File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 5/markSceme-SL-paper1html
File size: 920.53 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p><strong>In this question, all lengths are in metres and time is in seconds.</strong></p>
<p>Consider two particles, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math>, which start to move at the same time.</p>
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> moves in a straight line such that its displacement from a fixed-point is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> also moves in a straight line. The position of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>.</p>
<p>The speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> is greater than the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mi>q</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing velocity is derivative of displacement <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mtext>d</mtext><mi>s</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mtext>d</mtext><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mfenced><mrow><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p>velocity<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>14</mn><mn>4</mn></mfrac><mi>t</mi><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></mfenced><mo> </mo><mo>,</mo><mo> </mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> , velocity<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p>correct speed <em><strong>(A1)</strong></em></p>
<p><em>eg </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>recognizing relationship between speed and velocity (may be seen in inequality/equation) <em><strong>R1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced></math> , speed = | velocity | , graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> speed , <img src=""> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi><mo> </mo><mo>,</mo><mo> </mo><msub><mi>P</mi><mn>2</mn></msub></math> velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>5</mn></math></p>
<p>correct inequality or equation that compares speed or velocity (accept any variable for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>) <em><strong>A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced><mo>></mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo><</mo><mo>-</mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo>></mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo>=</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math> (seconds) (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math> , do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math>) <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award the last two <em><strong>A1</strong></em> marks without the <em><strong>R1</strong></em>.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sieun hits golf balls into the air. Each time she hits a ball she records <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>, the angle at which the ball is launched into the air, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>, the horizontal distance, in metres, which the ball travels from the point of contact to the first time it lands. The diagram below represents this information.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Sieun analyses her results and concludes:</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>l</mi></mrow><mrow><mo>d</mo><mi>θ</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn><mi>θ</mi><mo>+</mo><mn>9</mn><mo>,</mo><mo> </mo><mo> </mo><mn>35</mn><mo>°</mo><mo>≤</mo><mi>θ</mi><mo>≤</mo><mn>75</mn><mo>°</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is increasing or decreasing at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>50</mn><mo>°</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sieun observes that when the angle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>°</mo></math>, the ball will travel a horizontal distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>205</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>.</p>
<p>Find an expression for the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mfenced><mi>θ</mi></mfenced></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mo>'</mo><mfenced><mn>50</mn></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>50</mn><mo>+</mo><mn>9</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p>the curve is decreasing at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>50</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> For the final <em><strong>A1</strong></em>, follow through within this question part for their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mo>'</mo><mfenced><mn>50</mn></mfenced></math> value. Award <em><strong>A0</strong></em> for an answer of "decreasing" with no work shown.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of need to integrate (e.g. reverse power rule or integral symbol or integrating at least one term correctly) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>θ</mi><mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>θ</mi><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>205</mn><mo>.</mo><mn>5</mn><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mfenced><mn>40</mn></mfenced><mn>2</mn></msup><mo>+</mo><mn>9</mn><mo>×</mo><mfenced><mn>40</mn></mfenced><mo>+</mo><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for correct substitution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>40</mn><mo>°</mo></math> <strong>and</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mo>=</mo><mn>205</mn><mo>.</mo><mn>5</mn></math>. A constant of integration must be seen (can be implied by a correct answer).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>l</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo></mrow></mfenced><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>θ</mi><mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>θ</mi><mo>+</mo><mn>5</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept any variable in the working, but for the final <em><strong>A1</strong></em>, the variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> must be used in the expression.</p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mi>x</mi></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>k</mi><mo>></mo><mn>0</mn></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>p</mi><mo>,</mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac></mrow></mfenced></math> be any point on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis at point B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is translated by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math> to give the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.<br>In the following diagram:</p>
<ul>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> lie on the vertical asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> lie on the horizontal asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>G</mtext></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FG</mtext></math> is parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DC</mtext></math>.</li>
</ul>
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>, and passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<p><img src=""></p>
<p>Given that triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EDF</mtext></math> and rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext></math> have equal areas, find the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>p</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong> A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use point and gradient to find equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> <em><strong>M1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>p</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>p</mi></mrow></mfenced><mo>,</mo><mo> </mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mfenced><mi>p</mi></mfenced><mo>+</mo><mi>b</mi></math></p>
<p>correct working leading to answer <em><strong> A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mi>k</mi><mi>p</mi><mo>=</mo><mo>-</mo><mi>k</mi><mi>x</mi><mo>+</mo><mi>k</mi><mi>p</mi><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>-</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math> <em><strong> AG N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 – area of a triangle</strong></p>
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> <em><strong>(M1)</strong></em></p>
<p>correct working to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of null<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of null at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math> (may be seen in area formula) <em><strong> A1</strong></em></p>
<p>correct substitution to find area of triangle<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mfenced><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mfenced><mo>,</mo><mo> </mo><mo> </mo><mi>p</mi><mo>×</mo><mfenced><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mfenced></math></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math> <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2 – integration</strong></p>
<p>recognizing to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>p</mi></math> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup><msub><mi>L</mi><mrow><mn>1</mn><mo> </mo></mrow></msub><mo>d</mo><mi>x</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math></p>
<p>correct integration of <strong>both</strong> terms <em><strong> A1</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mi>x</mi></mrow><mi>p</mi></mfrac><mo> </mo><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mi>x</mi><mo>+</mo><mi>c</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mi>x</mi></mrow></mfenced><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup></math></p>
<p>substituting limits into <strong>their</strong> integrated function and subtracting (in either order) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced></mrow><mi>p</mi></mfrac><mo>-</mo><mfenced><mn>0</mn></mfenced><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mrow><mn>4</mn><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>4</mn><mi>k</mi><mi>p</mi></mrow><mi>p</mi></mfrac></math></p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>4</mn><mi>k</mi></math></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math> <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In this question, the second <em><strong>M</strong></em> mark may be awarded independently of the other marks, so it is possible to award <em><strong>(M0)(A0)M1(A0)(A0)A0</strong></em>.</p>
<p> </p>
<p>recognizing use of transformation <em><strong>(M1)</strong></em></p>
<p><em>eg</em> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> = area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DEF</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mo>,</mo></math> gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub><mo>=</mo></math> gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced><mtext>, 2p+4, </mtext></math> one correct shift</p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg</em> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DEF</mtext><mo>=</mo><mn>2</mn><mi>k</mi><mo>,</mo><mo> </mo><mtext>CD</mtext><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mtext>DF</mtext><mo>=</mo><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>CG</mtext><mo>=</mo><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>E</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mo>+</mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>F</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>Q</mtext><mfenced><mrow><mi>p</mi><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>+</mo><mn>3</mn></mrow></mfenced><mo>,</mo></math> </p>
<p>gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>,</mo></math> area of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>ED</mtext><mo>×</mo><mtext>DF</mtext></mrow><mn>2</mn></mfrac><mo>=</mo><mtext>CD</mtext><mo>×</mo><mtext>DF</mtext><mo>,</mo><mo> </mo><mn>2</mn><mi>p</mi><mo>·</mo><mn>3</mn><mo>=</mo><mn>2</mn><mi>k</mi><mo> </mo><mo>,</mo><mo> </mo><mtext>ED</mtext><mo>=</mo><mn>2</mn><mtext>CD</mtext><mo> </mo><mo>,</mo><mo> </mo><msubsup><mo>∫</mo><mn>4</mn><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></msubsup><msub><mi>L</mi><mn>2</mn></msub><mo> </mo><mtext>d</mtext><mi>x</mi><mo>=</mo><mn>4</mn><mi>k</mi></math></p>
<p>correct working<em> <strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ED</mtext><mo>=</mo><mn>6</mn><mo>,</mo><mo> </mo><mtext>E</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>9</mn></mrow></mfenced><mo>,</mo><mo> </mo><mi>k</mi><mo>=</mo><mn>3</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>gradient</mtext><mo>=</mo><mfrac><mrow><mn>3</mn><mo>-</mo><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mstyle><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mo>-</mo><mn>4</mn></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mfenced><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mn>3</mn></mfrac></mstyle></mfenced></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>9</mn><mi>k</mi></mfrac></math></p>
<p>correct expression for gradient (in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>)<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mrow><mn>2</mn><mi>p</mi></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>9</mn><mo>-</mo><mn>3</mn></mrow><mrow><mn>4</mn><mo>-</mo><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced></mrow></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mrow><mn>3</mn><mi>p</mi></mrow><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mo>-</mo><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mfenced><mrow><mn>3</mn><mi>p</mi></mrow></mfenced></mrow><mi>p</mi></mfrac></mstyle><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mstyle displaystyle="true"><mo>-</mo></mstyle><mstyle displaystyle="true"><mn>4</mn></mstyle></mrow></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>9</mn><mrow><mn>3</mn><mi>p</mi></mrow></mfrac></math></p>
<p>gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>3</mn><mi>p</mi></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>3</mn><msup><mi>p</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong> A1 N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Irina uses a set of coordinate axes to draw her design of a window. The base of the window is on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, the upper part of the window is in the form of a quadratic curve and the sides are vertical lines, as shown on the diagram. The curve has end points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>10</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>10</mn><mo>)</mo></math> and its vertex is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>12</mn><mo>)</mo></math>. Distances are measured in centimetres.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The quadratic curve can be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>8</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence form two equations in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the equation of the quadratic curve.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region in Irina’s design.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>10</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>64</mn><mi>a</mi><mo>+</mo><mn>8</mn><mi>b</mi><mo>+</mo><mn>10</mn><mo>=</mo><mn>10</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mn>10</mn><mo>=</mo><mn>12</mn><mo> </mo></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for each equivalent expression or <em><strong>A1</strong></em> for the use of the axis of symmetry formula to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>=</mo><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math> or from use of derivative. Award <em><strong>A0A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>64</mn><mi>a</mi><mo>+</mo><mn>8</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>12</mn><mo> </mo></math>.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>10</mn></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award<em><strong> A1A0</strong></em> if one term is incorrect, <em><strong>A0A0</strong></em> if two or more terms are incorrect. Award at most <em><strong>A1A0</strong></em> if correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> values are seen but answer not expressed as an equation.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing the need to integrate their expression <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>8</mn></msubsup><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>10</mn><mo> </mo><mo>d</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct integral, including limits. Condone absence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>d</mo><mi>x</mi></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>272</mn><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>90</mn><mo>.</mo><mn>6666</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Generally, the responses were good for this last question on the paper. The main issue here was to not give the two equations in part (a)(ii) with simplified coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Several candidates understood what was required but left their answers with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>8</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> un-simplified and lost marks. Some candidates used the coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> to substitute in the equation with an incorrect equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math>. Candidates were successful at writing the equations in part (a)(iii). In part (b), most candidates realized that they had to use integration to find the area of the shaded region and, for the most part, were able to find a correct value for the area using either the correct equation or their obtained equation from the previous part. A common error was to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally, the responses were good for this last question on the paper. The main issue here was to not give the two equations in part (a)(ii) with simplified coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Several candidates understood what was required but left their answers with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>8</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> un-simplified and lost marks. Some candidates used the coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> to substitute in the equation with an incorrect equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math>. Candidates were successful at writing the equations in part (a)(iii). In part (b), most candidates realized that they had to use integration to find the area of the shaded region and, for the most part, were able to find a correct value for the area using either the correct equation or their obtained equation from the previous part. A common error was to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally, the responses were good for this last question on the paper. The main issue here was to not give the two equations in part (a)(ii) with simplified coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Several candidates understood what was required but left their answers with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>8</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> un-simplified and lost marks. Some candidates used the coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> to substitute in the equation with an incorrect equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math>. Candidates were successful at writing the equations in part (a)(iii). In part (b), most candidates realized that they had to use integration to find the area of the shaded region and, for the most part, were able to find a correct value for the area using either the correct equation or their obtained equation from the previous part. A common error was to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally, the responses were good for this last question on the paper. The main issue here was to not give the two equations in part (a)(ii) with simplified coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Several candidates understood what was required but left their answers with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>8</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> un-simplified and lost marks. Some candidates used the coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> to substitute in the equation with an incorrect equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math>. Candidates were successful at writing the equations in part (a)(iii). In part (b), most candidates realized that they had to use integration to find the area of the shaded region and, for the most part, were able to find a correct value for the area using either the correct equation or their obtained equation from the previous part. A common error was to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="text-align: left;">Inspectors are investigating the carbon dioxide emissions of a power plant. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> be the rate, in tonnes per hour, at which carbon dioxide is being emitted and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> be the time in hours since the inspection began.</p>
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> is plotted against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, the total amount of carbon dioxide produced is represented by the area between the graph and the horizontal <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>-axis.</p>
<p>The rate, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>, is measured over the course of two hours. The results are shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule with an interval width of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn></math> to estimate the total amount of carbon dioxide emitted during these two hours.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The real amount of carbon dioxide emitted during these two hours was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> tonnes.</p>
<p>Find the percentage error of the estimate found in part (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt at using trapezoidal rule formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mfrac><mrow><mn>2</mn><mo>-</mo><mn>0</mn></mrow><mn>5</mn></mfrac></mfenced><mfenced><mrow><mn>30</mn><mo>+</mo><mn>50</mn><mo>+</mo><mn>2</mn><mfenced><mrow><mn>50</mn><mo>+</mo><mn>60</mn><mo>+</mo><mn>40</mn><mo>+</mo><mn>20</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>(total carbon =) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>84</mn></math> tonnes <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mfrac><mrow><mn>84</mn><mo>-</mo><mn>72</mn></mrow><mn>72</mn></mfrac></mfenced><mo>×</mo><mn>100</mn><mo>%</mo></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of final answer in part (a) into percentage error formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>16</mn><mo>.</mo><mn>7</mn><mo>%</mo><mo> </mo><mo> </mo><mfenced><mrow><mn>16</mn><mo>.</mo><mn>6666</mn><mo>…</mo><mo>%</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Although there were successful attempts at using the trapezoidal rule formula, there was quite a bit of confusion among candidates as to which values were to be substituted. It seemed that a significant number of candidates were approaching it with some confusion due to a lack of practice of using the trapezoidal rule formula. Calculation of percentage error in part (b) was generally well done by most candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Although there were successful attempts at using the trapezoidal rule formula, there was quite a bit of confusion among candidates as to which values were to be substituted. It seemed that a significant number of candidates were approaching it with some confusion due to a lack of practice of using the trapezoidal rule formula. Calculation of percentage error in part (b) was generally well done by most candidates.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In an international competition, participants can answer questions in <strong>only one</strong> of the three following languages: Portuguese, Mandarin or Hindi. 80 participants took part in the competition. The number of participants answering in Portuguese, Mandarin or Hindi is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A boy is chosen at random.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of boys who answered questions in Portuguese.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the boy answered questions in Hindi.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two girls are selected at random.</p>
<p>Calculate the probability that one girl answered questions in Mandarin and the other answered questions in Hindi.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>20 <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage">null</span> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{{37}} \times \frac{{12}}{{36}} + \frac{{12}}{{37}} \times \frac{7}{{36}}"> <mfrac> <mn>7</mn> <mrow> <mn>37</mn> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mn>12</mn> </mrow> <mrow> <mn>36</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>12</mn> </mrow> <mrow> <mn>37</mn> </mrow> </mfrac> <mo>×</mo> <mfrac> <mn>7</mn> <mrow> <mn>36</mn> </mrow> </mfrac> </math></span> <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for first or second correct product seen, <em><strong>(M1)</strong></em> for adding their two products or for multiplying their product by two.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{14}}{{111}}\,\,\left( {\,0.12612 \ldots ,\,\,12.6126\,{\text{% }}} \right)"> <mo>=</mo> <mfrac> <mrow> <mn>14</mn> </mrow> <mrow> <mn>111</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mspace width="thinmathspace"></mspace> <mn>0.12612</mn> <mo>…</mo> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>12.6126</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Maria owns a cheese factory. The amount of cheese, in kilograms, Maria sells in one week, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q">
<mi>Q</mi>
</math></span>, is given by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = 882 - 45p">
<mi>Q</mi>
<mo>=</mo>
<mn>882</mn>
<mo>−<!-- − --></mo>
<mn>45</mn>
<mi>p</mi>
</math></span>,</p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> is the price of a kilogram of cheese in euros (EUR).</p>
</div>
<div class="specification">
<p>Maria earns <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p - 6.80){\text{ EUR}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>−<!-- − --></mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
<mrow>
<mtext> EUR</mtext>
</mrow>
</math></span> for each kilogram of cheese sold.</p>
</div>
<div class="specification">
<p>To calculate her weekly profit <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span>, in EUR, Maria multiplies the amount of cheese she sells by the amount she earns per kilogram.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down how many kilograms of cheese Maria sells in one week if the price of a kilogram of cheese is 8 EUR.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how much Maria earns in one week, from selling cheese, if the price of a kilogram of cheese is 8 EUR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the price, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, that will give Maria the highest weekly profit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>522 (kg) <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="522(8 - 6.80)">
<mn>522</mn>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span> or equivalent <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying their answer to part (a) by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(8 - 6.80)">
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p>626 (EUR) (626.40) <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(W = ){\text{ }}(882 - 45p)(p - 6.80)">
<mo stretchy="false">(</mo>
<mi>W</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>882</mn>
<mo>−</mo>
<mn>45</mn>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(W = ) - 45{p^2} + 1188p - 5997.6">
<mo stretchy="false">(</mo>
<mi>W</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>45</mn>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1188</mn>
<mi>p</mi>
<mo>−</mo>
<mn>5997.6</mn>
</math></span> <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sketch of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span> with some indication of the maximum <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 90p + 1188 = 0">
<mo>−</mo>
<mn>90</mn>
<mi>p</mi>
<mo>+</mo>
<mn>1188</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating the correct derivative of their part (c) to zero.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p = ){\text{ }}\frac{{ - 1188}}{{2 \times ( - 45)}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1188</mn>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>45</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into the formula for axis of symmetry.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p = ){\text{ }}13.2{\text{ (EUR)}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13.2</mn>
<mrow>
<mtext> (EUR)</mtext>
</mrow>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from their part (c), if the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> is such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6.80 < p < 19.6">
<mn>6.80</mn>
<mo><</mo>
<mi>p</mi>
<mo><</mo>
<mn>19.6</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 5<em>x</em><sup>3 </sup>− 3<em>x</em>.</p>
</div>
<div class="specification">
<p>The curve has a tangent at the point P(−1, −2).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of this tangent at point P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of this tangent. Give your answer in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>15<em>x</em><sup>2</sup> − 3<em><strong> (A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 15<em>x</em><sup>2</sup>, <em><strong>(A1)</strong></em> for −3. Award at most <em><strong>(A1)</strong></em><em><strong>(A0)</strong></em> if additional terms are seen.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>15 (−1)<sup>2</sup> − 3<em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong> (M1)</strong></em> for substituting −1 into their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span>.</p>
<p> </p>
<p>= 12 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>y</em> − (−2)) = 12 (<em>x</em> − (−1)) <em><strong> (M1)</strong></em></p>
<p><strong>OR</strong></p>
<p>−2 = 12(−1) + c <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong> (M1)</strong></em> for point <strong>and</strong> their gradient substituted into the equation of a line.</p>
<p> </p>
<p><em>y</em> = 12<em>x</em> + 10 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A potter sells <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> vases per month.</p>
<p>His monthly profit in Australian dollars (AUD) can be modelled by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P\left( x \right) = - \frac{1}{5}{x^3} + 7{x^2} - 120{\text{,}}\,\,x \geqslant 0.">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>120</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0.</mn>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> if no vases are sold.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Differentiate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>−120 (AUD) <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{5}{x^2} + 14x">
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>14</mn>
<mi>x</mi>
</math></span> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term. Award at most <em><strong>(A1)(A0)</strong></em> for extra terms seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{{x^4}}}{4}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>f'</em>(<em>x</em>)</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the graph of <em>f</em> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \frac{1}{2}">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <em>x</em>-coordinate of the point at which the <strong>normal</strong> to the graph of <em>f</em> has gradient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{ - \frac{1}{8}}">
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em>x</em><sup>3</sup> <em><strong>(A1) (C1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4{x^3}}}{4}">
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> and not simplified to <em>x</em><sup>3</sup>.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( { - \frac{1}{2}} \right)^3}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{ - \frac{1}{2}}">
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</math></span> into their derivative.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{ - \frac{1}{8}}">
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</mrow>
</math></span> (−0.125) <em><strong> (A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>x</em><sup>3</sup> = 8 <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 8 seen maybe seen as part of an equation <em>y</em> = 8<em>x</em> + <em>c</em>, <em><strong>(M1)</strong></em> for equating their derivative to 8.</p>
<p>(<em>x</em> =) 2 <em><strong>(A1) (C3)</strong></em></p>
<p><strong>Note:</strong> Do not accept (2, 4).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a circular horizontal board divided into six equal sectors. The sectors are labelled white (W), yellow (Y) and blue (B).</p>
<p style="text-align: center;"><img src=""></p>
<p>A pointer is pinned to the centre of the board. The pointer is to be spun and when it stops the colour of the sector on which the pointer stops is recorded. The pointer is equally likely to stop on any of the six sectors.</p>
<p>Eva will spin the pointer twice. The following tree diagram shows all the possible outcomes.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both spins are yellow.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the spins is yellow.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the second spin is yellow, given that the first spin is blue.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3} \times \frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{1}{3}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying correct probabilities.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{9}">
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
</math></span> (0.111, 0.111111…, 11.1%) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{2} \times \frac{1}{3}} \right) + \left( {\frac{1}{6} \times \frac{1}{3}} \right) + \frac{1}{3}">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{2} \times \frac{1}{3}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{6} \times \frac{1}{3}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> or equivalent, and <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <strong>and </strong>adding only the three correct probabilities.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\left( {\frac{2}{3}} \right)^2}">
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{2}{3}}">
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</math></span> seen and <em><strong>(M1)</strong></em> for subtracting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{2}{3}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> from 1. This may be shown in a tree diagram with “yellow” and “not yellow” branches.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{9}">
<mfrac>
<mn>5</mn>
<mn>9</mn>
</mfrac>
</math></span> (0.556, 0.555555…, 55.6%) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><strong>Note: </strong>Follow through marks may be awarded if their answer to part (a) is used in a correct calculation.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> (0.333, 0.333333…, 33.3%) <em><strong>(A1)</strong></em><em><strong> (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><mn>12</mn><mo>-</mo><mn>2</mn><mi>x</mi></msqrt><mo>,</mo><mo> </mo><mi>x</mi><mo>≤</mo><mi>a</mi></math>. The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p>The shaded region is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the solid formed when the shaded region is revolved <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>°</mo></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognize <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>12</mn><mo>-</mo><mn>2</mn><mi>x</mi></msqrt><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>12</mn></math> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>6</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>6</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>6</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either <strong>their</strong> limits or the function into volume formula (must involve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><msup><mo> </mo><mn>2</mn></msup></math>) <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>6</mn></msubsup><mi>f</mi><msup><mo> </mo><mn>2</mn></msup><mo>d</mo><mi>x</mi><mo> </mo><mo>,</mo><mo> </mo><mi mathvariant="normal">π</mi><mo>∫</mo><msup><mfenced><msqrt><mn>12</mn><mo>-</mo><mn>2</mn><mi>x</mi></msqrt></mfenced><mn>2</mn></msup><mo> </mo><mo>,</mo><mo> </mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>0</mn><mn>6</mn></msubsup><mn>12</mn><mo>-</mo><mn>2</mn><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi></math> </p>
<p>correct integration of each term <em><strong>A1 A1</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo>,</mo><mo> </mo><mn>12</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mfenced open="[" close="]"><mrow><mn>12</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mn>0</mn><mn>6</mn></msubsup></math></p>
<p>substituting limits into <strong>their integrated</strong> function and subtracting (in any order) <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mn>12</mn><mfenced><mn>6</mn></mfenced><mo>-</mo><msup><mfenced><mn>6</mn></mfenced><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mi mathvariant="normal">π</mi><mfenced><mn>0</mn></mfenced><mo> </mo><mo>,</mo><mo> </mo><mn>72</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>36</mn><mi mathvariant="normal">π</mi><mo> </mo><mo>,</mo><mo> </mo><mfenced><mrow><mn>12</mn><mfenced><mn>6</mn></mfenced><mo>-</mo><msup><mfenced><mn>6</mn></mfenced><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mfenced><mn>0</mn></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0</strong></em> if candidate has substituted into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>,</mo><mo> </mo><mi>f</mi><msup><mo> </mo><mn>2</mn></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>.</p>
<p> </p>
<p>volume<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>36</mn><mi mathvariant="normal">π</mi></math> <em><strong>A1 N2</strong></em> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A factory produces shirts. The cost, <em>C</em>, in Fijian dollars (FJD), of producing<em> x</em> shirts can be modelled by</p>
<p style="text-align: center;"><em>C</em>(<em>x</em>) = (<em>x</em> − 75)<sup>2</sup> + 100.</p>
</div>
<div class="specification">
<p>The cost of production should not exceed 500 FJD. To do this the factory needs to produce at least 55 shirts and at most <em>s</em> shirts.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost of producing 70 shirts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>s</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of shirts produced when the cost of production is lowest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(70 − 75)<sup>2</sup> + 100 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting in <em>x</em> = 70.</p>
<p>125 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>s</em> − 75)<sup>2</sup> + 100 = 500 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating <em>C</em>(<em>x</em>) to 500. Accept an inequality instead of =.</p>
<p><strong>OR</strong></p>
<p><img src=""> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for sketching correct graph(s).</p>
<p>(<em>s</em> =) 95 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for an attempt at finding the minimum point using graph.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{95 + 55}}{2}">
<mfrac>
<mrow>
<mn>95</mn>
<mo>+</mo>
<mn>55</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for attempting to find the mid-point between their part (b) and 55.</p>
<p><strong>OR</strong></p>
<p>(<em>C'</em>(<em>x</em>) =) 2<em>x</em> − 150 = 0 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for an attempt at differentiation that is correctly equated to zero.</p>
<p>75 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>2</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the normal to the curve at the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>-</mo><mi>x</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>4</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Gradient at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> <strong>M1</strong></p>
<p>Gradient of normal is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>-</mo><mn>4</mn><mo>+</mo><mn>2</mn><mo>=</mo><mo>-</mo><mn>1</mn></math> <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>+</mo><mn>2</mn><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>1</mn><mo>+</mo><mi>c</mi></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>-</mo><mi>x</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>0</mn></math> <strong>AG</strong></p>
<p> </p>
<p><strong>[6 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graph of the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mi>k</mi><mi>x</mi></mfrac></math>.</p>
</div>
<div class="specification">
<p>The equation of the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><mn>5</mn><mi>x</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of this tangent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <em><strong>(A1)(A1)(A1) (C3)<br></strong></em></p>
<p><strong><br></strong><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math>, <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>k</mi></math>, and <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>.<br>Award at most <em><strong>(A1)(A1)(A0)</strong></em> if additional terms are seen.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo> </mo><mo> </mo><mfenced><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mfenced></math> <em><strong>(A1) (C1)<br></strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>=</mo><mn>2</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfrac><mi>k</mi><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math> <em><strong>(M1)<br></strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their gradient from part (b) to their substituted derivative from part (a).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>6</mn></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong><br>Note:</strong> Follow through from parts (a) and (b).</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 4{x^3} + \frac{3}{{{x^2}}} - 3,{\text{ }}x \ne 0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at which the gradient of the tangent is equal to 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12{x^2} - \frac{6}{{{x^3}}}">
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> or equivalent <strong><em>(A1)(A1)(A1) (C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12{x^2}">
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6">
<mo>−</mo>
<mn>6</mn>
</math></span> and <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{x^3}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^{ - 3}}">
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>. Award at most <strong><em>(A1)(A1)(A0) </em></strong>if additional terms seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12{x^2} - \frac{6}{{{x^3}}} = 6">
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>6</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their derivative to 6.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}4)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>4</mn>
<mo stretchy="false">)</mo>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1,{\text{ }}y = 4">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft) <em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>A frequent wrong answer seen in scripts is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}6)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6</mn>
<mo stretchy="false">)</mo>
</math></span> for this answer with correct working award <strong><em>(M1)(A0)(A1) </em></strong>and if there is no working award <strong><em>(C1)</em></strong>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^3} - 2{x^2} + ax + 6">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
</math></span>. Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> crosses the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis at the point P. The line <em>L</em> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at P.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the equation of <em>L</em> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has a local minimum at the point Q. The line <em>L</em> passes through Q.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{0^3} - 2{\left( 0 \right)^2} + a\left( 0 \right) + 6">
<mrow>
<msup>
<mn>0</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>6</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = 6">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>6</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0,\,\,y} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>(0, 6) (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = 0 <strong>and </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = 6) <em><strong> A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = 3{x^2} - 4x + a">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mi>a</mi>
</math></span> <em><strong> A2 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 0 \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{\left( 0 \right)^2} - 4\left( 0 \right) + a">
<mn>3</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>a</mi>
</math></span>, slope = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 0 \right) = a">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
</math></span></p>
<p>attempt to substitute gradient and coordinates into linear equation <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 6 = a\left( {x - 0} \right)">
<mi>y</mi>
<mo>−</mo>
<mn>6</mn>
<mo>=</mo>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = a\left( {x - 6} \right)">
<mi>y</mi>
<mo>−</mo>
<mn>0</mn>
<mo>=</mo>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>6</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 = a\left( 0 \right) + c">
<mn>6</mn>
<mo>=</mo>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span>, <em>L</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ax + 6">
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
</math></span></p>
<p>correct equation <em><strong>A1 N3</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + 6">
<mi>y</mi>
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 6 = ax">
<mi>y</mi>
<mo>−</mo>
<mn>6</mn>
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 6 = a\left( {x - 0} \right)">
<mi>y</mi>
<mo>−</mo>
<mn>6</mn>
<mo>=</mo>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find intersection <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = L">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>L</mi>
</math></span></p>
<p>correct equation<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^3} - 2{x^2} + ax + 6 = ax + 6">
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
</math></span></p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^3} - 2{x^2} = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}(x - 2) = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> at Q <em><strong>(A1)</strong></em></p>
<p> </p>
<p>valid approach to find minimum<em><strong> (M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct equation <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2} - 4x + a = 0">
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mi>a</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>substitution of <strong>their</strong> value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> at Q into <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> equation<em><strong> (M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{\left( 2 \right)^2} - 4\left( 2 \right) + a = 0">
<mn>3</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12 - 8 + a = 0">
<mn>12</mn>
<mo>−</mo>
<mn>8</mn>
<mo>+</mo>
<mi>a</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> = −4 <em><strong>A1 N0</strong></em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The surface area of an open box with a volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn><mo> </mo><msup><mtext>cm</mtext><mn>3</mn></msup></math> and a square base with sides of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mtext>cm</mtext></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>128</mn><mi>x</mi></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret your answer to (b)(i) in context.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>S</mi><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>128</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for expressing second term with a negative power. This may be implied by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> seen as part of their answer.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mfrac><mn>128</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>128</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math> and <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>128</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>. The first <em><strong>A1</strong></em> is for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> differentiated correctly and is independent of the <em><strong>(M1)</strong></em>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>any correct manipulation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mfrac><mn>128</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>=</mo><mn>0</mn></math> e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>128</mn><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>sketch of graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> with root indicated <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>sketch of graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> with minimum indicated <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Value must be positive. Follow through from their part (a) irrespective of working.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> that will minimize surface area of the box <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept ‘optimize’ in place of minimize.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a), many candidates scored at least the mark for correctly differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> although differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>128</mn><mi>x</mi></mfrac></math> proved to be more problematic, not realizing that the term could be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>128</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>. Some who did realize it, made a mistake while differentiating the negative index. In part (b)(i), the manipulation of the equation was frequently incorrect; those that used their GDC got the correct answer with no working. Many candidates could follow the instruction but where errors were made in part (a), valid solutions for part (b) proved tricky with some negative values seen. In part (b)(ii), a significant number of candidates did not appreciate what is meant by a gradient function equal to zero. Of those who had some idea, the words minimize and maximize were seen but not always in terms of the surface area. Many incorrect answers referred to the volume. Many candidates had difficulty communicating an interpretation of their answer in context. This resulted in several negative answers found for part (b)(i) being left as is, when contextually, negative answers would not make sense.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (a), many candidates scored at least the mark for correctly differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> although differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>128</mn><mi>x</mi></mfrac></math> proved to be more problematic, not realizing that the term could be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>128</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>. Some who did realize it, made a mistake while differentiating the negative index. In part (b)(i), the manipulation of the equation was frequently incorrect; those that used their GDC got the correct answer with no working. Many candidates could follow the instruction but where errors were made in part (a), valid solutions for part (b) proved tricky with some negative values seen. In part (b)(ii), a significant number of candidates did not appreciate what is meant by a gradient function equal to zero. Of those who had some idea, the words minimize and maximize were seen but not always in terms of the surface area. Many incorrect answers referred to the volume. Many candidates had difficulty communicating an interpretation of their answer in context. This resulted in several negative answers found for part (b)(i) being left as is, when contextually, negative answers would not make sense.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (a), many candidates scored at least the mark for correctly differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> although differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>128</mn><mi>x</mi></mfrac></math> proved to be more problematic, not realizing that the term could be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>128</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>. Some who did realize it, made a mistake while differentiating the negative index. In part (b)(i), the manipulation of the equation was frequently incorrect; those that used their GDC got the correct answer with no working. Many candidates could follow the instruction but where errors were made in part (a), valid solutions for part (b) proved tricky with some negative values seen. In part (b)(ii), a significant number of candidates did not appreciate what is meant by a gradient function equal to zero. Of those who had some idea, the words minimize and maximize were seen but not always in terms of the surface area. Many incorrect answers referred to the volume. Many candidates had difficulty communicating an interpretation of their answer in context. This resulted in several negative answers found for part (b)(i) being left as is, when contextually, negative answers would not make sense.</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A company’s profit per year was found to be changing at a rate of</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>t</mi></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is the company’s profit in thousands of dollars and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time since the company was founded, measured in years.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the profit is increasing or decreasing when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One year after the company was founded, the profit was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> thousand dollars.</p>
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>, when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>(when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo><</mo><mn>0</mn></math> (equivalent in words) <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mfenced><mn>2</mn></mfenced><mn>2</mn></msup><mo>-</mo><mn>8</mn><mfenced><mn>2</mn></mfenced><mo>=</mo><mo>-</mo><mn>4</mn></math> <em><strong>M1</strong></em></p>
<p>therefore <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is decreasing <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>sketch with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> indicated in 4th quadrant <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>-intercepts identified <em><strong>M1</strong></em></p>
<p>therefore <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is decreasing <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>P</mi><mfenced><mi>t</mi></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><msup><mi>t</mi><mn>3</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>=</mo><msup><mn>1</mn><mn>3</mn></msup><mo>-</mo><mn>4</mn><msup><mfenced><mn>1</mn></mfenced><mn>2</mn></msup><mo>+</mo><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo></math> into their equation with <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>c</mi></math> seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>7</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><msup><mi>t</mi><mn>3</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>7</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Even some weaker candidates were able to score in this part of the question as many candidates understood the process required to determine whether the profit is increasing or decreasing.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates failed to recognize that they needed to integrate the original function. Of the few that attempted to find the value of the constant the vast majority substituted 4000 rather than 4. So, a correct final expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> was rarely seen.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A modern art painting is contained in a square frame. The painting has a shaded region bounded by a smooth curve and a horizontal line.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>When the painting is placed on a coordinate axes such that the bottom left corner of the painting has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>1</mn><mo>)</mo></math> and the top right corner has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math>, the curve can be modelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and the horizontal line can be modelled by the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. Distances are measured in metres.</p>
</div>
<div class="specification">
<p>The artist used the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>12</mn></mrow><mn>10</mn></mfrac></math> to draw the curve.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule, with the values given in the following table, to approximate the area of the shaded region.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact area of the shaded region in the painting.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the unshaded region in the painting.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>2</mn><mfenced><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>(A1)(M1)</strong></em></p>
<p> <br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for evidence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>1</mn></math>, <em><strong>M1</strong> </em>for a correct substitution into trapezoidal rule (allow for an incorrect <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> only). The zero can be omitted in the working.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mfrac><mrow><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>12</mn></mrow><mn>10</mn></mfrac><mo>d</mo><mi>x</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p> <br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for using definite integration with correct limits.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>925</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Question requires exact answer, do not award final <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>93</mn></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>925</mn></math> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> seen as part of a subtraction.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>6</mn><mo>.</mo><mn>08</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>6</mn><mo>.</mo><mn>075</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There seemed a better attempt at using the trapezium rule in this session compared to the two 2021 sessions. Despite many incorrect values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, candidates obtained the method mark for a correctly substituted formula (excluding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>).</p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The exact answer of 2.925 was asked for in the question, yet candidates frequently rounded to three significant figures and hence lost the final mark.</p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to correctly find the area of the unshaded region.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 1 + {{\text{e}}^{ - x}}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = 2x + b">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> is a constant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x)">
<mo stretchy="false">(</mo>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to + \infty } (g \circ f)(x) = - 3">
<munder>
<mrow>
<mo form="prefix">lim</mo>
</mrow>
<mrow>
<mi>x</mi>
<mo stretchy="false">→</mo>
<mo>+</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</munder>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to form composite <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(1 + {{\text{e}}^{ - x}})">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span></p>
<p>correct function <strong><em>A1 N2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x) = 2 + b + 2{{\text{e}}^{ - x}},{\text{ }}2(1 + {{\text{e}}^{ - x}}) + b">
<mo stretchy="false">(</mo>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>b</mi>
</math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to \infty } (2 + b + 2{{\text{e}}^{ - x}}) = 2 + b + \mathop {\lim }\limits_{x \to \infty } (2{{\text{e}}^{ - x}})">
<munder>
<mrow>
<mo form="prefix">lim</mo>
</mrow>
<mrow>
<mi>x</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</munder>
<mo></mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<munder>
<mrow>
<mo form="prefix">lim</mo>
</mrow>
<mrow>
<mi>x</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</munder>
<mo></mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + b + 2{{\text{e}}^{ - \infty }}">
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</msup>
</mrow>
</math></span>, graph with horizontal asymptote when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to \infty ">
<mi>x</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M0 </em></strong>if candidate clearly has incorrect limit, such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to 0,{\text{ }}{{\text{e}}^\infty },{\text{ }}2{{\text{e}}^0}">
<mi>x</mi>
<mo stretchy="false">→</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi mathvariant="normal">∞</mi>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>0</mn>
</msup>
</mrow>
</math></span>.</p>
<p> </p>
<p>evidence that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{ - x}} \to 0">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">→</mo>
<mn>0</mn>
</math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to \infty } ({{\text{e}}^{ - x}}) = 0,{\text{ }}1 + {{\text{e}}^{ - x}} \to 1,{\text{ }}2(1) + b = - 3,{\text{ }}{{\text{e}}^{{\text{large negative number}}}} \to 0">
<munder>
<mrow>
<mo form="prefix">lim</mo>
</mrow>
<mrow>
<mi>x</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</munder>
<mo></mo>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">→</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<mtext>large negative number</mtext>
</mrow>
</mrow>
</msup>
</mrow>
<mo stretchy="false">→</mo>
<mn>0</mn>
</math></span>, graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {{\text{e}}^{ - x}}">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span> or</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2{{\text{e}}^{ - x}}">
<mi>y</mi>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span> with asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, graph of composite function with asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 3">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + b = - 3">
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = - 5">
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>5</mn>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mo>−</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>.</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>3</mn></math> intersect at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>7</mn><mo>)</mo></math>, as shown in the following diagrams.</p>
<p>In <strong>diagram 1</strong>, the region enclosed by the lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mo>−</mo><mi>x</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>−</mo><mn>1</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis has been shaded.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="specification">
<p>In <strong>diagram 2</strong>, the region enclosed by the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>.</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>3</mn></math>, and the lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>−</mo><mn>1</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis has been shaded.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of the shaded region in <strong>diagram 1</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an integral for the area of the shaded region in<strong> diagram 2</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of this region.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, determine the area enclosed between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mo>-</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>3</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> into area of a trapezoid formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>=</mo></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>7</mn><mo>+</mo><mn>4</mn></mrow></mfenced><mfenced><mn>3</mn></mfenced></math></p>
<p><br><strong>OR</strong></p>
<p>given line expressed as an integral <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>=</mo></mrow></mfenced><msubsup><mo>∫</mo><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mfenced><mrow><mn>6</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi></math></p>
<p><br><strong>OR</strong></p>
<p>attempt to sum area of rectangle and area of triangle <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>4</mn><mo>×</mo><mn>3</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mn>3</mn></mfenced><mfenced><mn>3</mn></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo>.</mo><mn>5</mn></math> (square units) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>=</mo></mrow></mfenced><mo> </mo><msubsup><mo>∫</mo><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mn>1</mn><mo>.</mo><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo> </mo><mo>d</mo><mi>x</mi></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for the limits <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn></math> in correct location. Award <em><strong>A1</strong> </em>for an integral of the quadratic function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>d</mo><mi>x</mi></math> must be included. Do not accept “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>” in place of the function, given that two equations are in the question.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>.</mo><mn>75</mn></math> (square units) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo>.</mo><mn>5</mn><mo>-</mo><mn>9</mn><mo>.</mo><mn>75</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>75</mn></math> (square units) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There were a variety of methods used or attempted – area of trapezoid, integration, area of triangle plus area of rectangle, area of large rectangle minus area of top triangle, trapezoidal rule. All these methods, except for trapezoidal rule, proved successful for candidates, with the most common being the use of integration.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was reasonably well done except for a few notation issues such as not including dx with their integrand. Those who attempted integration manually were not successful.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Recognition that areas had to be subtracted was very evident.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The coordinates of point A are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(6,{\text{ }} - 7)">
<mo stretchy="false">(</mo>
<mn>6</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−<!-- − --></mo>
<mn>7</mn>
<mo stretchy="false">)</mo>
</math></span> and the coordinates of point B are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 6,{\text{ }}2)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>6</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span>. Point M is the midpoint of AB.</p>
</div>
<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> is the line through A and B.</p>
</div>
<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> and passes through M.</p>
</div>
<div class="question">
<p>Write down, in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>, the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{4}{3}x - \frac{5}{2}{\text{ }}(y = 1.33 \ldots x - 2.5)">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>=</mo>
<mn>1.33</mn>
<mo>…</mo>
<mi>x</mi>
<mo>−</mo>
<mn>2.5</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from parts (c)(i) and (a). Award <strong><em>(A0) </em></strong>if final answer is not written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
<p><strong><em>[1 mark]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a{x^2} + bx + c">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>. The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}5)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 4,{\text{ }}5)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> lie on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-coordinate of the minimum of the graph is 3.</p>
</div>
<div class="question">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{b}{{2a}} = - 2">
<mo>−</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{( - 2)^2} - 2b + 5 = 3">
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>b</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>3</mn>
</math></span> or equivalent</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{( - 4)^2} - 4b + 5 = 5">
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>4</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>b</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>5</mn>
</math></span> or equivalent</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2a( - 2) + b = 0">
<mn>2</mn>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> or equivalent <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for two of the above equations.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 0.5">
<mi>a</mi>
<mo>=</mo>
<mn>0.5</mn>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 2">
<mi>b</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)</em>(ft) <em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award at most <strong><em>(M1)(A1)</em>(ft)<em>(A0) </em></strong>if the answers are reversed.</p>
<p>Follow through from parts (a) and (b).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Ellis designs a gift box. The top of the gift box is in the shape of a right-angled triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>GIK</mtext></math>.</p>
<p>A rectangular section <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>HIJL</mtext></math> is inscribed inside this triangle. The lengths of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>GH, JK, HL</mtext></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>LJ</mtext></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mtext>cm</mtext><mo>,</mo><mo> </mo><mi>q</mi><mo> </mo><mtext>cm</mtext><mo>,</mo><mo> </mo><mn>8</mn><mo> </mo><mtext>cm</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mtext>cm</mtext></math> respectively.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The area of the top of the gift box is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup></math>.</p>
</div>
<div class="specification">
<p>Ellis wishes to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> that will minimize the area of the top of the gift box.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>192</mn><mi>q</mi></mfrac><mo>+</mo><mn>3</mn><mi>q</mi><mo>+</mo><mn>48</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>A</mi></mrow><mrow><mo>d</mo><mi>q</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation Ellis could solve to find this value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find this value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn><mo>×</mo><mi>q</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>8</mn><mo>×</mo><mi>p</mi><mo>+</mo><mn>48</mn></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>p</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mfenced><mrow><mi>q</mi><mo>+</mo><mn>8</mn></mrow></mfenced></math> <em><strong>OR </strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>3</mn><mi>q</mi><mo>+</mo><mn>4</mn><mi>p</mi><mo>+</mo><mn>48</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to link <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>, using tangents, similar triangles or other method <em><strong>(M1)</strong></em></p>
<p>eg. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>8</mn><mi>p</mi></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mi>q</mi><mn>6</mn></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mi>p</mi><mn>8</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>6</mn><mi>q</mi></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>8</mn><mi>p</mi></mfrac><mo>=</mo><mfrac><mi>q</mi><mn>6</mn></mfrac></math></p>
<p>correct equation linking <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> <em><strong>A1</strong></em></p>
<p>eg. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>=</mo><mn>48</mn></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>48</mn><mi>q</mi></mfrac></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mn>48</mn><mi>p</mi></mfrac></math></p>
<p>substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>48</mn><mi>q</mi></mfrac></math> into a correct area expression <em><strong>M1</strong></em></p>
<p>eg. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>=</mo></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn><mo>×</mo><mi>q</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>8</mn><mo>×</mo><mfrac><mn>48</mn><mi>q</mi></mfrac><mo>+</mo><mn>48</mn></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>=</mo></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mfrac><mn>48</mn><mi>q</mi></mfrac><mo>+</mo><mn>6</mn></mrow></mfenced><mfenced><mrow><mi>q</mi><mo>+</mo><mn>8</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>3</mn><mi>q</mi><mo>+</mo><mfrac><mn>192</mn><mi>q</mi></mfrac><mo>+</mo><mn>48</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The <em><strong>AG</strong></em> line must be seen with no incorrect, intermediate working, for the final <em><strong>M1</strong></em> to be awarded.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>192</mn></mrow><msup><mi>q</mi><mn>2</mn></msup></mfrac><mo>+</mo><mn>3</mn></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>192</mn></mrow><msup><mi>q</mi><mn>2</mn></msup></mfrac></math>, <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>. Award <em><strong>A1A0</strong></em> if extra terms are seen.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>192</mn></mrow><msup><mi>q</mi><mn>2</mn></msup></mfrac><mo>+</mo><mn>3</mn><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>8</mn><mo> </mo><mtext>cm</mtext></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylinder with radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> and height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The sum of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> for this cylinder is 12 cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation for the area, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, of the <strong>curved</strong> surface in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>A</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> when the area of the curved surface is maximized.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2\pi r\left( {12 - r} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 24\pi r - 2\pi {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>24</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(A1)(M1) (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r + h = 12">
<mi>r</mi>
<mo>+</mo>
<mi>h</mi>
<mo>=</mo>
<mn>12</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 12 - r">
<mi>h</mi>
<mo>=</mo>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</math></span> seen. Award <em><strong>(M1)</strong></em> for correctly substituting into curved surface area of a cylinder. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2\pi r\left( {12 - r} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 24\pi r - 2\pi {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>24</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi - 4\pi r">
<mn>24</mn>
<mi>π</mi>
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)<em>(A1)</em>(ft)</strong><em><strong> (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi">
<mn>24</mn>
<mi>π</mi>
</math></span> and <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4\pi r">
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
</math></span> . Follow through from part (a). Award at most <em><strong>(A1)</strong></em><strong>(ft)<em>(A0)</em></strong> if additional terms are seen.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi - 4\pi r = 0">
<mn>24</mn>
<mi>π</mi>
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting <em>their</em> part (b) equal to zero.</p>
<p style="text-align: left;">6 (cm) <strong><em>(A1)</em>(ft)</strong><em><strong> (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Follow through from part (b).</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A company produces and sells electric cars. The company’s profit, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, in thousands of dollars, changes based on the number of cars, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, they produce per month.</p>
<p>The rate of change of their profit from producing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> electric cars is modelled by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>48</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math>.</p>
<p>The company makes a profit of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>260</mn></math> (thousand dollars) when they produce <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> electric cars.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The company regularly increases the number of cars it produces.</p>
<p>Describe how their profit changes if they increase production to over <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> cars per month and up to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> cars per month. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognition of need to integrate (<em>eg</em> reverse power rule or integral symbol) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>48</mn><mi>x</mi><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>260</mn><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mfenced><mn>15</mn></mfenced><mn>2</mn></msup><mo>+</mo><mn>48</mn><mo>×</mo><mfenced><mn>15</mn></mfenced><mo>+</mo><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for correct substitution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>15</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>260</mn></math>. A constant of integration must be seen (can be implied by a correct answer).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><mn>280</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>48</mn><mi>x</mi><mo> </mo><mo>-</mo><mn>280</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>profit will decrease (with each new car produced) <em><strong>A1</strong></em></p>
<p><strong>EITHER</strong></p>
<p>because the profit function is decreasing / the gradient is negative / the rate of change of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is negative <em><strong> R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>30</mn><mn>50</mn></msubsup><mo>-</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>48</mn><mo> </mo><mfenced><mrow><mo>d</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mn>320</mn></math> <em><strong> R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>evidence of finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mn>30</mn></mfenced><mo>=</mo><mn>440</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mn>50</mn></mfenced><mo>=</mo><mn>120</mn></math> <em><strong> R1</strong></em></p>
<p><strong><br>Note:</strong> Award at most <em><strong>R1A0</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mn>30</mn></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mn>50</mn></mfenced></math> or both have incorrect values.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows part of the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>. The graph passes through point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(1,{\text{ }}3)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.22.37.png" alt="M17/5/MATSD/SP1/ENG/TZ2/13"></p>
</div>
<div class="specification">
<p>The tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at A has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 2x + 5">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>5</mn>
</math></span>. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span> be the normal to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span>. Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + d = 0">
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mi>y</mi>
<mo>+</mo>
<mi>d</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{Z}">
<mi>d</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span> on the diagram above.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3 <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 3">
<mi>y</mi>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 = 0.5(1) + c">
<mn>3</mn>
<mo>=</mo>
<mn>0.5</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>c</mi>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 3 = 0.5(x - 1)">
<mi>y</mi>
<mo>−</mo>
<mn>3</mn>
<mo>=</mo>
<mn>0.5</mn>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for correct gradient, <strong><em>(A1) </em></strong>for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(1,{\text{ }}3)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span> in the equation of line.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - 2y + 5 = 0">
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
<mi>y</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> or any integer multiple <strong><em>(A1)</em>(ft)</strong> <strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for their equation correctly rearranged in the indicated form.</p>
<p>The candidate’s answer <strong>must </strong>be an equation for this mark.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-16_om_08.26.38.png" alt="M17/5/MATSD/SP1/ENG/TZ2/13.c/M"> <strong><em>(M1)(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1) </em></strong>for a straight line, with positive gradient, passing through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}3)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>, <strong><em>(A1)</em>(ft) </strong>for line (or extension of their line) passing approximately through 2.5 or their intercept with the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \left( {6 - 3x} \right)\left( {4 + x} \right)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>. The shaded region <em>R</em> is bounded by the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an integral for the area of region <em>R</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of region <em>R</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The three points A(0, 0) , B(3, 10) and C(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, 0) define the vertices of a triangle.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate of C, such that the area of the triangle is equal to the area of region <em>R</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>A</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^2 {\left( {6 - 3x} \right)\left( {4 + x} \right){\text{d}}x} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>2</mn> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>−</mo> <mn>3</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>4</mn> <mo>+</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span> <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for the limits <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 0, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 2. Award <em><strong>A1</strong></em> for an integral of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>28 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="28 = 0.5 \times a \times 10">
<mn>28</mn>
<mo>=</mo>
<mn>0.5</mn>
<mo>×</mo>
<mi>a</mi>
<mo>×</mo>
<mn>10</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5.6\left( {\frac{{28}}{5}} \right)">
<mn>5.6</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>28</mn>
</mrow>
<mn>5</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>It was pleasing to see that, for those candidates who made a reasonable attempt at the paper, many were able to identify the correct values on the tree diagram.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
</math></span>, the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2017-08-11_om_08.50.59.png" alt="M17/5/MATME/SP1/ENG/TZ1/06"></p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
</math></span> has a local minimum at A, a local maximum at B and passes through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(4,{\text{ }} - 2)">
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(4,{\text{ }}3)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span> lies on the graph of the function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of the curve of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the normal to the curve of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concavity of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4 < x < 5">
<mn>4</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>5</mn>
</math></span> <strong>and </strong>justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2">
<mo>−</mo>
<mn>2</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient of normal <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p>attempt to substitute their normal gradient and coordinates of P (in any order) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 4 = \frac{1}{2}(x - 3),{\text{ }}3 = \frac{1}{2}(4) + b,{\text{ }}b = 1">
<mi>y</mi>
<mo>−</mo>
<mn>4</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>b</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 3 = \frac{1}{2}(x - 4),{\text{ }}y = \frac{1}{2}x + 1,{\text{ }}x - 2y + 2 = 0">
<mi>y</mi>
<mo>−</mo>
<mn>3</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
<mi>y</mi>
<mo>+</mo>
<mn>2</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct answer <strong>and </strong>valid reasoning <strong><em>A2</em></strong> <strong><em>N2</em></strong></p>
<p>answer: <em>eg</em> graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is concave up, concavity is positive (between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4 < x < 5">
<mn>4</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>5</mn>
</math></span>)</p>
<p>reason: <em>eg</em> slope of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
</math></span> is positive, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
</math></span> is increasing, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ > 0">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mo>></mo>
<mn>0</mn>
</math></span>,</p>
<p>sign chart (must clearly be for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
</math></span> and show A and B)</p>
<p><img src="images/Schermafbeelding_2017-08-11_om_10.53.43.png" alt="M17/5/MATME/SP1/ENG/TZ1/06.b/M"></p>
<p> </p>
<p><strong>Note:</strong> The reason given must refer to a specific function/graph. Referring to “the graph” or “it” is not sufficient.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Consider <em>f</em>(<em>x</em>), <em>g</em>(<em>x</em>) and <em>h</em>(<em>x</em>), for x∈<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{R}">
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> where <em>h</em>(<em>x</em>) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ g} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mo>∘</mo>
<mi>g</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>(<em>x</em>).</p>
<p>Given that <em>g</em>(3) = 7 , <em>g′</em> (3) = 4 and <em>f ′ </em>(7) = −5 , find the gradient of the normal to the curve of <em>h</em> at <em>x</em> = 3.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing the need to find <em>h′</em> <em><strong> (M1)</strong></em></p>
<p>recognizing the need to find <em>h′ </em>(3) (seen anywhere) <em><strong> (M1)</strong></em></p>
<p>evidence of choosing chain rule <em><strong> (M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{\text{d}}y}}{{{\text{d}}u}} \times \frac{{{\text{d}}u}}{{{\text{d}}x}},\,\,f'\left( {g\left( 3 \right)} \right) \times g'\left( 3 \right),\,\,f'\left( g \right) \times g'">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>g</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 7 \right) \times 4,\,\, - 5 \times 4">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>7</mn>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mn>4</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>5</mn>
<mo>×</mo>
<mn>4</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'\left( 3 \right) = - 20">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>20</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p>evidence of taking <strong>their</strong> negative reciprocal for normal <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{1}{{h'\left( 3 \right)}},\,\,{m_1}{m_2} = - 1">
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msub>
<mi>m</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>m</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span></p>
<p>gradient of normal is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{20}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>20</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1 N4</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The equation of a curve is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{2}{x^4} - \frac{3}{2}{x^2} + 7">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The gradient of the tangent to the curve at a point P is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 10">
<mo>−<!-- − --></mo>
<mn>10</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3} - 3x">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</math></span> <strong><em>(A1)(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3}">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span>, award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3x">
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</math></span>.</p>
<p>Award at most <strong><em>(A1)(A0) </em></strong>if there are any extra terms.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3} - 3x = - 10">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>10</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their answer to part (a) to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 10">
<mo>−</mo>
<mn>10</mn>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 2">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a). Award <strong><em>(M0)(A0) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2">
<mo>−</mo>
<mn>2</mn>
</math></span> seen without working.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{2}{( - 2)^4} - \frac{3}{2}{( - 2)^2} + 7">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>substituting their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2">
<mo>−</mo>
<mn>2</mn>
</math></span> into the original function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 9">
<mi>y</mi>
<mo>=</mo>
<mn>9</mn>
</math></span> <strong><em>(A1)</em>(ft) <em>(C4)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}9)">
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>9</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The point A has coordinates (4 , −8) and the point B has coordinates (−2 , 4).</p>
</div>
<div class="specification">
<p>The point D has coordinates (−3 , 1).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of C, the midpoint of line segment AB.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the line DC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line DC. Write your answer in the form <em>ax</em> + <em>by</em> + <em>d</em> = 0 where <em>a</em> , <em>b</em> and <em>d</em> are integers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(1, −2) <em><strong>(A1)(A1) (C2)</strong></em><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 1 and <em><strong>(A1)</strong></em> for −2, seen as a coordinate pair.</p>
<p>Accept <em>x</em> = 1, <em>y</em> = −2. Award <em><strong>(A1)(A0)</strong></em> if <em>x</em> and <em>y</em> coordinates are reversed.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - \left( { - 2} \right)}}{{ - 3 - 1}}">
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution, of their part (a), into gradient formula.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - \frac{3}{4}\,\,\,\left( { - 0.75} \right)">
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>0.75</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 1 = - \frac{3}{4}\left( {x + 3} \right)">
<mi>y</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>OR </strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y + 2 = - \frac{3}{4}\left( {x - 1} \right)">
<mi>y</mi>
<mo>+</mo>
<mn>2</mn>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>OR</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \frac{3}{4}x - \frac{5}{4}">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their part (b) and a given point.</p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = - \frac{3}{4} \times - 3 + c">
<mn>1</mn>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mo>−</mo>
<mn>3</mn>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>OR</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 = - \frac{3}{4} \times 1 + c">
<mo>−</mo>
<mn>2</mn>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mn>1</mn>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>(M1) </strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their part (b) and a given point.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x + 4y + 5 = 0">
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mi>y</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> (accept any integer multiple, including negative multiples) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (a) and (b). Where the gradient in part (b) is found to be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{0}">
<mfrac>
<mn>5</mn>
<mn>0</mn>
</mfrac>
</math></span>, award at most <em><strong>(M1)(A0)</strong></em> for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 3">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + 3 = 0">
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> be an <strong>obtuse</strong> angle such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = \frac{3}{5}">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ<!-- θ --></mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^x}\,{\text{sin}}\,x - \frac{{3x}}{4}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>x</mi>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mfrac>
<mrow>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span> passes through the origin and has a gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>. Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 3. Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is a tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at point P.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>, find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> sketch of triangle with sides 3 and 5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{s}}^2}\,\theta = 1 - {\text{si}}{{\text{n}}^2}\,\theta "> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> missing side is 4 (may be seen in sketch), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = - \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = - \frac{3}{4}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <em><strong>A2 N4</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution of either gradient <strong>or</strong> origin into equation of line <em><strong>(A1)</strong></em></p>
<p>(do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + b"> <mi>y</mi> <mo>=</mo> <mi>m</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </math></span>)</p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x\,{\text{tan}}\,\theta "> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = m\left( {x - 0} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx"> <mi>y</mi> <mo>=</mo> <mi>m</mi> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \frac{3}{4}x"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mi>x</mi> </math></span> <em><strong>A2 N4</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = - \frac{3}{4}x"> <mi>L</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mi>x</mi> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{{ - 3x}}{4}} \right) = - \frac{3}{4}"> <mfrac> <mrow> <mtext>d</mtext> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mo>−</mo> <mn>3</mn> <mi>x</mi> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> (seen anywhere, including answer) <em><strong>A1</strong></em></p>
<p>choosing product rule <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="uv' + vu'"> <mi>u</mi> <msup> <mi>v</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>u</mi> <mo>′</mo> </msup> </math></span></p>
<p>correct derivatives (must be seen in a correct product rule) <em><strong>A1A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = {{\text{e}}^x}\,{\text{cos}}\,x + {{\text{e}}^x}\,{\text{sin}}\,x - \frac{3}{4}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = {{\text{e}}^x}\,\left( {{\text{cos}}\,x + {\text{sin}}\,x} \right) - \frac{3}{4}} \right)"> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1 N5</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to equate <strong>their</strong> gradients <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = {\text{tan}}\,\theta "> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = - \frac{3}{4}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,{\text{cos}}\,x + {{\text{e}}^x}\,{\text{sin}}\,x - \frac{3}{4} = - \frac{3}{4}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,\left( {{\text{cos}}\,x + {\text{sin}}\,x} \right) - \frac{3}{4} = - \frac{3}{4}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span></p>
<p>correct equation without <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x = - {\text{cos}}\,x"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x + {\text{sin}}\,x = 0"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - {\text{sin}}\,x}}{{{\text{cos}}\,x}} = 1"> <mfrac> <mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = - 1"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 135^\circ "> <mi>x</mi> <mo>=</mo> <msup> <mn>135</mn> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span> (do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="135^\circ "> <msup> <mn>135</mn> <mo>∘</mo> </msup> </math></span>) <em><strong>A1 N1</strong></em></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if additional answers are given.</p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>3</mn><mi>x</mi></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is a tangent to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>2</mn><mo>)</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (a) to find the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of lines parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> that are tangent to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>. Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math>, <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mfrac><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math><br> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> into their part (a) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>'</mo><mfenced><mn>1</mn></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>2</mn><mfenced><mn>1</mn></mfenced><mo>+</mo><mfrac><mn>3</mn><msup><mn>1</mn><mn>2</mn></msup></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> <em><strong>A1</strong></em><br> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>686</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>19</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>686140</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>18614</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> with line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>5</mn></math> <em><strong>M1</strong></em></p>
<p><img src=""></p>
<p>three points of intersection marked on this graph <em><strong>A1</strong></em></p>
<p>(and it can be assumed no further intersections occur outside of this window)</p>
<p><br><strong>THEN</strong></p>
<p>there are two other tangent lines to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> that are parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The final <em><strong>A1</strong> </em>can be awarded provided two solutions other than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> are shown <strong>OR</strong> three points of intersection are marked on the graph.</p>
<p>Award <em><strong>M1A1A1</strong></em> for an answer of “3 lines” where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is considered to be parallel with itself (given guide definition of parallel lines), but only if working is shown.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Was reasonably well done, with the stronger candidates able to handle a negative exponent appropriately when finding the derivative. There were a few who confused the notation for derivative with the notation for inverse.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most knew to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> into the derivative to find the gradient at that point, but some also tried to substitute the <em>y</em>-coordinate for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There was a lot of difficulty understanding what approach would help them determine the number of tangents to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> that are parallel to <em>L</em>. Several wrote just an answer, which is not adequate when justification is required.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>The graph of a function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>ln</mi><mo> </mo><mn>4</mn><mo>,</mo><mo> </mo><mn>20</mn></mrow></mfenced></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup></math>, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of integration <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo> </mo><mtext>d</mtext><mi>x</mi><mo> </mo><mo>,</mo><mo> </mo><mo>∫</mo><mn>6</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup></math></p>
<p>correct integration (accept missing <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>c</mi></math>) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup><mo> </mo><mo>,</mo><mo> </mo><mn>3</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup><mo>+</mo><mi>c</mi></math></p>
<p>substituting initial condition into <strong>their</strong> integrated expression (must have <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>c</mi></math>) <em><strong>M1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mo>×</mo><mi>ln</mi><mo> </mo><mn>4</mn></mrow></msup><mo>+</mo><mi>c</mi><mo>=</mo><mn>20</mn></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0</strong></em> if candidate has substituted into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math>.</p>
<p> </p>
<p>correct application of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>log</mi><mfenced><msup><mi>a</mi><mi>b</mi></msup></mfenced><mo>=</mo><mi>b</mi><mo> </mo><mi>log</mi><mo> </mo><mi>a</mi></math> rule (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>4</mn><mo>=</mo><mi>ln</mi><mo> </mo><mn>16</mn><mo> </mo><mo>,</mo><mo> </mo><msup><mtext>e</mtext><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></msup><mo> </mo><mo>,</mo><mo> </mo><mi>ln</mi><mo> </mo><msup><mn>4</mn><mn>2</mn></msup></math></p>
<p>correct application of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>ln</mi><mo> </mo><mi>a</mi></mrow></msup><mtext>=</mtext><mtext mathvariant="italic">a</mtext></math> rule (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></msup><mo>=</mo><mn>16</mn><mo> </mo><mo>,</mo><mo> </mo><msup><mfenced><msup><mtext>e</mtext><mrow><mi>ln</mi><mo> </mo><mn>4</mn></mrow></msup></mfenced><mn>2</mn></msup><mo>=</mo><msup><mn>4</mn><mn>2</mn></msup></math></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>×</mo><mn>16</mn><mo>+</mo><mi>c</mi><mo>=</mo><mn>20</mn><mo> </mo><mo>,</mo><mo> </mo><mn>3</mn><mo>×</mo><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mo>+</mo><mi>c</mi><mo>=</mo><mn>20</mn><mo> </mo><mo>,</mo><mo> </mo><mi>c</mi><mo>=</mo><mo>-</mo><mn>28</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup><mo>-</mo><mn>28</mn></math> <em><strong>A1 N4</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = \frac{{3{x^2}}}{{{{({x^3} + 1)}^5}}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(0) = 1">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f'{\text{d}}x,{\text{ }}\int {\frac{{3{x^2}}}{{{{({x^3} + 1)}^5}}}{\text{d}}x} } ">
<mo>∫</mo>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mrow>
</math></span></p>
<p>correct integration by substitution/inspection <strong><em>A2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - \frac{1}{4}{({x^3} + 1)^{ - 4}} + c,{\text{ }}\frac{{ - 1}}{{4{{({x^3} + 1)}^4}}}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>correct substitution into <strong>their </strong>integrated function (must include <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>) <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = \frac{{ - 1}}{{4{{({0^3} + 1)}^4}}} + c,{\text{ }} - \frac{1}{4} + c = 1">
<mn>1</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mn>0</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M0 </em></strong>if candidates substitute into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = \frac{5}{4}">
<mi>c</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - \frac{1}{4}{({x^3} + 1)^{ - 4}} + \frac{5}{4}{\text{ }}\left( { = \frac{{ - 1}}{{4{{({x^3} + 1)}^4}}} + \frac{5}{4},{\text{ }}\frac{{5{{({x^3} + 1)}^4} - 1}}{{4{{({x^3} + 1)}^4}}}} \right)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>5</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong> <strong><em>N4</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{1}{{\sqrt {2x - 1} }}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > \frac{1}{2}">
<mi>x</mi>
<mo>></mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\left( {f\left( x \right)} \right)}^2}{\text{d}}x} ">
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Part of the graph of <em>f</em> is shown in the following diagram.</p>
<p><img src=""></p>
<p>The shaded region <em>R</em> is enclosed by the graph of <em>f</em>, the <em>x</em>-axis, and the lines <em>x</em> = 1 and <em>x</em> = 9 . Find the volume of the solid formed when <em>R</em> is revolved 360° about the <em>x</em>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct working <em><strong>(A1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{2x - 1}}{\text{d}}x,\,\,\int {{{\left( {2x - 1} \right)}^{ - 1}},\,\,\frac{1}{{2x - 1}},\,\,\int {{{\left( {\frac{1}{{\sqrt u }}} \right)}^2}\frac{{{\text{d}}u}}{2}} } } ">
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\int {\left( {f\left( x \right)} \right)} ^2}{\text{d}}x = \frac{1}{2}{\text{ln}}\left( {2x - 1} \right) + c">
<mrow>
<mo>∫</mo>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>A2 N3</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{\text{ln}}\left( {2x - 1} \right)">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula involving <em>f </em><sup>2</sup> (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> / d<em>x</em>) <strong><em>(M1)</em></strong></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_1^9 {{y^2}{\text{d}}x,\,\,} \pi {\int {\left( {\frac{1}{{\sqrt {2x - 1} }}} \right)} ^2}{\text{d}}x,\,\,\left[ {\frac{1}{2}{\text{ln}}\left( {2x - 1} \right)} \right]_1^9">
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mn>9</mn>
</msubsup>
<mrow>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</mrow>
<mi>π</mi>
<mrow>
<mo>∫</mo>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>1</mn>
<mn>9</mn>
</msubsup>
</math></span></p>
<p>substituting limits into <strong>their</strong> integral and subtracting (in any order) <strong><em>(M1)</em></strong></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}\left( {{\text{ln}}\left( {17} \right) - {\text{ln}}\left( 1 \right)} \right),\,\,\pi \left( {0 - \frac{1}{2}{\text{ln}}\left( {2 \times 9 - 1} \right)} \right)">
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>17</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>π</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>9</mn>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct working involving calculating a log value or using log law <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( 1 \right) = 0,\,\,{\text{ln}}\left( {\frac{{17}}{1}} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>17</mn>
</mrow>
<mn>1</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}{\text{ln}}17\,\,\,\,\left( {{\text{accept }}\pi {\text{ln}}\sqrt {17} } \right)">
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mn>17</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>accept </mtext>
</mrow>
<mi>π</mi>
<mrow>
<mtext>ln</mtext>
</mrow>
<msqrt>
<mn>17</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1 N3</strong></em></p>
<p><strong>Note:</strong> Full <em><strong>FT</strong></em> may be awarded as normal, from their incorrect answer in part (a), however, do not award the final two <em><strong>A</strong></em> marks unless they involve logarithms.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>2</mn><mi>x</mi></mfrac><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the normal to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn></mrow></mfenced></math> in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>2</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>6</mn><mi>x</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>+</mo><mn>6</mn><mi>x</mi></math> <em><strong>A1(M1)A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi>x</mi></math> seen, and <em><strong>(M1)</strong></em> for expressing <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>x</mi></mfrac></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> (this can be implied from either <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> seen in their final answer), <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>. Award at most <em><strong>A1(M1)A0</strong></em> if any additional terms are seen.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding gradient at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><menclose notation="right"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></menclose><mrow><mi>x</mi><mo>=</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p>finding the perpendicular gradient <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mo>⊥</mo></msub><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced><mn>1</mn></mfenced><mo>+</mo><mi>c</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>2</mn><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for correctly substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn></math> and their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mo>⊥</mo></msub></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mn>4</mn><mi>y</mi><mo>-</mo><mn>9</mn><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not award the final <em><strong>A1</strong> </em>if the answer is not in the required form. Accept integer multiples of the equation.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Differentiating the function was challenging for many candidates. The most frequently obtained mark was for the term <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi>x</mi></math>. Handling the <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mi>x</mi></mfrac></math> term was problematic and consequently the method mark and final accuracy mark were lost.</p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some good attempts at finding the equation of the normal were seen amongst the few that answered this part. Of those that found an equation in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math> most included fractions thus hardly any fully correct answers were seen.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>a</mi></mrow><mi>x</mi></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The equation of the vertical asymptote of the curve is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>y</mi></mrow><mrow><mtext>d</mtext><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn></math>, the gradient of the tangent to the curve is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn></math> <em><strong>(A1)</strong></em><em><strong> (C1)</strong></em> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for an answer of "<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>".</p>
<p><em><strong><span class="mjpage">[1 mark]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mfrac><mrow><mn>2</mn><mi>a</mi></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <em><strong>(A1)(A1)(A1)</strong></em><em><strong> (C3)</strong></em> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>a</mi></math>, <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>. Award at most <em><strong>(A1)(A1)(A0)</strong></em> if extra terms are seen.</p>
<p><em><strong><span class="mjpage">[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>a</mi></mrow><msup><mn>2</mn><mn>2</mn></msup></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <em>their</em> correctly substituted derivative equated to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math>.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>3</mn></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b) providing their answer is <strong>not</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn></math> as this value contradicts the graph.</p>
<p><em><strong><span class="mjpage">[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 9 - {x^2}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>9</mn>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p>Rectangle PQRS is drawn with P and Q on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and R and S on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p>Let OP = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider another function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {\left( {x - 3} \right)^2} + k">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>k</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-intercepts of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area of PQRS is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18b - 2{b^3}"> <mn>18</mn> <mi>b</mi> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>b</mi> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> such that the area of PQRS is a maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that when the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> intersect, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^2} - 6x + k = 0"> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mo>+</mo> <mi>k</mi> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> intersect only once, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9 - {x^2} = 0"> <mn>9</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span> , one correct solution</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 3"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> </math></span>, 3 (accept (3, 0), (−3, 0)) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> height = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(b)"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </math></span>, base = 2(OP) or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2b"> <mn>2</mn> <mi>b</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2b\left( {9 - {x^2}} \right)"> <mn>2</mn> <mi>b</mi> <mrow> <mo>(</mo> <mrow> <mn>9</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2b \times f(b)"> <mn>2</mn> <mi>b</mi> <mo>×</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </math></span></p>
<p>correct working that clearly leads to given answer <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2b\left( {9 - {b^2}} \right)"> <mn>2</mn> <mi>b</mi> <mrow> <mo>(</mo> <mrow> <mn>9</mn> <mo>−</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>Note: Do not accept sloppy notation <em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2b \times 9 - {b^2}"> <mn>2</mn> <mi>b</mi> <mo>×</mo> <mn>9</mn> <mo>−</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </math></span>.</p>
<p>area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18b - 2{b^3}"> <mn>18</mn> <mi>b</mi> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>b</mi> <mn>3</mn> </msup> </mrow> </math></span> <em><strong>AG N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>setting derivative = 0 (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A' = 0"> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left[ {18b - 2{b^3}} \right]^\prime } = 0"> <mrow> <msup> <mrow> <mo>[</mo> <mrow> <mn>18</mn> <mi>b</mi> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>b</mi> <mn>3</mn> </msup> </mrow> </mrow> <mo>]</mo> </mrow> <mi mathvariant="normal">′</mi> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span> </p>
<p>correct derivative (must be in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> only) (seen anywhere) <em><strong>A2</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18 - 6{b^2}"> <mn>18</mn> <mo>−</mo> <mn>6</mn> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2b\left( { - 2b} \right) + \left( {9 - {b^2}} \right) \times 2"> <mn>2</mn> <mi>b</mi> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>9</mn> <mo>−</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mn>2</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6{b^2} = 18"> <mn>6</mn> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>18</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \pm \sqrt 3 "> <mi>b</mi> <mo>=</mo> <mo>±</mo> <msqrt> <mn>3</mn> </msqrt> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \sqrt 3 "> <mi>b</mi> <mo>=</mo> <msqrt> <mn>3</mn> </msqrt> </math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f = g"> <mi>f</mi> <mo>=</mo> <mi>g</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9 - {x^2} = {\left( {x - 3} \right)^2} + k"> <mn>9</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>k</mi> </math></span> </p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9 - {x^2} = {x^2} - 6x + 9 + k"> <mn>9</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mo>+</mo> <mn>9</mn> <mo>+</mo> <mi>k</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9 - {x^2} - {x^2} + 6x - 9 - k = 0"> <mn>9</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>6</mn> <mi>x</mi> <mo>−</mo> <mn>9</mn> <mo>−</mo> <mi>k</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^2} - 6x + k = 0"> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mo>+</mo> <mi>k</mi> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>AG N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (discriminant)</strong></p>
<p>recognizing to use discriminant (seen anywhere) <em><strong> (M1)</strong></em></p>
<p><em>eg</em> Δ, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{b^2} - 4ac"> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </math></span></p>
<p>discriminant = 0 (seen anywhere) <em><strong>M1</strong></em></p>
<p>correct substitution into discriminant (do not accept only in quadratic formula) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( { - 6} \right)^2} - 4\left( 2 \right)\left( k \right)"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( 6 \right)^2} - 4\left( 2 \right)\left( k \right)"> <mrow> <msup> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="36 - 8k = 0"> <mn>36</mn> <mo>−</mo> <mn>8</mn> <mi>k</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8k = 36"> <mn>8</mn> <mi>k</mi> <mo>=</mo> <mn>36</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{{36}}{8}\,\,\,\,\left( { = \frac{9}{2}{\text{,}}\,\,4.5} \right)"> <mi>k</mi> <mo>=</mo> <mfrac> <mrow> <mn>36</mn> </mrow> <mn>8</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>4.5</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2 (completing the square)</strong></p>
<p>valid approach to complete the square <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\left( {{x^2} - 3x + \frac{9}{4}} \right) = - k + \frac{{18}}{4}"> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mn>9</mn> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mfrac> <mrow> <mn>18</mn> </mrow> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 3x + \frac{9}{4} - \frac{9}{4} + \frac{k}{2} = 0"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mn>9</mn> <mn>4</mn> </mfrac> <mo>−</mo> <mfrac> <mn>9</mn> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\left( {x - \frac{3}{2}} \right)^2} = - k + \frac{{18}}{4}"> <mn>2</mn> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mfrac> <mrow> <mn>18</mn> </mrow> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x - \frac{3}{2}} \right)^2} - \frac{9}{4} + \frac{k}{2} = 0"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mfrac> <mn>9</mn> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>recognizing condition for one solution <em><strong>M1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x - \frac{3}{2}} \right)^2} = 0"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{9}{4} + \frac{k}{2} = 0"> <mo>−</mo> <mfrac> <mn>9</mn> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - k = \frac{{18}}{4}"> <mo>−</mo> <mi>k</mi> <mo>=</mo> <mfrac> <mrow> <mn>18</mn> </mrow> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{k}{2} = \frac{9}{4}"> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mn>9</mn> <mn>4</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{{18}}{4}\,\,\,\,\left( { = \frac{9}{2}{\text{,}}\,\,4.5} \right)"> <mi>k</mi> <mo>=</mo> <mfrac> <mrow> <mn>18</mn> </mrow> <mn>4</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>4.5</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 3 (using vertex)<br></strong></p>
<p>valid approach to find vertex (seen anywhere) <em><strong>M1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {2{x^2} - 6x + k} \right)^\prime } = 0"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mo>+</mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">′</mi> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{b}{{2a}}"> <mo>−</mo> <mfrac> <mi>b</mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {2{x^2} - 6x + k} \right)^\prime } = 4x - 6"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mo>+</mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">′</mi> </msup> </mrow> <mo>=</mo> <mn>4</mn> <mi>x</mi> <mo>−</mo> <mn>6</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{\left( { - 6} \right)}}{{2\left( 2 \right)}}"> <mo>−</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{6}{4}\,\,\left( { = \frac{3}{2}} \right)"> <mi>x</mi> <mo>=</mo> <mfrac> <mn>6</mn> <mn>4</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p>correct substitution <em><strong>(A1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\left( {\frac{3}{2}} \right)^2} - 6\left( {\frac{3}{2}} \right) + k = 0"> <mn>2</mn> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>k</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{{18}}{4}\,\,\,\,\left( { = \frac{9}{2}{\text{,}}\,\,4.5} \right)"> <mi>k</mi> <mo>=</mo> <mfrac> <mrow> <mn>18</mn> </mrow> <mn>4</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>4.5</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {x{{\text{e}}^{{x^2} - 1}}{\text{d}}x} ">
<mo>∫</mo>
<mrow>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = x{{\text{e}}^{{x^2} - 1}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f( - 1) = 3">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach to set up integration by substitution/inspection <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {x^2} - 1,{\text{ d}}u = 2x,{\text{ }}\int {2x{{\text{e}}^{{x^2} - 1}}{\text{d}}x} ">
<mi>u</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span></p>
<p>correct expression <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\int {2x{{\text{e}}^{{x^2} - 1}}{\text{d}}x,{\text{ }}\frac{1}{2}\int {{{\text{e}}^u}{\text{d}}u} } ">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{{\text{e}}^{{x^2} - 1}} + c">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span> <strong><em>A2</em></strong> <strong><em>N4</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>A1</em> </strong>if missing “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + c">
<mo>+</mo>
<mi>c</mi>
</math></span>”.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> into <strong>their </strong>answer from (a) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{{\text{e}}^0},{\text{ }}\frac{1}{2}{{\text{e}}^{1 - 1}} = 3">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>0</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} + c = 3,{\text{ }}c = 2.5">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>c</mi>
<mo>=</mo>
<mn>2.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{2}{{\text{e}}^{{x^2} - 1}} + 2.5">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>2.5</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\left( {{x^3} + x} \right)^{\frac{3}{2}}}">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \sqrt {{x^3} + x} ">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 6 - 3{x^2}\sqrt {{x^3} + x} ">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>6</mn>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 0.</p>
<p>The graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> are shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The shaded region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> is enclosed by the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\left( {3{x^2} + 1} \right)\sqrt {{x^3} + x} } \,{\text{d}}x"> <mo>∫</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of choosing chain rule <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{\text{d}}y}}{{{\text{d}}u}} \times \frac{{{\text{d}}u}}{{{\text{d}}x}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {x^3} + x"> <mi>u</mi> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u' = 3{x^2} + 1"> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{3}{2}{\left( {{x^3} + x} \right)^{\frac{1}{2}}}\left( {3{x^2} + 1} \right)\,\,\,\left( { = \frac{3}{2}\sqrt {{x^3} + x} \left( {3{x^2} + 1} \right)} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A2 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>integrating by inspection from (a) or by substitution <em><strong>(M1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}\int {\frac{3}{2}} \left( {3{x^2} + 1} \right)\sqrt {{x^3} + x} \,{\text{d}}x"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo>∫</mo> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {x^3} + x"> <mi>u</mi> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </math></span>, <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} = 3{x^2} + 1"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </math></span></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{u^{\frac{1}{2}}}} "> <mo>∫</mo> <mrow> <mrow> <msup> <mi>u</mi> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{u^{\frac{3}{2}}}}}{{1.5}}"> <mfrac> <mrow> <mrow> <msup> <mi>u</mi> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mrow> <mn>1.5</mn> </mrow> </mfrac> </math></span></p>
<p>correct integrated expression in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <em><strong>A2 N3</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}{\left( {{x^3} + x} \right)^{\frac{3}{2}}} + C"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>+</mo> <mi>C</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left( {{x^3} + x} \right)}^{1.5}}}}{{1.5}} + C"> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1.5</mn> </mrow> </msup> </mrow> </mrow> <mrow> <mn>1.5</mn> </mrow> </mfrac> <mo>+</mo> <mi>C</mi> </math></span></p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>integrating and subtracting functions (in any order) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {g - f} "> <mo>∫</mo> <mrow> <mi>g</mi> <mo>−</mo> <mi>f</mi> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f - \int g } "> <mo>∫</mo> <mrow> <mi>f</mi> <mo>−</mo> <mo>∫</mo> <mi>g</mi> </mrow> </math></span></p>
<p>correct integral (including limits, accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{d}}x}"> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>) <em><strong>A1 N2</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {\left( {g - f} \right)} \,{\text{d}}x"> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mo>−</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {6 - 3{x^2}\sqrt {{x^3} + x} - \sqrt {{x^3} + x} } \,{\text{d}}x"> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mn>6</mn> <mo>−</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> <mo>−</mo> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {g\left( x \right) - } \int_0^1 {f\left( x \right)} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>−</mo> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math></span></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{x^3} + x} "> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> </math></span> is a common factor (seen anywhere, may be seen in part (c)) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 3{x^2} - 1} \right)\sqrt {{x^3} + x} "> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {6 - \left( {3{x^2} + 1} \right)} \sqrt {{x^3} + x} "> <mo>∫</mo> <mrow> <mn>6</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3{x^2} - 1} \right)\sqrt {{x^3} + x} "> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </msqrt> </math></span></p>
<p>correct integration <em><strong>(A1)(A1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x - \frac{2}{3}{\left( {{x^3} + x} \right)^{\frac{3}{2}}}"> <mn>6</mn> <mi>x</mi> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </math></span></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x"> <mn>6</mn> <mi>x</mi> </math></span> and award <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}{\left( {{x^3} + x} \right)^{\frac{3}{2}}}"> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </math></span>.</p>
<p>substituting limits into <strong>their</strong> integrated function and subtracting (in any order) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - \frac{2}{3}{\left( {{1^3} + 1} \right)^{\frac{3}{2}}}"> <mn>6</mn> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>1</mn> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 - \left[ {6 - \frac{2}{3}{{\left( {{1^3} + 1} \right)}^{\frac{3}{2}}}} \right]"> <mn>0</mn> <mo>−</mo> <mrow> <mo>[</mo> <mrow> <mn>6</mn> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>1</mn> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>]</mo> </mrow> </math></span></p>
<p>correct working <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - \frac{2}{3} \times 2\sqrt 2 "> <mn>6</mn> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo>×</mo> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - \frac{2}{3} \times \sqrt 4 \times \sqrt 2 "> <mn>6</mn> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo>×</mo> <msqrt> <mn>4</mn> </msqrt> <mo>×</mo> <msqrt> <mn>2</mn> </msqrt> </math></span></p>
<p>area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R = 6 - \frac{{4\sqrt 2 }}{3}\,\,\,\left( { = 6 - \frac{2}{3}\sqrt 8 {\text{,}}\,\,\,6 - \frac{2}{3} \times {2^{\frac{3}{2}}}{\text{,}}\,\,\,\frac{{18 - 4\sqrt 2 }}{3}} \right)"> <mi>R</mi> <mo>=</mo> <mn>6</mn> <mo>−</mo> <mfrac> <mrow> <mn>4</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>6</mn> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <msqrt> <mn>8</mn> </msqrt> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>6</mn> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo>×</mo> <mrow> <msup> <mn>2</mn> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>18</mn> <mo>−</mo> <mn>4</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 6{x^2} - 3x">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>6</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mi>x</mi>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\left( {6{x^2} - 3x} \right){\text{d}}x} ">
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, the <em>x</em>-axis and the lines <em>x</em> = 1 and <em>x</em> = 2 .</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3} - \frac{{3{x^2}}}{2} + c\,\,\,\left( {{\text{accept}}\,\,\frac{{6{x^3}}}{3} - \frac{{3{x^2}}}{2} + c} \right)">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>accept</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>6</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1A1 N2</strong></em></p>
<p><strong>Notes:</strong> Award <em><strong>A1A0</strong></em> for both correct terms if +<em>c</em> is omitted.<br>Award <em><strong>A1A0</strong></em> for one correct term <em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3} + c">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span>.<br>Award <em><strong>A1A0</strong></em> if both terms are correct, but candidate attempts further working to solve for <em>c</em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitution of limits or function <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_1^2 {f\left( x \right)} \,{\text{d}}x,\,\,\left[ {2{x^3} - \frac{{3{x^2}}}{2}} \right]_1^2">
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mn>2</mn>
</msubsup>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mn>1</mn>
<mn>2</mn>
</msubsup>
</math></span></p>
<p>substituting limits into their integrated function and subtracting <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6 \times {2^3}}}{3} - \frac{{3 \times {2^2}}}{2} - \left( {\frac{{6 \times {1^3}}}{3} + \frac{{3 \times {1^2}}}{2}} \right)">
<mfrac>
<mrow>
<mn>6</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>6</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>1</mn>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>1</mn>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>if substituted into original function.</p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6 \times 8}}{3} - \frac{{3 \times 4}}{2} - \frac{{6 \times 1}}{3} + \frac{{3 \times 1}}{2},\,\,\left( {16 - 6} \right) - \left( {2 - \frac{3}{2}} \right)">
<mfrac>
<mrow>
<mn>6</mn>
<mo>×</mo>
<mn>8</mn>
</mrow>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mn>4</mn>
</mrow>
<mn>2</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>6</mn>
<mo>×</mo>
<mn>1</mn>
</mrow>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mn>1</mn>
</mrow>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>16</mn>
<mo>−</mo>
<mn>6</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{19}}{2}">
<mfrac>
<mrow>
<mn>19</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The values of the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> and their derivatives for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8">
<mi>x</mi>
<mo>=</mo>
<mn>8</mn>
</math></span> are shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_16.42.43.png" alt="M17/5/MATME/SP1/ENG/TZ2/06"></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(x) = f(x)g(x)">
<mi>h</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(1)">
<mi>h</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(8)">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>expressing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(1)">
<mi>h</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> as a product of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(1)">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1) \times g(1),{\text{ }}2(9)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(1) = 18">
<mi>h</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>18</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use product rule (do <strong>not </strong>accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h’ = f' \times g’">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo>×</mo>
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
</math></span>) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h’ = fg' + gf',{\text{ }}h'(8) = f'(8)g(8) + g’(8)f(8)">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mi>f</mi>
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo>+</mo>
<mi>g</mi>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p>correct substitution of values into product rule <strong><em>(A1) </em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h’(8) = 4(5) + 2( - 3),{\text{ }} - 6 + 20">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mn>5</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mo>+</mo>
<mn>20</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h’(8) = 14">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>14</mn>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \cos x">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>cos</mi>
<mo><!-- --></mo>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {x^k}">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mi>k</mi>
</msup>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in {\mathbb{Z}^ + }">
<mi>k</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 21">
<mi>k</mi>
<mo>=</mo>
<mn>21</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(x) = \left( {{f^{(19)}}(x) \times {g^{(19)}}(x)} \right)">
<mi>h</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find the first four derivatives of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p>(ii) Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{(19)}}(x)">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find the first three derivatives of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p>(ii) Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{(19)}}(x) = \frac{{k!}}{{(k - p)!}}({x^{k - 19}})">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(x)">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p>(ii) Hence, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(\pi ) = \frac{{ - 21!}}{2}{\pi ^2}">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x) = - \sin x,{\text{ }}f''(x) = - \cos x,{\text{ }}{f^{(3)}}(x) = \sin x,{\text{ }}{f^{(4)}}(x) = \cos x">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</math></span> <strong><em>A2 N2</em></strong></p>
<p>(ii) valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>recognizing that 19 is one less than a multiple of 4, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{(19)}}(x) = {f^{(3)}}(x)">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{(19)}}(x) = \sin x">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = k{x^{k - 1}}">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g''(x) = k(k - 1){x^{k - 2}},{\text{ }}{g^{(3)}}(x) = k(k - 1)(k - 2){x^{k - 3}}">
<msup>
<mi>g</mi>
<mo>″</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>k</mi>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>k</mi>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span> <strong><em>A1A1 N2</em></strong></p>
<p>(ii) <strong>METHOD 1</strong></p>
<p>correct working that leads to the correct answer, involving the correct expression for the 19th derivative <strong><em>A2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k(k - 1)(k - 2) \ldots (k - 18) \times \frac{{(k - 19)!}}{{(k - 19)!}},{{\text{ }}_k}{P_{19}}">
<mi>k</mi>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>…</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>18</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<msub>
<mrow>
<mtext> </mtext>
</mrow>
<mi>k</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mn>19</mn>
</mrow>
</msub>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 19">
<mi>p</mi>
<mo>=</mo>
<mn>19</mn>
</math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{k!}}{{(k - 19)!}}{x^{k - 19}}">
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</math></span>) <strong><em>A1 N1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>correct working involving recognizing patterns in coefficients of first three derivatives (may be seen in part (b)(i)) leading to a general rule for 19th coefficient <strong><em>A2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'' = 2!\left( {\begin{array}{*{20}{c}} k \\ 2 \end{array}} \right),{\text{ }}k(k - 1)(k - 2) = \frac{{k!}}{{(k - 3)!}},{\text{ }}{g^{(3)}}(x){ = _k}{P_3}({x^{k - 3}})">
<msup>
<mi>g</mi>
<mo>″</mo>
</msup>
<mo>=</mo>
<mn>2</mn>
<mo>!</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>k</mi>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<msub>
<mo>=</mo>
<mi>k</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>P</mi>
<mn>3</mn>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{(19)}}(x) = 19!\left( {\begin{array}{*{20}{c}} k \\ {19} \end{array}} \right),{\text{ }}19! \times \frac{{k!}}{{(k - 19)! \times 19!}},{{\text{ }}_k}{P_{19}}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>19</mn>
<mo>!</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>19</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>19</mn>
<mo>!</mo>
<mo>×</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
<mo>×</mo>
<mn>19</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<msub>
<mrow>
<mtext> </mtext>
</mrow>
<mi>k</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mn>19</mn>
</mrow>
</msub>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 19">
<mi>p</mi>
<mo>=</mo>
<mn>19</mn>
</math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{k!}}{{(k - 19)!}}{x^{k - 19}}">
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</math></span>) <strong><em>A1 N1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) valid approach using product rule <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="uv' + vu',{\text{ }}{f^{(19)}}{g^{(20)}} + {f^{(20)}}{g^{(19)}}">
<mi>u</mi>
<msup>
<mi>v</mi>
<mo>′</mo>
</msup>
<mo>+</mo>
<mi>v</mi>
<msup>
<mi>u</mi>
<mo>′</mo>
</msup>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>correct 20th derivatives (must be seen in product rule) <strong><em>(A1)(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{(20)}}(x) = \frac{{21!}}{{(21 - 20)!}}x,{\text{ }}{f^{(20)}}(x) = \cos x">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>21</mn>
<mo>−</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(x) = \sin x(21!x) + \cos x\left( {\frac{{21!}}{2}{x^2}} \right){\text{ }}\left( {{\text{accept }}\sin x\left( {\frac{{21!}}{{1!}}x} \right) + \cos x\left( {\frac{{21!}}{{2!}}{x^2}} \right)} \right)">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mo stretchy="false">(</mo>
<mn>21</mn>
<mo>!</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>accept </mtext>
</mrow>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mn>1</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mn>2</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1 N3</em></strong></p>
<p>(ii) substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pi ">
<mi>x</mi>
<mo>=</mo>
<mi>π</mi>
</math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{(19)}}(\pi ){g^{(20)}}(\pi ) + {f^{(20)}}(\pi ){g^{(19)}}(\pi ),{\text{ }}\sin \pi \frac{{21!}}{{1!}}\pi + \cos \pi \frac{{21!}}{{2!}}{\pi ^2}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>sin</mi>
<mo></mo>
<mi>π</mi>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mn>1</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mi>π</mi>
<mo>+</mo>
<mi>cos</mi>
<mo></mo>
<mi>π</mi>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mn>2</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>evidence of one correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \pi ">
<mi>sin</mi>
<mo></mo>
<mi>π</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \pi ">
<mi>cos</mi>
<mo></mo>
<mi>π</mi>
</math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \pi = 0,{\text{ }}\cos \pi = - 1">
<mi>sin</mi>
<mo></mo>
<mi>π</mi>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>cos</mi>
<mo></mo>
<mi>π</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span></p>
<p>evidence of correct values substituted into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(\pi )">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="21!(\pi )\left( {0 - \frac{\pi }{{2!}}} \right),{\text{ }}21!(\pi )\left( { - \frac{\pi }{2}} \right),{\text{ }}0 + ( - 1)\frac{{21!}}{2}{\pi ^2}">
<mn>21</mn>
<mo>!</mo>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>2</mn>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>21</mn>
<mo>!</mo>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p> </p>
<p><strong>Note: </strong>If candidates write only the first line followed by the answer, award <strong><em>A1A0A0</em></strong>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 21!}}{2}{\pi ^2}">
<mfrac>
<mrow>
<mo>−</mo>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> <strong><em>AG N0</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle P starts from point O and moves along a straight line. The graph of its velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> ms<sup>−1</sup> after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds, for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 6 , is shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>-intercepts when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0, 2 and 4.</p>
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( t \right)">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> represents the displacement of P from O after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds.</p>
<p>It is known that P travels a distance of 15 metres in the first 2 seconds. It is also known that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 2 \right) = s\left( 5 \right)">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_2^4 {v\,{\text{d}}t} = 9">
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mrow>
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
<mo>=</mo>
<mn>9</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 4 \right) - s\left( 2 \right)"> <mi>s</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>−</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled in the first 5 seconds.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>recognizing relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s"> <mi>s</mi> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {v = s} "> <mo>∫</mo> <mrow> <mi>v</mi> <mo>=</mo> <mi>s</mi> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s' = v"> <msup> <mi>s</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>v</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 4 \right) - s\left( 2 \right) = 9"> <mi>s</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>−</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>9</mn> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correctly interpreting distance travelled in first 2 seconds (seen anywhere, including part (a) or the area of 15 indicated on diagram) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^2 {v = 15} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>2</mn> </msubsup> <mrow> <mi>v</mi> <mo>=</mo> <mn>15</mn> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 2 \right) = 15"> <mi>s</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>15</mn> </math></span></p>
<p>valid approach to find total distance travelled <em><strong>(M1)</strong></em></p>
<p><em>eg</em> sum of 3 areas, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^4 {v + } \int_4^5 v "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>4</mn> </msubsup> <mrow> <mi>v</mi> <mo>+</mo> </mrow> <msubsup> <mo>∫</mo> <mn>4</mn> <mn>5</mn> </msubsup> <mi>v</mi> </math></span>, shaded areas in diagram between 0 and 5</p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>if only <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^5 {\left| v \right|} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>5</mn> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </mrow> </math></span> is seen.</p>
<p>correct working towards finding distance travelled between 2 and 5 (seen anywhere including within total area expression or on diagram) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_2^4 {v - } \int_4^5 v "> <msubsup> <mo>∫</mo> <mn>2</mn> <mn>4</mn> </msubsup> <mrow> <mi>v</mi> <mo>−</mo> </mrow> <msubsup> <mo>∫</mo> <mn>4</mn> <mn>5</mn> </msubsup> <mi>v</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_2^4 {v = } \int_4^5 {\left| v \right|} "> <msubsup> <mo>∫</mo> <mn>2</mn> <mn>4</mn> </msubsup> <mrow> <mi>v</mi> <mo>=</mo> </mrow> <msubsup> <mo>∫</mo> <mn>4</mn> <mn>5</mn> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_4^5 {v\,{\text{d}}t} = - 9"> <msubsup> <mo>∫</mo> <mn>4</mn> <mn>5</mn> </msubsup> <mrow> <mi>v</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> <mo>=</mo> <mo>−</mo> <mn>9</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 4 \right) - s\left( 2 \right) - \left[ {s\left( 5 \right) - s\left( 4 \right)} \right]"> <mi>s</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>−</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>[</mo> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mo>−</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </math></span>,</p>
<p>equal areas <img src=""></p>
<p>correct working using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 5 \right) = s\left( 2 \right)"> <mi>s</mi> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 + 9 - \left( { - 9} \right)"> <mn>15</mn> <mo>+</mo> <mn>9</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>9</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 + 2\left[ {s\left( 4 \right) - s\left( 2 \right)} \right]"> <mn>15</mn> <mo>+</mo> <mn>2</mn> <mrow> <mo>[</mo> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>−</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 + 2\left( 9 \right)"> <mn>15</mn> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times s\left( 4 \right) - s\left( 2 \right)"> <mn>2</mn> <mo>×</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>−</mo> <mi>s</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="48 - 15"> <mn>48</mn> <mo>−</mo> <mn>15</mn> </math></span></p>
<p>total distance travelled = 33 (m) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 15 - {x^2}"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>15</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}"> <mi>x</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> and the rectangle OABC, where A is on the negative <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis, B is on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, and C is on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_13.13.04.png" alt="N17/5/MATME/SP1/ENG/TZ0/06"></p>
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of A that gives the maximum area of OABC.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to find the area of OABC <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OA}} \times {\text{OC, }}x \times f(x),{\text{ }}f(x) \times ( - x)"> <mrow> <mtext>OA</mtext> </mrow> <mo>×</mo> <mrow> <mtext>OC, </mtext> </mrow> <mi>x</mi> <mo>×</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>×</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span></p>
<p>correct expression for area in one variable <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = x(15 - {x^2}),{\text{ }}15x - {x^3},{\text{ }}{x^3} - 15x"> <mrow> <mtext>area</mtext> </mrow> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>15</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>15</mn> <mi>x</mi> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>15</mn> <mi>x</mi> </math></span></p>
<p>valid approach to find maximum <strong>area</strong> (seen anywhere) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A’(x) = 0"> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct derivative <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 - 3{x^2},{\text{ }}(15 - {x^2}) + x( - 2x) = 0,{\text{ }} - 15 + 3{x^2}"> <mn>15</mn> <mo>−</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>15</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>15</mn> <mo>+</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 = 3{x^2},{\text{ }}{x^2} = 5,{\text{ }}x = \sqrt 5 "> <mn>15</mn> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>=</mo> <msqrt> <mn>5</mn> </msqrt> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \sqrt 5 {\text{ }}\left( {{\text{accept A}}\left( { - \sqrt 5 ,{\text{ }}0} \right)} \right)"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <msqrt> <mn>5</mn> </msqrt> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>accept A</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <msqrt> <mn>5</mn> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A2 N3</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>. The line <em>L</em><sub>1</sub> with equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 3x + 1">
<mi>y</mi>
<mo>=</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</math></span> is a tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span></p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = f\left( {{x^2} + 1} \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and P be the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 2 \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 2 \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the graph of <em>g</em> has a gradient of 6 at P.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <em>L</em><sub>2</sub> be the tangent to the graph of <em>g</em> at P. <em>L</em><sub>1</sub> intersects <em>L</em><sub>2</sub> at the point Q.</p>
<p>Find the y-coordinate of Q.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognize that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is the gradient of the tangent at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = m"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>m</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 2 \right) = 3"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>3</mn> </math></span> (accept <em>m</em> = 3) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 2 \right) = y\left( 2 \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>y</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 2 \right) = 3 \times 2 + 1"> <mi>f</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>3</mn> <mo>×</mo> <mn>2</mn> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 2 \right) = 7"> <mi>f</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>7</mn> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize that the gradient of the graph of <em>g</em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( x \right)"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p>choosing chain rule to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( x \right)"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}u}} \times \frac{{{\text{d}}u}}{{{\text{d}}x}},\,\,u = {x^2} + 1,\,\,u' = 2x"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>u</mi> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>2</mn> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( x \right) = f'\left( {{x^2} + 1} \right) \times 2x"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mn>2</mn> <mi>x</mi> </math></span> <em><strong>A2</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( 1 \right) = 3 \times 2"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>3</mn> <mo>×</mo> <mn>2</mn> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( 1 \right) = 6"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> </math></span> <em><strong>AG N0 </strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> at Q, <em>L</em><sub>1</sub> = <em>L</em><sub>2</sub> (seen anywhere) <em><strong> (M1)</strong></em></p>
<p>recognize that the gradient of <em>L</em><sub>2</sub> is <em>g'</em>(1) (seen anywhere) <em><strong> (M1)</strong></em><br><em>eg</em> <em>m</em> = 6</p>
<p>finding <em>g </em>(1) (seen anywhere) <em><strong>(A1)</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( 1 \right) = f\left( 2 \right),\,\,g\left( 1 \right) = 7"> <mi>g</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>g</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>7</mn> </math></span></p>
<p>attempt to substitute gradient and/or coordinates into equation of a straight line <em><strong>M1</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - g\left( 1 \right) = 6\left( {x - 1} \right),\,\,y - 1 = g'\left( 1 \right)\left( {x - 7} \right),\,\,7 = 6\left( 1 \right) + {\text{b}}"> <mi>y</mi> <mo>−</mo> <mi>g</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>−</mo> <mn>1</mn> <mo>=</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>7</mn> <mo>=</mo> <mn>6</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>b</mtext> </mrow> </math></span></p>
<p>correct equation for <em>L</em><sub>2</sub> </p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 7 = 6\left( {x - 1} \right),\,\,y = 6x + 1"> <mi>y</mi> <mo>−</mo> <mn>7</mn> <mo>=</mo> <mn>6</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <mn>6</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </math></span> <em><strong>A1</strong></em></p>
<p>correct working to find Q <em><strong>(A1)</strong></em><br><em>eg </em>same <em>y</em>-intercept, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x = 0"> <mn>3</mn> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1"> <mi>y</mi> <mo>=</mo> <mn>1</mn> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A closed cylindrical can with radius r centimetres and height h centimetres has a volume of 20<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π<!-- π --></mi>
</math></span> cm<sup>3</sup>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The material for the base and top of the can costs 10 cents per cm<sup>2</sup> and the material for the curved side costs 8 cents per cm<sup>2</sup>. The total cost of the material, in cents, is <em>C</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <em>h</em> in terms of <em>r.</em></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 20\pi {r^2} + \frac{{320\pi }}{r}">
<mi>C</mi>
<mo>=</mo>
<mn>20</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mi>r</mi>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that there is a minimum value for <em>C</em>, find this minimum value in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct equation for volume <strong><em>(A1)</em></strong><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}h = 20\pi ">
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>h</mi>
<mo>=</mo>
<mn>20</mn>
<mi>π</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{20}}{{{r^2}}}">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>20</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find formula for cost of parts <em><strong> (M1)</strong></em><br><em>eg </em> 10 × two circles, 8 × curved side</p>
<p>correct expression for cost of two circles in terms of <em>r</em> (seen anywhere) <em><strong>A1</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi {r^2} \times 10">
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>10</mn>
</math></span></p>
<p>correct expression for cost of curved side (seen anywhere) <em><strong>(A1)</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r \times h \times 8">
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mo>×</mo>
<mi>h</mi>
<mo>×</mo>
<mn>8</mn>
</math></span></p>
<p>correct expression for cost of curved side in terms of <em>r </em> <em><strong>A1</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8 \times 2\pi r \times \frac{{20}}{{{r^2}}},\,\,\frac{{320\pi }}{{{r^2}}}">
<mn>8</mn>
<mo>×</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mo>×</mo>
<mfrac>
<mrow>
<mn>20</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 20\pi {r^2} + \frac{{320\pi }}{r}">
<mi>C</mi>
<mo>=</mo>
<mn>20</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mi>r</mi>
</mfrac>
</math></span> <em><strong>AG N0</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C' = 0">
<msup>
<mi>C</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>0</mn>
</math></span> at minimum <em><strong>(R1)</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C' = 0,\,\,\frac{{{\text{d}}C}}{{{\text{d}}r}} = 0">
<msup>
<mi>C</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>C</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct differentiation (may be seen in equation)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C' = 40\pi r - \frac{{320\pi }}{{{r^2}}}">
<msup>
<mi>C</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>40</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>A1A1</strong></em></p>
<p>correct equation <em><strong>A1</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="40\pi r - \frac{{320\pi }}{{{r^2}}} = 0,\,\,40\pi r\frac{{320\pi }}{{{r^2}}}">
<mn>40</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>40</mn>
<mi>π</mi>
<mi>r</mi>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="40{r^3} = 320,\,\,{r^3} = 8">
<mn>40</mn>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>320</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>8</mn>
</math></span></p>
<p><em>r</em> = 2 (m) <em><strong>A1</strong></em></p>
<p>attempt to substitute <strong>their</strong> value of <em>r</em> into <em>C</em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20\pi \times 4 + 320 \times \frac{\pi }{2}">
<mn>20</mn>
<mi>π</mi>
<mo>×</mo>
<mn>4</mn>
<mo>+</mo>
<mn>320</mn>
<mo>×</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p>correct working<br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="80\pi + 160\pi ">
<mn>80</mn>
<mi>π</mi>
<mo>+</mo>
<mn>160</mn>
<mi>π</mi>
</math></span> <em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="240\pi ">
<mn>240</mn>
<mi>π</mi>
</math></span> (cents) <em><strong>A1 N3</strong></em></p>
<p><strong>Note:</strong> Do not accept 753.6, 753.98 or 754, even if 240<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> is seen.</p>
<p><em><strong>[9 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x) = {\sin ^3}(2x)\cos (2x)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>sin</mi>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mi>cos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {\frac{\pi }{4}} \right) = 1">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of integration <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f'(x){\text{d}}x} ">
<mo>∫</mo>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span></p>
<p>correct integration (accept missing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>) <strong><em>(A2)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \frac{{{{\sin }^4}(2x)}}{4},{\text{ }}\frac{1}{8}{\sin ^4}(2x) + C">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mi>sin</mi>
</mrow>
<mn>4</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mrow>
<msup>
<mi>sin</mi>
<mn>4</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p>substituting initial condition into their integrated expression (must have <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + C">
<mo>+</mo>
<mi>C</mi>
</math></span>) <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = \frac{1}{8}{\sin ^4}\left( {\frac{\pi }{2}} \right) + C">
<mn>1</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mrow>
<msup>
<mi>sin</mi>
<mn>4</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M0 </em></strong>if they substitute into the original or differentiated function.</p>
<p> </p>
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \left( {\frac{\pi }{2}} \right) = 1">
<mi>sin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = \frac{1}{8}{(1)^4} + C">
<mn>1</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = \frac{7}{8}">
<mi>C</mi>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mn>8</mn>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{8}{\sin ^4}(2x) + \frac{7}{8}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mrow>
<msup>
<mi>sin</mi>
<mn>4</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mfrac>
<mn>7</mn>
<mn>8</mn>
</mfrac>
</math></span> <strong><em>A1 N5</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \log k(6x - 3{x^2})">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>log</mi>
<mo></mo>
<mi>k</mi>
<mo stretchy="false">(</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < 2">
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>2</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k > 0">
<mi>k</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
</math></span> has exactly one solution. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1 – using discriminant</strong></p>
<p>correct equation without logs <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x - 3{x^2} = {k^2}">
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3{x^2} + 6x - {k^2} = 0,{\text{ }}3{x^2} - 6x + {k^2} = 0">
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>recognizing discriminant must be zero (seen anywhere) <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta = 0">
<mi mathvariant="normal">Δ</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct discriminant <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{6^2} - 4( - 3)( - {k^2}),{\text{ }}36 - 12{k^2} = 0">
<mrow>
<msup>
<mn>6</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>36</mn>
<mo>−</mo>
<mn>12</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12{k^2} = 36,{\text{ }}{k^2} = 3">
<mn>12</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>36</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \sqrt 3 ">
<mi>k</mi>
<mo>=</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <strong><em>A2 N2</em></strong></p>
<p><strong>METHOD 2 – completing the square</strong></p>
<p>correct equation without logs <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x - 3{x^2} = {k^2}">
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>valid approach to complete the square <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3({x^2} - 2x + 1) = - {k^2} + 3,{\text{ }}{x^2} - 2x + 1 - 1 + \frac{{{k^2}}}{3} = 0">
<mn>3</mn>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{(x - 1)^2} = - {k^2} + 3,{\text{ }}{(x - 1)^2} - 1 + \frac{{{k^2}}}{3} = 0">
<mn>3</mn>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>recognizing conditions for one solution <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(x - 1)^2} = 0,{\text{ }} - 1 + \frac{{{k^2}}}{3} = 0">
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{k^2}}}{3} = 1,{\text{ }}{k^2} = 3">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \sqrt 3 ">
<mi>k</mi>
<mo>=</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <strong> <em>A2 N2</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{6 - 2x}}{{\sqrt {16 + 6x - {x^2}} }}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p>The region <em>R</em> is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis, and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis. Find the area of <em>R</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong> (limits in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>)</p>
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6 - 2x}}{{\sqrt {16 + 6x - {x^2}} }} = 0">
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - 2x = 0">
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept is 3 <em><strong>(A1)</strong></em></p>
<p>valid approach using substitution or inspection <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 16 + 6x - {x^2}">
<mi>u</mi>
<mo>=</mo>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^3 {\frac{{6 - 2x}}{{\sqrt u }}} {\text{d}}x">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>3</mn>
</msubsup>
<mrow>
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}u = 6 - 2x">
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{\sqrt u }}} ">
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{u^{\frac{1}{2}}}">
<mn>2</mn>
<mrow>
<msup>
<mi>u</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>,</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \sqrt {16 + 6x - {x^2}} ">
<mi>u</mi>
<mo>=</mo>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} = \left( {6 - 2x} \right)\frac{1}{2}{\left( {16 + 6x - {x^2}} \right)^{ - \frac{1}{2}}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int 2 \,{\text{d}}u">
<mo>∫</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2u">
<mn>2</mn>
<mi>u</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f\left( x \right)} \,{\text{d}}x = 2\sqrt {16 + 6x - {x^2}} ">
<mo>∫</mo>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span> <em><strong>(A2)</strong></em></p>
<p>substituting <strong>both</strong> of <strong>their</strong> limits into <strong>their</strong> integrated function and subtracting <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {16 + 6\left( 3 \right) - {3^2}} - 2\sqrt {16 + 6{{\left( 0 \right)}^2} - {0^2}} ">
<mn>2</mn>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mn>3</mn>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mn>0</mn>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {16 + 18 - 9} - 2\sqrt {16} ">
<mn>2</mn>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>18</mn>
<mo>−</mo>
<mn>9</mn>
</msqrt>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
</msqrt>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>M0</strong></em> if they substitute into original or differentiated function. Do not accept only “– 0” as evidence of substituting lower limit.</p>
<p> </p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {25} - 2\sqrt {16} ">
<mn>2</mn>
<msqrt>
<mn>25</mn>
</msqrt>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 - 8">
<mn>10</mn>
<mo>−</mo>
<mn>8</mn>
</math></span></p>
<p>area = 2 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 2</strong> (limits in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span>)</p>
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6 - 2x}}{{\sqrt {16 + 6x - {x^2}} }} = 0">
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - 2x = 0">
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept is 3 <em><strong>(A1)</strong></em></p>
<p>valid approach using substitution or inspection <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 16 + 6x - {x^2}">
<mi>u</mi>
<mo>=</mo>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^3 {\frac{{6 - 2x}}{{\sqrt u }}} {\text{d}}x">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>3</mn>
</msubsup>
<mrow>
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}u = 6 - 2x">
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{\sqrt u }}} ">
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
</math></span>, </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \sqrt {16 + 6x - {x^2}} ">
<mi>u</mi>
<mo>=</mo>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} = \left( {6 - 2x} \right)\frac{1}{2}{\left( {16 + 6x - {x^2}} \right)^{ - \frac{1}{2}}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int 2 \,{\text{d}}u">
<mo>∫</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span></p>
<p>correct integration <em><strong>(A2)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{\sqrt u }}} \,{\text{d}}u = 2{u^{\frac{1}{2}}}">
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>u</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int 2 \,{\text{d}}u = 2u">
<mo>∫</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>2</mn>
<mi>u</mi>
</math></span></p>
<p>both correct limits for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> = 16 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> = 25, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{16}^{25} {\frac{1}{{\sqrt u }}{\text{d}}u} ">
<msubsup>
<mo>∫</mo>
<mrow>
<mn>16</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</msubsup>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {2{u^{\frac{1}{2}}}} \right]_{16}^{25}">
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>u</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mrow>
<mn>16</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</msubsup>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> = 4 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> = 5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_4^5 2 \,{\text{d}}u">
<msubsup>
<mo>∫</mo>
<mn>4</mn>
<mn>5</mn>
</msubsup>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {2u} \right]_4^5">
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mn>2</mn>
<mi>u</mi>
</mrow>
<mo>]</mo>
</mrow>
<mn>4</mn>
<mn>5</mn>
</msubsup>
</math></span></p>
<p>substituting <strong>both</strong> of <strong>their</strong> limits for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> (do not accept 0 and 3) into <strong>their</strong> integrated function and subtracting <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {25} - 2\sqrt {16} ">
<mn>2</mn>
<msqrt>
<mn>25</mn>
</msqrt>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 - 8">
<mn>10</mn>
<mo>−</mo>
<mn>8</mn>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>if they substitute into original or differentiated function, or if they have not attempted to find limits for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span>.</p>
<p> </p>
<p>area = 2 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong><em>[8 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The derivative of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x) = 2{{\text{e}}^{ - 3x}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> passes through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{3}{\text{,}}\,\,5} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing to integrate <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f'} ">
<mo>∫</mo>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {2{{\text{e}}^{ - 3x}}{\text{d}}x} ">
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}u = - 3">
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span></p>
<p>correct integral (do not penalize for missing +<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>) <em><strong>(A2)</strong><br></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}{{\text{e}}^{ - 3x}} + C">
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{3}{\text{,}}\,\,5} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (in any order) into <strong>their</strong> integrated expression (must have +<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>) <em><strong>M1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}{{\text{e}}^{ - 3\left( {1/3} \right)}} + C = 5">
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mrow>
<mo>/</mo>
</mrow>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>C</mi>
<mo>=</mo>
<mn>5</mn>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>if they substitute into original or differentiated function.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - \frac{2}{3}{{\text{e}}^{ - 3x}} + 5 + \frac{2}{3}{{\text{e}}^{ - 1}}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> (or <em>any</em> equivalent form, <em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}{{\text{e}}^{ - 3x}} + 5 - \frac{2}{{ - 3{\text{e}}}}">
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>) <em><strong>A1 N4</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>