File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 5/markSceme-SL-paper2html
File size: 1.96 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>The rate of change of the height <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>h</mi><mo>)</mo></math> of a ball above horizontal ground, measured in metres,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds after it has been thrown and until it hits the ground, can be modelled by the&nbsp;equation</p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>11</mn><mo>.</mo><mn>4</mn><mo>-</mo><mn>9</mn><mo>.</mo><mn>8</mn><mi>t</mi></math></p>
<p>The height of the ball when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> of the ball at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which the ball hits the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mo>∫</mo><mfenced><mrow><mn>11</mn><mo>.</mo><mn>4</mn><mo>-</mo><mn>9</mn><mo>.</mo><mn>8</mn><mi>t</mi></mrow></mfenced><mtext>d</mtext><mi>t</mi></math>        <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>11</mn><mo>.</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>4</mn><mo>.</mo><mn>9</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math>        <strong>A1</strong><strong>A1</strong></p>
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>h</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn></math>         <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn></math>         <strong>(A1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>=</mo></mrow></mfenced><mn>1</mn><mo>.</mo><mn>2</mn><mo>+</mo><mn>11</mn><mo>.</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>4</mn><mo>.</mo><mn>9</mn><msup><mi>t</mi><mn>2</mn></msup></math>        <strong>A1</strong></p>
<p> </p>
<p><strong>[6 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>43</mn><mo> </mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>42741</mn><mo>…</mo></mrow></mfenced></math> seconds           <strong>(M1)A1</strong>      </p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>43</mn></math>         <strong>A1</strong>      </p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>&lt;</mo><mn>2</mn><mo>.</mo><mn>43</mn></math>.</p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Maximum value is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>83061</mn><mo>…</mo></math>        <strong>(M1)</strong></p>
<p>Range is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mn>7</mn><mo>.</mo><mn>83</mn></math>         <strong>A1A1</strong>      </p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>h</mi><mo>&lt;</mo><mn>7</mn><mo>.</mo><mn>83</mn></math>.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
  <mn>0.5</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
  <mn>2000</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(A = ){\text{ }}\pi {r^2} + 2\pi rh"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span>    <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi rh"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> seen. Award <strong><em>(A1) </em></strong>for two correct terms added together.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </math></span>    <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Units <strong>not </strong>required.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000 = \pi {r^2}h"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span>    <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}h"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> equating to their part (b).</p>
<p>Do not accept unless <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi {r^2}h"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> is explicitly defined as their part (b).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>    <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> seen.</p>
<p>Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> into a <strong>correct </strong>part (a).</p>
<p>Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh = \frac{{500\,000}}{r}"> <mi>π</mi> <mi>r</mi> <mi>h</mi> <mo>=</mo> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span> and substituting for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh"> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> in expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>    <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>The conclusion, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>, must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{10^6}"> <mrow> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </math></span> as equivalent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{1\,000\,000}"> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{{\text{1}}\,{\text{000}}\,{\text{000}}}}{{{r^2}}}"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>    <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r"> <mn>2</mn> <mi>π</mi> <mi>r</mi> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{r^2}}}"> <mfrac> <mn>1</mn> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^{ - 2}}"> <mrow> <msup> <mi>r</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{1}}\,{\text{000}}\,{\text{000}}"> <mo>−</mo> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{1\,000\,000}}{{{r^2}}} = 0"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for equating their part (e) to zero.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = \frac{{1\,000\,000}}{{2\pi }}"> <mrow> <msup> <mi>r</mi> <mn>3</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{\frac{{1\,000\,000}}{{2\pi }}}}"> <mi>r</mi> <mo>=</mo> <mroot> <mrow> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </mrow> <mn>3</mn> </mroot> </math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for isolating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>sketch of derivative function     <strong><em>(M1)</em></strong></p>
<p>with its zero indicated     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(r = ){\text{ }}54.2{\text{ }}({\text{cm}}){\text{ }}(54.1926 \ldots )"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>54.2</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>cm</mtext> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span>    <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {(54.1926 \ldots )^2} + \frac{{1\,000\,000}}{{(54.1926 \ldots )}}"> <mi>π</mi> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution of their part (f) into the given equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 27\,700{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}(27\,679.0 \ldots )"> <mo>=</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>700</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span>    <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27\,679.0 \ldots }}{{2000}}"> <mfrac> <mrow> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> </mrow> <mrow> <mn>2000</mn> </mrow> </mfrac> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for dividing their part (g) by 2000.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 13.8395 \ldots "> <mo>=</mo> <mn>13.8395</mn> <mo>…</mo> </math></span>    <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Follow through from part (g).</p>
<p> </p>
<p>14 (cans)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Final <strong><em>(A1) </em></strong>awarded for rounding up their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13.8395 \ldots "> <mn>13.8395</mn> <mo>…</mo> </math></span> to the next integer.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The cross-sectional view of a tunnel is shown on the axes below. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math> represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>8</mn></math>, relative to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>, point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>)</mo></math>, and point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> the height of the tunnel is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>4</mn><mo> </mo><mtext>m</mtext></math> and when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>6</mn></math> the height of the tunnel is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>. These points are shown as <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> on the diagram, respectively.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum height of the tunnel.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule, with three intervals, to estimate the cross-sectional area of the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integral which can be used to find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of power rule (at least one correct term seen)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>33</mn><mo>&nbsp;</mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>33333</mn><mo>…</mo><mo>,</mo><mo>&nbsp;</mo><mfrac><mn>16</mn><mn>3</mn></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>33333</mn><msup><mo>…</mo><mn>3</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>33333</mn><msup><mo>…</mo><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for substituting their zero for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>&nbsp;</mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>333</mn><mo>…</mo></mrow></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>59</mn><mo>&nbsp;</mo><mo> </mo><mi mathvariant="normal">m</mi><mo>&nbsp;</mo><mfenced><mrow><mn>7</mn><mo>.</mo><mn>58519</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M0A0M0A0</strong></em> for an unsupported <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>59</mn></math>. <br>Award at most <em><strong>M0A0M1A0</strong></em> if only the last two lines in the solution are seen. <br>Award at most <em><strong>M1A0M1A1</strong></em> if their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>33</mn></math> is not seen.</p>
<p><strong><br></strong><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>2</mn><mfenced><mrow><mfenced><mrow><mn>2</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>0</mn></mrow></mfenced><mo>+</mo><mn>2</mn><mfenced><mrow><mn>6</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>7</mn><mo>.</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>2</mn></math> seen. Award <em><strong>M1</strong></em> for correct substitution into the trapezoidal rule (the zero can be omitted in working).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>29</mn><mo>.</mo><mn>6</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msubsup><mo>∫</mo><mn>2</mn><mn>8</mn></msubsup><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo>d</mo><mi>x</mi></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msubsup><mo>∫</mo><mn>2</mn><mn>8</mn></msubsup><mi>y</mi><mo> </mo><mo>d</mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for a correct integral, <em><strong>A</strong><strong>1</strong></em> for correct limits in the correct location. Award at most <em><strong>A0A1</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>d</mtext><mi>x</mi></math> is omitted.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>32</mn><mo>.</mo><mn>4</mn><mo>&nbsp;</mo><msup><mtext>m</mtext><mn>2</mn></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p><strong><br>Note:</strong> As per the marking instructions, <em><strong>FT</strong></em> from their integral in part (c)(i). Award at most <em><strong>A1FTA0</strong></em> if their area is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&gt;</mo><mn>48</mn></math>, this is outside the constraints of the question (a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>×</mo><mn>8</mn></math> rectangle).</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Hyungmin designs a concrete bird bath. The bird bath is supported by a pedestal.&nbsp;This is shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The interior of the bird bath is in the shape of a cone with radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and a constant&nbsp;slant height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mtext>cm</mtext></math>.</p>
</div>

<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> be the volume of the bird bath.</p>
</div>

<div class="specification">
<p>Hyungmin wants the bird bath to have maximum volume.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> that shows this information.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mn>2500</mn><mtext>π</mtext><mi>h</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mfrac><mrow><mtext>π</mtext><msup><mi>h</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>V</mi></mrow><mrow><mtext>d</mtext><mi>h</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to <strong>part (c)</strong>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> is a maximum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum volume of the bird bath.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>To prevent leaks, a sealant is applied to the interior surface of the bird bath.</p>
<p>Find the surface area to be covered by the sealant, given that the bird bath has maximum volume.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mn>2</mn></msup><mo>+</mo><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><msup><mn>50</mn><mn>2</mn></msup></math>  (or equivalent)<strong> </strong>       <strong><em>(A1)</em></strong></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Accept equivalent expressions such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><msqrt><mn>2500</mn><mo>-</mo><msup><mi>h</mi><mn>2</mn></msup></msqrt></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><msqrt><mn>2500</mn><mo>-</mo><msup><mi>r</mi><mn>2</mn></msup></msqrt></math>. Award <em><strong>(A0)</strong></em> for a final answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo><msqrt><mn>2500</mn><mo>-</mo><msup><mi>h</mi><mn>2</mn></msup></msqrt></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo><msqrt><mn>2500</mn><mo>-</mo><msup><mi>r</mi><mn>2</mn></msup></msqrt></math>, or any further incorrect working.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mfenced><mrow><mn>2500</mn><mo>-</mo><msup><mi>h</mi><mn>2</mn></msup></mrow></mfenced><mo>×</mo><mi>h</mi></math>  <strong>OR</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mfenced><msqrt><mn>2500</mn><mo>-</mo><msup><mi>h</mi><mn>2</mn></msup></msqrt></mfenced><mn>2</mn></msup><mo>×</mo><mi>h</mi></math><strong> </strong>       <strong><em>(M1)</em></strong></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the volume of cone formula.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mn>2500</mn><mtext>π</mtext><mi>h</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mfrac><mrow><mtext>π</mtext><msup><mi>h</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math> </strong>       <strong><em>(AG)</em></strong></p>
<p><em><strong><br></strong></em><strong>Note:</strong> The final line must be seen, with no incorrect working, for the <em><strong>(M1)</strong></em> to be awarded.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mtext>d</mtext><mi>V</mi></mrow><mrow><mtext>d</mtext><mi>h</mi></mrow></mfrac><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mrow><mn>2500</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mtext>π</mtext><msup><mi>h</mi><mn>2</mn></msup></math><strong> </strong>       <strong><em>(A1)(A1)</em></strong></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2500</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></math>, <em><strong>(A1) </strong></em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mtext>π</mtext><msup><mi>h</mi><mn>2</mn></msup></math>. Award at most <em><strong>(A1)(A0)</strong></em> if extra terms are seen. Award <em><strong>(A0)</strong></em> for the term <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mn>3</mn><mtext>π</mtext><msup><mi>h</mi><mn>2</mn></msup></mrow><mn>3</mn></mfrac></math>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mfrac><mrow><mn>2500</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mtext>π</mtext><msup><mi>h</mi><mn>2</mn></msup></math><strong> </strong>       <strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for equating <strong>their</strong> derivative to zero. Follow through from part (c).</p>
<p><br><strong>OR</strong></p>
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>V</mi></mrow><mrow><mtext>d</mtext><mi>h</mi></mrow></mfrac></math><strong> </strong>       <strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for a labelled sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>V</mi></mrow><mrow><mtext>d</mtext><mi>h</mi></mrow></mfrac></math> with the curve/axes correctly labelled <em>or</em> the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept explicitly indicated.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>28</mn><mo>.</mo><mn>9</mn><mo> </mo><mfenced><mtext>cm</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><msqrt><mfrac><mn>2500</mn><mn>3</mn></mfrac></msqrt><mo>,</mo><mo> </mo><mfrac><mn>50</mn><msqrt><mn>3</mn></msqrt></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>50</mn><msqrt><mn>3</mn></msqrt></mrow><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>28</mn><mo>.</mo><mn>8675</mn><mo>…</mo></mrow></mfenced></math>       <strong><em>(A1)</em>(ft)</strong></p>
<p><br><strong>Note:</strong> An unsupported <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>28</mn><mo>.</mo><mn>9</mn><mo> </mo><mtext>cm</mtext></math> is awarded no marks. Graphing the <strong>function</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mfenced><mi>h</mi></mfenced></math> is not an acceptable method and <em><strong>(M0)(A0)</strong></em> should be awarded. Follow through from part (c). Given the restraints of the question, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>≥</mo><mn>50</mn></math> is not possible.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>V</mi><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mrow><mn>2500</mn><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>28</mn><mo>.</mo><mn>8675</mn><mo>…</mo></mrow><mn>3</mn></mfrac><mo>-</mo><mfrac><mrow><mi mathvariant="normal">π</mi><msup><mfenced><mrow><mn>28</mn><mo>.</mo><mn>8675</mn><mo>…</mo></mrow></mfenced><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math><strong> </strong>       <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="normal">π</mi><msup><mfenced><mrow><mn>40</mn><mo>.</mo><mn>828</mn><mo>…</mo></mrow></mfenced><mn>2</mn></msup><mo>×</mo><mn>28</mn><mo>.</mo><mn>8675</mn><mo>…</mo></math> </strong>       <strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting their <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>28</mn><mo>.</mo><mn>8675</mn><mo>…</mo></math> in the volume formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>V</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>50400</mn><mo> </mo><mfenced><msup><mtext>cm</mtext><mn>3</mn></msup></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>50383</mn><mo>.</mo><mn>3</mn><mo>…</mo></mrow></mfenced></math>       <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><br><strong>Note:</strong> Follow through from part (d).</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>S</mi><mo>=</mo></mrow></mfenced><mo> </mo><mi mathvariant="normal">π</mi><mo>×</mo><msqrt><mn>2500</mn><mo>-</mo><msup><mfenced><mrow><mn>28</mn><mo>.</mo><mn>8675</mn><mo>…</mo></mrow></mfenced><mn>2</mn></msup></msqrt><mo>×</mo><mn>50</mn></math><strong> </strong>        <strong><em>(A1)</em>(ft)</strong><strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for their correct radius seen <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>40</mn><mo>.</mo><mn>8248</mn><mo>…</mo><mo>,</mo><mo> </mo><msqrt><mn>2500</mn><mo>-</mo><msup><mfenced><mrow><mn>28</mn><mo>.</mo><mn>8675</mn><mo>…</mo></mrow></mfenced><mn>2</mn></msup></msqrt></mrow></mfenced></math>. <br>Award <em><strong>(M1)</strong></em> for correctly substituted curved surface area formula for a cone.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>S</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>6410</mn><mo> </mo><mfenced><msup><mtext>cm</mtext><mn>2</mn></msup></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>6412</mn><mo>.</mo><mn>74</mn><mo>…</mo></mrow></mfenced></math>       <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><br><strong>Note:</strong> Follow through from parts (a) and (d).</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = (2x + 2)(5 - {x^2})">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mn>5</mn>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {5^x} + 6x - 6">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>5</mn>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <strong>exact </strong>value of each of the zeros of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand the expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (b)(ii) to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is increasing.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Draw </strong>the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 \leqslant x \leqslant 3">
  <mo>−</mo>
  <mn>3</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mn>3</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 40 \leqslant y \leqslant 20">
  <mo>−</mo>
  <mn>40</mn>
  <mo>⩽</mo>
  <mi>y</mi>
  <mo>⩽</mo>
  <mn>20</mn>
</math></span>. Use a scale of 2 cm to represent 1 unit on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and 1 cm to represent 5 units on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the point of intersection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1,{\text{ }}\sqrt 5 ,{\text{ }} - \sqrt 5 ">
  <mo>−</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <msqrt>
    <mn>5</mn>
  </msqrt>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <msqrt>
    <mn>5</mn>
  </msqrt>
</math></span>     <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for –1 and each exact value seen. Award at most <strong><em>(A1)(A0)(A1) </em></strong>for use of 2.23606… instead of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 5 ">
  <msqrt>
    <mn>5</mn>
  </msqrt>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10x - 2{x^3} + 10 - 2{x^2}">
  <mn>10</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>10</mn>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>The expansion may be seen in part (b)(ii).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 - 6{x^2} - 4x">
  <mn>10</mn>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mi>x</mi>
</math></span>     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Follow through from part (b)(i). Award <strong><em>(A1)</em>(ft) </strong>for each correct term. Award at most <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A0) </em></strong>if extra terms are seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 - 6{x^2} - 4x &gt; 0">
  <mn>10</mn>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(M1) </em></strong>for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) &gt; 0">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>. Accept equality or weak inequality.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1.67 &lt; x &lt; 1{\text{ }}\left( { - \frac{5}{3} &lt; x &lt; 1,{\text{ }} - 1.66666 \ldots  &lt; x &lt; 1} \right)">
  <mo>−</mo>
  <mn>1.67</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>1</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mfrac>
        <mn>5</mn>
        <mn>3</mn>
      </mfrac>
      <mo>&lt;</mo>
      <mi>x</mi>
      <mo>&lt;</mo>
      <mn>1</mn>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mo>−</mo>
      <mn>1.66666</mn>
      <mo>…</mo>
      <mo>&lt;</mo>
      <mi>x</mi>
      <mo>&lt;</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct endpoints, <strong><em>(A1)</em>(ft) </strong>for correct weak or strict inequalities. Follow through from part (b)(ii). Do not award any marks if there is no answer in part (b)(ii).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-14_om_06.23.51.png" alt="N17/5/MATSD/SP2/ENG/TZ0/05.d/M">     <strong><em>(A1)(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1) </em></strong>for correct scale; axes labelled and drawn with a ruler.</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>for their correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts in approximately correct location.</p>
<p>Award <strong><em>(A1) </em></strong>for correct minimum and maximum points in approximately correct location.</p>
<p>Award <strong><em>(A1) </em></strong>for a smooth continuous curve with approximate correct shape. The curve should be in the given domain.</p>
<p>Follow through from part (a) for the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1.49,{\text{ }}13.9){\text{ }}\left( {(1.48702 \ldots ,{\text{ }}13.8714 \ldots )} \right)">
  <mo stretchy="false">(</mo>
  <mn>1.49</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>13.9</mn>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>1.48702</mn>
      <mo>…</mo>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>13.8714</mn>
      <mo>…</mo>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(G1)</em>(ft)<em>(G1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(G1) </em></strong>for 1.49 and <strong><em>(G1) </em></strong>for 13.9 written as a coordinate pair. Award at most <strong><em>(G0)(G1) </em></strong>if parentheses are missing. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.49">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1.49</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 13.9">
  <mi>y</mi>
  <mo>=</mo>
  <mn>13.9</mn>
</math></span>. Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In a company it is found that 25 % of the employees encountered traffic on their way to work. From those who encountered traffic the probability of being late for work is 80 %.</p>
<p>From those who did not encounter traffic, the probability of being late for work is 15 %.</p>
<p>The tree diagram illustrates the information.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The company investigates the different means of transport used by their employees in the past year to travel to work. It was found that the three most common means of transport used to travel to work were public transportation (<em>P </em>), car (<em>C </em>) and bicycle (<em>B </em>).</p>
<p>The company finds that 20 employees travelled by car, 28 travelled by bicycle and 19 travelled by public transportation in the last year.</p>
<p>Some of the information is shown in the Venn diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>There are 54 employees in the company.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>a</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>b</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;encountered traffic and was late for work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;was late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;encountered traffic given that they were late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>y</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees who, in the last year, did not travel to work by car, bicycle or public transportation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {\left( {C \cup B} \right) \cap P'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>C</mi> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>∩</mo> <msup> <mi>P</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>a</em> = 0.2     <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>b</em> = 0.85&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.25&nbsp;× 0.8&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note</strong>: Award <em><strong>(M1)</strong></em> for a correct product.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.2\,\,\,\left( {\,\frac{1}{5},\,\,\,20\% } \right)">
  <mo>=</mo>
  <mn>0.2</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mn>1</mn>
        <mn>5</mn>
      </mfrac>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>20</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.25&nbsp;× 0.8 + 0.75&nbsp;× 0.15&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for their (0.25&nbsp;× 0.8) and (0.75&nbsp;× 0.15),&nbsp;<em><strong>(M1)</strong></em> for adding two products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.313\,\,\,\left( {0.3125,\,\,\,\frac{5}{{16}},\,\,\,31.3\% } \right)"> <mo>=</mo> <mn>0.313</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.3125</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>5</mn> <mrow> <mn>16</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>31.3</mn> <mi mathvariant="normal">%</mi> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; <em><strong>(A1)</strong></em><strong>(ft)<em>(G3)</em></strong></p>
<p><strong>Note:</strong> Award the final <em><strong>(A1)</strong></em><strong>(ft)</strong> only if answer does not exceed 1. Follow through from part (b)(i).</p>
<p><strong><em>[3 marks]</em></strong></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.25 \times 0.8}}{{0.25 \times 0.8 + 0.75 \times 0.15}}"> <mfrac> <mrow> <mn>0.25</mn> <mo>×</mo> <mn>0.8</mn> </mrow> <mrow> <mn>0.25</mn> <mo>×</mo> <mn>0.8</mn> <mo>+</mo> <mn>0.75</mn> <mo>×</mo> <mn>0.15</mn> </mrow> </mfrac> </math></span>&nbsp; &nbsp; <strong><em>(A1)</em>(ft)</strong><strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for a correct numerator (their part (b)(i)), <strong><em>(A1)</em>(ft)</strong> for a correct denominator (their part (b)(ii)). Follow through from parts (b)(i) and (b)(ii).</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.64\,\,\,\left( {\frac{{16}}{{25}},\,\,64{\text{% }}} \right)"> <mo>=</mo> <mn>0.64</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mn>25</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>64</mn> <mrow> <mtext>%&nbsp;</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp;&nbsp; <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p><strong>Note:</strong> Award final <strong><em>(A1)</em>(ft)</strong> only if answer does not exceed 1.</p>
<p><em><strong>[3&nbsp;marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>x</em> =) 3&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em><strong>[1 Mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>y</em>&nbsp;=) 10&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Following through from part (c)(i) but only if their <em>x</em> is less than or equal to 13.</p>
<p><em><strong>[1 Mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>54&nbsp;− (10 + 3 + 4 + 2 + 6 + 8 + 13)&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting their correct sum from 54. Follow through from their part (c).</p>
<p>= 8&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> only if their sum does not exceed 54. Follow through from their part (c).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 + 8 + 13&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note</strong>: Award (M1) for summing 6, 8 and 13.</p>
<p>27&nbsp; &nbsp; &nbsp;<em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Sila High School has 110 students. They each take exactly one language class from a choice of English, Spanish or Chinese. The following table shows the number of female and male students in the three different language classes.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>&nbsp;test was carried out at the 5 % significance level to analyse the relationship between gender and student choice of language class.</p>
</div>

<div class="specification">
<p>Use your graphic display calculator to write down</p>
</div>

<div class="specification">
<p>The critical value at the 5 % significance level for this test is 5.99.</p>
</div>

<div class="specification">
<p>One student is chosen at random from this school.</p>
</div>

<div class="specification">
<p>Another student is chosen at random from this school.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis, H<sub>0 </sub>, for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the expected frequency of female students who chose to take the Chinese class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether or not H<sub>0</sub> should be rejected. Justify your statement.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student does not take the Spanish class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that neither of the two students take the Spanish class.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the two students is female.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(H<sub>0</sub>:) (choice of) language is independent of gender       <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept “there is no association between language (choice) and gender”. Accept “language (choice) is not dependent on gender”. Do not accept “not related” or “not correlated” or “not influenced”.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2       <em><strong>(AG)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>16.4  (16.4181…)      <em><strong>(G1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(we) reject the null hypothesis      <strong><em>(A1)</em>(ft)</strong></p>
<p>8.68507… &gt; 5.99     <strong><em>(R1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (c)(ii). Accept “do not accept” in place of “reject.” Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p><strong>OR</strong></p>
<p>(we) reject the null hypothesis       <em><strong>(A1)</strong></em></p>
<p>0.0130034 &lt; 0.05       <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Accept “do not accept” in place of “reject.” Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{88}}{{110}}\,\,\,\left( {\frac{4}{5}{\text{,}}\,\,0.8{\text{,}}\,\,80{\text{% }}} \right)">
  <mfrac>
    <mrow>
      <mn>88</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>4</mn>
        <mn>5</mn>
      </mfrac>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>0.8</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>80</mn>
      <mrow>
        <mtext>% </mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>   <strong><em>(A1)</em></strong><strong><em>(A1)</em></strong><strong><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for correct numerator, <strong><em>(A1)</em></strong> for correct denominator.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{88}}{{110}} \times \frac{{87}}{{109}}">
  <mfrac>
    <mrow>
      <mn>88</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>87</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
</math></span>    <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for multiplying two fractions. Award <strong><em>(M1)</em></strong> for multiplying their correct fractions.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{46}}{{110}}} \right)\left( {\frac{{45}}{{109}}} \right) + 2\left( {\frac{{46}}{{110}}} \right)\left( {\frac{{42}}{{109}}} \right) + \left( {\frac{{42}}{{110}}} \right)\left( {\frac{{41}}{{109}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>46</mn>
        </mrow>
        <mrow>
          <mn>110</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>45</mn>
        </mrow>
        <mrow>
          <mn>109</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>46</mn>
        </mrow>
        <mrow>
          <mn>110</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>42</mn>
        </mrow>
        <mrow>
          <mn>109</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>42</mn>
        </mrow>
        <mrow>
          <mn>110</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>41</mn>
        </mrow>
        <mrow>
          <mn>109</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct products; <strong><em>(M1)</em></strong> for adding 4 products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.639\,\,\,\left( {0.638532 \ldots {\text{,}}\,\,\frac{{348}}{{545}}{\text{,}}\,\,63.9{\text{% }}} \right)">
  <mn>0.639</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.638532</mn>
      <mo>…</mo>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mrow>
          <mn>348</mn>
        </mrow>
        <mrow>
          <mn>545</mn>
        </mrow>
      </mfrac>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>63.9</mn>
      <mrow>
        <mtext>% </mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their answer to part (e)(i).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{{67}}{{110}} \times \frac{{66}}{{109}}">
  <mn>1</mn>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>67</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>66</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
</math></span>   <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for multiplying two correct fractions. Award <strong><em>(M1)</em></strong> for subtracting their product of two fractions from 1.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{43}}{{110}} \times \frac{{42}}{{109}} + \frac{{43}}{{110}} \times \frac{{67}}{{109}} + \frac{{67}}{{110}} \times \frac{{43}}{{109}}">
  <mfrac>
    <mrow>
      <mn>43</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>42</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>43</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>67</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>67</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>43</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
</math></span>   <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct products; <strong><em>(M1)</em></strong> for adding three products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.631\,\,\,\left( {0.631192 \ldots {\text{,}}\,\,63.1{\text{% ,}}\,\,\frac{{344}}{{545}}} \right)">
  <mn>0.631</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.631192</mn>
      <mo>…</mo>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>63.1</mn>
      <mrow>
        <mtext>% ,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mrow>
          <mn>344</mn>
        </mrow>
        <mrow>
          <mn>545</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{1}{3}{x^3} + \frac{3}{4}{x^2} - x - 1">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>3</mn>
    <mn>4</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent line to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>. Give the equation in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + d = 0">
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mi>y</mi>
  <mo>+</mo>
  <mi>d</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> where, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{Z}">
  <mi>d</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">Z</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \frac{3}{2}x - 1">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
  <mi>x</mi>
  <mo>−</mo>
  <mn>1</mn>
</math></span>      <strong><em>(A1)(A1)(A1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term. Award at most <em><strong>(A1)(A1)(A0)</strong></em> if there are extra terms.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2^2} + \frac{3}{2} \times 2 - 1">
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>2</mn>
  <mo>−</mo>
  <mn>1</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of 2 in their derivative of the function.</p>
<p>6     <strong><em>(A1)</em>(ft)</strong><strong><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Follow through from part (d).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{8}{3} = 6\left( 2 \right) + c">
  <mfrac>
    <mn>8</mn>
    <mn>3</mn>
  </mfrac>
  <mo>=</mo>
  <mn>6</mn>
  <mrow>
    <mo>(</mo>
    <mn>2</mn>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>c</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for 2, their part (a) and their part (e) substituted into equation of a straight line.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c =  - \frac{{28}}{3}">
  <mi>c</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>28</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {y - \frac{8}{3}} \right) = 6\left( {x - 2} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>y</mi>
      <mo>−</mo>
      <mfrac>
        <mn>8</mn>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>6</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for 2, their part (a) and their part (e) substituted into equation of a straight line.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 6x - \frac{{28}}{3}\,\,\left( {y = 6x - 9.33333 \ldots } \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>28</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>y</mi>
      <mo>=</mo>
      <mn>6</mn>
      <mi>x</mi>
      <mo>−</mo>
      <mn>9.33333</mn>
      <mo>…</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their answer to (e) and intercept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{28}}{3}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>28</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span> substituted in the gradient-intercept line equation.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 18x + 3y + 28 = 0">
  <mo>−</mo>
  <mn>18</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>3</mn>
  <mi>y</mi>
  <mo>+</mo>
  <mn>28</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>  (accept integer multiples)     <strong><em>(A1)</em>(ft)</strong><strong><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Follow through from parts (a) and (e).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a\sin bx + c">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>b</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 12">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>12</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_16.53.31.png" alt="N16/5/MATME/SP2/ENG/TZ0/10"></p>
<p style="text-align: center;">The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> has a minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(3,{\text{ }}5)">
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span> and a maximum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(9,{\text{ }}17)">
  <mo stretchy="false">(</mo>
  <mn>9</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>17</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is obtained from the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> by a translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} k \\ 0 \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>. The maximum point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(11.5,{\text{ }}17)">
  <mo stretchy="false">(</mo>
  <mn>11.5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>17</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> changes from concave-up to concave-down when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = w">
  <mi>x</mi>
  <mo>=</mo>
  <mi>w</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>.</p>
<p>(ii)     Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{\pi }{6}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π</mi>
    <mn>6</mn>
  </mfrac>
</math></span>.</p>
<p>(iii)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<p>(ii)     Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<p>(ii)     Hence or otherwise, find the maximum positive rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(i)     valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5 + 17}}{2}">
  <mfrac>
    <mrow>
      <mn>5</mn>
      <mo>+</mo>
      <mn>17</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 11">
  <mi>c</mi>
  <mo>=</mo>
  <mn>11</mn>
</math></span>    <strong><em>A1     N2</em></strong></p>
<p>(ii)     valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>period is 12, per <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{2\pi }}{b},{\text{ }}9 - 3">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mi>b</mi>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>9</mn>
  <mo>−</mo>
  <mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{2\pi }}{{12}}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
</math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{\pi }{6}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π</mi>
    <mn>6</mn>
  </mfrac>
</math></span>     <strong><em>AG     N0</em></strong></p>
<p>(iii)     <strong>METHOD 1</strong></p>
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5 = a\sin \left( {\frac{\pi }{6} \times 3} \right) + 11">
  <mn>5</mn>
  <mo>=</mo>
  <mi>a</mi>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mo>×</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>11</mn>
</math></span>, substitution of points</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - 6">
  <mi>a</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
</math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{17 - 5}}{2}">
  <mfrac>
    <mrow>
      <mn>17</mn>
      <mo>−</mo>
      <mn>5</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>, amplitude is 6</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - 6">
  <mi>a</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
</math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 2.5">
  <mi>k</mi>
  <mo>=</mo>
  <mn>2.5</mn>
</math></span>     <strong><em>A1     N1</em></strong></p>
<p>(ii)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) =  - 6\sin \left( {\frac{\pi }{6}(x - 2.5)} \right) + 11">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2.5</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>11</mn>
</math></span>     <strong><em>A2     N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     <strong>METHOD 1 </strong>Using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span></p>
<p>recognizing that a point of inflexion is required     <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>sketch, recognizing change in concavity</p>
<p>evidence of valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g''(x) = 0">
  <msup>
    <mi>g</mi>
    <mo>″</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, sketch, coordinates of max/min on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g'}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 8.5">
  <mi>w</mi>
  <mo>=</mo>
  <mn>8.5</mn>
</math></span> (exact)     <strong><em>A1     N2</em></strong></p>
<p><strong>METHOD 2 </strong>Using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span></p>
<p>recognizing that a point of inflexion is required     <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>sketch, recognizing change in concavity</p>
<p>evidence of valid approach involving translation     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = w - k">
  <mi>x</mi>
  <mo>=</mo>
  <mi>w</mi>
  <mo>−</mo>
  <mi>k</mi>
</math></span>, sketch, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 + 2.5">
  <mn>6</mn>
  <mo>+</mo>
  <mn>2.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 8.5">
  <mi>w</mi>
  <mo>=</mo>
  <mn>8.5</mn>
</math></span> (exact)     <strong><em>A1     N2</em></strong></p>
<p>(ii)     valid approach involving the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> (seen anywhere)     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(w),{\text{ }} - \pi \cos \left( {\frac{\pi }{6}x} \right)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>w</mi>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <mi>π</mi>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, max on derivative, sketch of derivative</p>
<p>attempt to find max value on derivative     <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi \cos \left( {\frac{\pi }{6}(8.5 - 2.5)} \right),{\text{ }}f'(6)">
  <mo>−</mo>
  <mi>π</mi>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mo stretchy="false">(</mo>
      <mn>8.5</mn>
      <mo>−</mo>
      <mn>2.5</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span>, dot on max of sketch</p>
<p>3.14159</p>
<p>max rate of change <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \pi ">
  <mo>=</mo>
  <mi>π</mi>
</math></span> (exact), 3.14     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A hollow chocolate box is manufactured in the form of a right prism with a regular hexagonal&nbsp;base. The height of the prism is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo> </mo><mtext>cm</mtext></math>,&nbsp;and the top and base of the prism have sides of&nbsp;length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mtext>cm</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>60</mn><mo>°</mo><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math>, show that the area of the base of the box is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt><msup><mi>x</mi><mn>2</mn></msup></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the total external surface area of the box is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1200</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup></math>, show that the volume&nbsp;of the box may be expressed as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>300</mn><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>-</mo><mfrac><mn>9</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>300</mn><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>-</mo><mfrac><mn>9</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>16</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> which maximizes the volume of the box.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find the maximum possible volume of the box.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The box will contain spherical chocolates. The production manager assumes that they can&nbsp;calculate the exact number of chocolates in each box by dividing the volume of the box by&nbsp;the volume of a single chocolate and then rounding down to the nearest integer.</p>
<p>Explain why the production manager is incorrect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of splitting diagram into equilateral triangles&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></p>
<p>area&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>6</mn><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>60</mn><mo>°</mo></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt><msup><mi>x</mi><mn>2</mn></msup></mrow><mn>2</mn></mfrac></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></p>
<p><br><strong>Note:</strong> The <em><strong>AG</strong></em> line must be seen for the final <em><strong>A1</strong></em> to be awarded.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total surface area of prism&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1200</mn><mo>=</mo><mn>2</mn><mfenced><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mrow></mfenced><mo>+</mo><mn>6</mn><mi>x</mi><mi>h</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>M1A1</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for expressing total surface areas as a sum of areas of rectangles and hexagons, and <em><strong>A1</strong></em> for a correctly substituted formula, equated to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1200</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mfrac><mrow><mn>400</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>volume of prism&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>×</mo><mi>h</mi></math>&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mfenced><mfrac><mrow><mn>400</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>300</mn><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>-</mo><mfrac><mn>9</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></p>
<p><br><strong>Note:</strong> The <em><strong>AG</strong></em> line must be seen for the final <em><strong>A1</strong></em> to be awarded.</p>
<p><br><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>A1A1</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>A1</em></strong> for correct shape, <strong><em>A1</em></strong> for roots in correct place with some indication of scale (indicated by a labelled point).</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>300</mn><msqrt><mn>3</mn></msqrt><mo>-</mo><mfrac><mn>27</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>A1A1</em></strong></p>
<p><strong><br>Note:</strong> Award <strong><em>A1</em></strong> for a correct term.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>&nbsp; <strong>OR&nbsp;</strong> solving&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>88</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>8</mn><mo>.</mo><mn>877382</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>&nbsp;&nbsp;<strong>OR&nbsp;</strong> substituting their value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> into&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>V</mi><mtext>max</mtext></msub><mo>=</mo><mn>3040</mn><mo> </mo><msup><mtext>cm</mtext><mn>3</mn></msup><mtext>&nbsp;&nbsp;</mtext><mfenced><mrow><mn>3039</mn><mo>.</mo><mn>34</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong><br>wasted space / spheres do not pack densely (tesselate)&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong><br><br><strong>OR</strong><br>the model uses exterior values / assumes infinite thinness of materials and hence the modelled volume is not the true volume &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{27}}{{{x^2}}} - 16x,\,\,\,x \ne 0">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>27</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>−<!-- − --></mo>
  <mn>16</mn>
  <mi>x</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <em>y</em> = <em>f </em>(<em>x</em>), for −4 ≤ <em>x</em> ≤ 3 and −50 ≤ <em>y</em> ≤ 100.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the zero of <em>f </em>(<em>x</em>).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the coordinates of the local minimum point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the tangent to the graph of <em>y</em> = <em>f </em>(<em>x</em>) at the point (–2, 38.75).</p>
<p>Give your answer in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""><em><strong>(A1)(A1)(A1)(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for axis labels and some indication of scale; accept <em>y</em> or <em>f</em>(<em>x</em>).</p>
<p>Use of graph paper is not required. If no scale is given, assume the given window for zero and minimum point.</p>
<p>Award <em><strong>(A1)</strong></em> for smooth curve with correct general shape.</p>
<p>Award <em><strong>(A1)</strong></em> for <em>x</em>-intercept closer to <em>y</em>-axis than to end of sketch.</p>
<p>Award <em><strong>(A1)</strong></em> for correct local minimum with <em>x</em>-coordinate closer to <em>y</em>-axis than end of sketch and <em>y</em>-coordinate less than half way to top of sketch.</p>
<p>Award at most <em><strong>(A1)</strong></em><em><strong>(A0)</strong></em><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em> if the sketch intersects the <em>y</em>-axis or if the sketch curves away from the <em>y</em>-axis as<em> x</em> approaches zero.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.19  (1.19055…) <em><strong>      (A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept an answer of (1.19, 0).</p>
<p>Do not follow through from an incorrect sketch.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(−1.5, 36)      <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)(A1)</strong></em> if parentheses are omitted.</p>
<p>Accept <em>x</em> = −1.5, <em>y</em> = 36.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em> = −9.25<em>x</em> + 20.3  (<em>y</em> = −9.25<em>x</em> + 20.25)      <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for −9.25<em>x</em>, award <em><strong>(A1)</strong></em> for +20.25, award a maximum of <em><strong>(A0)(A1)</strong></em> if answer is not an equation.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider a function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mn>0</mn></math>.&nbsp;The derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is given by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>6</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfrac></math>.</p>
</div>

<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is concave-down when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mi>n</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>24</mn><mo>-</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mn>6</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfrac><mtext>d</mtext><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> be the region enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>.&nbsp;The area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn><mo>.</mo><mn>6</mn></math>, correct to three significant figures.</p>
<p>Find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>evidence of choosing the quotient rule<em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>v</mi><mi>u</mi><mo>'</mo><mo>-</mo><mi>u</mi><mi>v</mi><mo>'</mo></mrow><msup><mi>v</mi><mn>2</mn></msup></mfrac></math></p>
<p>derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi>x</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> (must be seen in rule)<em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (A1)</strong></em></p>
<p>derivative of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math>&nbsp;(must be seen in rule)<em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (A1)</strong></em></p>
<p>correct substitution into the quotient rule&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>6</mn><mi>x</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>24</mn><mo>-</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG&nbsp; N0</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>evidence of choosing the product rule<em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>u</mi><mo>'</mo><mo>+</mo><mi>u</mi><mi>v</mi><mo>'</mo></math></p>
<p>derivative of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi>x</mi></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math>&nbsp;(must be seen in rule)<em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (A1)</strong></em></p>
<p>derivative of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>x</mi><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>&nbsp;(must be seen in rule)<em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (A1)</strong></em></p>
<p>correct substitution into the product rule&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>6</mn><mi>x</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>24</mn><mo>-</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG&nbsp; N0</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1&nbsp;</strong>(2<sup>nd</sup> derivative)&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p>valid approach</p>
<p>eg&nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mo>&lt;</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>24</mn><mo>-</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&lt;</mo><mn>0</mn><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>=</mo><mo>±</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>=</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math>&nbsp;(exact)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD&nbsp;2&nbsp;</strong>(1<sup>st</sup> derivative)</p>
<p>valid attempt to find local maximum on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;sketch with max indicated,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>=</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math>&nbsp;(exact)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of valid approach using substitution or inspection &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mn>3</mn><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><mfrac><mn>1</mn><mi>u</mi></mfrac><mtext>d</mtext><mi>x</mi><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mi>u</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mtext>d</mtext><mi>u</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mtext>d</mtext><mi>x</mi><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mo>∫</mo><mn>3</mn><mo>×</mo><mfenced><mfrac><mn>1</mn><mi>u</mi></mfrac></mfenced><mtext>d</mtext><mi>u</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mn>6</mn><mi>x</mi></mrow><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced></mfrac><mtext>d</mtext><mi>x</mi><mo>=</mo><mn>3</mn><mo> </mo><mi>ln</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>c</mi></math>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A2&nbsp; N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that area&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msubsup><mo>∫</mo><mn>1</mn><mn>3</mn></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mtext>d</mtext><mi>x</mi></math>&nbsp;&nbsp;(seen anywhere)&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>recognizing that <strong>their</strong> answer to (c) is their&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>&nbsp; (accept absence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>)&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mo> </mo><mi>ln</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>c</mi><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mo> </mo><mi>ln</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced></math></p>
<p>correct value for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>1</mn><mn>3</mn></msubsup><mn>3</mn><mo> </mo><mi>ln</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mtext>d</mtext><mi>x</mi></math>&nbsp; (seen anywhere)&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>.</mo><mn>4859</mn></math></p>
<p>correct integration for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>1</mn><mn>3</mn></msubsup><mi>c</mi><mo> </mo><mtext>d</mtext><mi>x</mi></math>&nbsp; (seen anywhere)&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mi>c</mi><mi>x</mi></mrow></mfenced><mn>1</mn><mn>3</mn></msubsup><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mi>c</mi></math></p>
<p>adding <strong>their</strong> integrated expressions <strong>and</strong> equating to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn><mo>.</mo><mn>6</mn></math> (do not accept an&nbsp;expression which involves an integral)&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>eg&nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>.</mo><mn>4859</mn><mo>+</mo><mn>2</mn><mi>c</mi><mo>=</mo><mn>19</mn><mo>.</mo><mn>6</mn><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mi>c</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>114</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>55700</mn></math>&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mo> </mo><mi>ln</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo>.</mo><mn>56</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N4</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{48}}{x} + k{x^2} - 58">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>48</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
  <mo>+</mo>
  <mi>k</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>58</mn>
</math></span>, where <em>x</em> &gt; 0 and <em>k</em> is a constant.</p>
<p>The graph of the function passes through the point with coordinates (4 , 2).</p>
</div>

<div class="specification">
<p>P is the minimum point of the graph of <em>f </em>(<em>x</em>).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your value of <em>k</em> , find <em>f</em> ′(<em>x</em>).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Use your answer</strong> to part (b) to show that the minimum value of <em>f</em>(<em>x</em>) is −22 .</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for 0 &lt; <em>x</em> ≤ 6 and −30 ≤ <em>y</em> ≤ 60.<br>Clearly indicate the minimum point P and the <em>x</em>-intercepts on your graph.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{48}}{4} + k \times {4^2} - 58 = 2">
  <mfrac>
    <mrow>
      <mn>48</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
  <mo>+</mo>
  <mi>k</mi>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>4</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>58</mn>
  <mo>=</mo>
  <mn>2</mn>
</math></span>&nbsp;&nbsp; &nbsp;<em><strong>(M1)</strong></em><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of <em>x</em> = 4 and <em>y</em> = 2 into the function.</p>
<p><em>k</em> = 3&nbsp; &nbsp; &nbsp;<em><strong>(A1) (G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 48}}{{{x^2}}} + 6x">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>48</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
</math></span>&nbsp; &nbsp; &nbsp;<strong><em>(A1)(A1)(A1)</em>(ft)<em> (G3)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for −48 , (A1) for <em>x</em><sup>−2</sup>, <strong><em>(A1)</em>(ft)</strong> for their 6<em>x</em>. Follow through from part (a). Award at most <strong><em>(A1)(A1)(A0)</em></strong> if additional terms are seen.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 48}}{{{x^2}}} + 6x = 0">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>48</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their part (b) to zero.</p>
<p><em>x</em> = 2&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (b). Award (<em><strong>M1)(A1)</strong></em> for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 48}}{{{{\left( 2 \right)}^2}}} + 6\left( 2 \right) = 0">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>48</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mn>2</mn>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>6</mn>
  <mrow>
    <mo>(</mo>
    <mn>2</mn>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span> seen.</p>
<p>Award <em><strong>(M0)(A0)</strong></em> for <em>x</em> = 2 seen either from a graphical method or without working.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{48}}{2} + 3 \times {2^2} - 58\,\,\,\left( { =&nbsp; - 22} \right)">
  <mfrac>
    <mrow>
      <mn>48</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>+</mo>
  <mn>3</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>58</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mo>−</mo>
      <mn>22</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;&nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting their 2 into their function, but only if the final answer is −22. Substitution of the known result invalidates the process; award <em><strong>(M0)(A0)(M0)</strong></em>.</p>
<p>−22&nbsp; &nbsp; &nbsp;<em><strong>(AG)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct window. Axes must be labelled.<br><em><strong>(A1)</strong></em><strong>(ft)</strong> for a smooth curve with correct shape and zeros in approximately correct positions relative to each other.<br><em><strong>(A1)</strong></em><strong>(ft)</strong> for point P indicated in approximately the correct position. Follow through from their <em>x</em>-coordinate in part (c). <em><strong>(A1)</strong></em><strong>(ft)</strong> for two <em>x</em>-intercepts identified on the graph and curve reflecting asymptotic properties.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A company performs an experiment on the efficiency of a liquid that is used to detect a nut allergy.</p>
<p>A group of 60 people took part in the experiment. In this group 26 are allergic to nuts. One person from the group is chosen at random.</p>
</div>

<div class="specification">
<p>A second person is chosen from the group.</p>
</div>

<div class="specification">
<p>When the liquid is added to a person’s blood sample, it is expected to turn blue if the person is allergic to nuts and to turn red if the person is not allergic to nuts.</p>
<p>The company claims that the probability that the test result is correct is 98% for people who are allergic to nuts and 95% for people who are not allergic to nuts.</p>
<p>It is known that 6 in every 1000 adults are allergic to nuts.</p>
<p>This information can be represented in a tree diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.31.34.png" alt="N17/5/MATSD/SP2/ENG/TZ0/04.c.d.e.f.g"></p>
</div>

<div class="specification">
<p>An adult, who was not part of the original group of 60, is chosen at random and tested using this liquid.</p>
</div>

<div class="specification">
<p>The liquid is used in an office to identify employees who might be allergic to nuts. The liquid turned blue for <strong>38 </strong><strong>employees</strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this person is <strong>not </strong>allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both people chosen are <strong>not </strong>allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy </strong>and complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this adult is allergic to nuts and the liquid turns blue.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the liquid turns blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the tested adult is allergic to nuts given that the liquid turned blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of employees, from this 38, who are allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{34}}{{60}}{\text{ }}\left( {\frac{{17}}{{30}},{\text{ }}0.567,{\text{ }}0.566666 \ldots ,{\text{ }}56.7\% } \right)">
  <mfrac>
    <mrow>
      <mn>34</mn>
    </mrow>
    <mrow>
      <mn>60</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>17</mn>
        </mrow>
        <mrow>
          <mn>30</mn>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.567</mn>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.566666</mn>
      <mo>…</mo>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>56.7</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for correct numerator, <strong><em>(A1) </em></strong>for correct denominator.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{34}}{{60}} \times \frac{{33}}{{59}}">
  <mfrac>
    <mrow>
      <mn>34</mn>
    </mrow>
    <mrow>
      <mn>60</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>33</mn>
    </mrow>
    <mrow>
      <mn>59</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:    </strong>Award <strong><em>(M1) </em></strong>for their correct product.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.317{\text{ }}\left( {\frac{{187}}{{590}},{\text{ }}0.316949 \ldots ,{\text{ }}31.7\% } \right)">
  <mo>=</mo>
  <mn>0.317</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>187</mn>
        </mrow>
        <mrow>
          <mn>590</mn>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.316949</mn>
      <mo>…</mo>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>31.7</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:    </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-14_om_05.54.09.png" alt="N17/5/MATSD/SP2/ENG/TZ0/04.c/M">     <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for each correct pair of branches.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.006 \times 0.98">
  <mn>0.006</mn>
  <mo>×</mo>
  <mn>0.98</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for multiplying 0.006 by 0.98.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.00588{\text{ }}\left( {\frac{{147}}{{25000}},{\text{ }}0.588\% } \right)">
  <mo>=</mo>
  <mn>0.00588</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>147</mn>
        </mrow>
        <mrow>
          <mn>25000</mn>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.588</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.006 \times 0.98 + 0.994 \times 0.05{\text{ }}(0.00588 + 0.994 \times 0.05)">
  <mn>0.006</mn>
  <mo>×</mo>
  <mn>0.98</mn>
  <mo>+</mo>
  <mn>0.994</mn>
  <mo>×</mo>
  <mn>0.05</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.00588</mn>
  <mo>+</mo>
  <mn>0.994</mn>
  <mo>×</mo>
  <mn>0.05</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for their two correct products, <strong><em>(M1) </em></strong>for adding two products.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.0556{\text{ }}\left( {0.05558,{\text{ }}5.56\% ,{\text{ }}\frac{{2779}}{{50000}}} \right)">
  <mo>=</mo>
  <mn>0.0556</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.05558</mn>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>5.56</mn>
      <mi mathvariant="normal">%</mi>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mfrac>
        <mrow>
          <mn>2779</mn>
        </mrow>
        <mrow>
          <mn>50000</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from parts (c) and (d).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.006 \times 0.98}}{{0.05558}}">
  <mfrac>
    <mrow>
      <mn>0.006</mn>
      <mo>×</mo>
      <mn>0.98</mn>
    </mrow>
    <mrow>
      <mn>0.05558</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for their correct numerator, <strong><em>(M1) </em></strong>for their correct denominator.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.106{\text{ }}\left( {0.105793 \ldots ,{\text{ }}10.6\% ,{\text{ }}\frac{{42}}{{397}}} \right)">
  <mo>=</mo>
  <mn>0.106</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.105793</mn>
      <mo>…</mo>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>10.6</mn>
      <mi mathvariant="normal">%</mi>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mfrac>
        <mrow>
          <mn>42</mn>
        </mrow>
        <mrow>
          <mn>397</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from parts (d) and (e).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.105793 \ldots  \times 38">
  <mn>0.105793</mn>
  <mo>…</mo>
  <mo>×</mo>
  <mn>38</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for multiplying 38 by their answer to part (f).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4.02{\text{ }}(4.02015 \ldots )">
  <mo>=</mo>
  <mn>4.02</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>4.02015</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Follow through from part (f). Use of 3 sf result from part (f) results in an answer of 4.03 (4.028).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All lengths in this question are in metres.</strong></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = &nbsp;- 0.8{x^2} + 0.5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>0.8</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>0.5</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.5 \leqslant x \leqslant 0.5">
  <mo>−<!-- − --></mo>
  <mn>0.5</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>0.5</mn>
</math></span>. Mark uses <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> as a model to create a barrel. The region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = &nbsp;- 0.5">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>0.5</mn>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.5">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0.5</mn>
</math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. This is shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_15.49.19.png" alt="N16/5/MATME/SP2/ENG/TZ0/06"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to find the volume of the barrel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The empty barrel is being filled with water. The volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{\text{ }}{{\text{m}}^3}">
  <mi>V</mi>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> of water in the barrel after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> minutes is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = 0.8(1 - {{\text{e}}^{ - 0.1t}})">
  <mi>V</mi>
  <mo>=</mo>
  <mn>0.8</mn>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>0.1</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>. How long will it take for the barrel to be half-full?</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to substitute correct limits or the function into the formula involving</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^2}">
  <mrow>
    <msup>
      <mi>y</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_{ - 0.5}^{0.5} {{y^2}{\text{d}}x,{\text{ }}\pi \int {{{( - 0.8{x^2} + 0.5)}^2}{\text{d}}x} } ">
  <mi>π</mi>
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mo>−</mo>
      <mn>0.5</mn>
    </mrow>
    <mrow>
      <mn>0.5</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mrow>
      <msup>
        <mi>y</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>,</mo>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mi>π</mi>
    <mo>∫</mo>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mo>−</mo>
            <mn>0.8</mn>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
            <mo>+</mo>
            <mn>0.5</mn>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
  </mrow>
</math></span></p>
<p>0.601091</p>
<p>volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.601{\text{ }}({{\text{m}}^3})">
  <mo>=</mo>
  <mn>0.601</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A2     N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to equate half <strong>their </strong>volume to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V">
  <mi>V</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.30055 = 0.8(1 - {{\text{e}}^{ - 0.1t}})">
  <mn>0.30055</mn>
  <mo>=</mo>
  <mn>0.8</mn>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>0.1</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>, graph</p>
<p>4.71104</p>
<p>4.71 (minutes)     <strong><em>A2     N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A box of chocolates is to have a ribbon tied around it as shown in the diagram below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The box is in the shape of a cuboid with a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> cm. The length and width of the box&nbsp;are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> cm.</p>
<p style="text-align: left;">After going around the box an extra <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> cm of ribbon is needed to form the bow.</p>
</div>

<div class="specification">
<p>The volume of the box is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>450</mn><msup><mtext> cm</mtext><mn>3</mn></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the total length of the ribbon <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>300</mn><mi>x</mi></mfrac><mo>+</mo><mn>22</mn></math></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>L</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>L</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise find the minimum length of ribbon required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>+</mo><mn>12</mn><mo>+</mo><mn>10</mn><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>+</mo><mn>22</mn></math>         <strong>A1A1</strong></p>
<p> </p>
<p><strong>Note: A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi></math> and <strong>A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>+</mo><mn>10</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math>.</p>
<p>  </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>3</mn><mi>x</mi><mi>y</mi><mo>=</mo><mn>450</mn></math>         <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>150</mn><mi>x</mi></mfrac></math>         <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>2</mn><mfenced><mfrac><mn>150</mn><mi>x</mi></mfrac></mfenced><mo>+</mo><mn>22</mn></math>         <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>300</mn><mi>x</mi></mfrac><mo>+</mo><mn>22</mn></math>         <strong>AG</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>300</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>22</mn></math>         <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>L</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mn>300</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>        <strong>A1</strong><strong>A1</strong></p>
<p> </p>
<p><strong>Note: A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> (and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math>), <strong>A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>300</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>300</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>=</mo><mn>2</mn></math>         <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mn>150</mn></msqrt><mo>=</mo><mn>12</mn><mo>.</mo><mn>2</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>12</mn><mo>.</mo><mn>2474</mn><mo>…</mo></mrow></mfenced></math>        <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>2</mn><msqrt><mn>150</mn></msqrt><mo>+</mo><mfrac><mn>300</mn><msqrt><mn>150</mn></msqrt></mfrac><mo>+</mo><mn>22</mn><mo>=</mo><mn>71</mn><mo>.</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>70</mn><mo>.</mo><mn>9897</mn><mo>…</mo></mrow></mfenced><mo> </mo><mtext>cm</mtext></math>         <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 2<em>x</em><sup>3</sup>&nbsp;− 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2, for&nbsp;−1 &lt; <em>x</em> &lt; 3</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve for −1 &lt; <em>x</em> &lt; 3 and −2 &lt; <em>y</em> &lt; 12.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A teacher asks her students to make some observations about the curve.</p>
<p>Three students responded.<br><strong>Nadia</strong> said <em>“The x-intercept of the curve is between −1 and zero”.</em><br><strong>Rick</strong> said <em>“The curve is decreasing when x &lt; 1 ”.</em><br><strong>Paula</strong> said <em>“The gradient of the curve is less than zero between x = 1 and x = 2 ”.</em></p>
<p>State the name of the student who made an <strong>incorrect</strong> observation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{dy}}}}{{{\text{dx}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>dy</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>dx</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2 = <em>k</em> has <strong>three</strong> solutions, find the possible values of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""><em><strong>(A1)(A1)(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct window (condone a window which is slightly off) and axes labels. An indication of window is necessary. −1 to 3 on the <em>x</em>-axis and −2 to 12 on the <em>y</em>-axis and a graph in that window.<br><em><strong>(A1)</strong></em> for correct shape (curve having cubic shape and must be smooth).<br><em><strong>(A1)</strong></em> for both stationary points in the 1<sup>st</sup> quadrant with approximate correct position,<br><em><strong>(A1)</strong></em> for intercepts (negative <em>x</em>-intercept and positive <em>y</em> intercept) with approximate correct position.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Rick     <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if extra names stated.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6<em>x</em><sup>2</sup> − 18<em>x</em> + 12     <strong><em>(A1)(A1)(A1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for each correct term. Award at most <strong><em>(A1)(A1)(A0)</em></strong> if extra terms seen.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 &lt; <em>k</em> &lt; 7     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for an inequality with 6, award <em><strong>(A1)</strong></em><strong>(ft)</strong> for an inequality with 7 from their part (c) provided it is greater than 6, <em><strong>(A1)</strong></em> for their correct strict inequalities. Accept ]6, 7[ or (6, 7).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =&nbsp; - {x^4} + a{x^2} + 5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>a</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is a constant. Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.47.40.png" alt="M17/5/MATSD/SP2/ENG/TZ2/06"></p>
</div>

<div class="specification">
<p>It is known that at the point where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> the tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is horizontal.</p>
</div>

<div class="specification">
<p>There are two other points on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> at which the tangent is horizontal.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept of the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 8">
  <mi>a</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(2)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinates of these two points;</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the intervals where the gradient of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of possible solutions to the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>5</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = m">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>m</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{R}">
  <mi>m</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>, has four solutions. Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>5     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept an answer of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}5)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f'(x) = } \right) - 4{x^3} + 2ax">
  <mrow>
    <mo>(</mo>
    <mrow>
      <msup>
        <mi>f</mi>
        <mo>′</mo>
      </msup>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo stretchy="false">)</mo>
      <mo>=</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>a</mi>
  <mi>x</mi>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4{x^3}">
  <mo>−</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> and <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + 2ax">
  <mo>+</mo>
  <mn>2</mn>
  <mi>a</mi>
  <mi>x</mi>
</math></span>. Award at most <strong><em>(A1)(A0) </em></strong>if extra terms are seen.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4 \times {2^3} + 2a \times 2 = 0">
  <mo>−</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>a</mi>
  <mo>×</mo>
  <mn>2</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> into their derivative, <strong><em>(M1) </em></strong>for equating their derivative, written in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, to 0 leading to a correct answer (note, the 8 does not need to be seen).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 8">
  <mi>a</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>     <strong><em>(AG)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f(2) = } \right) - {2^4} + 8 \times {2^2} + 5">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>f</mi>
      <mo stretchy="false">(</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
      <mo>=</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>8</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> and  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 8">
  <mi>a</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span> into the formula of the function.</p>
<p> </p>
<p>21     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x = ){\text{ }} - 2,{\text{ }}(x = ){\text{ 0}}">
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> 0</mtext>
  </mrow>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for each correct solution. Award at most <strong><em>(A0)(A1)</em>(ft) </strong>if answers are given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2{\text{ }},21)">
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>,</mo>
  <mn>21</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}5)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &lt;  - 2,{\text{ }}0 &lt; x &lt; 2">
  <mi>x</mi>
  <mo>&lt;</mo>
  <mo>−</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
</math></span>     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &lt;  - 2">
  <mi>x</mi>
  <mo>&lt;</mo>
  <mo>−</mo>
  <mn>2</mn>
</math></span>, follow through from part (d)(i) provided their value is negative.</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; 2">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
</math></span>, follow through only from their 0 from part (d)(i); 2 must be the upper limit.</p>
<p>Accept interval notation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y \leqslant 21">
  <mi>y</mi>
  <mo>⩽</mo>
  <mn>21</mn>
</math></span>     <strong><em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>(A1)</em>(ft) </strong>for 21 seen in an interval or an inequality, <strong><em>(A1) </em></strong>for “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y \leqslant ">
  <mi>y</mi>
  <mo>⩽</mo>
</math></span>”.</p>
<p>Accept interval notation.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \infty  &lt; y \leqslant 21">
  <mo>−</mo>
  <mi mathvariant="normal">∞</mi>
  <mo>&lt;</mo>
  <mi>y</mi>
  <mo>⩽</mo>
  <mn>21</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) \leqslant 21">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>⩽</mo>
  <mn>21</mn>
</math></span>.</p>
<p>Follow through from their answer to part (c)(ii). Award at most <strong><em>(A1)</em>(ft)<em>(A0) </em></strong>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is seen instead of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>. Do not award the second <strong><em>(A1) </em></strong>if a (finite) lower limit is seen.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3 (solutions)     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5 &lt; m &lt; 21">
  <mn>5</mn>
  <mo>&lt;</mo>
  <mi>m</mi>
  <mo>&lt;</mo>
  <mn>21</mn>
</math></span> or equivalent     <strong><em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1)</em>(ft) </strong>for 5 and 21 seen in an interval or an inequality, <strong><em>(A1) </em></strong>for correct strict inequalities. Follow through from their answers to parts (a) and (c)(ii).</p>
<p>Accept interval notation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A theatre set designer is designing a piece of flat scenery in the shape of a hill. The scenery&nbsp;is formed by a curve between two vertical edges of unequal height. One edge is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> metres&nbsp;high and the other is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> metre high. The width of the scenery is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> metres.</p>
<p>A coordinate system is formed with the origin at the foot of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> metres high edge. In this&nbsp;coordinate system the highest point of the cross‐section is at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p>A set designer wishes to work out an approximate value for the area of the scenery <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>A</mi><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo>&nbsp;</mo><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>In order to obtain a more accurate measure for the area the designer decides to model the&nbsp;curved edge with the polynomial <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi><mo>&nbsp;</mo><mo>&nbsp;</mo><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres is&nbsp;the height of the curved edge a horizontal distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mtext>m</mtext></math> from the origin.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>&lt;</mo><mn>21</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By dividing the area between the curve and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>‐axis into two trapezoids of unequal width show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>&gt;</mo><mn>14</mn><mo>.</mo><mn>5</mn></math>, justifying the direction of the inequality.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use differentiation to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine two other linear equations in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the expression found in (f) to calculate a value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>The area <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is less than the rectangle containing the cross-section which is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>×</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>=</mo><mn>21</mn></math>        <strong>R1</strong></p>
<p> </p>
<p><strong>Note:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>×</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>=</mo><mn>21</mn></math> is not sufficient for <strong>R1</strong>.</p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>2</mn><mo>×</mo><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>4</mn><mo>×</mo><mfenced><mrow><mn>3</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>1</mn></mrow></mfenced></math>        <strong>(M1)(A1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>14</mn><mo>.</mo><mn>5</mn></math>        <strong>A1</strong></p>
<p>This is an underestimate as the trapezoids are enclosed by (are under) the curve.        <strong>R1</strong></p>
<p> </p>
<p><strong>Note:</strong> This can be shown in a diagram.</p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>2</mn><mo>⇒</mo><mi>d</mi><mo>=</mo><mn>2</mn></math>       <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math>       <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mn>2</mn></mfenced><mo>=</mo><mn>0</mn></math>       <strong>M1</strong></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></math>       <strong>AG</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Substitute the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>6</mn><mo>,</mo><mo> </mo><mn>1</mn></mrow></mfenced></math>        <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mn>2</mn><mi>c</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo> </mo><mfenced><mrow><mn>8</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mn>2</mn><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math></p>
<p>and</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>216</mn><mi>a</mi><mo>+</mo><mn>36</mn><mi>b</mi><mo>+</mo><mn>6</mn><mi>c</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>1</mn><mo> </mo><mfenced><mrow><mn>216</mn><mi>a</mi><mo>+</mo><mn>36</mn><mi>b</mi><mo>+</mo><mn>6</mn><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>        <strong>A1</strong><strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Solve on a GDC        <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0365</mn><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>0</mn><mo>.</mo><mn>521</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>65</mn><mi>x</mi><mo>+</mo><mn>2</mn></math>        <strong>A2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0364583</mn><mo>…</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>0</mn><mo>.</mo><mn>520833</mn><mo>…</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>64583</mn><mo>…</mo><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>6</mn></msubsup><mn>0</mn><mo>.</mo><mn>0364583</mn><mo>…</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>0</mn><mo>.</mo><mn>520833</mn><mo>…</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>64583</mn><mo>…</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo> </mo><mtext>d</mtext><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>15</mn><mo>.</mo><mn>9</mn><mo> </mo><mfenced><mrow><mn>15</mn><mo>.</mo><mn>9374</mn><mo>…</mo></mrow></mfenced><mo> </mo><mfenced><msup><mtext>m</mtext><mn>2</mn></msup></mfenced></math>       <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo>.</mo><mn>0</mn><mo> </mo><mo>(</mo><mn>16</mn><mo>.</mo><mn>014</mn><mo>)</mo></math> from the three significant figure answer to part (g).</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The Happy Straw Company manufactures drinking straws.</p>
<p>The straws are packaged in small closed rectangular boxes, each with length 8 cm, width 4 cm&nbsp;and height 3 cm. The information is shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Each week, the Happy Straw Company sells <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> boxes of straws. It is known that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}x}} =&nbsp; - 2x + 220">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>P</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>220</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≥ 0, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span> is the weekly profit, in dollars, from the sale of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> thousand boxes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the surface area of the box in cm<sup>2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length AG.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of boxes that should be sold each week to maximize the profit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of boxes which must be sold each week in order to make a profit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">2(8 × 4 + 3 × 4 + 3 × 8)        <em><strong>M1</strong></em></p>
<p style="text-align: left;">= 136 (cm<sup>2</sup>)        <em><strong>A1</strong></em></p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{8^2} + {4^2} + {3^2}} ">
  <msqrt>
    <mrow>
      <msup>
        <mn>8</mn>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mn>4</mn>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mn>3</mn>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span>        <em><strong>M1</strong></em></p>
<p style="text-align: left;">(AG =) 9.43 (cm) (9.4339…, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {89} ">
  <msqrt>
    <mn>89</mn>
  </msqrt>
</math></span>)        <em><strong>A1</strong></em></p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2x + 220 = 0">
  <mo>−</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>220</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>       <em><strong>M1</strong></em></p>
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 110">
  <mi>x</mi>
  <mo>=</mo>
  <mn>110</mn>
</math></span>        <em><strong>A1</strong></em></p>
<p style="text-align: left;">110 000 (boxes)        <em><strong>A1</strong></em></p>
<p style="text-align: left;"><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right) = \int { - 2x + 220} \,{\text{d}}x">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mo>∫</mo>
  <mrow>
    <mo>−</mo>
    <mn>2</mn>
    <mi>x</mi>
    <mo>+</mo>
    <mn>220</mn>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span>      <em><strong>M1</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>M1</strong> </em>for evidence of integration.</p>
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right) =  - {x^2} + 220x + c">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>220</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>A1</strong> </em>for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {x^2}">
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="220x">
  <mn>220</mn>
  <mi>x</mi>
</math></span> award <em><strong>A1</strong> </em>for both correct terms and constant of integration.</p>
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1700 =  - {\left( {20} \right)^2} + 220\left( {20} \right) + c">
  <mn>1700</mn>
  <mo>=</mo>
  <mo>−</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>20</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>220</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>20</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>c</mi>
</math></span>       <em><strong>M1</strong></em></p>
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c =  - 2300">
  <mi>c</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2300</mn>
</math></span></p>
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right) =  - {x^2} + 220x - 2300">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>220</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2300</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p style="text-align: left;"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {x^2} + 220x - 2300 = 0">
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>220</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2300</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <em><strong>M1</strong></em></p>
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 11.005">
  <mi>x</mi>
  <mo>=</mo>
  <mn>11.005</mn>
</math></span>       <em><strong>A1</strong></em></p>
<p style="text-align: left;">11 006 (boxes)      <em><strong>A1</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>M1</strong></em> for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right) = 0">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, award <em><strong>A1</strong> </em>for their correct solution to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.<br>Award the final <em><strong>A1</strong> </em>for expressing their solution to the minimum number of boxes. Do not accept 11 005, the nearest integer, nor 11 000, the answer expressed to 3 significant figures, as these will not satisfy the demand of the question.</p>
<p style="text-align: left;"><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A cafe makes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> litres of coffee each morning. The cafe&rsquo;s profit each morning, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>, measured in dollars, is modelled by the following equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mfrac><mi>x</mi><mn>10</mn></mfrac><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>3</mn><mn>100</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is a positive constant.</p>
</div>

<div class="specification">
<p>The cafe&rsquo;s manager knows that the cafe makes a profit of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>426</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> litres of coffee are made in a morning.</p>
</div>

<div class="specification">
<p>The manager of the cafe wishes to serve as many customers as possible.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>C</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><msup><mi>k</mi><mn>3</mn></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> is a constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to find how much coffee the cafe should make each morning to maximize its profit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, labelling the maximum point and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts with their coordinates.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum amount of coffee the cafe can make that will not result in a loss of money for the morning.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to expand given expression            <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mfrac><mrow><mi>x</mi><msup><mi>k</mi><mn>2</mn></msup></mrow><mn>10</mn></mfrac><mo>-</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>C</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><msup><mi>k</mi><mn>2</mn></msup><mn>10</mn></mfrac><mo>-</mo><mfrac><mrow><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mn>1000</mn></mfrac></math>         <em><strong>M1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for power rule correctly applied to at least one term and <em><strong>A1</strong> </em>for correct answer.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equating their <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>C</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> to zero            <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mi>k</mi><mn>2</mn></msup><mn>10</mn></mfrac><mo>-</mo><mfrac><mrow><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mn>1000</mn></mfrac><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>100</mn><msup><mi>k</mi><mn>2</mn></msup></mrow><mn>9</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>10</mn><mi>k</mi></mrow><mn>3</mn></mfrac></math>            <em><strong>(A1)</strong></em></p>
<p>substituting their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> back into given expression            <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mtext>max</mtext></msub><mo>=</mo><mfrac><mrow><mn>10</mn><mi>k</mi></mrow><mn>30</mn></mfrac><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfrac><mrow><mn>300</mn><msup><mi>k</mi><mn>2</mn></msup></mrow><mn>900</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mtext>max</mtext></msub><mo>=</mo><mfrac><mrow><mn>2</mn><msup><mi>k</mi><mn>3</mn></msup></mrow><mn>9</mn></mfrac><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>222</mn><mo>…</mo><msup><mi>k</mi><mn>3</mn></msup></mrow></mfenced></math>           <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> into given expression and equating to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>426</mn></math>           <em><strong>M1</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>426</mn><mo>=</mo><mfrac><mn>20</mn><mn>10</mn></mfrac><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>3</mn><mn>100</mn></mfrac><msup><mfenced><mn>20</mn></mfenced><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>15</mn></math>           <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math>           <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">              <em><strong>A1A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for graph drawn for positive <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> indicating an increasing and then decreasing function, <em><strong>A1</strong> </em>for maximum labelled and <em><strong>A1</strong> </em>for graph passing through the origin and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>86</mn><mo>.</mo><mn>6</mn></math>, marked on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis or whose coordinates are given.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>setting their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> to zero  <strong>OR</strong>  choosing correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept on their graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>              <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mtext>max</mtext></msub><mo>=</mo><mn>86</mn><mo>.</mo><mn>6</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>86</mn><mo>.</mo><mn>6025</mn><mo>…</mo></mrow></mfenced></math> litres              <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A sector of a circle, centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>&#8202;</mo><mtext>m</mtext></math>, is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A square field with side <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>&#8202;</mo><mtext>m</mtext></math> has a goat tied to a post in the centre by a rope such that the&nbsp;goat can reach all parts of the field up to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>&#8202;</mo><mtext>m</mtext></math> from the post.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;"><sup>[Source: mynamepong, n.d. Goat [image online] Available at: <a href="https://thenounproject.com/term/goat/1761571/">https://thenounproject.com/term/goat/1761571/</a></sup><br><sup>This file is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)</sup><br><sup><a href="https://creativecommons.org/licenses/by-sa/3.0/deed.en">https://creativecommons.org/licenses/by-sa/3.0/deed.en</a> [Accessed 22 April 2010] Source adapted.]</sup></p>
</div>

<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> be the volume of grass eaten by the goat, in cubic metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> be the length of time,&nbsp;in hours, that the goat has been in the field.</p>
<p>The goat eats grass at the rate of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>&#8202;</mo><mi>t</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded segment.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of a circle with radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the field that can be reached by the goat.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which the goat is eating grass at the greatest rate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mtext>AÔB</mtext><mo>=</mo></mrow></mfenced><mo> </mo><mtext>arccos</mtext><mfenced><mfrac><mn>4</mn><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfrac></mfenced><mo>=</mo><mn>27</mn><mo>.</mo><mn>266</mn><mo>…</mo></math>        <em><strong>(M1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext><mo>=</mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo><mo>≈</mo><mn>54</mn><mo>.</mo><mn>5</mn><mo>°</mo></math>  (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>951764</mn><mo>…</mo><mo>≈</mo><mn>0</mn><mo>.</mo><mn>952</mn></math> radians)        <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Other methods may be seen; award <em><strong>(M1)(A1)</strong></em> for use of a correct trigonometric method to find an appropriate angle and then <em><strong>A1</strong> </em>for the correct answer.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding area of triangle</p>
<p><strong>EITHER</strong></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>×</mo><mi>sin</mi><mfenced><mrow><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow></mfenced></math>        <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for correct substitution into formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>25</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>        <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>2</mn><mo>×</mo><msqrt><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>-</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><mo>=</mo><mn>4</mn><mo>.</mo><mn>1231</mn><mo>…</mo></math></p>
<p>area triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>1231</mn><mo>…</mo><mo>×</mo><mn>4</mn></mrow><mn>2</mn></mfrac></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>25</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>        <em><strong>(A1)</strong></em></p>
<p> </p>
<p>finding area of sector</p>
<p><strong>EITHER</strong></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>≈</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>        <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>9517641</mn><mo>…</mo><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>≈</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>        <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>area of segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>-</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>39</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>39040</mn><mo>…</mo></mrow></mfenced></math>        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>63</mn><mo>.</mo><mn>6</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>63</mn><mo>.</mo><mn>6172</mn><mo>…</mo><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></mrow></mfenced></math>        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p style="padding-left:90px;"><img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>39040</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo> </mo><mo> </mo><mo> </mo><mo>(</mo><mn>5</mn><mo>.</mo><mn>56160</mn><mo>)</mo></math>         <em><strong>(A1)</strong></em></p>
<p>subtraction of four segments from area of circle         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>58</mn><mo>.</mo><mn>055</mn><mo>…</mo><mo> </mo></mrow></mfenced></math>       <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>×</mo><mi>sin</mi><mo> </mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mn>4</mn><mfenced><mrow><mfrac><mrow><mn>35</mn><mo>.</mo><mn>4679</mn></mrow><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></mrow></mfenced></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mo> </mo><mn>32</mn><mo>.</mo><mn>9845</mn><mo>…</mo><mo>+</mo><mn>25</mn><mo>.</mo><mn>0707</mn></math>         <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>58</mn><mo>.</mo><mn>055</mn><mo>…</mo><mo> </mo></mrow></mfenced></math>       <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>   <strong>OR</strong>   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>110363</mn><mo>…</mo></math>   <strong>OR   </strong>attempt to find where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>V</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math> hour        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a)(i) proved to be difficult for many candidates. About half of the candidates managed to correctly find the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math>. A variety of methods were used: cosine to find half of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> then double it; sine to find angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> , then find half of A<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> and double it; Pythagoras to find half of AB and then sine rule to find half of angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> then double it; Pythagoras to find half of AB, then double it and use cosine rule to find angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> . Many candidates lost a mark here due to premature rounding of an intermediate value and hence the final answer was not correct (to three significant figures).</p>
<p>In part (a)(ii) very few candidates managed to find the correct area of the shaded segment and include the correct units. Some only found the area of the triangle or the area of the sector and then stopped.</p>
<p>In part (b)(i), nearly all candidates managed to find the area of a circle.</p>
<p>In part (b)(ii), finding the area of the field reached by the goat proved troublesome for most of the candidates. It appeared as if the candidates did not fully understand the problem. Very few candidates realized the connection to part (a)(ii).</p>
<p>Part (c) was accessed by only a handful of candidates. The candidates could simply have graphed the function on their GDC to find the greatest value, but most did not realize this.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All lengths in this question are in metres.</strong></p>
<p>&nbsp;</p>
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \sqrt {\frac{{4 - {x^2}}}{8}} ">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>4</mn>
        <mo>−<!-- − --></mo>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
      </mrow>
      <mn>8</mn>
    </mfrac>
  </msqrt>
</math></span>, for −2 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 2.&nbsp;In the following diagram, the shaded&nbsp;region is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A container can be modelled by rotating this region by 360˚ about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis.</p>
</div>

<div class="specification">
<p>Water can flow in and out of the container.</p>
<p>The volume of water in the container is given by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>, for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 4 , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is measured in hours and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> is measured in m<sup>3</sup>. The rate of change of the volume of water in the container is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( t \right) = 0.9 - 2.5\,{\text{cos}}\left( {0.4{t^2}} \right)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.9</mn>
  <mo>−<!-- − --></mo>
  <mn>2.5</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.4</mn>
      <mrow>
        <msup>
          <mi>t</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The volume of water in the container is increasing only when&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>&nbsp;&lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>&nbsp;&lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the container.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During the interval <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>, he volume of water in the container increases by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> m<sup>3</sup>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 0, the volume of water in the container is 2.3 m<sup>3</sup>. It is known that the container is never completely full of water during the 4 hour period.</p>
<p> </p>
<p>Find the minimum volume of empty space in the container during the 4 hour period.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to substitute correct limits or the function into formula involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_{ - 2}^2 {{y^2}\,{\text{d}}y} ">
  <mi>π</mi>
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mn>2</mn>
  </msubsup>
  <mrow>
    <mrow>
      <msup>
        <mi>y</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>y</mi>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {\int {\left( {\sqrt {\frac{{4 - {x^2}}}{8}} } \right)} ^2}{\text{d}}x">
  <mi>π</mi>
  <mrow>
    <mo>∫</mo>
    <msup>
      <mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <msqrt>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mo>−</mo>
                  <mrow>
                    <msup>
                      <mi>x</mi>
                      <mn>2</mn>
                    </msup>
                  </mrow>
                </mrow>
                <mn>8</mn>
              </mfrac>
            </msqrt>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span></p>
<p>4.18879</p>
<p>volume = 4.19,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}\pi ">
  <mfrac>
    <mn>4</mn>
    <mn>3</mn>
  </mfrac>
  <mi>π</mi>
</math></span>  (exact) (m<sup>3</sup>)      <em><strong>A2 N3</strong></em></p>
<p><strong>Note:</strong> If candidates have their GDC incorrectly set in degrees, award <strong><em>M</em></strong> marks where appropriate, but no <em><strong>A</strong></em> marks may be awarded. Answers from degrees are <em>p</em> = 13.1243 and <em>q</em> = 26.9768 in (b)(i) and 12.3130 or 28.3505 in (b)(ii).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing the volume increases when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g'}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span> is positive      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( t \right)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> &gt; 0,  sketch of graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g'}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span> indicating correct interval</p>
<p>1.73387, 3.56393</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> = 1.73,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> = 3.56      <em><strong>A1A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find change in volume      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( q \right) - g\left( p \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>q</mi>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>p</mi>
    <mo>)</mo>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_p^q {g'\left( t \right){\text{d}}t} ">
  <msubsup>
    <mo>∫</mo>
    <mi>p</mi>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
</math></span></p>
<p>3.74541</p>
<p>total amount = 3.75  (m<sup>3</sup>)      <em><strong>A2 N3</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> There may be slight differences in the final answer, depending on which values candidates carry through from previous parts. Accept answers that are consistent with correct working.</p>
<p> </p>
<p>recognizing when the volume of water is a maximum     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   maximum when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = q">
  <mi>t</mi>
  <mo>=</mo>
  <mi>q</mi>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^q {g'\left( t \right){\text{d}}t} ">
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
</math></span></p>
<p>valid approach to find maximum volume of water      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.3 + \int_0^q {g'\left( t \right){\text{d}}t} ">
  <mn>2.3</mn>
  <mo>+</mo>
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.3 + \int_0^p {g'\left( t \right){\text{d}}t}  + 3.74541">
  <mn>2.3</mn>
  <mo>+</mo>
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mi>p</mi>
  </msubsup>
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
  <mo>+</mo>
  <mn>3.74541</mn>
</math></span>,  3.85745</p>
<p>correct expression for the difference between volume of container and maximum value      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4.18879 - \left( {2.3 + \int_0^q {g'\left( t \right){\text{d}}t} } \right)">
  <mn>4.18879</mn>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2.3</mn>
      <mo>+</mo>
      <msubsup>
        <mo>∫</mo>
        <mn>0</mn>
        <mi>q</mi>
      </msubsup>
      <mrow>
        <msup>
          <mi>g</mi>
          <mo>′</mo>
        </msup>
        <mrow>
          <mo>(</mo>
          <mi>t</mi>
          <mo>)</mo>
        </mrow>
        <mrow>
          <mtext>d</mtext>
        </mrow>
        <mi>t</mi>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,  4.19 − 3.85745</p>
<p>0.331334</p>
<p>0.331 (m<sup>3</sup>)      <em><strong>A2 N3</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {x^3} + k{x^2} - 15x + 5">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>k</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>15</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>5</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 21x + 7">
  <mi>y</mi>
  <mo>=</mo>
  <mn>21</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>7</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 6">
  <mi>k</mi>
  <mo>=</mo>
  <mn>6</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>. Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (a) and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>, to find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinates of the stationary points of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g’( - 1)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence justify that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is decreasing at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - 1">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-coordinate of the local minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2} + 2kx - 15">
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>k</mi>
  <mi>x</mi>
  <mo>−</mo>
  <mn>15</mn>
</math></span>     <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2}">
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2kx">
  <mn>2</mn>
  <mi>k</mi>
  <mi>x</mi>
</math></span> and <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 15">
  <mo>−</mo>
  <mn>15</mn>
</math></span>. Award at most <strong><em>(A1)(A1)(A0) </em></strong>if additional terms are seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="21 = 3{(2)^2} + 2k(2) - 15">
  <mn>21</mn>
  <mo>=</mo>
  <mn>3</mn>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>k</mi>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mn>15</mn>
</math></span>     <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for equating their derivative to 21. Award <strong><em>(M1) </em></strong>for substituting 2 into their derivative. The second <strong><em>(M1) </em></strong>should only be awarded if correct working leads to the final answer of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 6">
  <mi>k</mi>
  <mo>=</mo>
  <mn>6</mn>
</math></span>.</p>
<p>Substituting in the known value, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 6">
  <mi>k</mi>
  <mo>=</mo>
  <mn>6</mn>
</math></span>, invalidates the process; award <strong><em>(M0)(M0)</em></strong>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 6">
  <mi>k</mi>
  <mo>=</mo>
  <mn>6</mn>
</math></span>     <strong><em>(AG)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(2) = {(2)^3} + (6){(2)^2} - 15(2) + 5{\text{ }}( = 7)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mo stretchy="false">(</mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>15</mn>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>5</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>7</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substituting 2 into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7 = 21(2) + c">
  <mn>7</mn>
  <mo>=</mo>
  <mn>21</mn>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mi>c</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution of 21, 2 and their 7 into gradient intercept form.</p>
<p> </p>
<p><strong>OR</strong></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 7 = 21(x - 2)">
  <mi>y</mi>
  <mo>−</mo>
  <mn>7</mn>
  <mo>=</mo>
  <mn>21</mn>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution of 21, 2 and their 7 into gradient point form.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 21x - 35">
  <mi>y</mi>
  <mo>=</mo>
  <mn>21</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>35</mn>
</math></span>     <strong><em>(A1)</em></strong>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2} + 12x - 15 = 0">
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>12</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>15</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span> (or equivalent)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for equating their part (a) (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 6">
  <mi>k</mi>
  <mo>=</mo>
  <mn>6</mn>
</math></span> substituted) to zero.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - 5,{\text{ }}x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>5</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (a).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{( - 1)^2} + 12( - 1) - 15">
  <mn>3</mn>
  <mrow>
    <mo stretchy="false">(</mo>
    <mo>−</mo>
    <mn>1</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>12</mn>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mn>15</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1">
  <mo>−</mo>
  <mn>1</mn>
</math></span> into their derivative, with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 6">
  <mi>k</mi>
  <mo>=</mo>
  <mn>6</mn>
</math></span> substituted. Follow through from part (a).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - 24">
  <mo>=</mo>
  <mo>−</mo>
  <mn>24</mn>
</math></span>     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g’( - 1) &lt; 0">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>&lt;</mo>
  <mn>0</mn>
</math></span> (therefore <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is decreasing when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - 1">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span>)     <strong><em>(R1)</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(1) = {(1)^3} + (6){(1)^2} - 15(1) + 5">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>1</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mo stretchy="false">(</mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>1</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>15</mn>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>5</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correctly substituting 6 and their 1 into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - 3">
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
</math></span>     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award, at most, (<strong><em>M1)(A0) </em></strong>or <strong><em>(G1) </em></strong>if answer is given as a coordinate pair. Follow through from part (c).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =&nbsp; - 0.5{x^4} + 3{x^2} + 2x">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>0.5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.09.00.png" alt="M17/5/MATME/SP2/ENG/TZ2/08"></p>
<p>&nbsp;</p>
<p>There are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span>. There is a maximum at A where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
  <mi>x</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span>, and a point of inflexion at B where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
  <mi>x</mi>
  <mo>=</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> be the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> , the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
  <mi>x</mi>
  <mo>=</mo>
  <mi>b</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
  <mi>x</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span>. The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0,{\text{ }}y = 0">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>y</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p>2.73205</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2.73">
  <mi>p</mi>
  <mo>=</mo>
  <mn>2.73</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.87938, 8.11721</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1.88,{\text{ }}8.12)">
  <mo stretchy="false">(</mo>
  <mn>1.88</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>8.12</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A2</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate of change is 0 (do not accept decimals)     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using GDC)</strong></p>
<p>valid approach     <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ = 0">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, max/min on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’,{\text{ }}x =  - 1">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span></p>
<p>sketch of either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
</math></span>, with max/min or root (respectively)     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p>Substituting <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4.5">
  <mi>y</mi>
  <mo>=</mo>
  <mn>4.5</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p><strong>METHOD 2 (analytical)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ =  - 6{x^2} + 6">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p>setting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ = 0">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p>substituting <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4.5">
  <mi>y</mi>
  <mo>=</mo>
  <mn>4.5</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing rate of change is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y’,{\text{ }}f’(1)">
  <msup>
    <mi>y</mi>
    <mo>′</mo>
  </msup>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>rate of change is 6     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula     <strong><em>(M1)</em></strong></p>
<p>involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}x">
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span>)</p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int {{{( - 0.5{x^4} + 3{x^2} + 2x)}^2}{\text{d}}x,{\text{ }}\int_1^{1.88} {{f^2}} } ">
  <mi>π</mi>
  <mo>∫</mo>
  <mrow>
    <mrow>
      <msup>
        <mrow>
          <mo stretchy="false">(</mo>
          <mo>−</mo>
          <mn>0.5</mn>
          <mrow>
            <msup>
              <mi>x</mi>
              <mn>4</mn>
            </msup>
          </mrow>
          <mo>+</mo>
          <mn>3</mn>
          <mrow>
            <msup>
              <mi>x</mi>
              <mn>2</mn>
            </msup>
          </mrow>
          <mo>+</mo>
          <mn>2</mn>
          <mi>x</mi>
          <mo stretchy="false">)</mo>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>,</mo>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <msubsup>
      <mo>∫</mo>
      <mn>1</mn>
      <mrow>
        <mn>1.88</mn>
      </mrow>
    </msubsup>
    <mrow>
      <mrow>
        <msup>
          <mi>f</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mrow>
</math></span></p>
<p>128.890</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{volume}} = 129">
  <mrow>
    <mtext>volume</mtext>
  </mrow>
  <mo>=</mo>
  <mn>129</mn>
</math></span>     <strong><em>A2</em></strong>     <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The Maxwell Ohm Company is designing a portable Bluetooth speaker. The speaker is in the&nbsp;shape of a cylinder with a hemisphere at each end of the cylinder.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The dimensions of the speaker, in centimetres, are illustrated in the following diagram where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>&nbsp;is the radius of the hemisphere, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math> is the length of the cylinder, with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>&gt;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mo>≥</mo><mn>0</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The Maxwell Ohm Company has decided that the speaker will have a surface area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup></math>.</p>
</div>

<div class="specification">
<p>The quality of sound from the speaker will improve as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> increases.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>, the volume (cm<sup>3</sup>) of the speaker, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation for the surface area of the speaker in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given the design constraint that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mo>=</mo><mfrac><mrow><mn>150</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>2</mn></msup></mrow><mrow><mi mathvariant="normal">π</mi><mi>r</mi></mrow></mfrac></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>150</mn><mi>r</mi><mo>-</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>V</mi></mrow><mrow><mtext>d</mtext><mi>r</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (d), show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> is a maximum when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo> </mo><mtext>cm</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the <strong>cylinder</strong> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> is a maximum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (f) to identify the shape of the speaker with the best quality of sound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>V</mi><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mrow><mn>4</mn><mtext>π</mtext><msup><mi>r</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac><mo>+</mo><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>2</mn></msup><mi>l</mi></math>   (or equivalent)        <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for either the volume of a hemisphere formula multiplied by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> or the volume of a cylinder formula, and <em><strong>(A1)</strong></em> for completely correct expression. Accept equivalent expressions. Award at most <em><strong>(A1)(A0)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> is used instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn><mo>=</mo><mn>4</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi mathvariant="normal">π</mi><mi>r</mi><mi>l</mi></math>         <em><strong>(A1)</strong></em><em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for the surface area of a hemisphere multiplied by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>. Award <em><strong>(A1)</strong></em> for the surface area of a cylinder. Award <em><strong>(A1)</strong></em> for the addition of their formulas equated to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn></math>. Award at most <em><strong>(A1)(A1)(A0)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> is used instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>, unless already penalized in part (a).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac><mo>+</mo><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>2</mn></msup><mo> </mo><mfenced><mfrac><mrow><mn>150</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>2</mn></msup></mrow><mrow><mi mathvariant="normal">π</mi><mi>r</mi></mrow></mfrac></mfenced></math>         <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correctly substituted formula for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac><mo>+</mo><mn>150</mn><mi>r</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>3</mn></msup><mo> </mo></math>         <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct expansion of brackets and simplification of the cylinder expression in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> leading to the final answer.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>150</mn><mi>r</mi><mo>-</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math>         <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> The final line must be seen, with no incorrect working, for the second <em><strong>(M1)</strong></em> to be awarded.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mtext>d</mtext><mi>V</mi></mrow><mrow><mtext>d</mtext><mi>r</mi></mrow></mfrac><mo>=</mo></mrow></mfenced><mn>150</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>2</mn></msup></math>         <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn></math>. Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>2</mn></msup></math>. Award maximum <em><strong>(A1)(A0)</strong></em> if extra terms seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">π</mi><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math>  <strong>OR</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>V</mi></mrow><mrow><mtext>d</mtext><mi>r</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math>  <strong>OR</strong>  sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>V</mi></mrow><mrow><mtext>d</mtext><mi>r</mi></mrow></mfrac></math>with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept indicated         <em><strong>(M1)</strong></em></p>
<p style="text-align: center;"><img src=""></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their derivative to zero or a sketch of their derivative with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept indicated.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><msqrt><mfrac><mn>150</mn><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow></mfrac></msqrt></math>  <strong>OR</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>150</mn><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow></mfrac></math>         <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><msqrt><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></math>         <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> The <em><strong>(AG)</strong></em> line must be seen for the preceding <em><strong>(A1)</strong></em> to be awarded.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>l</mi><mo>=</mo></mrow></mfenced><mfrac><mrow><mn>150</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">π</mi><msup><mfenced><msqrt><mstyle displaystyle="true"><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></mstyle></msqrt></mfenced><mn>2</mn></msup></mrow><mrow><mi mathvariant="normal">π</mi><mfenced><msqrt><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mfenced></mrow></mfrac></math>         <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong>(M1)</strong> for correct substitution in the given formula for the length of the cylinder.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>l</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo> </mo><mfenced><mtext>cm</mtext></mfenced></math>         <em><strong>(A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for correct substitution of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> sf approximation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>89</mn></math> leading to a correct answer of zero.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>150</mn><mfenced><msqrt><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mfenced><mo>-</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi><msup><mfenced><msqrt><mstyle displaystyle="true"><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></mstyle></msqrt></mfenced><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math>  <em><strong>OR</strong></em>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi><msup><mfenced><msqrt><mstyle displaystyle="true"><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></mstyle></msqrt></mfenced><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math>         <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the formula for the volume of the speaker or the volume of a sphere.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>489</mn><mo> </mo><mfenced><mrow><mn>488</mn><mo>.</mo><mn>602</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>100</mn><msqrt><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced><mo> </mo><mfenced><msup><mtext>cm</mtext><mn>3</mn></msup></mfenced></math>         <em><strong>(A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>489</mn><mo>.</mo><mn>795</mn><mo>…</mo></math> from use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> sf value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mn>75</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></math>. Award <strong><em>(M1)(A1)</em>(ft)</strong> for correct substitution in their volume of speaker. Follow through from parts (a) and (f).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sphere (spherical)        <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Question requires the use of part (f) so if there is no answer to part (f), part (h) is awarded <em><strong>(A0)</strong></em>. Follow through from their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of the quadratic function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>8</mn></mrow></mfenced></math>&nbsp;intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mi>c</mi></mrow></mfenced></math>.</p>
</div>

<div class="specification">
<p>The vertex of the function is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>3</mn><mo>,</mo><mo>&nbsp;</mo><mo>-</mo><mn>12</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>.</p>
</div>

<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>12</mn></math> has two solutions. The first solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>10</mn></math>.</p>
</div>

<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> be the tangent at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation for the axis of symmetry of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Use the symmetry</strong> of the graph to show that the second solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On graph paper, draw the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> for  <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>10</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>4</mn></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>14</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>14</mn></math>. Use a scale of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> to represent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> to represent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the tangent <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> on your graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><mn>5</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><mo>-</mo><mn>6</mn></math>, state whether the function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, is increasing or decreasing at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>a</mi></math>. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>0</mn><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>0</mn><mo>+</mo><mn>8</mn></mrow></mfenced></math>  <strong>OR</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><msup><mn>0</mn><mn>2</mn></msup><mo>+</mo><mn>6</mn><mfenced><mn>0</mn></mfenced><mo>-</mo><mn>16</mn></mrow></mfenced></math>  (or equivalent)      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for evaluating <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced></math>.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>c</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>8</mn></math>          <em><strong>(A1)</strong></em><strong><em>(G2)</em></strong></p>
<p><strong>Note</strong>: Award<em><strong> (G2)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>8</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>8</mn></mrow></mfenced></math> seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></math>      <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note</strong>: Award<em><strong> (A1)</strong></em> for “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo></math> constant”, <em><strong>(A1)</strong></em> for the constant being <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn></math>. The answer must be an equation.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>3</mn><mo>-</mo><mo>-</mo><mn>10</mn></mrow></mfenced><mo>+</mo><mo>-</mo><mn>3</mn></math>      <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>8</mn><mo>-</mo><mo>-</mo><mn>10</mn></mrow></mfenced><mo>+</mo><mn>2</mn></math>      <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>10</mn><mo>+</mo><mi>x</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mo>-</mo><mn>3</mn></math>      <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p>diagram showing axis of symmetry and given points (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-values labels, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>10</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>, are sufficient) <strong>and</strong> an indication that the horizontal distances between the axis of symmetry and the given points are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math>.      <em><strong>(M1)</strong></em></p>
<p><img src=""></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct working using the symmetry between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></math>. Award <em><strong>(M0)</strong></em> if candidate has used <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> to show the axis of symmetry is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></math>. Award <em><strong>(M0)</strong></em> if candidate solved <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>12</mn></math> or evaluated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mn>10</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>4</mn></mfenced></math>.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>4</mn></math>      <em><strong>(AG)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>8</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>      <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>8</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>0</mn></math><strong> or</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>, award at most <em><strong>(A0)(A1)</strong></em> if parentheses are omitted.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">      <em><strong>(A1)(A1)</strong></em><em><strong>(A1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for labelled axes with correct scale, correct window. Award <em><strong>(A1)</strong></em> for the vertex, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>12</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>, in correct location.<br>Award <em><strong>(A1)</strong></em> for a smooth continuous curve symmetric about their vertex. Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for the curve passing through their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> intercepts in correct location. Follow through from their parts (a) and (d).</p>
<p><strong>If graph paper is not used:</strong><br>Award at most <strong><em>(A0)(A0)(A1)(A1)</em>(ft)</strong>. Their graph should go through their <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>8</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> for the last <strong><em>(A1)</em>(ft)</strong> to be awarded.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>12</mn><mo>.</mo><mn>5</mn></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>.</mo><mn>5</mn></math>      <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(</strong><strong>A1)</strong></em> for "<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo></math> constant", <em><strong>(A1)</strong></em> for the constant being <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>12</mn><mo>.</mo><mn>5</mn></math>. The answer must be an equation.</p>
<p> <em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>tangent to the graph drawn at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></math><strong>  </strong>      <em><strong>(A1)</strong></em><strong>(</strong><strong>ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for a horizontal straight-line tangent to curve at approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></math>. Award <em><strong>(A0)</strong></em> if a ruler is not used. Follow through from their part (e).</p>
<p> <em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreasing      <em><strong> (A1)</strong></em></p>
<p>gradient (of tangent line) is negative (at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>a</mi></math>)  <strong>OR</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>&lt;</mo><mn>0</mn></math>       <em><strong> (R1)</strong></em></p>
<p><strong>Note:</strong> Do not accept "gradient (of tangent line) is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>6</mn></math>". Do not award <em><strong>(A1)(R0)</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{16}}{x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>16</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
</math></span>. The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>&nbsp;is tangent to the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8">
  <mi>x</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> can be expressed in the form <em><strong>r</strong></em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  8 \\   2  \end{array}} \right) + t">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>8</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>t</mi>
</math></span><em><strong>u</strong></em>.</p>
</div>

<div class="specification">
<p>The direction vector of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
  <mi>y</mi>
  <mo>=</mo>
  <mi>x</mi>
</math></span> is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   1  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em><strong>u</strong></em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the obtuse angle formed by the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8"> <mi>x</mi> <mo>=</mo> <mn>8</mn> </math></span> and the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 8 \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </math></span>     <em><strong>(M1)</strong></em></p>
<p><em>eg </em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y'}"> <mrow> <msup> <mi>y</mi> <mo>′</mo> </msup> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 16{x^{ - 2}}"> <mo>−</mo> <mn>16</mn> <mrow> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </math></span></p>
<p>−0.25 (exact)     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>u</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  4 \\   { - 1}  \end{array}} \right)"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>  or any scalar multiple    <em><strong>A2 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct scalar product and magnitudes           <em><strong>(A1)(A1)(A1)</strong></em></p>
<p>scalar product <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1 \times 4 + 1 \times  - 1\,\,\,\left( { = 3} \right)"> <mo>=</mo> <mn>1</mn> <mo>×</mo> <mn>4</mn> <mo>+</mo> <mn>1</mn> <mo>×</mo> <mo>−</mo> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>magnitudes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {{1^2} + {1^2}} "> <mo>=</mo> <msqrt> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{4^2} + {{\left( { - 1} \right)}^2}} "> <msqrt> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \sqrt 2 {\text{,}}\,\,\sqrt {17} } \right)"> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <msqrt> <mn>17</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>substitution of their values into correct formula          <em><strong> (M1)</strong></em></p>
<p><em>eg</em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 - 1}}{{\sqrt {{1^2} + {1^2}} \sqrt {{4^2} + {{\left( { - 1} \right)}^2}} }}"> <mfrac> <mrow> <mn>4</mn> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <msqrt> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 3}}{{\sqrt 2 \sqrt {17} }}"> <mfrac> <mrow> <mo>−</mo> <mn>3</mn> </mrow> <mrow> <msqrt> <mn>2</mn> </msqrt> <msqrt> <mn>17</mn> </msqrt> </mrow> </mfrac> </math></span>,  2.1112,  120.96° </p>
<p>1.03037 ,  59.0362°</p>
<p>angle = 1.03 ,  59.0°    <em><strong>A1 N4</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">attempt to form composite <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>     <strong><em><span style="font-family: 'Verdana',sans-serif;">(M1)</span></em></strong></span></p>
<p><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">eg </span></em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {f\left( x \right)} \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {\frac{{16}}{x}} \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16}}{{f\left( x \right)}}"> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">correct working     <strong><em><span style="font-family: 'Verdana',sans-serif;">(A1)</span></em></strong></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16}}{{\frac{{16}}{x}}}"> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </mrow> </mfrac> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="16 \times \frac{x}{{16}}"> <mn>16</mn> <mo>×</mo> <mfrac> <mi>x</mi> <mrow> <mn>16</mn> </mrow> </mfrac> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right) = x"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </math></span>     <strong><em><span style="font-family: 'Verdana',sans-serif;">A1 N2</span></em></strong></span></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right) = \frac{{16}}{x}"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </math></span>  (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{16}}{x}"> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16}}{x}"> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </math></span>)    </span><strong style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><em>A1 N1</em></strong></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>A0</strong></em> in part (ii) if part (i) is incorrect.<br>Award <em><strong>A0</strong></em> in part (ii) if the candidate has found <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right) = \frac{{16}}{x}"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </math></span> by interchanging <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>.</p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[1 mark]</span></em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>recognition of symmetry about <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span>    <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   (2, 8) ⇔ (8, 2) <img src=""></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">evidence of doubling <strong>their</strong> angle       <strong><em> (M1)</em></strong><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times 1.03"> <mn>2</mn> <mo>×</mo> <mn>1.03</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times 59.0"> <mn>2</mn> <mo>×</mo> <mn>59.0</mn> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06075, 118.072°</span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06 (radians)  (118 degrees)     <em><strong>A1  N2</strong></em></span></p>
<p> </p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><strong>METHOD 2</strong><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">finding direction vector for tangent line at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span>      <em><strong>(A1)</strong></em><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 1} \\   4  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   { - 4}  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">substitution of <strong>their</strong> values into correct formula (must be from vectors)      <em><strong>(M1)</strong></em><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 4 - 4}}{{\sqrt {{1^2} + {4^2}} \sqrt {{4^2} + {{\left( { - 1} \right)}^2}} }}"> <mfrac> <mrow> <mo>−</mo> <mn>4</mn> <mo>−</mo> <mn>4</mn> </mrow> <mrow> <msqrt> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{8}{{\sqrt {17} \sqrt {17} }}"> <mfrac> <mn>8</mn> <mrow> <msqrt> <mn>17</mn> </msqrt> <msqrt> <mn>17</mn> </msqrt> </mrow> </mfrac> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06075, 118.072°</span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06 (radians)  (118 degrees)     <em><strong>A1  N2</strong></em></span></p>
<p> </p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><strong>METHOD 3</strong><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">using trigonometry to find an angle with the horizontal      <em><strong>(M1)</strong></em><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta  =  - \frac{1}{4}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta  =  - 4"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mn>4</mn> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">finding both angles of rotation     <em><strong> (A1)</strong></em><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _1} = 0.244978{\text{,  14}}{\text{.0362}}^\circ "> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mn>0.244978</mn> <mrow> <mtext>,  14</mtext> </mrow> <msup> <mrow> <mtext>.0362</mtext> </mrow> <mo>∘</mo> </msup> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _1} = 1.81577{\text{,  104}}{\text{.036}}^\circ "> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mn>1.81577</mn> <mrow> <mtext>,  104</mtext> </mrow> <msup> <mrow> <mtext>.036</mtext> </mrow> <mo>∘</mo> </msup> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06075, 118.072°</span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06 (radians)  (118 degrees)     <em><strong>A1  N2</strong></em></span></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 4 - 2{{\text{e}}^x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercept of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis is rotated 360º about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 0">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>,&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4 - 2{{\text{e}}^x} = 0">
  <mn>4</mn>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p>0.693147</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> = ln 2 (exact), 0.693&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either their correct limits or the function into formula &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>involving&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></p>
<p><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{0.693} {{f^2}} ">
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mrow>
      <mn>0.693</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mrow>
      <msup>
        <mi>f</mi>
        <mn>2</mn>
      </msup>
    </mrow>
  </mrow>
</math></span> ,&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {\int {\left( {4 - 2{{\text{e}}^x}} \right)} ^2}{\text{d}}x">
  <mi>π</mi>
  <mrow>
    <mo>∫</mo>
    <msup>
      <mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mn>4</mn>
            <mo>−</mo>
            <mn>2</mn>
            <mrow>
              <msup>
                <mrow>
                  <mtext>e</mtext>
                </mrow>
                <mi>x</mi>
              </msup>
            </mrow>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span>,&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{{\text{ln}}\,2} {{{\left( {4 - 2{{\text{e}}^x}} \right)}^2}} ">
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mrow>
      <msup>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mn>4</mn>
              <mo>−</mo>
              <mn>2</mn>
              <mrow>
                <msup>
                  <mrow>
                    <mtext>e</mtext>
                  </mrow>
                  <mi>x</mi>
                </msup>
              </mrow>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
  </mrow>
</math></span></p>
<p>3.42545</p>
<p>volume = 3.43 &nbsp; &nbsp;&nbsp;<em><strong>A2 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \,\,{\text{sin}}\,\left( {{e^x}} \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mi>e</mi>
          <mi>x</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> for 0&nbsp;≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 1.5.&nbsp;The following diagram shows the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <em>x</em>-intercept of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, the<em> y</em>-axis and the <em>x</em>-axis is rotated 360° about the <em>x</em>-axis.</p>
<p>Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em><br><em>eg&nbsp;</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 0,\,\,\,\,{e^x} = 180">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mi>e</mi>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>180</mn>
</math></span> or 0…</p>
<p>1.14472</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{ln}}\,\pi ">
  <mi>x</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>π</mi>
</math></span>&nbsp; &nbsp;(exact), 1.14&nbsp; &nbsp; &nbsp; <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either their <strong>limits</strong> or the function into formula&nbsp;involving&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>. &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\int_0^{1.14} {{f^2},\,\,\pi \int {\left( {{\text{sin}}\,\left( {{e^x}} \right)} \right)} } ^2}dx,\,\,0.795135">
  <mrow>
    <msubsup>
      <mo>∫</mo>
      <mn>0</mn>
      <mrow>
        <mn>1.14</mn>
      </mrow>
    </msubsup>
    <msup>
      <mrow>
        <mrow>
          <msup>
            <mi>f</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>,</mo>
        <mspace width="thinmathspace"></mspace>
        <mspace width="thinmathspace"></mspace>
        <mi>π</mi>
        <mo>∫</mo>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mrow>
                <mtext>sin</mtext>
              </mrow>
              <mspace width="thinmathspace"></mspace>
              <mrow>
                <mo>(</mo>
                <mrow>
                  <mrow>
                    <msup>
                      <mi>e</mi>
                      <mi>x</mi>
                    </msup>
                  </mrow>
                </mrow>
                <mo>)</mo>
              </mrow>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mi>d</mi>
  <mi>x</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mn>0.795135</mn>
</math></span></p>
<p>2.49799</p>
<p>volume = 2.50&nbsp; &nbsp; &nbsp;<em><strong> A2 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <em>g</em>(<em>x</em>) = −(<em>x</em> − 1)<sup>2</sup> + 5.</p>
</div>

<div class="specification">
<p>Let <em>f</em>(<em>x</em>) = x<sup>2</sup>. The following diagram shows part of the graph of <em>f</em>.</p>
<p><img src=""></p>
<p>The graph of <em>g</em> intersects the graph of <em>f</em> at <em>x</em> = −1 and <em>x</em> = 2.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the vertex of the graph of <em>g</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the grid above, sketch the graph of g for −2 ≤ <em>x</em> ≤ 4.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the region enclosed by the graphs of <em>f</em> and <em>g</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(1,5) (exact)&nbsp; &nbsp; <em><strong>&nbsp; A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">&nbsp; &nbsp;&nbsp;<em><strong>&nbsp; A1A1A1&nbsp;&nbsp;N3</strong></em></p>
<p><strong>Note:</strong> The shape must be a concave-down parabola.<br>Only if the shape is correct, award the following for points in circles:<br><em><strong>A1</strong></em> for vertex,<br><em><strong>A1&nbsp;</strong></em>for correct intersection points,<br><em><strong>A1&nbsp;</strong></em>for correct endpoints.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>integrating and subtracting functions (in any order)&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em><br><em>eg&nbsp;&nbsp;</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f - g} ">
  <mo>∫</mo>
  <mrow>
    <mi>f</mi>
    <mo>−</mo>
    <mi>g</mi>
  </mrow>
</math></span></p>
<p>correct substitution of limits or functions (accept missing d<em>x</em>, but do not accept any errors, including extra bits)&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><br>eg&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 1}^2 {g - f,\,\,\int { - {{\left( {x - 1} \right)}^2}} }&nbsp; + 5 - {x^2}">
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mn>2</mn>
  </msubsup>
  <mrow>
    <mi>g</mi>
    <mo>−</mo>
    <mi>f</mi>
    <mo>,</mo>
    <mspace width="thinmathspace"></mspace>
    <mspace width="thinmathspace"></mspace>
    <mo>∫</mo>
    <mrow>
      <mo>−</mo>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mi>x</mi>
                <mo>−</mo>
                <mn>1</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></p>
<p>area = 9&nbsp; (exact)&nbsp; &nbsp; &nbsp; <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Haruka has an eco-friendly bag in the shape of a cuboid with width 12 cm, length 36 cm and height of 9 cm. The bag is made from five rectangular pieces of cloth and is open at the top.</p>
<p>&nbsp;</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Nanako decides to make her own eco-friendly bag in the shape of a cuboid such that the surface area is minimized.</p>
<p>The width of Nanako’s bag is <em>x </em>cm, its length is three times its width and its height is <em>y </em>cm.</p>
<p>&nbsp;</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The volume of Nanako’s bag is 3888 cm<sup>3</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of cloth, in cm<sup>2</sup>, needed to make Haruka’s bag.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume, in cm<sup>3</sup>, of the bag.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this value to write down, and simplify, the equation in<em> x</em> and <em>y</em> for the volume of Nanako’s bag.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down and simplify an expression in <em>x</em> and <em>y</em> for the area of cloth, <em>A</em>, used to make Nanako’s bag.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to parts (c) and (d) to show that</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 3{x^2} + \frac{{10368}}{x}">
  <mi>A</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>10368</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}x}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>A</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (f) to show that the width of Nanako’s bag is 12 cm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cloth used to make Nanako’s bag costs 4 Japanese Yen (JPY) per cm<sup>2</sup>.</p>
<p>Find the cost of the cloth used to make Nanako’s bag.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>36 × 12 + 2(9 ×12) + 2(9 × 36)      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into surface area of cuboid formula.</p>
<p> </p>
<p>= 1300 (cm<sup>2</sup>)  (1296 (cm<sup>2</sup>))       <em><strong>(A1)(G2)</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>36 × 9 ×12     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into volume of cuboid formula.</p>
<p> </p>
<p>= 3890 (cm<sup>3</sup>)  (3888 (cm<sup>3</sup>))       <em><strong>(A1)(G2)</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> = 3888    <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into volume of cuboid formula and equated to 3888.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span><sup>2</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> = 1296      <em><strong>(A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct fully simplified volume of cuboid.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{1296}}{{{x^2}}}">
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>1296</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>A</em> =) 3<em>x</em><sup>2</sup> + 2(<em>xy</em>) + 2(3<em>xy</em>)    <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into surface area of cuboid formula.</p>
<p> </p>
<p>(<em>A</em> =) 3<em>x</em><sup>2</sup> + 8<em>xy       <strong>(A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct simplified surface area of cuboid formula.</p>
<p> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 3{x^2} + 8x\left( {\frac{{1296}}{{{x^2}}}} \right)">
  <mi>A</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>8</mn>
  <mi>x</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>1296</mn>
        </mrow>
        <mrow>
          <mrow>
            <msup>
              <mi>x</mi>
              <mn>2</mn>
            </msup>
          </mrow>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></p>
<p><strong>Note: </strong>Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct rearrangement of their part (c) seen (rearrangement may be seen in part(c)), award <em><strong>(M1)</strong></em> for substitution of their part (c) into their part (d) but only if this leads to the given answer, which must be shown.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 3{x^2} + \frac{{10368}}{x}">
  <mi>A</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>10368</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
</math></span>     <em><strong>(AG)</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{{\text{d}}A}}{{{\text{d}}x}}} \right) = 6x - \frac{{10368}}{{{x^2}}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <mtext>d</mtext>
          </mrow>
          <mi>A</mi>
        </mrow>
        <mrow>
          <mrow>
            <mtext>d</mtext>
          </mrow>
          <mi>x</mi>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>10368</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>      <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x">
  <mn>6</mn>
  <mi>x</mi>
</math></span>, <em><strong>(A1)</strong></em> for −10368, <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^{ - 2}}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mrow>
        <mo>−</mo>
        <mn>2</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>. Award a maximum of <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em><em><strong>(A0)</strong></em> if any extra terms seen.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x - \frac{{10368}}{{{x^2}}} = 0">
  <mn>6</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>10368</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0</mn>
</math></span>        <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{{\text{d}}A}}{{{\text{d}}x}}}">
  <mrow>
    <mfrac>
      <mrow>
        <mrow>
          <mtext>d</mtext>
        </mrow>
        <mi>A</mi>
      </mrow>
      <mrow>
        <mrow>
          <mtext>d</mtext>
        </mrow>
        <mi>x</mi>
      </mrow>
    </mfrac>
  </mrow>
</math></span> to zero.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6{x^3} = 10368">
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>10368</mn>
</math></span>  <strong>OR</strong>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6{x^3} - 10368 = 0">
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>10368</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>   <strong>OR   </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^3} - 1728 = 0">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>1728</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>        <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly rearranging their equation so that fractions are removed.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt[3]{{1728}}">
  <mi>x</mi>
  <mo>=</mo>
  <mroot>
    <mrow>
      <mn>1728</mn>
    </mrow>
    <mn>3</mn>
  </mroot>
</math></span>        <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 12">
  <mi>x</mi>
  <mo>=</mo>
  <mn>12</mn>
</math></span> (cm)       <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> The <em><strong>(AG)</strong></em> line must be seen for the final <em><strong>(A1)</strong></em> to be awarded. Substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 12">
  <mi>x</mi>
  <mo>=</mo>
  <mn>12</mn>
</math></span> invalidates the method, award a maximum of <em><strong>(M1)(M0)(A0)</strong></em>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3{{\left( {12} \right)}^2} + \frac{{10368}}{{12}}} \right) \times 4">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>12</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mfrac>
        <mrow>
          <mn>10368</mn>
        </mrow>
        <mrow>
          <mn>12</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>×</mo>
  <mn>4</mn>
</math></span>       <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting 12 into the area formula and for multiplying the area formula by 4.</p>
<p> </p>
<p>= 5180 (JPY)    (5184 (JPY))      <em><strong>(A1)(G2)</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^2}{{\text{e}}^{3x}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>3</mn>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> has a horizontal tangent line at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>choosing product rule     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="uv' + vu'"> <mi>u</mi> <msup> <mi>v</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>u</mi> <mo>′</mo> </msup> </math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{x^2}} \right)^\prime }\left( {{{\text{e}}^{3x}}} \right) + {\left( {{{\text{e}}^{3x}}} \right)^\prime }{x^2}"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">′</mi> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">′</mi> </msup> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>correct derivatives (must be seen in the rule)      <em><strong>A1A1</strong></em></p>
<p>eg   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x"> <mn>2</mn> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{3}}{{\text{e}}^{3x}}"> <mrow> <mtext>3</mtext> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 2x{{\text{e}}^{3x}} + 3{x^2}{{\text{e}}^{3x}}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> </math></span>    <em><strong>A1 N4</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid method    <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>, <img src="">, <img src=""></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - 0.667\left( { =  - \frac{2}{3}} \right)"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>0.667</mn> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>  (accept  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - 0.667"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>0.667</mn> </math></span>)     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <em>f</em>(<em>x</em>) = ln <em>x</em> − 5<em>x</em> , for <em>x</em> &gt; 0 .</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>f '</em>(<em>x</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>f "</em>(<em>x</em>).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve<em> f '</em>(<em>x</em>)<em> = f "</em>(<em>x</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{1}{x} - 5">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
  <mo>−</mo>
  <mn>5</mn>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>A1A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>f "</em>(<em>x</em>) =&nbsp;−<em>x</em><sup>−2&nbsp;</sup> &nbsp; &nbsp;&nbsp;<em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using GDC)</strong></p>
<p>valid approach&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg&nbsp;</em><img src=""></p>
<p>0.558257</p>
<p><em>x</em> = 0.558&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1 N2</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>A1</strong></em> if additional answers given.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2 (analytical)</strong></p>
<p>attempt to solve their equation&nbsp;<em>f '(x) =&nbsp;f "</em>(<em>x</em>)&nbsp; (do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{x} - 5 =&nbsp; - \frac{1}{{{x^2}}}">
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
  <mo>−</mo>
  <mn>5</mn>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>)&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg&nbsp;&nbsp;</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5{x^2} - x - 1 = 0,\,\,\frac{{1 \pm \sqrt {21} }}{{10}},\,\,\frac{1}{x} = \frac{{ - 1 \pm \sqrt {21} }}{2},\,\, - 0.358">
  <mn>5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>1</mn>
  <mo>=</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mrow>
      <mn>1</mn>
      <mo>±</mo>
      <msqrt>
        <mn>21</mn>
      </msqrt>
    </mrow>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>1</mn>
      <mo>±</mo>
      <msqrt>
        <mn>21</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo>−</mo>
  <mn>0.358</mn>
</math></span></p>
<p>0.558257</p>
<p><em>x</em>&nbsp;= 0.558&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1 N2</strong></em></p>
<p><strong>Note:</strong>&nbsp;Do not award&nbsp;<em><strong>A1</strong></em>&nbsp;if additional answers given.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question distance is in centimetres and time is in seconds.</strong></p>
<p>Particle A is moving along a straight line such that its displacement from a point P, after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds, is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{s_{\text{A}}} = 15 - t - 6{t^3}{{\text{e}}^{ - 0.8t}}">
  <mrow>
    <msub>
      <mi>s</mi>
      <mrow>
        <mtext>A</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>15</mn>
  <mo>−<!-- − --></mo>
  <mi>t</mi>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>0.8</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 25. This is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Another particle, B, moves along the same line, starting at the same time as particle A. The velocity of particle B is given by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_{\text{B}}} = 8 - 2t">
  <mrow>
    <msub>
      <mi>v</mi>
      <mrow>
        <mtext>B</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>8</mn>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mi>t</mi>
</math></span>, 0&nbsp;≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>&nbsp;≤ 25.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the initial displacement of particle A from point P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> when particle A first reaches point P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> when particle A first changes direction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by particle A in the first 3 seconds.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that particles A and B start at the same point, find the displacement function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{s_{\text{B}}}"> <mrow> <msub> <mi>s</mi> <mrow> <mtext>B</mtext> </mrow> </msub> </mrow> </math></span> for particle B.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the other value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> when particles A and B meet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid approach&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{s_{\text{A}}}\left( 0 \right){\text{,}}\,\,s\left( 0 \right){\text{,}}\,\,t = 0"> <mrow> <msub> <mi>s</mi> <mrow> <mtext>A</mtext> </mrow> </msub> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>s</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>t</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>15 (cm) &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{s_{\text{A}}} = 0{\text{,}}\,\,s = 0{\text{,}}\,\,6.79321{\text{,}}\,\,14.8651"> <mrow> <msub> <mi>s</mi> <mrow> <mtext>A</mtext> </mrow> </msub> </mrow> <mo>=</mo> <mn>0</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>s</mi> <mo>=</mo> <mn>0</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>6.79321</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>14.8651</mn> </math></span></p>
<p>2.46941</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> = 2.47  (seconds) &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing when change in direction occurs &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; slope of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s"> <mi>s</mi> </math></span> changes sign, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s' = 0"> <msup> <mi>s</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </math></span>, minimum point, 10.0144, (4.08, −4.66)</p>
<p>4.07702</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> = 4.08  (seconds) &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using displacement)</strong></p>
<p>correct displacement or distance from P at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 3"> <mi>t</mi> <mo>=</mo> <mn>3</mn> </math></span> (seen anywhere)&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;−2.69630,&nbsp; 2.69630</p>
<p>valid approach&nbsp; &nbsp;<em><strong> (M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;15 + 2.69630,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 3 \right) - s\left( 0 \right)"> <mi>s</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>−</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </math></span>,&nbsp;&nbsp;−17.6963</p>
<p>17.6963</p>
<p>17.7  (cm) &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD&nbsp;2 (using velocity)</strong></p>
<p>attempt to substitute either limits or the velocity function into distance&nbsp;formula involving&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| v \right|"> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp; <em><strong>&nbsp;(M1)</strong></em></p>
<p><em>eg</em>&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^3 {\left| v \right|{\text{d}}t} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>3</mn> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span> ,&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\left| { - 1 - 18{t^2}{{\text{e}}^{ - 0.8t}} + 4.8{t^3}{{\text{e}}^{ - 0.8t}}} \right|} "> <mo>∫</mo> <mrow> <mrow> <mo>|</mo> <mrow> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mn>18</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>0.8</mn> <mi>t</mi> </mrow> </msup> </mrow> <mo>+</mo> <mn>4.8</mn> <mrow> <msup> <mi>t</mi> <mn>3</mn> </msup> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>0.8</mn> <mi>t</mi> </mrow> </msup> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </math></span></p>
<p>17.6963</p>
<p>17.7  (cm) &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize the need to integrate velocity&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {v\left( t \right)} "> <mo>∫</mo> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8t - \frac{{2{t^2}}}{2} + c"> <mn>8</mn> <mi>t</mi> <mo>−</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>c</mi> </math></span>&nbsp; (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> instead of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> and missing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A2)</strong></em></p>
<p>substituting initial condition into their integrated expression&nbsp;(must have <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>)&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 = 8\left( 0 \right) - \frac{{2{{\left( 0 \right)}^2}}}{2} + c"> <mn>15</mn> <mo>=</mo> <mn>8</mn> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>c</mi> </math></span>,&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 15"> <mi>c</mi> <mo>=</mo> <mn>15</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{s_{\text{B}}}\left( t \right) = 8t - {t^2} + 15"> <mrow> <msub> <mi>s</mi> <mrow> <mtext>B</mtext> </mrow> </msub> </mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>8</mn> <mi>t</mi> <mo>−</mo> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>15</mn> </math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N3</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{s_{\text{A}}} = {s_{\text{B}}}"> <mrow> <msub> <mi>s</mi> <mrow> <mtext>A</mtext> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mi>s</mi> <mrow> <mtext>B</mtext> </mrow> </msub> </mrow> </math></span>, sketch, (9.30404, 2.86710)</p>
<p>9.30404</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 9.30"> <mi>t</mi> <mo>=</mo> <mn>9.30</mn> </math></span> (seconds)&nbsp; &nbsp; &nbsp;<strong><em>A1&nbsp; N2</em></strong></p>
<p><strong>Note:</strong> If candidates obtain&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{s_{\text{B}}}\left( t \right) = 8t - {t^2}"> <mrow> <msub> <mi>s</mi> <mrow> <mtext>B</mtext> </mrow> </msub> </mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>8</mn> <mi>t</mi> <mo>−</mo> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </math></span>&nbsp;in part (e)(i), there are 2 solutions for part (e)(ii), 1.32463 and 7.79009. Award the last <em><strong>A1</strong></em> in part (e)(ii) only if both solutions are given.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Note: In this question, distance is in metres and time is in seconds.</strong></p>
<p>A particle P moves in a straight line for five seconds. Its acceleration at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 3{t^2} - 14t + 8">
  <mi>a</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>14</mn>
  <mi>t</mi>
  <mo>+</mo>
  <mn>8</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 5">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>t</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>5</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
  <mi>t</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, the velocity of P is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{\text{ m}}\,{{\text{s}}^{ - 1}}">
  <mn>3</mn>
  <mrow>
    <mtext>&nbsp;m</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 0"> <mi>a</mi> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find all possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> for which the velocity of P is decreasing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of P at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by P when its velocity is increasing.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{2}{3}{\text{ (exact), }}0.667,{\text{ }}t = 4"> <mi>t</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <mtext>&nbsp;(exact),&nbsp;</mtext> </mrow> <mn>0.667</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mi>t</mi> <mo>=</mo> <mn>4</mn> </math></span> &nbsp; &nbsp;<strong> <em>A1A1 &nbsp; &nbsp; N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> is decreasing when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> is negative &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a < 0,{\text{ }}3{t^2} - 14t + 8 \leqslant 0"> <mi>a</mi> <mo>&lt;</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mn>3</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>14</mn> <mi>t</mi> <mo>+</mo> <mn>8</mn> <mo>⩽</mo> <mn>0</mn> </math></span>, sketch of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span></p>
<p>correct interval &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3} < t < 4"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <mn>4</mn> </math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach (do not accept a definite integral) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\int a "> <mi>v</mi> <mo>∫</mo> <mi>a</mi> </math></span></p>
<p>correct integration (accept missing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>) &nbsp; &nbsp;&nbsp;<strong><em>(A1)(A1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t^3} - 7{t^2} + 8t + c"> <mrow> <msup> <mi>t</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>7</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>8</mn> <mi>t</mi> <mo>+</mo> <mi>c</mi> </math></span></p>
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0,{\text{ }}v = 3"> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mi>v</mi> <mo>=</mo> <mn>3</mn> </math></span> , (must have <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 = {0^3} - 7({0^2}) + 8(0) + c,{\text{ }}c = 3"> <mn>3</mn> <mo>=</mo> <mrow> <msup> <mn>0</mn> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>7</mn> <mo stretchy="false">(</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>8</mn> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mi>c</mi> <mo>=</mo> <mn>3</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = {t^3} - 7{t^2} + 8t + 3"> <mi>v</mi> <mo>=</mo> <mrow> <msup> <mi>t</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>7</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>8</mn> <mi>t</mi> <mo>+</mo> <mn>3</mn> </math></span> &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N6</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> increases outside the interval found in part (b) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < t < \frac{2}{3},{\text{ }}4 < t < 5"> <mn>0</mn> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mn>4</mn> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <mn>5</mn> </math></span>, diagram</p>
<p>one correct substitution into distance formula &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{\frac{2}{3}} {\left| v \right|,{\text{ }}\int_4^5 {\left| v \right|} ,{\text{ }}\int_{\frac{2}{3}}^4 {\left| v \right|} ,{\text{ }}\int_0^5 {\left| v \right|} } "> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mn>4</mn> <mn>5</mn> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </mrow> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mrow> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mn>4</mn> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </mrow> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>5</mn> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </mrow> </mrow> </math></span></p>
<p>one correct pair &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>3.13580 and 11.0833, 20.9906 and 35.2097</p>
<p>14.2191 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = 14.2{\text{ (m)}}"> <mi>d</mi> <mo>=</mo> <mn>14.2</mn> <mrow> <mtext>&nbsp;(m)</mtext> </mrow> </math></span></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle P moves along a straight line. Its velocity <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_{\text{P}}}{\text{ m}}\,{{\text{s}}^{ - 1}}">
  <mrow>
    <msub>
      <mi>v</mi>
      <mrow>
        <mtext>P</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>&nbsp;m</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_{\text{P}}} = \sqrt t \sin \left( {\frac{\pi }{2}t} \right)">
  <mrow>
    <msub>
      <mi>v</mi>
      <mrow>
        <mtext>P</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mi>t</mi>
  </msqrt>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π<!-- π --></mi>
        <mn>2</mn>
      </mfrac>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 8">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>t</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>8</mn>
</math></span>. The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_{\text{P}}}">
  <mrow>
    <msub>
      <mi>v</mi>
      <mrow>
        <mtext>P</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.04.21.png" alt="M17/5/MATME/SP2/ENG/TZ1/07"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the first value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> at which P changes direction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <strong>total </strong>distance travelled by P, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 8"> <mn>0</mn> <mo>⩽</mo> <mi>t</mi> <mo>⩽</mo> <mn>8</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second particle Q also moves along a straight line. Its velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_{\text{Q}}}{\text{ m}}\,{{\text{s}}^{ - 1}}"> <mrow> <msub> <mi>v</mi> <mrow> <mtext>Q</mtext> </mrow> </msub> </mrow> <mrow> <mtext>&nbsp;m</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span> after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> seconds is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_{\text{Q}}} = \sqrt t "> <mrow> <msub> <mi>v</mi> <mrow> <mtext>Q</mtext> </mrow> </msub> </mrow> <mo>=</mo> <msqrt> <mi>t</mi> </msqrt> </math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 8"> <mn>0</mn> <mo>⩽</mo> <mi>t</mi> <mo>⩽</mo> <mn>8</mn> </math></span>. After <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> seconds Q has travelled the same total distance as P.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2"> <mi>t</mi> <mo>=</mo> <mn>2</mn> </math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitution of limits or function into formula or correct sum &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^8 {\left| v \right|{\text{d}}t,{\text{ }}\int {\left| {{v_Q}} \right|{\text{d}}t,{\text{ }}\int_0^2 {v{\text{d}}t - \int_2^4 {v{\text{d}}t + \int_4^6 {v{\text{d}}t - \int_6^8 {v{\text{d}}t} } } } } } "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>8</mn> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo>∫</mo> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>v</mi> <mi>Q</mi> </msub> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>2</mn> </msubsup> <mrow> <mi>v</mi> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>−</mo> <msubsup> <mo>∫</mo> <mn>2</mn> <mn>4</mn> </msubsup> <mrow> <mi>v</mi> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>+</mo> <msubsup> <mo>∫</mo> <mn>4</mn> <mn>6</mn> </msubsup> <mrow> <mi>v</mi> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>−</mo> <msubsup> <mo>∫</mo> <mn>6</mn> <mn>8</mn> </msubsup> <mrow> <mi>v</mi> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </math></span></p>
<p>9.64782</p>
<p>distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 9.65{\text{ (metres)}}"> <mo>=</mo> <mn>9.65</mn> <mrow> <mtext>&nbsp;(metres)</mtext> </mrow> </math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct approach &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \int {\sqrt t ,{\text{ }}\int_0^k {\sqrt t } } {\text{d}}t,{\text{ }}\int_0^k {\left| {{v_{\text{Q}}}} \right|{\text{d}}t} "> <mi>s</mi> <mo>=</mo> <mo>∫</mo> <mrow> <msqrt> <mi>t</mi> </msqrt> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>k</mi> </msubsup> <mrow> <msqrt> <mi>t</mi> </msqrt> </mrow> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>k</mi> </msubsup> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>v</mi> <mrow> <mtext>Q</mtext> </mrow> </msub> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span></p>
<p>correct integration &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\sqrt t&nbsp; = \frac{2}{3}{t^{\frac{3}{2}}} + c,{\text{ }}\left[ {\frac{2}{3}{x^{\frac{3}{2}}}} \right]_0^k,{\text{ }}\frac{2}{3}{k^{\frac{3}{2}}}} "> <mo>∫</mo> <mrow> <msqrt> <mi>t</mi> </msqrt> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mi>t</mi> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>+</mo> <mi>c</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mrow> <mo>[</mo> <mrow> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mi>x</mi> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mi>k</mi> </msubsup> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mi>k</mi> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> </math></span></p>
<p>equating their expression to the distance travelled by their P &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}{k^{\frac{3}{2}}} = 9.65,{\text{ }}\int_0^k {\sqrt t {\text{d}}t = 9.65} "> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mi>k</mi> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>=</mo> <mn>9.65</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>k</mi> </msubsup> <mrow> <msqrt> <mi>t</mi> </msqrt> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>=</mo> <mn>9.65</mn> </mrow> </math></span></p>
<p>5.93855</p>
<p>5.94 (seconds) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N3</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle P starts from a point A and moves along a horizontal straight line. Its velocity <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v{\text{ cm}}\,{{\text{s}}^{ - 1}}">
  <mi>v</mi>
  <mrow>
    <mtext>&nbsp;cm</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds is given by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="v(t) = \left\{ {\begin{array}{*{20}{l}} { - 2t + 2,}&amp;{{\text{for }}0 \leqslant t \leqslant 1} \\ {3\sqrt t + \frac{4}{{{t^2}}} - 7,}&amp;{{\text{for }}1 \leqslant t \leqslant 12} \end{array}} \right.">
  <mi>v</mi>
  <mo stretchy="false">(</mo>
  <mi>t</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo>{</mo>
    <mrow>
      <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>2</mn>
              <mi>t</mi>
              <mo>+</mo>
              <mn>2</mn>
              <mo>,</mo>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mrow>
                <mtext>for&nbsp;</mtext>
              </mrow>
              <mn>0</mn>
              <mo>⩽<!-- ⩽ --></mo>
              <mi>t</mi>
              <mo>⩽<!-- ⩽ --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>3</mn>
              <msqrt>
                <mi>t</mi>
              </msqrt>
              <mo>+</mo>
              <mfrac>
                <mn>4</mn>
                <mrow>
                  <mrow>
                    <msup>
                      <mi>t</mi>
                      <mn>2</mn>
                    </msup>
                  </mrow>
                </mrow>
              </mfrac>
              <mo>−<!-- − --></mo>
              <mn>7</mn>
              <mo>,</mo>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mrow>
                <mtext>for&nbsp;</mtext>
              </mrow>
              <mn>1</mn>
              <mo>⩽<!-- ⩽ --></mo>
              <mi>t</mi>
              <mo>⩽<!-- ⩽ --></mo>
              <mn>12</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo fence="true" stretchy="true" symmetric="true"></mo>
  </mrow>
</math></span></p>
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_16.40.29.png" alt="N16/5/MATME/SP2/ENG/TZ0/09"></p>
</div>

<div class="specification">
<p>P is at rest when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1">
  <mi>t</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = p">
  <mi>t</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = q">
  <mi>t</mi>
  <mo>=</mo>
  <mi>q</mi>
</math></span>, the acceleration of P is zero.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the initial velocity of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P"> <mi>P</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<p>(ii) &nbsp; &nbsp; Hence, find the <strong>speed </strong>of P when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = q"> <mi>t</mi> <mo>=</mo> <mi>q</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Find the total distance travelled by P between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = p"> <mi>t</mi> <mo>=</mo> <mi>p</mi> </math></span>.</p>
<p>(ii) &nbsp; &nbsp; Hence or otherwise, find the displacement of P from A when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = p"> <mi>t</mi> <mo>=</mo> <mi>p</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid attempt to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </math></span> into the correct function &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2(0) + 2"> <mo>−</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> </math></span></p>
<p>2 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 0"> <mi>v</mi> <mo>=</mo> <mn>0</mn> </math></span>&nbsp;when P is at rest &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>5.21834</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 5.22{\text{ }}({\text{seconds}})"> <mi>p</mi> <mo>=</mo> <mn>5.22</mn> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>seconds</mtext> </mrow> <mo stretchy="false">)</mo> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; recognizing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = v'"> <mi>a</mi> <mo>=</mo> <msup> <mi>v</mi> <mo>′</mo> </msup> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v' = 0"> <msup> <mi>v</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </math></span>, minimum on graph</p>
<p>1.95343</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 1.95"> <mi>q</mi> <mo>=</mo> <mn>1.95</mn> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p>(ii) &nbsp; &nbsp; valid approach to find <strong>their </strong>minimum &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(q),{\text{ }} - 1.75879"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo>−</mo> <mn>1.75879</mn> </math></span>, reference to min on graph</p>
<p>1.75879</p>
<p>speed <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1.76{\text{ }}(c\,{\text{m}}\,{{\text{s}}^{ - 1}})"> <mo>=</mo> <mn>1.76</mn> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo stretchy="false">(</mo> <mi>c</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>m</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; substitution of <strong>correct</strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(t)"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span> into distance formula, &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_1^p {\left| {3\sqrt t &nbsp;+ \frac{4}{{{t^2}}} - 7} \right|{\text{d}}t,{\text{ }}\left| {\int {3\sqrt t &nbsp;+ \frac{4}{{{t^2}}} - 7{\text{d}}t} } \right|} "> <msubsup> <mo>∫</mo> <mn>1</mn> <mi>p</mi> </msubsup> <mrow> <mrow> <mo>|</mo> <mrow> <mn>3</mn> <msqrt> <mi>t</mi> </msqrt> <mo>+</mo> <mfrac> <mn>4</mn> <mrow> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>−</mo> <mn>7</mn> </mrow> <mo>|</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mrow> <mo>|</mo> <mrow> <mo>∫</mo> <mrow> <mn>3</mn> <msqrt> <mi>t</mi> </msqrt> <mo>+</mo> <mfrac> <mn>4</mn> <mrow> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>−</mo> <mn>7</mn> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </math></span></p>
<p>4.45368</p>
<p>distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4.45{\text{ }}({\text{cm}})"> <mo>=</mo> <mn>4.45</mn> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>cm</mtext> </mrow> <mo stretchy="false">)</mo> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p>(ii) &nbsp; &nbsp; displacement from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = p"> <mi>t</mi> <mo>=</mo> <mi>p</mi> </math></span> (seen anywhere) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4.45368,{\text{ }}\int_1^p {\left( {3\sqrt t &nbsp;+ \frac{4}{{{t^2}}} - 7} \right){\text{d}}t} "> <mo>−</mo> <mn>4.45368</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mn>1</mn> <mi>p</mi> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <msqrt> <mi>t</mi> </msqrt> <mo>+</mo> <mfrac> <mn>4</mn> <mrow> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>−</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span></p>
<p>displacement from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </math></span> &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {( - 2t + 2){\text{d}}t,{\text{ }}0.5 \times 1 \times 2,{\text{ 1}}} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mi>t</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mn>0.5</mn> <mo>×</mo> <mn>1</mn> <mo>×</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext>&nbsp;1</mtext> </mrow> </mrow> </math></span></p>
<p>valid approach to find displacement for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant p"> <mn>0</mn> <mo>⩽</mo> <mi>t</mi> <mo>⩽</mo> <mi>p</mi> </math></span> &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {( - 2t + 2){\text{d}}t + \int_1^p {\left( {3\sqrt t &nbsp;+ \frac{4}{{{t^2}}} - 7} \right){\text{d}}t,{\text{ }}\int_0^1 {( - 2t + 2){\text{d}}t - 4.45} } } "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mi>t</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>+</mo> <msubsup> <mo>∫</mo> <mn>1</mn> <mi>p</mi> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <msqrt> <mi>t</mi> </msqrt> <mo>+</mo> <mfrac> <mn>4</mn> <mrow> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>−</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mi>t</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>−</mo> <mn>4.45</mn> </mrow> </mrow> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3.45368"> <mo>−</mo> <mn>3.45368</mn> </math></span></p>
<p>displacement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = &nbsp;- 3.45{\text{ }}({\text{cm}})"> <mo>=</mo> <mo>−</mo> <mn>3.45</mn> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>cm</mtext> </mrow> <mo stretchy="false">)</mo> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle moves along a straight line so that its velocity,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span> m s<sup>−1</sup>, after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = {1.4^t} - 2.7">
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>1.4</mn>
      <mi>t</mi>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2.7</mn>
</math></span>, for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 5.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find when the particle is at rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acceleration of the particle when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2">
  <mi>t</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by the particle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach&nbsp; &nbsp; &nbsp;<em><strong> (M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 0">
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, sketch of graph</p>
<p>2.95195</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {\text{lo}}{{\text{g}}_{1.4}}2.7">
  <mi>t</mi>
  <mo>=</mo>
  <mrow>
    <mtext>lo</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mrow>
        <mn>1.4</mn>
      </mrow>
    </msub>
  </mrow>
  <mn>2.7</mn>
</math></span>&nbsp; (exact),&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2.95">
  <mi>t</mi>
  <mo>=</mo>
  <mn>2.95</mn>
</math></span> (s)&nbsp; &nbsp; &nbsp; <em><strong>A1 N2</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach&nbsp; &nbsp; &nbsp;<em><strong> (M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( t \right) = v'\left( t \right)">
  <mi>a</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <msup>
    <mi>v</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v'\left( 2 \right)">
  <msup>
    <mi>v</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mn>2</mn>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>0.659485</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( 2 \right)">
  <mi>a</mi>
  <mrow>
    <mo>(</mo>
    <mn>2</mn>
    <mo>)</mo>
  </mrow>
</math></span> = 1.96 ln 1.4&nbsp; &nbsp;(exact),&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( 2 \right)">
  <mi>a</mi>
  <mrow>
    <mo>(</mo>
    <mn>2</mn>
    <mo>)</mo>
  </mrow>
</math></span> = 0.659 (m s<sup>−2</sup>)&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 N2</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct&nbsp;approach&nbsp; &nbsp; &nbsp;<em><strong> (A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^5 {\left| {v\left( t \right)} \right|} \,{\text{d}}t">
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mn>5</mn>
  </msubsup>
  <mrow>
    <mrow>
      <mo>|</mo>
      <mrow>
        <mi>v</mi>
        <mrow>
          <mo>(</mo>
          <mi>t</mi>
          <mo>)</mo>
        </mrow>
      </mrow>
      <mo>|</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>t</mi>
</math></span>,&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{2.95} {\left( { - v\left( t \right)} \right)} \,{\text{d}}t + \int_{295}^5 {v\left( t \right)} \,{\text{d}}t">
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mrow>
      <mn>2.95</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mo>−</mo>
        <mi>v</mi>
        <mrow>
          <mo>(</mo>
          <mi>t</mi>
          <mo>)</mo>
        </mrow>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>t</mi>
  <mo>+</mo>
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mn>295</mn>
    </mrow>
    <mn>5</mn>
  </msubsup>
  <mrow>
    <mi>v</mi>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>t</mi>
</math></span></p>
<p>5.3479</p>
<p>distance =&nbsp;5.35 (m)&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A2 N3</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{1}{3}{x^3} + \frac{1}{2}{x^2} + kx + 5">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>k</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mn>5</mn>
</math></span>&nbsp;has a local maximum and a local minimum. The local maximum is at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =&nbsp; - 3">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = - 6">
  <mi>k</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the local <strong>minimum</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the interval where the gradient of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> is negative.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equation of the normal at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 2">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2</mn>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + x + k">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mi>k</mi>
</math></span>  <em><strong>  (A1)(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term. Award at most <em><strong>(A1)(A1)(A0)</strong></em> if additional terms are seen or for an answer <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + x - 6">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>6</mn>
</math></span>. If their derivative is seen in parts (b), (c) or (d) and not in part (a), award at most <em><strong>(A1)(A1)(A0)</strong></em>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( { - 3} \right)^2} + \left( { - 3} \right) + k = 0">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mn>3</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>k</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>  <strong> <em>(M1)</em><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 3">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
</math></span> into their derivative and <em><strong>(M1)</strong></em> for setting it equal to zero. Substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = - 6">
  <mi>k</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
</math></span> invalidates the process, award at most (<em><strong>A1)(A1)(A1)(M0)(M0)</strong></em>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k = } \right) - 6">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mo>=</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mn>6</mn>
</math></span>      <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> For the final <em><strong>(M1)</strong></em> to be awarded, no incorrect working must be seen, and must lead to the conclusion <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = - 6">
  <mi>k</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
</math></span>. The final <em><strong>(AG)</strong></em> must be seen.</p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(2, −2.33)  <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {2{\text{,}}\,\, - \frac{7}{3}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mo>−</mo>
      <mfrac>
        <mn>7</mn>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>  (A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct coordinate. Award <em><strong>(A0)(A1)</strong></em> if parentheses are missing. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 2.33">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2.33</mn>
</math></span>. Award <em><strong>(M1)(A0)</strong></em> for their derivative, a quadratic expression with –6 substituted for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>, equated to zero but leading to an incorrect answer.</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 &lt; x &lt; 2">
  <mo>−</mo>
  <mn>3</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
</math></span>   <em><strong>   (A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &gt; - 3">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mo>−</mo>
  <mn>3</mn>
</math></span> , <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &lt; 2">
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
</math></span>. Follow through for their "2" in part (b). It is possible to award <em><strong>(A0)(A1)</strong></em>. For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 &lt; y &lt; 2">
  <mo>−</mo>
  <mn>3</mn>
  <mo>&lt;</mo>
  <mi>y</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
</math></span> award <em><strong>(A1)(A0)</strong></em>. Accept equivalent notation such as (−3, 2). Award <em><strong>(A0)</strong><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 \leqslant x \leqslant 2">
  <mo>−</mo>
  <mn>3</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mn>2</mn>
</math></span>.</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>−4   <em><strong>   (A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for the gradient of the tangent seen. If an incorrect derivative was used in part (a), then working for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( { - 2} \right)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> must be seen. Follow through from their derivative in part (a).</p>
<p>gradient of normal is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span>   <em><strong>   (A1)</strong></em><strong>(ft)</strong>   </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for the negative reciprocal of their gradient of tangent. Follow through within this part. Award <em><strong>(G2)</strong></em> for an unsupported gradient of the normal.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{49}}{3}">
  <mfrac>
    <mrow>
      <mn>49</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f\left( { - 2} \right) = \frac{1}{3}{{\left( { - 2} \right)}^3} + \frac{1}{2}{{\left( { - 2} \right)}^2} - 6\left( { - 2} \right) + 5 = \frac{{49}}{3}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>f</mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mn>2</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>=</mo>
      <mfrac>
        <mn>1</mn>
        <mn>3</mn>
      </mfrac>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mo>−</mo>
                <mn>2</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mo>−</mo>
                <mn>2</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>6</mn>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mn>2</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mn>5</mn>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>49</mn>
        </mrow>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>   <em><strong>   (A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{49}}{3}">
  <mfrac>
    <mrow>
      <mn>49</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span>  (16.3333…) seen.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{49}}{3} = \frac{1}{4}\left( { - 2} \right) + c">
  <mfrac>
    <mrow>
      <mn>49</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>c</mi>
</math></span>  <strong>OR  </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - \frac{{49}}{3} = \frac{1}{4}\left( {x -  - 2} \right)">
  <mi>y</mi>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>49</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting their normal gradient into equation of line formula.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{4}x + \frac{{101}}{6}">
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
  <mi>x</mi>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>101</mn>
    </mrow>
    <mn>6</mn>
  </mfrac>
</math></span>  <strong>OR  </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0.25x + 16.8333 \ldots ">
  <mi>y</mi>
  <mo>=</mo>
  <mn>0.25</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>16.8333</mn>
  <mo>…</mo>
</math></span><strong>  </strong>    <em><strong>(A1)</strong></em><strong>(ft)<em>(G4)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(G4)</strong></em> for the correct equation of line in correct form without any prior working. The final <em><strong>(A1)</strong></em><strong>(ft)</strong> is contingent on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{49}}{3}">
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>49</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 2">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2</mn>
</math></span>.</p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = \left( {{\text{cos}}\,2x} \right)\left( {{\text{sin}}\,6x} \right)">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>cos</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>sin</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>6</mn>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, for 0&nbsp;≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 1.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f''}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mo>″</mo>
    </msup>
  </mrow>
</math></span> on the grid below:</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinates of the points of inflexion of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for which the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is concave-down.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="">  <em><strong>A1A1A1 N3</strong></em></p>
<p><strong>Note:</strong> Only if the shape is approximately correct with exactly 2 maximums and 1 minimum on the interval 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ 0, award the following:<br><em><strong>A1</strong></em> for correct domain with both endpoints within circle and oval.<br><em><strong>A1</strong></em> for passing through the other <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts within the circles.<br><em><strong>A1</strong></em> for passing through the three turning points within circles (ignore <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts and extrema outside of the domain).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of reasoning (may be seen on graph)      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'' = 0">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mo>=</mo>
  <mn>0</mn>
</math></span>,  (0.524, 0),  (0.785, 0)</p>
<p>0.523598,  0.785398</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.524\,\,\left( { = \frac{\pi }{6}} \right)">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0.524</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.785\,\,\left( { = \frac{\pi }{4}} \right)">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0.785</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mi>π</mi>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1A1  N3</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A1A0</strong></em> if any solution outside domain (<em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>) is also included.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.524 &lt; x &lt; 0.785\,\,\,\left( {\frac{\pi }{6} &lt; x &lt; \frac{\pi }{4}} \right)">
  <mn>0.524</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>0.785</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mo>&lt;</mo>
      <mi>x</mi>
      <mo>&lt;</mo>
      <mfrac>
        <mi>π</mi>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A2  N2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> if any correct interval outside domain also included, unless additional solutions already penalized in (b).<br>Award<em><strong> A0</strong></em> if any incorrect intervals are also included.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The population of fish in a lake is modelled by the function</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( t \right) = \frac{{1000}}{{1 + 24{{\text{e}}^{ - 0.2t}}}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>1000</mn>
    </mrow>
    <mrow>
      <mn>1</mn>
      <mo>+</mo>
      <mn>24</mn>
      <mrow>
        <msup>
          <mrow>
            <mtext>e</mtext>
          </mrow>
          <mrow>
            <mo>−<!-- − --></mo>
            <mn>0.2</mn>
            <mi>t</mi>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>, 0&nbsp;≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>&nbsp;≤ 30 , where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is measured in months.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the population of fish at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 10.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the rate at which the population of fish is increasing at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 10.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> for which the population of fish is increasing most rapidly.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>(10)</p>
<p>235.402</p>
<p>235 (fish) (must be an integer)     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing rate of change is derivative     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>  rate = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f'}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f'}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span>(10) , sketch of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f'}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span> ,  35 (fish per month)</p>
<p>35.9976</p>
<p>36.0 (fish per month)     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach    <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   maximum of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f'}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span> ,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f''}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mo>″</mo>
    </msup>
  </mrow>
</math></span> = 0</p>
<p>15.890</p>
<p>15.9 (months)     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle P moves along a straight line. The velocity <em>v</em> m s<sup>−1</sup> of P after <em>t</em> seconds is given by <em>v</em> (<em>t</em>) = 7 cos <em>t</em> − 5<em>t </em><sup>cos <em>t</em></sup>, for 0 ≤ <em>t</em> ≤ 7.</p>
<p>The following diagram shows the graph of <em>v</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the initial velocity of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum speed of P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of times that the acceleration of P is 0 m s<sup>−2</sup> .</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acceleration of P when it changes direction.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>initial velocity when <em>t</em> = 0&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>eg <em>v</em>(0)</p>
<p><em>v</em> = 17 (m s<sup>−1</sup>)&nbsp; &nbsp; &nbsp; <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing maximum speed when&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| v \right|"> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </math></span>&nbsp;is greatest&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; minimum, maximum, <em>v'</em> = 0</p>
<p>one correct coordinate for minimum&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; 6.37896,&nbsp;−24.6571</p>
<p>24.7 (ms<sup>−1</sup>)&nbsp; &nbsp; &nbsp;<em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing a = <em>v </em>′&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>eg&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{{\text{d}}v}}{{{\text{d}}t}}"> <mi>a</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>v</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> </math></span>,&nbsp;correct derivative of first term</p>
<p>identifying when a = 0&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; turning points of <em>v</em>, <em>t</em>-intercepts of <em>v </em>′</p>
<p>3&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing P changes direction when <em>v&nbsp;</em>= 0&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1) </strong></em></p>
<p><em>t</em> = 0.863851&nbsp; &nbsp; &nbsp; <em><strong>(A1) </strong></em></p>
<p>−9.24689</p>
<p><em>a</em> =&nbsp;−9.25 (ms<sup>−2</sup>)&nbsp; &nbsp; &nbsp;<em><strong> A2 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution of limits or function into formula&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em><br><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^7 {\left| {\,v\,} \right|,\,\int_0^{0.8638} {v{\text{d}}t - \int_{0.8638}^7 {v{\text{d}}t} } ,\,\,\int {\left| {\,7\,{\text{cos}}\,x - 5{x^{{\text{cos}}\,x}}\,} \right|} \,dx,\,\,3.32 = 60.6} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>7</mn> </msubsup> <mrow> <mrow> <mo>|</mo> <mrow> <mspace width="thinmathspace"></mspace> <mi>v</mi> <mspace width="thinmathspace"></mspace> </mrow> <mo>|</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mn>0.8638</mn> </mrow> </msubsup> <mrow> <mi>v</mi> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>−</mo> <msubsup> <mo>∫</mo> <mrow> <mn>0.8638</mn> </mrow> <mn>7</mn> </msubsup> <mrow> <mi>v</mi> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>∫</mo> <mrow> <mrow> <mo>|</mo> <mrow> <mspace width="thinmathspace"></mspace> <mn>7</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mrow> <msup> <mi>x</mi> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> </mrow> <mo>|</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>3.32</mn> <mo>=</mo> <mn>60.6</mn> </mrow> </math></span></p>
<p>63.8874</p>
<p>63.9 (metres)&nbsp; &nbsp; &nbsp; <em><strong>A2 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 6 - \ln ({x^2} + 2)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>6</mn>
  <mo>−<!-- − --></mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p,{\text{ }}4)">
  <mo stretchy="false">(</mo>
  <mi>p</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p > 0">
  <mi>p</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2018-02-12_om_13.30.18.png" alt="N17/5/MATME/SP2/ENG/TZ0/05.b"></p>
<p>The region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =&nbsp; - p">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(p) = 4">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>4</mn>
</math></span>, intersection with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4,{\text{ }} \pm 2.32">
  <mi>y</mi>
  <mo>=</mo>
  <mn>4</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>±</mo>
  <mn>2.32</mn>
</math></span></p>
<p>2.32143</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \sqrt {{{\text{e}}^2} - 2} ">
  <mi>p</mi>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mtext>e</mtext>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>−</mo>
    <mn>2</mn>
  </msqrt>
</math></span> (exact), 2.32 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <strong>either their</strong> limits <strong>or</strong> the function into volume formula (must involve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>, accept reversed limits and absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}x">
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span>, but do not accept any other errors) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2.32}^{2.32} {{f^2},{\text{ }}\pi \int {{{\left( {6 - \ln ({x^2} + 2)} \right)}^2}{\text{d}}x,{\text{ 105.675}}} } ">
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mo>−</mo>
      <mn>2.32</mn>
    </mrow>
    <mrow>
      <mn>2.32</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mrow>
      <msup>
        <mi>f</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>,</mo>
    <mrow>
      <mtext>&nbsp;</mtext>
    </mrow>
    <mi>π</mi>
    <mo>∫</mo>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>6</mn>
                <mo>−</mo>
                <mi>ln</mi>
                <mo>⁡</mo>
                <mo stretchy="false">(</mo>
                <mrow>
                  <msup>
                    <mi>x</mi>
                    <mn>2</mn>
                  </msup>
                </mrow>
                <mo>+</mo>
                <mn>2</mn>
                <mo stretchy="false">)</mo>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
      <mo>,</mo>
      <mrow>
        <mtext>&nbsp;105.675</mtext>
      </mrow>
    </mrow>
  </mrow>
</math></span></p>
<p>331.989</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{volume}} = 332">
  <mrow>
    <mtext>volume</mtext>
  </mrow>
  <mo>=</mo>
  <mn>332</mn>
</math></span> &nbsp; &nbsp; <strong><em>A2 &nbsp; &nbsp; N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {({x^2} + 3)^7}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>7</mn>
    </msup>
  </mrow>
</math></span>. Find the term in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^5}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>5</mn>
    </msup>
  </mrow>
</math></span> in the expansion of the derivative, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1&nbsp;</strong></p>
<p>derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp; <strong><em>A2</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7{({x^2} + 3)^6}(x2)">
  <mn>7</mn>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>6</mn>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>recognizing need to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^4}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
</math></span> term in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{({x^2} + 3)^6}">
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>6</mn>
    </msup>
  </mrow>
</math></span> (seen anywhere) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="14x{\text{ (term in }}{x^4})">
  <mn>14</mn>
  <mi>x</mi>
  <mrow>
    <mtext>&nbsp;(term in&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>valid approach to find the terms in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{({x^2} + 3)^6}">
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>6</mn>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 6 \\ r \end{array}} \right){({x^2})^{6 - r}}{(3)^r},{\text{ }}{({x^2})^6}{(3)^0} + {({x^2})^5}{(3)^1} +&nbsp; \ldots ">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>r</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mn>6</mn>
        <mo>−</mo>
        <mi>r</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mi>r</mi>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>6</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>0</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>5</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>1</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mo>…</mo>
</math></span>, Pascal’s triangle to 6th row</p>
<p>identifying correct term (may be indicated in expansion) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{5th term, }}r = 2,{\text{ }}\left( {\begin{array}{*{20}{c}} 6 \\ 4 \end{array}} \right),{\text{ }}{({x^2})^2}{(3)^4}">
  <mrow>
    <mtext>5th term,&nbsp;</mtext>
  </mrow>
  <mi>r</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>4</mn>
    </msup>
  </mrow>
</math></span></p>
<p>correct working (may be seen in expansion) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 6 \\ 4 \end{array}} \right){({x^2})^2}{(3)^4},{\text{ }}15 \times {3^4},{\text{ }}14x \times 15 \times 81{({x^2})^2}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>15</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>3</mn>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>14</mn>
  <mi>x</mi>
  <mo>×</mo>
  <mn>15</mn>
  <mo>×</mo>
  <mn>81</mn>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="17010{x^5}">
  <mn>17010</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>5</mn>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N3</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>recognition of need to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^6}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>6</mn>
    </msup>
  </mrow>
</math></span> in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{({x^2} + 3)^7}">
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>7</mn>
    </msup>
  </mrow>
</math></span> (seen anywhere) <strong><em>R1&nbsp;</em></strong></p>
<p>valid approach to find the terms in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{({x^2} + 3)^7}">
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>7</mn>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ r \end{array}} \right){({x^2})^{7 - r}}{(3)^r},{\text{ }}{({x^2})^7}{(3)^0} + {({x^2})^6}{(3)^1} +&nbsp; \ldots ">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>7</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>r</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mn>7</mn>
        <mo>−</mo>
        <mi>r</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mi>r</mi>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>7</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>0</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>6</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>1</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mo>…</mo>
</math></span>, Pascal’s triangle to 7th row</p>
<p>identifying correct term (may be indicated in expansion) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>6th term, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 3,{\text{ }}\left( {\begin{array}{*{20}{c}} 7 \\ 3 \end{array}} \right),{\text{ (}}{{\text{x}}^2}{)^3}{(3)^4}">
  <mi>r</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>7</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;(</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>x</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>3</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>4</mn>
    </msup>
  </mrow>
</math></span></p>
<p>correct working (may be seen in expansion) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 4 \end{array}} \right){{\text{(}}{{\text{x}}^2})^3}{(3)^4},{\text{ }}35 \times {3^4}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>7</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mrow>
      <mtext>(</mtext>
    </mrow>
    <mrow>
      <msup>
        <mrow>
          <mtext>x</mtext>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>3</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>35</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>3</mn>
      <mn>4</mn>
    </msup>
  </mrow>
</math></span></p>
<p>correct term &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2835{x^6}">
  <mn>2835</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>6</mn>
    </msup>
  </mrow>
</math></span></p>
<p>differentiating their term in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^6}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>6</mn>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2835{x^6})',{\text{ (6)(2835}}{{\text{x}}^5})">
  <mo stretchy="false">(</mo>
  <mn>2835</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>6</mn>
    </msup>
  </mrow>
  <msup>
    <mo stretchy="false">)</mo>
    <mo>′</mo>
  </msup>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;(6)(2835</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>x</mtext>
      </mrow>
      <mn>5</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="17010{x^5}">
  <mn>17010</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>5</mn>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N3</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><strong>Note:</strong> &nbsp; &nbsp; <strong>In this question, distance is in metres and time is in seconds.</strong></p>
<p>&nbsp;</p>
<p>A particle moves along a horizontal line starting at a fixed point A. The velocity <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> of the particle, at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>, is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(t) = \frac{{2{t^2} - 4t}}{{{t^2} - 2t + 2}}"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mi>t</mi> </mrow> <mrow> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mi>t</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 5"> <mn>0</mn> <mo>⩽</mo> <mi>t</mi> <mo>⩽</mo> <mn>5</mn> </math></span>. The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span></p>
<p><img src="images/Schermafbeelding_2017-08-15_om_08.18.11.png" alt="M17/5/MATME/SP2/ENG/TZ2/07"></p>
<p>There are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>-intercepts at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}0)"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mn>0</mn> <mo stretchy="false">)</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2,{\text{ }}0)"> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mn>0</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<p>Find the maximum distance of the particle from A during the time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 5"> <mn>0</mn> <mo>⩽</mo> <mi>t</mi> <mo>⩽</mo> <mn>5</mn> </math></span> and justify your answer.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1 (displacement)</strong></p>
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \int {v{\text{d}}t} "> <mi>s</mi> <mo>=</mo> <mo>∫</mo> <mrow> <mi>v</mi> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>consideration of displacement at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2"> <mi>t</mi> <mo>=</mo> <mn>2</mn> </math></span> <strong>and</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 5"> <mi>t</mi> <mo>=</mo> <mn>5</mn> </math></span> (seen anywhere) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^2 v "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>2</mn> </msubsup> <mi>v</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^5 v "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>5</mn> </msubsup> <mi>v</mi> </math></span></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Must have both for any further marks.</p>
<p>&nbsp;</p>
<p>correct displacement at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2"> <mi>t</mi> <mo>=</mo> <mn>2</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 5"> <mi>t</mi> <mo>=</mo> <mn>5</mn> </math></span> (seen anywhere) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2.28318"> <mo>−</mo> <mn>2.28318</mn> </math></span> (accept 2.28318), 1.55513</p>
<p>valid reasoning comparing correct displacements &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| { - 2.28} \right| > \left| {1.56} \right|"> <mrow> <mo>|</mo> <mrow> <mo>−</mo> <mn>2.28</mn> </mrow> <mo>|</mo> </mrow> <mo>&gt;</mo> <mrow> <mo>|</mo> <mrow> <mn>1.56</mn> </mrow> <mo>|</mo> </mrow> </math></span>, more left than right</p>
<p>2.28 (m) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Do not award the final <strong><em>A1 </em></strong>without the <strong><em>R1</em></strong><em>.</em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2 (distance travelled)</strong></p>
<p>recognizing distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \int {\left| v \right|{\text{d}}t} "> <mo>=</mo> <mo>∫</mo> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>consideration of distance travelled from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </math></span> to 2 <strong>and</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2"> <mi>t</mi> <mo>=</mo> <mn>2</mn> </math></span> to 5 (seen anywhere) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^2 v "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>2</mn> </msubsup> <mi>v</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_2^5 v "> <msubsup> <mo>∫</mo> <mn>2</mn> <mn>5</mn> </msubsup> <mi>v</mi> </math></span></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Must have both for any further marks</p>
<p>&nbsp;</p>
<p>correct distances travelled (seen anywhere) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>2.28318, (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2.28318"> <mo>−</mo> <mn>2.28318</mn> </math></span>), 3.83832</p>
<p>valid reasoning comparing correct distance values &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3.84 - 2.28 < 2.28,{\text{ }}3.84 < 2 \times 2.28"> <mn>3.84</mn> <mo>−</mo> <mn>2.28</mn> <mo>&lt;</mo> <mn>2.28</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mn>3.84</mn> <mo>&lt;</mo> <mn>2</mn> <mo>×</mo> <mn>2.28</mn> </math></span></p>
<p>2.28 (m) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Do not award the final <strong><em>A1 </em></strong>without the <strong><em>R1</em></strong>.</p>
<p>&nbsp;</p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>