File "markSceme-HL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 5/markSceme-HL-paper3html
File size: 446.71 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p><strong>This question explores models for the height of water in a cylindrical container as&nbsp;water drains out.</strong></p>
<p><br>The diagram shows a cylindrical water container of height <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>2</mn></math> metres and base radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> metre.&nbsp;At the base of the container is a small circular valve, which enables water to drain out.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Eva closes the valve and fills the container with water.</p>
<p style="text-align: left;">At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, Eva opens the valve. She records the height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres, of water remaining in&nbsp;the container every <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> minutes.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Eva first tries to model the height using a linear function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mi>t</mi><mo>+</mo><mi>b</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="specification">
<p>Eva uses the equation of the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, to predict the time it will take for all&nbsp;the water to drain out of the container.</p>
</div>

<div class="specification">
<p>Eva thinks she can improve her model by using a quadratic function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>p</mi><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>t</mi><mo>+</mo><mi>r</mi></math>,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&#160;</mo><mi>q</mi><mo>,</mo><mo>&#160;</mo><mi>r</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="specification">
<p>Eva uses this equation to predict the time it will take for all the water to drain out of the&nbsp;container and obtains an answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> minutes.</p>
</div>

<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> be the volume, in cubic metres, of water in the container at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp;minutes.<br>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> be the radius, in metres, of the circular valve.</p>
<p>Eva does some research and discovers a formula for the rate of change of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>&#960;</mi><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70</mn><mo>&#8202;</mo><mn>560</mn><mi>h</mi></msqrt></math></p>
</div>

<div class="specification">
<p>Eva measures the radius of the valve to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>023</mn></math> metres. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> be the time, in minutes,&nbsp;it takes for all the water to drain out of the container.</p>
</div>

<div class="specification">
<p>Eva wants to use the container as a timer. She adjusts the initial height of water in the&nbsp;container so that all the water will drain out of the container in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> minutes.</p>
</div>

<div class="specification">
<p>Eva has another water container that is identical to the first one. She places one water container above the other one, so that all the water from the highest container will drain into the lowest container. Eva completely fills the highest container, but only fills the lowest container to a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> metre, as shown in the diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> Eva opens both valves. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> be the height of water, in metres, in the lowest container at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret the meaning of parameter <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> in the context of the model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why Eva’s use of the linear regression equation in this way could be unreliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares quadratic regression curve.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down a suitable domain for Eva’s function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>p</mi><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>t</mi><mo>+</mo><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70</mn><mo> </mo><mn>560</mn><mi>h</mi></msqrt></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70</mn><mo> </mo><mn>560</mn><mi>h</mi></msqrt></math>, show that the general solution is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>17</mn><mo> </mo><mn>640</mn><msup><mfenced><mrow><mi>c</mi><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mi>t</mi></mrow></mfenced><mn>2</mn></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the general solution from part (d) and the initial condition <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn></math> to predict the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find this new height.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>H</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>≈</mo><mn>0</mn><mo>.</mo><mn>2514</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>009873</mn><mi>t</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>1405</mn><msqrt><mi>H</mi></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>T</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method with a step length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> minutes to estimate the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>134</mn><mi>t</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>1</mn></math>           <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for an equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <em><strong>A1</strong></em> for the coefficient <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>134</mn></math> and constant <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>1</mn></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>the rate of change of height (of water in metres per minute)           <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept “rate of decrease” or “rate of increase” in place of “rate of change”.</p>
<p><br><strong>OR</strong></p>
<p>the (average) amount that the height (of the water) decreases each minute           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>unreliable to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> equation to estimate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>        <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>unreliable to extrapolate from original data        <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>rate of change (of height) might not remain constant (as the water drains out)      <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>002</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>0</mn><mo>.</mo><mn>174</mn><mi>t</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>2</mn></math></strong>        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>002</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>0</mn><mo>.</mo><mn>174</mn><mi>t</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>=</mo><mn>0</mn></math>         <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>26</mn><mo>.</mo><mn>4</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>26</mn><mo>.</mo><mn>4046</mn><mo>…</mo></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>≤</mo></mrow></mfenced><mo> </mo><mi>t</mi><mo>≤</mo><mn>26</mn><mo>.</mo><mn>4</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mi>t</mi><mo>≤</mo><mn>26</mn><mo>.</mo><mn>4046</mn><mo>…</mo></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>≤</mo></mrow></mfenced><mo> </mo><mi>t</mi><mo>≤</mo><mn>20</mn></math> (due to range of original data / interpolation)           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><msup><mfenced><mn>1</mn></mfenced><mn>2</mn></msup><mi>h</mi></math>               <em><strong>(A1)</strong></em></p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>=</mo><mi mathvariant="normal">π</mi><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac></math>             <em><strong>M1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempt to use chain rule             <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>V</mi></mrow></mfrac><mo>×</mo><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mi mathvariant="normal">π</mi></mfrac><mo>×</mo><mo>-</mo><mi mathvariant="normal">π</mi><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70</mn><mo> </mo><mn>560</mn><mi>h</mi></msqrt></math>           <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70</mn><mo> </mo><mn>560</mn><mi>h</mi></msqrt></math>           <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to separate variables             <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>1</mn><msqrt><mn>70</mn><mo> </mo><mn>560</mn><mi>h</mi></msqrt></mfrac><mo>d</mo><mi>h</mi><mo>=</mo><mo>∫</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mo>d</mo><mi>t</mi></math>           <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><msqrt><mi>h</mi></msqrt></mrow><msqrt><mn>70</mn><mo> </mo><mn>560</mn></msqrt></mfrac><mo>=</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mi>t</mi><mo>+</mo><mi>c</mi></math>           <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct side of the equation.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mi>h</mi></msqrt><mo>=</mo><mfrac><msqrt><mn>70</mn><mo> </mo><mn>560</mn></msqrt><mn>2</mn></mfrac><mfenced><mrow><mi>c</mi><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mi>t</mi></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award the final <em><strong>A1</strong></em> for any correct intermediate step that clearly leads to the given equation.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>17</mn><mo> </mo><mn>640</mn><msup><mfenced><mrow><mi>c</mi><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mi>t</mi></mrow></mfenced><mn>2</mn></msup></math>          <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo> </mo><mo>⇒</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>=</mo><mn>17640</mn><msup><mi>c</mi><mn>2</mn></msup></math>               <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0134687</mn><mo>…</mo></math>               <em><strong>(A1)</strong></em></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>0</mn></math> and their non-zero value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>               <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><mi>c</mi><msup><mi>R</mi><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0134687</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>023</mn><mn>2</mn></msup></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>25</mn><mo>.</mo><mn>5</mn></math> (minutes)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>25</mn><mo>.</mo><mn>4606</mn><mo>…</mo></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>0</mn><mo> </mo><mo>⇒</mo><mo> </mo><mi>c</mi><mo>=</mo><msup><mi>R</mi><mn>2</mn></msup><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>0</mn><mo>.</mo><msup><mn>023</mn><mn>2</mn></msup><mo>×</mo><mn>15</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>007935</mn></mrow></mfenced></math>              <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo> </mo><mo>⇒</mo><mo> </mo><mi>h</mi><mo>=</mo><mn>17640</mn><msup><mfenced><mrow><mn>0</mn><mo>.</mo><msup><mn>023</mn><mn>2</mn></msup><mo>×</mo><mn>15</mn></mrow></mfenced><mn>2</mn></msup></math>               <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>11</mn></math> (metres)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>.</mo><mn>11068</mn><mo>…</mo></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> be the height of water in the highest container from parts (d) and (e) we get</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>35280</mn><msup><mi>R</mi><mn>2</mn></msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0134687</mn><mo>…</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mi>t</mi></mrow></mfenced></math>               <em><strong>(M1)(A1)</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>H</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>35280</mn><msup><mi>R</mi><mn>2</mn></msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0135</mn><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mi>t</mi></mrow></mfenced><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70560</mn><mi>H</mi></msqrt></math>               <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mo>d</mo><mi>H</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>18</mn><mo>.</mo><mn>6631</mn><mo>…</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0134687</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>000529</mn><mi>t</mi></mrow></mfenced><mo>-</mo><mn>0</mn><mo>.</mo><mn>000529</mn><msqrt><mn>70560</mn><mi>H</mi></msqrt></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mo>d</mo><mi>H</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>251367</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>0987279</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>140518</mn><mo>…</mo><msqrt><mi>H</mi></msqrt></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>H</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>≈</mo><mn>0</mn><mo>.</mo><mn>2514</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>009873</mn><mi>t</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>1405</mn><msqrt><mi>H</mi></msqrt></math>           <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of using Euler’s method correctly</p>
<p>e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>y</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>05545</mn><mo>…</mo></math>               <em><strong>(A1)</strong></em></p>
<p>maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>45</mn></math> (metres) (at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>5</mn></math> minutes)             <em><strong>A2</strong></em></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>44678</mn><mo>…</mo></math> metres)</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>All parts were answered well. In part(a)(i) a few candidates lost a mark from either not writing an equation or not using the variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>. In part (a)(ii) some candidates incorrectly stated it was the rate of change of water, instead of the rate of change of the height of the water. A few weaker candidates simply stated it is the gradient of the line. In part (a)(iii) some candidates incorrectly criticized the linear model, instead of addressing the question about why it could be unreliable to use the model to make a prediction about the future.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>All parts were answered well. In part(a)(i) a few candidates lost a mark from either not writing an equation or not using the variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>. In part (a)(ii) some candidates incorrectly stated it was the rate of change of water, instead of the rate of change of the height of the water. A few weaker candidates simply stated it is the gradient of the line. In part (a)(iii) some candidates incorrectly criticized the linear model, instead of addressing the question about why it could be unreliable to use the model to make a prediction about the future.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>All parts were answered well. In part(a)(i) a few candidates lost a mark from either not writing an equation or not using the variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>. In part (a)(ii) some candidates incorrectly stated it was the rate of change of water, instead of the rate of change of the height of the water. A few weaker candidates simply stated it is the gradient of the line. In part (a)(iii) some candidates incorrectly criticized the linear model, instead of addressing the question about why it could be unreliable to use the model to make a prediction about the future.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was answered well by many candidates. In part (b)(ii) a small number of candidates incorrectly<br>gave two answers for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, showing a lack of understanding of the context of the model.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was answered well by many candidates. In part (b)(ii) a small number of candidates incorrectly<br>gave two answers for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, showing a lack of understanding of the context of the model.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was answered well by many candidates. In part (b)(ii) a small number of candidates incorrectly<br>gave two answers for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, showing a lack of understanding of the context of the model.</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates recognized the need to use related rates of change, but could not present coherent working to reach the given answer. Often candidates either did not appreciate the need to use the equation for the volume of a cylinder or did not simplify their equation using <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">r</mi><mo>=</mo><mn>1</mn></math>. Many candidates wrote nonsense arguments trying to cancel the factor of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>. In these long paper 3 questions, the purpose of “show that” parts is often to enable candidates to re-enter a question if they are unable to do a previous part.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to correctly separate the variables, but many found the integral of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msqrt><mi>h</mi></msqrt></mfrac></math> to be too difficult. A common incorrect approach was to use logarithms. A surprising number also incorrectly wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mi mathvariant="normal">d</mi><mi>t</mi><mo>=</mo><mo>-</mo><mfrac><msup><mi>R</mi><mn>3</mn></msup><mn>3</mn></mfrac><mo>+</mo><mi>c</mi></math>, showing a lack of understanding of the difference between a parameter and a variable. Given that most questions in this course will be set in context, it is important that candidates learn to distinguish these differences.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally done well.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates found this question too difficult.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (g)(i) was often left blank and was the worst answered question on the paper. Part (g)(ii) was answered correctly by a number of candidates, who made use of the given answer from part (g)(i).</p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (g)(i) was often left blank and was the worst answered question on the paper. Part (g)(ii) was answered correctly by a number of candidates, who made use of the given answer from part (g)(i).</p>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Alessia is an ecologist working for Mediterranean fishing authorities. She is interested in&nbsp;whether the mackerel population density is likely to fall below <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">5000</mn></math> mackerel per <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext mathvariant="bold">km</mtext><mn mathvariant="bold">3</mn></msup></math>, as&nbsp;this is the minimum value required for sustainable fishing. She believes that the primary&nbsp;factor affecting the mackerel population is the interaction of mackerel with sharks, their&nbsp;main predator.</strong></p>
<p>The population densities of mackerel (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> thousands per <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>km</mtext><mn>3</mn></msup></math>) and sharks (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> per <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>km</mtext><mn>3</mn></msup></math>) in the&nbsp;Mediterranean Sea are modelled by the coupled differential equations:</p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>M</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>α</mi><mi>M</mi><mo>-</mo><mi>β</mi><mi>M</mi><mi>S</mi></math></p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>S</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>γ</mi><mi>M</mi><mi>S</mi><mo>-</mo><mi>δ</mi><mi>S</mi></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is measured in years, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo>&nbsp;</mo><mi>β</mi><mo>,</mo><mo>&nbsp;</mo><mi>γ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> are parameters.</p>
<p>This model assumes that no other factors affect the mackerel or shark population densities.</p>
<p>The term <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>M</mi></math> models the population growth rate of the mackerel in the absence of sharks.<br>The term <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mi>M</mi><mi>S</mi></math> models the death rate of the mackerel due to being eaten by sharks.</p>
</div>

<div class="specification">
<p>Suggest similar interpretations for the following terms.</p>
</div>

<div class="specification">
<p>An equilibrium point is a set of values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>&nbsp;</mo></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>M</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>S</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math>.</p>
<p>Given that both species are present at the equilibrium point,</p>
</div>

<div class="specification">
<p>The equilibrium point found in part (b) gives the average values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> over time.<br><br>Use the model to predict how the following events would affect the average value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>.&nbsp;Justify your answers.</p>
</div>

<div class="specification">
<p>To estimate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math>, Alessia considers a situation where there are no sharks and&nbsp;the initial mackerel population density is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mn>0</mn></msub></math>.</p>
</div>

<div class="specification">
<p>Based on additional observations, it is believed that</p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>549</mn></math>,</p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>236</mn></math>,</p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>244</mn></math>,</p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>39</mn></math>.</p>
<p>Alessia decides to use Euler’s method to estimate future mackerel and shark population&nbsp;densities. The initial population densities are estimated to be <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mn>0</mn></msub><mo>=</mo><mn>5</mn><mo>.</mo><mn>7</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>0</mn></msub><mo>=</mo><mn>2</mn></math>.&nbsp;She uses a step length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math> years.</p>
</div>

<div class="specification">
<p>Alessia will use her model to estimate whether the mackerel population density is&nbsp;likely to fall below the minimum value required for sustainable fishing, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5000</mn></math> per <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>km</mtext><mtext>3</mtext></msup></math>,&nbsp;during the first nine years.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mi>M</mi><mi>S</mi></math></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi><mi>S</mi></math></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>show that, at the equilibrium point, the value of the mackerel population density is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>δ</mi><mi>γ</mi></mfrac></math>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of the shark population density at the equilibrium point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Toxic sewage is added to the Mediterranean Sea. Alessia claims this reduces&nbsp;the shark population growth rate and hence the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> is halved. No other&nbsp;parameter changes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Global warming increases the temperature of the Mediterranean Sea. Alessia&nbsp;claims that this promotes the mackerel population growth rate and hence the&nbsp;value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> is doubled. No other parameter changes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the differential equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> that models this situation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the expression for the mackerel population density after <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp;years is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><msub><mi>M</mi><mn>0</mn></msub><msup><mtext>e</mtext><mrow><mi>α</mi><mi>t</mi></mrow></msup></math></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Alessia estimates that the mackerel population density increases by a factor of&nbsp;three every two years. Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>549</mn></math> to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down expressions for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi>n</mi></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method to find an estimate for the mackerel population density&nbsp;after one year.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method to sketch the trajectory of the phase portrait, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>≤</mo><mi>M</mi><mo>≤</mo><mn>7</mn></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo>≤</mo><mi>S</mi><mo>≤</mo><mn>3</mn></math>, over the first nine years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your phase portrait, or otherwise, determine whether the mackerel population&nbsp;density would be sufficient to support sustainable fishing during the first nine years.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> reasons why Alessia’s conclusion, found in part (f)(ii), might not be valid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>population growth rate / birth rate of sharks (due to eating mackerel) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(net) death rate of sharks &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mi>M</mi><mi>S</mi><mo>-</mo><mi>δ</mi><mi>S</mi><mo>=</mo><mn>0</mn></math>&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>since&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>≠</mo><mn>0</mn></math>&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p><br>getting to given answer without further error by either cancelling or factorizing&nbsp; &nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mfrac><mi>δ</mi><mi>γ</mi></mfrac></math>&nbsp; &nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>M</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>M</mi><mo>-</mo><mi>β</mi><mi>M</mi><mi>S</mi><mo>=</mo><mn>0</mn></math>&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>(since&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>≠</mo><mn>0</mn></math>)&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mfrac><mi>α</mi><mi>β</mi></mfrac></math>&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub><mo>=</mo><mfrac><mi>δ</mi><mi>γ</mi></mfrac><mo>⇒</mo><mfrac><mi>δ</mi><mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mi>γ</mi></mrow></mfrac><mo>=</mo><mn>2</mn><msub><mi>M</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Accept equivalent in words.</p>
<p><br>Doubles&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not accept “increases”.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub><mo>=</mo><mfrac><mi>δ</mi><mi>γ</mi></mfrac></math>&nbsp;is not dependent on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>R0</strong></em> for any contextual argument.</p>
<p><br>no change &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not award <em><strong>R0A1</strong></em>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>M</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>α</mi><mi>M</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>1</mn><mi>M</mi></mfrac><mo>d</mo><mi>M</mi><mo>=</mo><mo>∫</mo><mi>α</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> is for an attempt to separate variables. This means getting to the point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mi>f</mi><mfenced><mi>M</mi></mfenced><mo> </mo><mo>d</mo><mi>M</mi><mo>=</mo><mo>∫</mo><mi>g</mi><mfenced><mi>t</mi></mfenced><mo> </mo><mtext>d</mtext><mi>t</mi></math>&nbsp;where the integral can be seen or implied by further work.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced open="|" close="|"><mi>M</mi></mfenced><mo>=</mo><mi>α</mi><mi>t</mi><mo>+</mo><mi>c</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>M</mi></math>. Condone missing constant of integration for this mark.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mi>k</mi><msup><mtext>e</mtext><mrow><mi>α</mi><mi>t</mi></mrow></msup></math></p>
<p>when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><msub><mi>M</mi><mn>0</mn></msub><mo>=</mo><mi>k</mi></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for a clear attempt at using initial conditions to find a constant of integration. Only possible if the constant of integration exists. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> or “initially” or similar must be seen. Substitution may appear earlier, following the integration.</p>
<p><br>initial conditions and all other manipulations correct and clearly communicated to get to the final answer&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><msub><mi>M</mi><mn>0</mn></msub><msup><mtext>e</mtext><mrow><mi>α</mi><mi>t</mi></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>AG</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mn>3</mn><msub><mi>M</mi><mn>0</mn></msub></math>&nbsp;seen anywhere&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mi>M</mi><mo>=</mo><mn>3</mn><msub><mi>M</mi><mn>0</mn></msub></math> into equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><msub><mi>M</mi><mn>0</mn></msub><msup><mtext>e</mtext><mrow><mi>α</mi><mi>t</mi></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msub><mi>M</mi><mn>0</mn></msub><mo>=</mo><msub><mi>M</mi><mn>0</mn></msub><msup><mtext>e</mtext><mrow><mn>2</mn><mi>α</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ln</mi><mo> </mo><mn>3</mn></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>549306</mn><mo>…</mo></math>&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>A1</strong></em> requires either the exact answer or an answer to at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> sf.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≈</mo><mn>0</mn><mo>.</mo><mn>549</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an attempt to set up one recursive equation&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Must include <strong>two</strong> given parameters <strong>and</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi>n</mi></msub></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> <strong>and</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math>&nbsp;or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math> for the <em><strong>(M1)</strong></em> to be awarded.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>M</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>549</mn><msub><mi>M</mi><mi>n</mi></msub><mo>-</mo><mn>0</mn><mo>.</mo><mn>236</mn><msub><mi>M</mi><mi>n</mi></msub><msub><mi>S</mi><mi>n</mi></msub></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>S</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>244</mn><msub><mi>M</mi><mi>n</mi></msub><msub><mi>S</mi><mi>n</mi></msub><mo>-</mo><mn>1</mn><mo>.</mo><mn>39</mn><msub><mi>S</mi><mi>n</mi></msub></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER<br></strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>12</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>11609</mn><mo>…</mo><mo>)</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p><strong><br>OR<br></strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6120</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>(</mo><mn>6116</mn><mo>.</mo><mn>09</mn><mo>…</mo><mo>)</mo></math> (mackerel per <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>km</mtext><mn>3</mn></msup></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>spiral or closed loop shape&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>25</mn></math> rotations (can only be awarded if a spiral)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>correct shape, in approximately correct position (centred at approx. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>5</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>)</mo></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A0A0A0</strong></em> for any plot of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.<br><br></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>approximate minimum is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>5</mn><mo>.</mo><mn>07223</mn><mo>…</mo><mo>)</mo><mo>&nbsp;</mo><mn>5</mn><mo>.</mo><mn>07</mn></math> (which is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mn>5</mn></math> clearly labelled on their phase portrait&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>(the density will not fall below <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5000</mn></math>) hence sufficient for sustainable fishing&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em><br><br><br><strong>Note:</strong> Do not award <em><strong>A0A1</strong></em>. Only if the minimum point is labelled on the sketch then a statement here that <em>“the mackerel population is always above <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">5000</mn></math>”</em> would be sufficient. Accept the value <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>07</mn></math> seen within a table of values.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Any two from:&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1A1</strong></em></p>
<p>• Current values / parameters are only an estimate,</p>
<p>• The Euler method is only an approximate method / choosing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></math> might be too large.</p>
<p>• There might be random variation / the model has no stochastic component</p>
<p>• Conditions / parameters might change over the nine years,</p>
<p>• A discrete system is being approximated by a continuous system,</p>
<p>Allow any other sensible critique.</p>
<p><br>If a candidate identifies factors which the model ignores, award <em><strong>A1</strong></em> per factor identified. These factors could include:</p>
<p>• Other predators</p>
<p>• Seasonality</p>
<p>• Temperature</p>
<p>• The effect of fishing</p>
<p>• Environmental catastrophe</p>
<p>• Migration</p>
<p><br><strong>Note:</strong> Do not allow:<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;“You cannot have <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>07</mn></math> mackerel”.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;It is only a model (as this is too vague).<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Some factors have been ignored (without specifically identifying the factors).<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Values do not always follow the equation / model. (as this is too vague).</p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><em>This question explores methods to determine the area bounded by an unknown curve.</em></p>
<p>The curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is shown in the graph, for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 4.4">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>4.4</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;passes through the following points.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">It is required to find the area bounded by the curve, the&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis&nbsp;and the line&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4.4">
  <mi>x</mi>
  <mo>=</mo>
  <mn>4.4</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>One possible model for the curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is a cubic function.</p>
</div>

<div class="specification">
<p>A second possible model for the curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is an exponential function,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p{{\text{e}}^{qx}}">
  <mi>y</mi>
  <mo>=</mo>
  <mi>p</mi>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mi>q</mi>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p{\text{,}}\,\,q \in \mathbb{R}">
  <mi>p</mi>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>q</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule to find an estimate for the area.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to the shape of the graph, explain whether your answer to part (a)(i) will be an over-estimate or an underestimate of the area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use all the coordinates in the table to find the equation of the least squares cubic regression curve.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coefficient of determination.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for the area enclosed by the cubic function, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4.4">
  <mi>x</mi>
  <mo>=</mo>
  <mn>4.4</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = qx + {\text{ln}}\,p">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mi>q</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence explain how a straight line graph could be drawn using the coordinates in the table.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding the equation of a suitable regression line, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 1.83">
  <mi>p</mi>
  <mo>=</mo>
  <mn>1.83</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 0.986">
  <mi>q</mi>
  <mo>=</mo>
  <mn>0.986</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the area enclosed by the exponential function, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4.4">
  <mi>x</mi>
  <mo>=</mo>
  <mn>4.4</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{1.1}}{2}\left( {2 + 2\left( {5 + 15 + 47} \right) + 148} \right)">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>1.1</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mo>+</mo>
      <mn>2</mn>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>5</mn>
          <mo>+</mo>
          <mn>15</mn>
          <mo>+</mo>
          <mn>47</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mn>148</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>         <em><strong>M1A1</strong></em></p>
<p>Area = 156 units<sup>2</sup>          <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The graph is concave up,         <em><strong>R1</strong></em></p>
<p>so the trapezoidal rule will give an overestimate.         <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 3.88{x^3} - 12.8{x^2} + 14.1x + 1.54">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3.88</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>12.8</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>14.1</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1.54</mn>
</math></span>         <em><strong>M1A2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{R^2} = 0.999">
  <mrow>
    <msup>
      <mi>R</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>0.999</mn>
</math></span>        <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \int\limits_0^{4.4} {\left( {3.88{x^3} - 12.8{x^2} + 14.1x + 1.54} \right)} dx">
  <mo>=</mo>
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mrow>
      <mn>4.4</mn>
    </mrow>
  </munderover>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mn>3.88</mn>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>3</mn>
          </msup>
        </mrow>
        <mo>−</mo>
        <mn>12.8</mn>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>+</mo>
        <mn>14.1</mn>
        <mi>x</mi>
        <mo>+</mo>
        <mn>1.54</mn>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mi>d</mi>
  <mi>x</mi>
</math></span>        <em><strong>A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Area = 145 units<sup>2</sup>    (Condone 143–145 units<sup>2</sup>, using rounded values.)      <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = {\text{ln}}\left( {p{{\text{e}}^{qx}}} \right)">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>p</mi>
      <mrow>
        <msup>
          <mrow>
            <mtext>e</mtext>
          </mrow>
          <mrow>
            <mi>q</mi>
            <mi>x</mi>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = {\text{ln}}\,p + {\text{ln}}\left( {{{\text{e}}^{qx}}} \right)">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>p</mi>
  <mo>+</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>e</mtext>
          </mrow>
          <mrow>
            <mi>q</mi>
            <mi>x</mi>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = qx + {\text{ln}}\,p">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mi>q</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>p</mi>
</math></span>      <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Plot <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.      <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Regression line is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = 0.986x + 0.602">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mn>0.986</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>0.602</mn>
</math></span>       <em><strong>M1A1</strong></em></p>
<p>So <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = ">
  <mi>q</mi>
  <mo>=</mo>
</math></span> gradient = 0.986    <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = {e^{0.602}} = 1.83">
  <mi>p</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>0.602</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>1.83</mn>
</math></span>       <em><strong>M1A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \int\limits_0^{4.4} {1.83{e^{0.986x}}dx = 140} ">
  <mo>=</mo>
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mrow>
      <mn>4.4</mn>
    </mrow>
  </munderover>
  <mrow>
    <mn>1.83</mn>
    <mrow>
      <msup>
        <mi>e</mi>
        <mrow>
          <mn>0.986</mn>
          <mi>x</mi>
        </mrow>
      </msup>
    </mrow>
    <mi>d</mi>
    <mi>x</mi>
    <mo>=</mo>
    <mn>140</mn>
  </mrow>
</math></span> units<sup>2</sup>     <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>This question will investigate the solution to a coupled system of differential equations and how to transform it to a system that can be solved by the eigenvector method.</p>
<p>It is desired to solve the coupled system of differential equations</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot x = x + 2y - 50">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo>˙<!-- ˙ --></mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>y</mi>
  <mo>−<!-- − --></mo>
  <mn>50</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot y = 2x + y - 40">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo>˙<!-- ˙ --></mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mi>y</mi>
  <mo>−<!-- − --></mo>
  <mn>40</mn>
</math></span></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;represent the population of two types of symbiotic coral and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>&nbsp;is time measured in decades.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equilibrium point for this system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If initially <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 100">
  <mi>x</mi>
  <mo>=</mo>
  <mn>100</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 50">
  <mi>y</mi>
  <mo>=</mo>
  <mn>50</mn>
</math></span> use Euler’s method with an time increment of 0.1 to find an approximation for the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1">
  <mi>t</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Extend this method to conjecture the limit of the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{y}{x}">
  <mfrac>
    <mi>y</mi>
    <mi>x</mi>
  </mfrac>
</math></span> as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \to \infty ">
  <mi>t</mi>
  <mo stretchy="false">→</mo>
  <mi mathvariant="normal">∞</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show how using the substitution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = x - 10{\text{,}}\,\,Y = y - 20">
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>10</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>Y</mi>
  <mo>=</mo>
  <mi>y</mi>
  <mo>−</mo>
  <mn>20</mn>
</math></span> transforms the system of differential equations into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}}  {\dot X = X + 2Y} \\   {\dot Y = 2X + Y}  \end{array}">
  <mtable rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mover>
              <mi>X</mi>
              <mo>˙</mo>
            </mover>
          </mrow>
          <mo>=</mo>
          <mi>X</mi>
          <mo>+</mo>
          <mn>2</mn>
          <mi>Y</mi>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mover>
              <mi>Y</mi>
              <mo>˙</mo>
            </mover>
          </mrow>
          <mo>=</mo>
          <mn>2</mn>
          <mi>X</mi>
          <mo>+</mo>
          <mi>Y</mi>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve this system of equations by the eigenvalue method and hence find the general solution for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> of the original system.</p>
<div class="marks">[8]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the particular solution to the original system, given the initial conditions of part (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1">
  <mi>t</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>, giving the answers to 4 significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use part (f) to find limit of the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{y}{x}">
  <mfrac>
    <mi>y</mi>
    <mi>x</mi>
  </mfrac>
</math></span> as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \to \infty ">
  <mi>t</mi>
  <mo stretchy="false">→</mo>
  <mi mathvariant="normal">∞</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With the initial conditions as given in part (b) state if the equilibrium point is stable or unstable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If instead the initial conditions were given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 20">
  <mi>x</mi>
  <mo>=</mo>
  <mn>20</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 10">
  <mi>y</mi>
  <mo>=</mo>
  <mn>10</mn>
</math></span>, find the particular solution for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> of the original system, in this case.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With the initial conditions as given in part (j), determine if the equilibrium point is stable or unstable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}}  {\dot x = 0 \Rightarrow x + 2y - 50 = 0} \\   {\dot y = 0 \Rightarrow 2x + y - 40 = 0}  \end{array}">
  <mtable rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mover>
              <mi>x</mi>
              <mo>˙</mo>
            </mover>
          </mrow>
          <mo>=</mo>
          <mn>0</mn>
          <mo stretchy="false">⇒</mo>
          <mi>x</mi>
          <mo>+</mo>
          <mn>2</mn>
          <mi>y</mi>
          <mo>−</mo>
          <mn>50</mn>
          <mo>=</mo>
          <mn>0</mn>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mover>
              <mi>y</mi>
              <mo>˙</mo>
            </mover>
          </mrow>
          <mo>=</mo>
          <mn>0</mn>
          <mo stretchy="false">⇒</mo>
          <mn>2</mn>
          <mi>x</mi>
          <mo>+</mo>
          <mi>y</mi>
          <mo>−</mo>
          <mn>40</mn>
          <mo>=</mo>
          <mn>0</mn>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span>     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = 10{\text{,}}\,\,y = 20">
  <mo stretchy="false">⇒</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mn>10</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mn>20</mn>
</math></span>  <em><strong>    M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}}  {{x_{n + 1}} = {x_n} + 0.1\left( {{x_n} + 2{y_n} - 50} \right)} \\   {{y_{n + 1}} = {y_n} + 0.1\left( {2{x_n} + {y_n} - 40} \right)} \\   {{t_{n + 1}} = {t_n} + 0.1}  \end{array}">
  <mtable rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <msub>
              <mi>x</mi>
              <mrow>
                <mi>n</mi>
                <mo>+</mo>
                <mn>1</mn>
              </mrow>
            </msub>
          </mrow>
          <mo>=</mo>
          <mrow>
            <msub>
              <mi>x</mi>
              <mi>n</mi>
            </msub>
          </mrow>
          <mo>+</mo>
          <mn>0.1</mn>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mrow>
                <msub>
                  <mi>x</mi>
                  <mi>n</mi>
                </msub>
              </mrow>
              <mo>+</mo>
              <mn>2</mn>
              <mrow>
                <msub>
                  <mi>y</mi>
                  <mi>n</mi>
                </msub>
              </mrow>
              <mo>−</mo>
              <mn>50</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <msub>
              <mi>y</mi>
              <mrow>
                <mi>n</mi>
                <mo>+</mo>
                <mn>1</mn>
              </mrow>
            </msub>
          </mrow>
          <mo>=</mo>
          <mrow>
            <msub>
              <mi>y</mi>
              <mi>n</mi>
            </msub>
          </mrow>
          <mo>+</mo>
          <mn>0.1</mn>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mn>2</mn>
              <mrow>
                <msub>
                  <mi>x</mi>
                  <mi>n</mi>
                </msub>
              </mrow>
              <mo>+</mo>
              <mrow>
                <msub>
                  <mi>y</mi>
                  <mi>n</mi>
                </msub>
              </mrow>
              <mo>−</mo>
              <mn>40</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <msub>
              <mi>t</mi>
              <mrow>
                <mi>n</mi>
                <mo>+</mo>
                <mn>1</mn>
              </mrow>
            </msub>
          </mrow>
          <mo>=</mo>
          <mrow>
            <msub>
              <mi>t</mi>
              <mi>n</mi>
            </msub>
          </mrow>
          <mo>+</mo>
          <mn>0.1</mn>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span></p>
<p>Gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x\left( 1 \right) \simeq 848{\text{,}}\,\,y\left( 1 \right) \simeq 837\,\left( {3sf} \right)\,">
  <mi>x</mi>
  <mrow>
    <mo>(</mo>
    <mn>1</mn>
    <mo>)</mo>
  </mrow>
  <mo>≃</mo>
  <mn>848</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mrow>
    <mo>(</mo>
    <mn>1</mn>
    <mo>)</mo>
  </mrow>
  <mo>≃</mo>
  <mn>837</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mi>s</mi>
      <mi>f</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mspace width="thinmathspace"></mspace>
</math></span>  <em><strong>    M1A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>By extending the table, conjecture that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{t \to \infty } \frac{y}{x} = 1">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>t</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mfrac>
    <mi>y</mi>
    <mi>x</mi>
  </mfrac>
  <mo>=</mo>
  <mn>1</mn>
</math></span>  <em><strong>    M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = x - 10{\text{,}}\,\,Y = y - 20 \Rightarrow \dot X = \dot x{\text{,}}\,\,\dot Y = \dot y">
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>10</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>Y</mi>
  <mo>=</mo>
  <mi>y</mi>
  <mo>−</mo>
  <mn>20</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mover>
      <mi>X</mi>
      <mo>˙</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo>˙</mo>
    </mover>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mover>
      <mi>Y</mi>
      <mo>˙</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mover>
      <mi>y</mi>
      <mo>˙</mo>
    </mover>
  </mrow>
</math></span>      <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}}  {\dot X = \left( {X + 10} \right) + 2\left( {Y + 20} \right) - 50 = X + 2Y} \\   {\dot Y = 2\left( {X + 10} \right) + \left( {Y + 20} \right) - 40 = 2X + Y}  \end{array}">
  <mtable rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mover>
              <mi>X</mi>
              <mo>˙</mo>
            </mover>
          </mrow>
          <mo>=</mo>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>X</mi>
              <mo>+</mo>
              <mn>10</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
          <mo>+</mo>
          <mn>2</mn>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>Y</mi>
              <mo>+</mo>
              <mn>20</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
          <mo>−</mo>
          <mn>50</mn>
          <mo>=</mo>
          <mi>X</mi>
          <mo>+</mo>
          <mn>2</mn>
          <mi>Y</mi>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mover>
              <mi>Y</mi>
              <mo>˙</mo>
            </mover>
          </mrow>
          <mo>=</mo>
          <mn>2</mn>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>X</mi>
              <mo>+</mo>
              <mn>10</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
          <mo>+</mo>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>Y</mi>
              <mo>+</mo>
              <mn>20</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
          <mo>−</mo>
          <mn>40</mn>
          <mo>=</mo>
          <mn>2</mn>
          <mi>X</mi>
          <mo>+</mo>
          <mi>Y</mi>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span> <em><strong>    M1A1AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\begin{array}{*{20}{c}}  {1 - \lambda }&amp;2 \\   2&amp;{1 - \lambda }  \end{array}} \right| = 0 \Rightarrow {\left( {1 - \lambda } \right)^2} - 4 = 0 \Rightarrow \lambda = - 1\,{\text{or}}\,3">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>1</mn>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
          <mtd>
            <mrow>
              <mn>1</mn>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>1</mn>
          <mo>−</mo>
          <mi>λ</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mi>λ</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>or</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>3</mn>
</math></span> <em><strong>    M1A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  =  - 1">
  <mi>λ</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  2&amp;2 \\   2&amp;2  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  p \\   q  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  0 \\   0  \end{array}} \right) \Rightarrow q = - p">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>p</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>q</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mi>q</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>p</mi>
</math></span>   an eigenvector is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 3">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>3</mn>
</math></span>        <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 2}&amp;2 \\   2&amp;{ - 2}  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  p \\   q  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  0 \\   0  \end{array}} \right) \Rightarrow q = p">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>p</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>q</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mi>q</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span>   an eigenvector is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\  {1}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> <em><strong>    M1A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  X \\   Y  \end{array}} \right) = A{e^{ - t}}\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right) + B{e^{3t}}\left( {\begin{array}{*{20}{c}}  1 \\   1  \end{array}} \right) \Rightarrow \left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = A{e^{ - t}}\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right) + B{e^{3t}}\left( {\begin{array}{*{20}{c}}  1 \\   1  \end{array}} \right) + \left( {\begin{array}{*{20}{c}}  {10} \\   {20}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>X</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>Y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>A</mi>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>B</mi>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>3</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>A</mi>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>B</mi>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>3</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>20</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}}  {100 = A + B + 10} \\   {50 = - A + B + 20}  \end{array} \Rightarrow A = 30{\text{,}}\,\,B = 60">
  <mtable rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mn>100</mn>
          <mo>=</mo>
          <mi>A</mi>
          <mo>+</mo>
          <mi>B</mi>
          <mo>+</mo>
          <mn>10</mn>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mn>50</mn>
          <mo>=</mo>
          <mo>−</mo>
          <mi>A</mi>
          <mo>+</mo>
          <mi>B</mi>
          <mo>+</mo>
          <mn>20</mn>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
  <mo stretchy="false">⇒</mo>
  <mi>A</mi>
  <mo>=</mo>
  <mn>30</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>B</mi>
  <mo>=</mo>
  <mn>60</mn>
</math></span> <em><strong>    M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = 30{e^{ - t}}\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right) + 60{e^{3t}}\left( {\begin{array}{*{20}{c}}  1 \\   1  \end{array}} \right) + \left( {\begin{array}{*{20}{c}}  {10} \\   {20}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>30</mn>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>60</mn>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>3</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>20</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x\left( 1 \right) = 1226{\text{,}}\,\,y\left( 1 \right) = 1214\,\,\left( {4sf} \right)">
  <mi>x</mi>
  <mrow>
    <mo>(</mo>
    <mn>1</mn>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>1226</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mrow>
    <mo>(</mo>
    <mn>1</mn>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>1214</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>4</mn>
      <mi>s</mi>
      <mi>f</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Dominant term is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="60{e^{3t}}\left( {\begin{array}{*{20}{c}}  1 \\   1  \end{array}} \right)">
  <mn>60</mn>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>3</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{t \to \infty } \frac{y}{x} = 1">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>t</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mfrac>
    <mi>y</mi>
    <mi>x</mi>
  </mfrac>
  <mo>=</mo>
  <mn>1</mn>
</math></span>    <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The equilibrium point is unstable.               <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}}  {20 = A + B + 10} \\   {10 = - A + B + 20}  \end{array} \Rightarrow A = 10{\text{,}}\,\,B = 0">
  <mtable rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mn>20</mn>
          <mo>=</mo>
          <mi>A</mi>
          <mo>+</mo>
          <mi>B</mi>
          <mo>+</mo>
          <mn>10</mn>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mn>10</mn>
          <mo>=</mo>
          <mo>−</mo>
          <mi>A</mi>
          <mo>+</mo>
          <mi>B</mi>
          <mo>+</mo>
          <mn>20</mn>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
  <mo stretchy="false">⇒</mo>
  <mi>A</mi>
  <mo>=</mo>
  <mn>10</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>B</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>            <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = 10{e^{ - t}}\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right) + \left( {\begin{array}{*{20}{c}}  {10} \\   {20}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>10</mn>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>20</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>             <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>As <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{ - t}} \to 0\,">
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mo>−</mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">→</mo>
  <mn>0</mn>
  <mspace width="thinmathspace"></mspace>
</math></span> as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \to \infty ">
  <mi>t</mi>
  <mo stretchy="false">→</mo>
  <mi mathvariant="normal">∞</mi>
</math></span> the equilibrium point is stable.           <em><strong>R1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>This question will investigate the solution to a coupled system of differential equations when there is only one eigenvalue.</p>
<p>It is desired to solve the coupled system of differential equations</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot x = 3x + y">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo>˙<!-- ˙ --></mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mi>y</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot y =&nbsp; - x + y.">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo>˙<!-- ˙ --></mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mi>x</mi>
  <mo>+</mo>
  <mi>y</mi>
  <mo>.</mo>
</math></span></p>
</div>

<div class="specification">
<p>The general solution to the coupled system of differential equations is hence given by</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = A\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right){e^{2t}} + B\left( {\begin{array}{*{20}{c}}  t \\   { - t + 1}  \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>A</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>B</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>t</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
</div>

<div class="specification">
<p>As&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \to \infty ">
  <mi>t</mi>
  <mo stretchy="false">→<!-- → --></mo>
  <mi mathvariant="normal">∞<!-- ∞ --></mi>
</math></span> the trajectory approaches an asymptote.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the matrix <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  3&amp;1 \\   { - 1}&amp;1  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> has (sadly) only one eigenvalue.  Find this eigenvalue and an associated eigenvector.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, verify that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;is a solution to the above system.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  t \\   { - t + 1}  \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>t</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> is also a solution.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If initially at&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0{\text{,}}\,\,x = 20{\text{,}}\,\,y = 10">
  <mi>t</mi>
  <mo>=</mo>
  <mn>0</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>=</mo>
  <mn>20</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mn>10</mn>
</math></span>&nbsp;find the particular solution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;when&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2">
  <mi>t</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>&nbsp;Find the equation of this asymptote.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the trajectory, including the quadrant it is in as it approaches this asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\begin{array}{*{20}{c}}  {3 - \lambda }&amp;1 \\   { - 1}&amp;{1 - \lambda }  \end{array}} \right| = 0 \Rightarrow \left( {3 - \lambda } \right)\left( {1 - \lambda } \right) + 1 = 0">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>3</mn>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mn>1</mn>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mo>−</mo>
      <mi>λ</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mi>λ</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span><em><strong>      M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\lambda ^2} - 4\lambda  + 4 = 0 \Rightarrow {\left( {\lambda  - 2} \right)^2} = 0">
  <mrow>
    <msup>
      <mi>λ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mi>λ</mi>
  <mo>+</mo>
  <mn>4</mn>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>λ</mi>
          <mo>−</mo>
          <mn>2</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p>So only one solution    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = 2">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>      <em><strong>AG</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1&amp;1 \\   { - 1}&amp;{ - 1}  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  p \\   q  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  0 \\   0  \end{array}} \right) \Rightarrow p + q = 0">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>p</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>q</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mi>p</mi>
  <mo>+</mo>
  <mi>q</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span><em><strong>      M1</strong></em></p>
<p>So an eigenvector is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  3&amp;1 \\   { - 1}&amp;1  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right) = 2\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>So&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {3x + y} \\   { - x + y}  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  3&amp;1 \\   { - 1}&amp;1  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  3&amp;1 \\   { - 1}&amp;1  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right){e^{2t}} = 2\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>3</mn>
              <mi>x</mi>
              <mo>+</mo>
              <mi>y</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mi>y</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp; &nbsp; &nbsp; M1A1A1</strong></em></p>
<p>and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right){e^{2t}} \Rightarrow \left( {\begin{array}{*{20}{c}}  {\dot x} \\   {\dot y}  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right)2{e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mrow>
                <mover>
                  <mi>x</mi>
                  <mo>˙</mo>
                </mover>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mrow>
                <mover>
                  <mi>y</mi>
                  <mo>˙</mo>
                </mover>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span><em><strong>&nbsp; &nbsp; &nbsp; M1A1</strong></em></p>
<p>showing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} x \\&nbsp; y&nbsp; \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1 \\&nbsp; { - 1}&nbsp; \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;is a solution&nbsp; &nbsp; &nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {3x + y} \\   { - x + y}  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  {3t - t + 1} \\   { - t - t + 1}  \end{array}} \right){e^{2t}} = \left( {\begin{array}{*{20}{c}}  {2t + 1} \\   { - 2t + 1}  \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>3</mn>
              <mi>x</mi>
              <mo>+</mo>
              <mi>y</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mi>y</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>3</mn>
              <mi>t</mi>
              <mo>−</mo>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mi>t</mi>
              <mo>−</mo>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>2</mn>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp; &nbsp;&nbsp;<em><strong>&nbsp; &nbsp; &nbsp; M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {\dot x} \\   {\dot y}  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  {{e^{2t}} + t2{e^{2t}}} \\   { - {e^{2t}} + ( - t + 1)2{e^{2t}}}  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  {2t + 1} \\   { - 2t + 1}  \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mrow>
                <mover>
                  <mi>x</mi>
                  <mo>˙</mo>
                </mover>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mrow>
                <mover>
                  <mi>y</mi>
                  <mo>˙</mo>
                </mover>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mrow>
                <msup>
                  <mi>e</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>t</mi>
                  </mrow>
                </msup>
              </mrow>
              <mo>+</mo>
              <mi>t</mi>
              <mn>2</mn>
              <mrow>
                <msup>
                  <mi>e</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>t</mi>
                  </mrow>
                </msup>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mrow>
                <msup>
                  <mi>e</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>t</mi>
                  </mrow>
                </msup>
              </mrow>
              <mo>+</mo>
              <mo stretchy="false">(</mo>
              <mo>−</mo>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo stretchy="false">)</mo>
              <mn>2</mn>
              <mrow>
                <msup>
                  <mi>e</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>t</mi>
                  </mrow>
                </msup>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>2</mn>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span><em><strong>&nbsp; &nbsp; &nbsp; M1A1A1</strong></em></p>
<p>Verifying&nbsp;that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} x \\&nbsp; y&nbsp; \end{array}} \right) = \left( {\begin{array}{*{20}{c}} t \\&nbsp; { - t + 1}&nbsp; \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>t</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;is also a solution&nbsp; &nbsp; &nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Require&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {20} \\   {10}  \end{array}} \right) = A\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right) + B\left( {\begin{array}{*{20}{c}}  0 \\   1  \end{array}} \right) \Rightarrow A = 20{\text{,}}\,\,B = 30">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>20</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>A</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>B</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mi>A</mi>
  <mo>=</mo>
  <mn>20</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>B</mi>
  <mo>=</mo>
  <mn>30</mn>
</math></span>&nbsp;&nbsp; &nbsp;&nbsp;<em><strong>&nbsp; &nbsp; &nbsp; M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  x \\   y  \end{array}} \right) = 20\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right){e^{2t}} + 30\left( {\begin{array}{*{20}{c}}  t \\   { - t + 1}  \end{array}} \right){e^{2t}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>20</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>30</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>t</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mi>t</mi>
              <mo>+</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;&nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2 \Rightarrow x = 4370{\text{,}}\,\,y =&nbsp; - 2730\,(3sf)">
  <mi>t</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo stretchy="false">⇒</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mn>4370</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2730</mn>
  <mspace width="thinmathspace"></mspace>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mi>s</mi>
  <mi>f</mi>
  <mo stretchy="false">)</mo>
</math></span>&nbsp;&nbsp;<em><strong>&nbsp; &nbsp; A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>As&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \to \infty {\text{,}}\,\,x \simeq 30t{e^{2t}}{\text{,}}\,\,y \simeq&nbsp; - 30t{e^{2t}}">
  <mi>t</mi>
  <mo stretchy="false">→</mo>
  <mi mathvariant="normal">∞</mi>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≃</mo>
  <mn>30</mn>
  <mi>t</mi>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>≃</mo>
  <mo>−</mo>
  <mn>30</mn>
  <mi>t</mi>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;&nbsp;<em><strong>&nbsp; &nbsp; M1A1</strong></em></p>
<p>so asymptote is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - x">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>x</mi>
</math></span>&nbsp;&nbsp;<em><strong>&nbsp; &nbsp; A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Will approach the asymptote in the 4th quadrant, moving away from the origin.  <em><strong>    R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question is about modelling the spread of a computer virus to predict the number of computers in a city which will be infected by the virus.</strong></p>
<p><br>A systems analyst defines the following variables in a model:</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp;is the number of days since the first computer was infected by the virus.</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> is the total number of computers that have been infected up to and&nbsp;including day <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</li>
</ul>
<p>The following data were collected:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A model for the early stage of the spread of the computer virus suggests that</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>&#946;</mi><mi>N</mi><mi>Q</mi><mfenced><mi>t</mi></mfenced></math></p>
<p style="text-align: left;">where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> is the total number of computers in a city and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#946;</mi></math> is a measure of how easily the virus is spreading between computers. Both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#946;</mi></math> are assumed to be constant.</p>
</div>

<div class="specification">
<p>The data above are taken from city X which is estimated to have <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>6</mn></math> million computers.<br>The analyst looks at data for another city, Y. These data indicate a value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#946;</mi><mo>=</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo>&#215;</mo><msup><mn>10</mn><mrow><mo>&#8722;</mo><mn>8</mn></mrow></msup></math>.</p>
</div>

<div class="specification">
<p>An estimate for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>&#8242;</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mo>&#160;</mo><mi>t</mi><mo>&#8805;</mo><mn>5</mn></math>, can be found by using the formula:</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>&#8776;</mo><mfrac><mrow><mi>Q</mi><mfenced><mrow><mi>t</mi><mo>+</mo><mn>5</mn></mrow></mfenced><mo>-</mo><mi>Q</mi><mfenced><mrow><mi>t</mi><mo>-</mo><mn>5</mn></mrow></mfenced></mrow><mn>10</mn></mfrac></math>.</p>
<p>The following table shows estimates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mo>(</mo><mi>t</mi><mo>)</mo></math> for city X at different values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>An improved model for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>, which is valid for large values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is the logistic&nbsp;differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>k</mi><mi>Q</mi><mfenced><mi>t</mi></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mi>Q</mi><mfenced><mi>t</mi></mfenced></mrow><mi>L</mi></mfrac></mrow></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> are constants.</p>
<p>Based on this differential equation, the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced></mrow><mrow><mi>Q</mi><mfenced><mi>t</mi></mfenced></mrow></mfrac></math>&nbsp;against&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>&nbsp;is predicted to be&nbsp;a straight line.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, Pearson’s product-moment correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why it would not be appropriate to conduct a hypothesis test on the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> found in (a)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the general solution of the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>β</mi><mi>N</mi><mi>Q</mi><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the data in the table write down the equation for an appropriate non-linear regression model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>R</mi><mn>2</mn></msup></math> for this model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence comment on the suitability of the model from (b)(ii) in comparison with the linear model found in part (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering large values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> write down one criticism of the model found in (b)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer from part (b)(ii) to estimate the time taken for the number of infected computers to double.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find in which city, X or Y, the computer virus is spreading more easily. Justify your answer using your results from part (b).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Give your answers correct to one decimal place.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use linear regression to estimate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solution to the differential equation is given by</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mfrac><mi>L</mi><mrow><mn>1</mn><mo>+</mo><mi>C</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup></mrow></mfrac></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> is a constant.</p>
<p>Using your answer to part (f)(i), estimate the percentage of computers in city X that are expected to have been infected by the virus over a long period of time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>3090</mn><mi>t</mi><mo>-</mo><mn>54000</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>3094</mn><mo>.</mo><mn>27</mn><mo>…</mo><mi>t</mi><mo>-</mo><mn>54042</mn><mo>.</mo><mn>3</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award at most <em><strong>A1A0</strong></em> if answer is not an equation. Award <em><strong>A1A0</strong></em> for an answer including either <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>755</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>754741</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is not a random variable <strong>OR</strong> it is not a (bivariate) normal distribution</p>
<p><strong>OR</strong> data is not a sample from a population</p>
<p><strong>OR</strong> data appears nonlinear</p>
<p><strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> only measures linear correlation         <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not accept “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> is not large enough”.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to separate variables            <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>1</mn><mi>Q</mi></mfrac><mo>d</mo><mi>Q</mi><mo>=</mo><mo>∫</mo><mi>β</mi><mi>N</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced open="|" close="|"><mi>Q</mi></mfenced><mo>=</mo><mi>β</mi><mi>N</mi><mi>t</mi><mo>+</mo><mi>c</mi></math>           <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for LHS, <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mi>N</mi><mi>t</mi></math>, and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>c</mi></math>.</p>
<p>Award full marks for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mi>β</mi><mi>N</mi><mi>t</mi><mo>+</mo><mi>c</mi></mrow></msup></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mi>β</mi><mi>N</mi><mi>t</mi></mrow></msup></math>.</p>
<p>Award <em><strong>M1A1A1A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mi>β</mi><mi>N</mi><mi>t</mi></mrow></msup></math></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt at exponential regression           (<em><strong>M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>15</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>292</mn><mi>t</mi></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mi>Q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>14864</mn><mo>…</mo><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>292055</mn><mo>…</mo><mi>t</mi></mrow></msup></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p>attempt at exponential regression           (<em><strong>M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>15</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>34</mn><mi>t</mi></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>14864</mn><mo>…</mo><mo>×</mo><mn>1</mn><mo>.</mo><mn>33917</mn><msup><mo>…</mo><mi>t</mi></msup></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Condone answers involving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. Condone absence of “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>=</mo></math>” Award <em><strong>M1A0</strong></em> for an incorrect answer in correct format.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>999</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>999431</mn><mo>…</mo></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>comparing something to do with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>R</mi><mn>2</mn></msup></math> and something to do with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>        <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong>   Examples of where the <em><strong>M1</strong> </em>should be awarded:</p>
<p style="padding-left:90px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>R</mi><mn>2</mn></msup><mo>&gt;</mo><mi>r</mi></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>&gt;</mo><mi>r</mi></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>999</mn><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>755</mn></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>999</mn><mo>&gt;</mo><mn>0</mn><mo>.</mo><msup><mn>755</mn><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>563</mn></mrow></mfenced></math><br> The “correlation coefficient” in the exponential model is larger. <br>Model B has a larger <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>R</mi><mn>2</mn></msup></math></p>
<p style="text-align:left;padding-left:60px;">Examples of where the <em><strong>M1</strong> </em>should <strong>not</strong> be awarded:</p>
<p style="text-align:left;padding-left:90px;">The exponential model shows better correlation (since not clear how it is being measured)<br>Model 2 has a better fit<br>Model 2 is more correlated</p>
<p> </p>
<p>an unambiguous comparison between <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>R</mi><mn>2</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> leading to the conclusion that the model in part (b) is more suitable / better          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Condone candidates claiming that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> is the “correlation coefficient” for the non-linear model.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>it suggests that there will be more infected computers than the entire population       <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept any response that recognizes unlimited growth. </p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>15</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>292</mn><mi>t</mi></mrow></msup><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>15</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>34</mn><mi>t</mi></msup><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>292</mn></mrow></mfrac></math>  <strong>OR</strong> using the model to find two specific times with values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mfenced><mi>t</mi></mfenced></math> which double          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>37</mn></math>  (days)          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not <em><strong>FT </strong></em>from a model which is not exponential. Award <em><strong>M0A0</strong></em> for an answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>13</mn></math> which comes from using <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>10</mn><mo>,</mo><mo> </mo><mn>20</mn><mo>)</mo></math> from the data or any other answer which finds a doubling time from figures given in the table.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an attempt to calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi></math> for city X          <em><strong>(M1)</strong></em></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>292055</mn><mo>…</mo></mrow><mrow><mn>2</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>1</mn><mo>.</mo><mn>33917</mn><mo>…</mo></mrow><mrow><mn>2</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>12328</mn><mo>…</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup></math>          <em><strong>A1</strong></em></p>
<p>this is larger than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>.</mo><mn>64</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>8</mn></mrow></msup></math> so the virus spreads more easily in city X         <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> It is possible to award <em><strong>M1A0R1</strong></em>. <br>Condone “so the virus spreads faster in city X” for the final <em><strong>R1</strong></em>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>38</mn><mo>.</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>3086</mn><mo>.</mo><mn>1</mn></math>          <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong> </em>if values are correct but not to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> dp.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>Q</mi><mo>'</mo></mrow><mi>Q</mi></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>42228</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>5561</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mi>Q</mi></math>          <em><strong>(A1)(A1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for each coefficient seen – not necessarily in the equation. Do not penalize seeing in the context of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<p><br>identifying that the constant is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> <strong>OR</strong> that the gradient is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mi>k</mi><mi>L</mi></mfrac></math>          <em><strong>(M1)</strong></em></p>
<p>therefore <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>422</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>422228</mn><mo>…</mo></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>k</mi><mi>L</mi></mfrac><mo>=</mo><mn>2</mn><mo>.</mo><mn>5561</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>165000</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>165205</mn></mfenced></math>          <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept a value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>164843</mn></math> from use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> sf value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, or any other value from plausible pre-rounding.<br>Allow follow-through <strong>within</strong> the question part, from the equation of their line to the final two <em><strong>A1</strong></em> marks.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is the eventual number of infected        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>165205</mn><mo>…</mo></mrow><mn>2600000</mn></mfrac><mo>=</mo><mn>6</mn><mo>.</mo><mn>35</mn><mo>%</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>6</mn><mo>.</mo><mn>35403</mn><mo>…</mo><mo>%</mo></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept any final answer consistent with their answer to part (f)(i) unless their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>120146</mn></math> in which case award at most <em><strong>M1A0</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A significant minority were unable to attempt 1(a) which suggests poor preparation for the use of the GDC in this statistics-heavy course. Large numbers of candidates appeared to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>,</mo><mo> </mo><mi>Q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> interchangeably. Accurate use of notation is an important skill which needs to be developed.</p>
<p>1(a)(iii) was a question at the heart of the Applications and interpretations course. In modern statistics many of the calculations are done by a computer so the skill of the modern statistician lies in knowing which tests are appropriate and how to interpret the results. Very few candidates seemed familiar with the assumptions required for the use of the standard test on the correlation coefficient. Indeed, many candidates answered this by claiming that the value was either too large or too small to do a hypothesis test, indicating a major misunderstanding of the purpose of hypothesis tests.</p>
<p>1(b)(i) was done very poorly. It seems that perhaps adding parameters to the equation confused many candidates – if the equation had been <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>5</mn><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> many more would have successfully attempted this. However, the presence of parameters is a fundamental part of mathematical modelling so candidates should practise working with expressions involving them.</p>
<p>1(b)(ii) and (iii) were done relatively well, with many candidates using the data to recognize an exponential model was a good idea. Part (iv) was often communicated poorly. Many candidates might have done the right thing in their heads but just writing that the correlation was better did not show which figures were being compared. Many candidates who did write down the numbers made it clear that they were comparing an <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>R</mi><mn>2</mn></msup></math> value with an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> value.</p>
<p>1(c) was not meant to be such a hard question. There is a standard formula for half-life which candidates were expected to adapt. However, large numbers of candidates conflated the data and the model, finding the time for one of the data points (which did not lie on the model curve) to double. Candidates also thought that the value of t found was equivalent to the doubling time, often giving answers of around 40 days which should have been obviously wrong.</p>
<p>1(d) was quite tough. Several candidates realized that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi></math> was the required quantity to be compared but very few could calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi></math> for city X using the given information.</p>
<p>1(e) was meant to be relatively straightforward but many candidates were unable to interpret the notation given to do the quite straightforward calculation.</p>
<p>1(f) was meant to be a more unusual problem-solving question getting candidates to think about ways of linearizing a non-linear problem. This proved too much for nearly all candidates.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the system of paired differential equations</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot x = ax + by">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo>˙<!-- ˙ --></mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mi>y</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot y = cx + dy">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo>˙<!-- ˙ --></mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mi>c</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>d</mi>
  <mi>y</mi>
</math></span>.</p>
<p>This system is going to be solved by using the eigenvalue method.</p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>If the system has a pair of purely imaginary eigenvalues</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that if the system has two distinct real eigenvalues then&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {a - d} \right)^2} + 4bc > 0">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>a</mi>
          <mo>−</mo>
          <mi>d</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mi>b</mi>
  <mi>c</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find two conditions that must be satisfied by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>&nbsp;must have opposite signs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the case when there is a pair of purely imaginary eigenvalues you are told that the solution will form an ellipse.&nbsp; You are also told that the initial conditions are such that the ellipse is large enough that it will cross both the positive and negative <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;axes and the positive and negative <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;axes.</p>
<p>By considering the differential equations at these four crossing point investigate if the trajectory is in a clockwise or anticlockwise direction round the ellipse. Give your decision in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>. Using part (b) (ii) show that your conclusions are consistent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>The characteristic equation is given by</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\begin{array}{*{20}{c}}  {a - \lambda }&amp;b \\   c&amp;{d - \lambda }  \end{array}} \right| = 0 \Rightarrow \left( {a - \lambda } \right)\left( {d - \lambda } \right) - bc = 0 \Rightarrow {\lambda ^2} - \left( {a + d} \right)\lambda + \left( {ad - bc} \right) = 0">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mi>a</mi>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
          <mtd>
            <mi>b</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>c</mi>
          </mtd>
          <mtd>
            <mrow>
              <mi>d</mi>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>a</mi>
      <mo>−</mo>
      <mi>λ</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>d</mi>
      <mo>−</mo>
      <mi>λ</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mi>b</mi>
  <mi>c</mi>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mi>λ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>a</mi>
      <mo>+</mo>
      <mi>d</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mi>λ</mi>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>a</mi>
      <mi>d</mi>
      <mo>−</mo>
      <mi>b</mi>
      <mi>c</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong> M1A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda&nbsp; = \frac{{a + d \pm \sqrt {{{\left( {a + d} \right)}^2} - 4\left( {ad - bc} \right)} }}{2}">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>a</mi>
      <mo>+</mo>
      <mi>d</mi>
      <mo>±</mo>
      <msqrt>
        <mrow>
          <msup>
            <mrow>
              <mrow>
                <mo>(</mo>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>d</mi>
                </mrow>
                <mo>)</mo>
              </mrow>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−</mo>
        <mn>4</mn>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mi>a</mi>
            <mi>d</mi>
            <mo>−</mo>
            <mi>b</mi>
            <mi>c</mi>
          </mrow>
          <mo>)</mo>
        </mrow>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p>For two distinct real roots require&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {a + d} \right)^2} - 4\left( {ad - bc} \right) > 0">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>a</mi>
          <mo>+</mo>
          <mi>d</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>a</mi>
      <mi>d</mi>
      <mo>−</mo>
      <mi>b</mi>
      <mi>c</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {a^2} + 2ad + {d^2} - 4ad + 4bc > 0 \Rightarrow {a^2} - 2ad + {d^2} + 4bc > 0">
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mi>a</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>a</mi>
  <mi>d</mi>
  <mo>+</mo>
  <mrow>
    <msup>
      <mi>d</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mi>a</mi>
  <mi>d</mi>
  <mo>+</mo>
  <mn>4</mn>
  <mi>b</mi>
  <mi>c</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mi>a</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>a</mi>
  <mi>d</mi>
  <mo>+</mo>
  <mrow>
    <msup>
      <mi>d</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mi>b</mi>
  <mi>c</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\left( {a - d} \right)^2} + 4bc > 0">
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>a</mi>
          <mo>−</mo>
          <mi>d</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mi>b</mi>
  <mi>c</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>AG</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Using the working from part (a) (or using the characteristic equation) for a pair of purely imaginary eigenvalues require</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + d = 0">
  <mi>a</mi>
  <mo>+</mo>
  <mi>d</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {a - d} \right)^2} + 4bc < 0">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>a</mi>
          <mo>−</mo>
          <mi>d</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mi>b</mi>
  <mi>c</mi>
  <mo>&lt;</mo>
  <mn>0</mn>
</math></span>&nbsp; &nbsp;<em><strong>&nbsp;R1A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow d =&nbsp; - a">
  <mo stretchy="false">⇒</mo>
  <mi>d</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>a</mi>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {a^2} + bc < 0">
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mi>a</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
  <mi>c</mi>
  <mo>&lt;</mo>
  <mn>0</mn>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a^2} + bc < 0 \Rightarrow bc < 0">
  <mrow>
    <msup>
      <mi>a</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
  <mi>c</mi>
  <mo>&lt;</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mi>b</mi>
  <mi>c</mi>
  <mo>&lt;</mo>
  <mn>0</mn>
</math></span> so&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>&nbsp;and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>&nbsp;must have opposite signs&nbsp; &nbsp; &nbsp;<em><strong>&nbsp;M1AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>When crossing the&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;axes,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
  <mi>y</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> so&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot y = cx">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo>˙</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mi>c</mi>
  <mi>x</mi>
</math></span><em><strong>&nbsp; &nbsp; &nbsp; M1A1</strong></em></p>
<p>When crossing the positive&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;axes,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\dot y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo>˙</mo>
      </mover>
    </mrow>
  </mrow>
</math></span> has the sign of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>When crossing the negative&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;axes,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\dot y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo>˙</mo>
      </mover>
    </mrow>
  </mrow>
</math></span> has the sign of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - c">
  <mo>−</mo>
  <mi>c</mi>
</math></span>.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>Hence if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>&nbsp;is positive the trajectory is anticlockwise and if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>&nbsp;is negative the trajectory is clockwise.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1R1</strong></em></p>
<p>When crossing the&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;axes,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> so&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot&nbsp;x = by">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo>˙</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mi>b</mi>
  <mi>y</mi>
</math></span><em><strong>&nbsp; &nbsp; &nbsp; M1A1</strong></em></p>
<p>When crossing the positive <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;axis, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\dot x}">
  <mrow>
    <mrow>
      <mover>
        <mi>x</mi>
        <mo>˙</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>&nbsp;has the sign of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>When crossing the negative&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;axes,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\dot x}">
  <mrow>
    <mrow>
      <mover>
        <mi>x</mi>
        <mo>˙</mo>
      </mover>
    </mrow>
  </mrow>
</math></span> has the sign of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - b">
  <mo>−</mo>
  <mi>b</mi>
</math></span>.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>Hence if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>&nbsp;is positive the trajectory is clockwise and if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>&nbsp;is negative the trajectory is anticlockwise.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1R1</strong></em></p>
<p>Since by (b)(ii), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>&nbsp;have opposite signs the above conditions agree with each other.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p><em><strong>[13 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_4^\infty&nbsp; {\frac{1}{{{x^3}}}{\text{d}}x} ">
  <munderover>
    <mo>∫</mo>
    <mn>4</mn>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Illustrate graphically the inequality&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 5}^\infty&nbsp; {\frac{1}{{{n^3}}}}&nbsp; < \int\limits_4^\infty&nbsp; {\frac{1}{{{x^3}}}{\text{d}}x}&nbsp; < \sum\limits_{n = 4}^\infty&nbsp; {\frac{1}{{{n^3}}}} ">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>5</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
  <mo>&lt;</mo>
  <munderover>
    <mo>∫</mo>
    <mn>4</mn>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
  <mo>&lt;</mo>
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down a lower bound for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 4}^\infty&nbsp; {\frac{1}{{{n^3}}}} ">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an upper bound for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 4}^\infty&nbsp; {\frac{1}{{{n^3}}}} ">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_4^\infty&nbsp; {\frac{1}{{{x^3}}}{\text{d}}x}&nbsp; = \mathop {{\text{lim}}}\limits_{R \to \infty } \int\limits_4^R {\frac{1}{{{x^3}}}{\text{d}}x} ">
  <munderover>
    <mo>∫</mo>
    <mn>4</mn>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
  <mo>=</mo>
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <munderover>
    <mo>∫</mo>
    <mn>4</mn>
    <mi>R</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> The above <em><strong>A1</strong> </em>for using a limit can be awarded at any stage.<br>Condone the use of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{x \to \infty } ">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
</math></span>.</p>
<p>Do not award this mark to candidates who use&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\infty ">
  <mi mathvariant="normal">∞</mi>
</math></span>&nbsp;as the upper limit throughout.</p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{R \to \infty } \left[ { - \frac{1}{2}{x^{ - 2}}} \right]_4^R\left( { = \left[ { - \frac{1}{2}{x^{ - 2}}} \right]_4^\infty } \right)">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <msubsup>
    <mrow>
      <mo>[</mo>
      <mrow>
        <mo>−</mo>
        <mfrac>
          <mn>1</mn>
          <mn>2</mn>
        </mfrac>
        <mrow>
          <msup>
            <mi>x</mi>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mo>]</mo>
    </mrow>
    <mn>4</mn>
    <mi>R</mi>
  </msubsup>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <msubsup>
        <mrow>
          <mo>[</mo>
          <mrow>
            <mo>−</mo>
            <mfrac>
              <mn>1</mn>
              <mn>2</mn>
            </mfrac>
            <mrow>
              <msup>
                <mi>x</mi>
                <mrow>
                  <mo>−</mo>
                  <mn>2</mn>
                </mrow>
              </msup>
            </mrow>
          </mrow>
          <mo>]</mo>
        </mrow>
        <mn>4</mn>
        <mi mathvariant="normal">∞</mi>
      </msubsup>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \mathop {{\text{lim}}}\limits_{R \to \infty } \left( { - \frac{1}{2}\left( {{R^{ - 2}} - {4^{ - 2}}} \right)} \right)">
  <mo>=</mo>
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <msup>
              <mi>R</mi>
              <mrow>
                <mo>−</mo>
                <mn>2</mn>
              </mrow>
            </msup>
          </mrow>
          <mo>−</mo>
          <mrow>
            <msup>
              <mn>4</mn>
              <mrow>
                <mo>−</mo>
                <mn>2</mn>
              </mrow>
            </msup>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{32}}">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>32</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&nbsp;<img src="">&nbsp; &nbsp; &nbsp;<em><strong>A1A1A1A1</strong></em></p>
<p><em><strong>A1</strong> </em>for the curve<br><em><strong>A1</strong>&nbsp;</em>for rectangles starting at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4">
  <mi>x</mi>
  <mo>=</mo>
  <mn>4</mn>
</math></span><br><em><strong>A1</strong>&nbsp;</em>for at least three upper rectangles<br><em><strong>A1</strong>&nbsp;</em>for at least three lower rectangles</p>
<p><strong>Note:</strong> Award<em><strong> A0A1</strong></em> for two upper rectangles and two lower rectangles.</p>
<p>sum of areas of the lower rectangles&nbsp;&lt; the area under the curve &lt; the sum&nbsp;of the areas of the upper rectangles so</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 5}^\infty&nbsp; {\frac{1}{{{n^3}}}}&nbsp; < \int\limits_4^\infty&nbsp; {\frac{1}{{{x^3}}}{\text{d}}x}&nbsp; < \sum\limits_{n = 4}^\infty&nbsp; {\frac{1}{{{n^3}}}} ">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>5</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
  <mo>&lt;</mo>
  <munderover>
    <mo>∫</mo>
    <mn>4</mn>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
  <mo>&lt;</mo>
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a lower bound is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{32}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>32</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow <strong>FT</strong> from part (a).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 5}^\infty&nbsp; {\frac{1}{{{n^3}}}}&nbsp; < \frac{1}{{32}}">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>5</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
  <mo>&lt;</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>32</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{64}} + \sum\limits_{n = 5}^\infty&nbsp; {\frac{1}{{{n^3}}}}&nbsp; = \frac{1}{{32}} + \frac{1}{{64}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>64</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>5</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>32</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>64</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 4}^\infty&nbsp; {\frac{1}{{{n^3}}}}&nbsp; < \frac{3}{{64}}">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
  <mo>&lt;</mo>
  <mfrac>
    <mn>3</mn>
    <mrow>
      <mn>64</mn>
    </mrow>
  </mfrac>
</math></span>,&nbsp;an upper bound&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow <em><strong>FT</strong> </em>from part (a).</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>changing the lower limit in the inequality in part (b) gives</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 4}^\infty&nbsp; {\frac{1}{{{n^3}}}}&nbsp; < \int\limits_3^\infty&nbsp; {\frac{1}{{{x^3}}}{\text{d}}x} \left( { < \sum\limits_{n = 3}^\infty&nbsp; {\frac{1}{{{n^3}}}} } \right)">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
  <mo>&lt;</mo>
  <munderover>
    <mo>∫</mo>
    <mn>3</mn>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>&lt;</mo>
      <munderover>
        <mo movablelimits="false">∑</mo>
        <mrow>
          <mi>n</mi>
          <mo>=</mo>
          <mn>3</mn>
        </mrow>
        <mi mathvariant="normal">∞</mi>
      </munderover>
      <mrow>
        <mfrac>
          <mn>1</mn>
          <mrow>
            <mrow>
              <msup>
                <mi>n</mi>
                <mn>3</mn>
              </msup>
            </mrow>
          </mrow>
        </mfrac>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 4}^\infty&nbsp; {\frac{1}{{{n^3}}}}&nbsp; < \mathop {{\text{lim}}}\limits_{R \to \infty } \left[ { - \frac{1}{2}{x^{ - 2}}} \right]_3^R">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
  <mo>&lt;</mo>
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <msubsup>
    <mrow>
      <mo>[</mo>
      <mrow>
        <mo>−</mo>
        <mfrac>
          <mn>1</mn>
          <mn>2</mn>
        </mfrac>
        <mrow>
          <msup>
            <mi>x</mi>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mo>]</mo>
    </mrow>
    <mn>3</mn>
    <mi>R</mi>
  </msubsup>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 4}^\infty&nbsp; {\frac{1}{{{n^3}}}}&nbsp; < \frac{1}{{18}}">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mi mathvariant="normal">∞</mi>
  </munderover>
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mrow>
        <mrow>
          <msup>
            <mi>n</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </mrow>
  <mo>&lt;</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>18</mn>
    </mrow>
  </mfrac>
</math></span>, an upper bound&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Condone candidates who do not use a limit.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of brown squirrels, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> , in an area of woodland can be modelled by the following&nbsp;differential equation.</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{x}{{1000}}\left( {2000 - x} \right)">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mi>x</mi>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2000</mn>
      <mo>−<!-- − --></mo>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span></p>
</div>

<div class="specification">
<p>One year conservationists notice that some black squirrels are moving into the woodland.&nbsp;The two species of squirrel are in competition for the same food supplies. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> be the&nbsp;number of black squirrels in the woodland.</p>
<p>Conservationists wish to predict the likely future populations of the two species of squirrels.&nbsp;Research from other areas indicates that when the two populations come into contact the&nbsp;growth can be modelled by the following differential equations, in which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is measured in&nbsp;tens of years.</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{x}{{1000}}\left( {2000 - x - 2y} \right)">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mi>x</mi>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2000</mn>
      <mo>−<!-- − --></mo>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>2</mn>
      <mi>y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;≥ 0</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = \frac{y}{{1000}}\left( {3000 - 3x - y} \right)">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>y</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mi>y</mi>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3000</mn>
      <mo>−<!-- − --></mo>
      <mn>3</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mi>y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;≥ 0</p>
<p style="text-align: left;">An equilibrium point for the populations occurs when both&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 0">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = 0">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>y</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>When the two populations are small the model can be reduced to the linear system</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 2x">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span></p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = 3y">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>y</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>3</mn>
  <mi>y</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>For larger populations, the conservationists decide to use Euler’s method to find the long‑term&nbsp;outcomes for the populations. They will use Euler’s method with a step length of 2 years (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0.2">
  <mi>t</mi>
  <mo>=</mo>
  <mn>0.2</mn>
</math></span>).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equilibrium population of brown squirrels suggested by this model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the population of squirrels is increasing for values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> less than this value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 800"> <mi>x</mi> <mo>=</mo> <mn>800</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 600"> <mi>y</mi> <mo>=</mo> <mn>600</mn> </math></span> is an equilibrium point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the other three equilibrium points.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using separation of variables, show that the general solution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 2x"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>2</mn> <mi>x</mi> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = A{{\text{e}}^{2t}}"> <mi>x</mi> <mo>=</mo> <mi>A</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the general solution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = 3y"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>3</mn> <mi>y</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If both populations contain 10 squirrels at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </math></span> use the solutions to parts (c) (i) and (ii) to estimate the number of black and brown squirrels when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0.2"> <mi>t</mi> <mo>=</mo> <mn>0.2</mn> </math></span>. Give your answers to the nearest whole numbers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the expressions for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x_{n + 1}}"> <mrow> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y_{n + 1}}"> <mrow> <msub> <mi>y</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </math></span> that the conservationists will use.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the initial populations are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 100"> <mi>x</mi> <mo>=</mo> <mn>100</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 100"> <mi>y</mi> <mo>=</mo> <mn>100</mn> </math></span>, find the populations of each species of squirrel when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use further iterations of Euler’s method to find the long-term population for each species of squirrel from these initial values.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the same method to find the long-term populations of squirrels when the initial populations are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 400"> <mi>x</mi> <mo>=</mo> <mn>400</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 100"> <mi>y</mi> <mo>=</mo> <mn>100</mn> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method with step length 0.2 to sketch, on the same axes, the approximate trajectories for the populations with the following initial populations.</p>
<p>(i)      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1000"> <mi>x</mi> <mo>=</mo> <mn>1000</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1500"> <mi>y</mi> <mo>=</mo> <mn>1500</mn> </math></span></p>
<p>(ii)    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1500"> <mi>x</mi> <mo>=</mo> <mn>1500</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1000"> <mi>y</mi> <mo>=</mo> <mn>1000</mn> </math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the equilibrium point at (800, 600) is a saddle point, sketch the phase portrait for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≥ 0 , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> ≥ 0 on the same axes used in part (e).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2000        <em><strong>(M1)A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>because the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> </math></span> is positive (for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &gt; 0"> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> </math></span>)        <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 800"> <mi>x</mi> <mo>=</mo> <mn>800</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 600"> <mi>y</mi> <mo>=</mo> <mn>600</mn> </math></span> into both equations      <em><strong>M1</strong></em></p>
<p>both equations equal 0       <em><strong>A1</strong></em></p>
<p>hence an equilibrium point       <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2000"> <mi>x</mi> <mo>=</mo> <mn>2000</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 3000"> <mi>y</mi> <mo>=</mo> <mn>3000</mn> </math></span>       <em><strong>M1</strong></em><em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for an attempt at solving the system provided some values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> are found.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{x}} {\text{d}}x = \int 2 \,{\text{d}}t"> <mo>∫</mo> <mrow> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo>∫</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,x = 2t + c"> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>t</mi> <mo>+</mo> <mi>c</mi> </math></span>         <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for RHS, <em><strong>A1</strong> </em>for LHS.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {{\text{e}}^c}{{\text{e}}^{2t}}"> <mi>x</mi> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>c</mi> </msup> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </msup> </mrow> </math></span>        <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = A{{\text{e}}^{2t}}"> <mi>x</mi> <mo>=</mo> <mi>A</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </msup> </mrow> </math></span>  (where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = {{\text{e}}^c}"> <mi>A</mi> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>c</mi> </msup> </mrow> </math></span>)       <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = B{{\text{e}}^{3t}}"> <mi>y</mi> <mo>=</mo> <mi>B</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>t</mi> </mrow> </msup> </mrow> </math></span>        <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow any letter for the constant term, including <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 15"> <mi>x</mi> <mo>=</mo> <mn>15</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 18"> <mi>y</mi> <mo>=</mo> <mn>18</mn> </math></span>       <em><strong>(M1)A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x_{n + 1}} = {x_n} + 0.2\frac{{{x_n}}}{{1000}}\left( {2000 - {x_n} - 2{y_n}} \right)"> <mrow> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> <mo>+</mo> <mn>0.2</mn> <mfrac> <mrow> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> </mrow> <mrow> <mn>1000</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>2000</mn> <mo>−</mo> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y_{n + 1}} = {y_n} + 0.2\frac{{{y_n}}}{{1000}}\left( {3000 - 3{x_n} - {y_n}} \right)"> <mrow> <msub> <mi>y</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> </mrow> <mo>+</mo> <mn>0.2</mn> <mfrac> <mrow> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> </mrow> </mrow> <mrow> <mn>1000</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>3000</mn> <mo>−</mo> <mn>3</mn> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> <mo>−</mo> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Accept equivalent forms.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 319"> <mi>x</mi> <mo>=</mo> <mn>319</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 617"> <mi>y</mi> <mo>=</mo> <mn>617</mn> </math></span>      <em><strong>(M1)A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>number of brown squirrels go down to 0, <br>black squirrels to a population of 3000        <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>number of brown squirrels go to 2000, <br>number of black squirrels goes down to 0       <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <em><strong>AND</strong> </em>(ii)</p>
<p style="text-align: center;"><img src="">     <em><strong>M1A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><img src="">    A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for a trajectory beginning close to (0, 0) and going to (0, 3000) and <em><strong>A1 </strong></em>for a trajectory beginning close to (0, 0) and going to (2000, 0) in approximately the correct places.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br>