span> <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E_1} «= \left( {1 - \frac{{2\pi }}{{25}}} \right) \times 12» = 9.0">
<mrow>
<msub>
<mi>E</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<mo>«</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mn>12</mn>
<mrow>
<mo>»</mo>
</mrow>
<mo>=</mo>
<mn>9.0</mn>
</math></span>«mJ» <span style="display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;">✔</span></p>
<p>reading off the graph, period is 0.48 «s» ✔</p>
<p><em>Allow correct use of any value of E<sub>0</sub>, not only at the time = 0.</em></p>
<p><em>Allow answer from interval 0.42−0.55 s</em></p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>use of <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = 2\pi f\frac{{{\text{energy stored}}}}{{{\text{power loss}}}}">
<mi>Q</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>f</mi>
<mfrac>
<mrow>
<mrow>
<mtext>energy stored</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>power loss</mtext>
</mrow>
</mrow>
</mfrac>
</math></span></span> ✔</p>
<p>energy stored = 12 «mJ» <em><strong>AND</strong></em> power loss = 5.6 «mJ/s»✔</p>
<p>«<em>f</em> = 1.86 s so» period is 0.54 «s» ✔</p>
<p>Allow answer from interval 0.42−0.55 s.</p>
<p><em>Award <strong>[3]</strong> for bald correct answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>similar shape graph starting at 12 mJ and above the original ✔</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Q factor. Most of the candidates attempted to find the period of the damped system by using the correct formula.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many thus went on to establish the correct period within the range given. Some candidates made POT errors not recognizing or identifying the unit used in this question.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A horizontal pipe is inserted into the cylindrical tube so that its centre is at a depth of 5.0 m from the surface of the water. The diameter D of the pipe is half that of the tube.</p>
<p style="text-align: center;"><img src=""></p>
<p>When the pipe is opened, water exits the pipe with speed <em>u</em> and the surface of the water in the tube moves downwards with speed <em>v</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An ice cube floats in water that is contained in a tube.</p>
<p style="text-align: center;"><img src=""></p>
<p>The ice cube melts.</p>
<p>Suggest what happens to the level of the water in the tube.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why <em>u</em> = 4<em>v</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The density of water is 1000 kg m<sup>–3</sup>. Calculate <em>u</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>ice displaces its own weight of water / OWTTE</p>
<p><em><strong>OR</strong></em></p>
<p>melted ice volume equals original volume displaced / OWTTE ✔</p>
<p> </p>
<p>no change will take place ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>continuity equation says <em>v</em> × <em>A</em><sub>1</sub> = <em>u</em> × <em>A</em><sub>2</sub> ✔</p>
<p>«and» <em>A</em><sub>1</sub> = 4<em>A</em><sub>2</sub> ✔</p>
<p>«giving result»</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Bernoulli:</em></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\rho {v^2} + \rho gH + {P_{{\text{atm}}}} = \frac{1}{2}\rho {u^2} + 0 + {P_{{\text{atm}}}}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>ρ</mi>
<mrow>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>ρ</mi>
<mi>g</mi>
<mi>H</mi>
<mo>+</mo>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mrow>
<mtext>atm</mtext>
</mrow>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>ρ</mi>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>0</mn>
<mo>+</mo>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mrow>
<mtext>atm</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</math></span>» gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 1000 \times \frac{{{u^2}}}{{16}} + 1000 \times 9.8 \times 5.0 = \frac{1}{2} \times 1000 \times {u^2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>1000</mn>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>1000</mn>
<mo>×</mo>
<mn>9.8</mn>
<mo>×</mo>
<mn>5.0</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>1000</mn>
<mo>×</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> ✔</p>
<p><em>u</em> = 10.2 «m s<sup>–1</sup>» ✔</p>
<p> </p>
<p><em>Accept solving directly via conservation of energy.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A farmer is driving a vehicle across an uneven field in which there are undulations every 3.0 m.</p>
<p style="text-align: center;"><img src=""></p>
<p>The farmer’s seat is mounted on a spring. The system, consisting of the mass of the farmer and the spring, has a natural frequency of vibration of 1.9 Hz.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why it would be uncomfortable for the farmer to drive the vehicle at a speed of 5.6 m s<sup>–1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what change would be required to the value of <em>Q</em> for the mass–spring system in order for the drive to be more comfortable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>the time between undulations is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{5.6}}">
<mfrac>
<mn>3</mn>
<mrow>
<mn>5.6</mn>
</mrow>
</mfrac>
</math></span> = 0.536 «s»</p>
<p><em>f</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{0.536}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.536</mn>
</mrow>
</mfrac>
</math></span> = 1.87 «Hz»</p>
<p>«frequencies match» resonance occurs so amplitude of vibration becomes greater</p>
<p><em>Must see mention of “resonance” for MP3</em></p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><em>f</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{v}{\lambda } = \frac{{5.6}}{3}">
<mfrac>
<mi>v</mi>
<mi>λ</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>5.6</mn>
</mrow>
<mn>3</mn>
</mfrac>
</math></span></p>
<p><em>f</em> = 1.87 «Hz»</p>
<p>«frequencies match» resonance occurs so amplitude of vibration becomes greater</p>
<p><em>Must see mention of “resonance” for MP3</em></p>
<p> </p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«to increase damping» reduce <em>Q</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A Pitot tube shown in the diagram is used to determine the speed of air flowing steadily in a horizontal wind tunnel. The narrow tube between points A and B is filled with a liquid. At point B the speed of the air is zero.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="550" height="242"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the levels of the liquid are at different heights.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The density of the liquid in the tube is 8.7 × 10<sup>2 </sup>kg m<sup>–3</sup> and the density of air is 1.2 kg m<sup>–3</sup>. The difference in the level of the liquid is 6.0 cm. Determine the speed of air at A.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">air speed at A greater than at B/speed at B is zero<br><em><strong>OR</strong></em><br>total/stagnation pressure «<em>P</em><sub>B</sub>» – static pressure «<em>P</em><sub>A</sub>» = dynamic pressure ✔</span></p>
<p><span style="background-color: #ffffff;">so <em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">P</em><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">A</sub> is less than at <em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">P</em><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">B</sub> (or <em>vice versa</em>) «by Bernoulli effect» ✔</span></p>
<p><span style="background-color: #ffffff;">height of the liquid column is related to «dynamic» pressure difference «hence lower height in arm B» ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>ρ</mi><mi>liquid</mi></msub><mo> </mo><mi>g</mi><mi>h</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><msub><mi>ρ</mi><mi>air</mi></msub><mo> </mo><msup><mi>v</mi><mn>2</mn></msup></math>»<br></span></p>
<p><span style="background-color: #ffffff;">difference in pressure <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi mathvariant="normal">B</mi></msub><mo>-</mo><msub><mi>P</mi><mi mathvariant="normal">A</mi></msub><mo>=</mo><mn>8</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mn>2</mn></msup><mo>×</mo><mn>9</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>06</mn><mo>=</mo><mn>510</mn></math> «Pa» ✔<br></span></p>
<p><span style="background-color: #ffffff;">correct substitution into the Bernoulli equation,<em> eg</em>: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>1</mn><mo>.</mo><mn>2</mn><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><mn>510</mn></math> ✔<br></span></p>
<p><span style="background-color: #ffffff;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>29</mn></math> «ms<sup>–1</sup>» ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The natural frequency of a driven oscillating system is 6 kHz. The frequency of the driver for the system is varied from zero to 20 kHz.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a graph to show the variation of amplitude of oscillation of the system with frequency.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <em>Q </em>factor for the system is reduced significantly. Describe how the graph you drew in (a) changes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>general shape as shown</p>
<p>peak at 6 kHz</p>
<p>graph does not touch the <em>f </em>axis</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-14_om_10.21.57.png" alt="M18/4/PHYSI/HP3/ENG/TZ2/11.a/M"></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>peak broadens</p>
<p>reduced maximum amplitude / graph shifted down</p>
<p>resonant frequency decreases / graph shifted to the left</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>