File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 5/markSceme-HL-paper2html
File size: 942.65 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>An ice-skater is skating such that her position vector when viewed from above at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds can be modelled by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi></mtd></mtr><mtr><mtd><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
<p>with respect to a rectangular coordinate system from a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, where the non-zero constants <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> can be determined. All distances are in metres.</p>
</div>
<div class="specification">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, the displacement of the ice-skater is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math> and the velocity of the ice‑skater is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn><mo>.</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the velocity vector at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the velocity of the ice-skater at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is given by</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the magnitude of the velocity of the ice-skater when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, the ice-skater is skating parallel to the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis for the first time.</p>
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OP</mtext></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of product rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mover><mi>x</mi><mo>˙</mo></mover></mtd></mtr><mtr><mtd><mover><mi>y</mi><mo>˙</mo></mover></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi><mo>-</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi></mtd></mtr><mtr><mtd><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi><mo>+</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">v</mi></mfenced><mn>2</mn></msup><mo>=</mo><msup><mover><mi>x</mi><mo>˙</mo></mover><mn>2</mn></msup><mo>+</mo><msup><mover><mi>y</mi><mo>˙</mo></mover><mn>2</mn></msup><mo>=</mo><msup><mfenced open="[" close="]"><mrow><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi><mo>-</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced open="[" close="]"><mrow><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi><mo>+</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>M1</strong></em></p>
<p><strong><br>Note:</strong> It is more likely that an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">v</mi></mfenced></math> is seen.<br> <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mover><mi>x</mi><mo>˙</mo></mover><mn>2</mn></msup><mo>+</mo><msup><mover><mi>y</mi><mo>˙</mo></mover><mn>2</mn></msup></msqrt></math> is not sufficient to award the <em><strong>M1</strong></em>, their part (a) must be substituted.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced open="[" close="]"><mrow><msup><mi>a</mi><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>-</mo><mn>2</mn><msup><mi>a</mi><mn>2</mn></msup><mi>b</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>+</mo><mn>2</mn><msup><mi>a</mi><mn>2</mn></msup><mi>b</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>t</mi></mrow></mfenced><msup><mtext>e</mtext><mrow><mn>2</mn><mi>b</mi><mi>t</mi></mrow></msup></math> <em><strong>A1</strong></em></p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>=</mo><mn>1</mn></math> within a factorized expression that leads to the final answer <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mfenced><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><msup><mtext>e</mtext><mrow><mn>2</mn><mi>b</mi><mi>t</mi></mrow></msup></math> <em><strong>A1</strong></em></p>
<p>magnitude of velocity is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mo> </mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>=</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>-</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mi>t</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>.</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math> result from part (b) is an alternative approach.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>2</mn></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfenced></msqrt></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>51</mn><mo> </mo><mo> </mo><mo>(</mo><mn>1</mn><mo>.</mo><mn>50504</mn><mo>…</mo><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mfenced><mrow><mi>b</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>t</mi><mo>=</mo><mi>b</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>53</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>53086</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>correct substitution of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <em><strong>(M1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>697</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>696591</mn><mo>…</mo></mrow></mfenced></math> <strong>and </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>488</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>487614</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>use of Pythagoras / distance formula <em><strong>(M1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OP</mtext><mo>=</mo><mn>0</mn><mo>.</mo><mn>850</mn><mo> </mo><mtext>m</mtext><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>850297</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[6 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following system of coupled differential equations.</p>
<p style="padding-left: 210px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mi>x</mi></math></p>
<p style="padding-left: 210px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi></math></p>
</div>
<div class="specification">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues and corresponding eigenvectors of the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down the general solution of the system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, with justification, whether the equilibrium point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> is stable or unstable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<p>(ii) at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a phase portrait for the general solution to the system of coupled differential equations for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><mn>6</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>6</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><mn>6</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>6</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>4</mn><mo>-</mo><mi>λ</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn><mo>-</mo><mi>λ</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math> <strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>4</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mfenced><mrow><mo>-</mo><mn>2</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <strong> <em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mo>-</mo><mn>4</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mo>-</mo><mn>2</mn></math><strong> <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mo>-</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>4</mn><mi>x</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn><mi>y</mi></mtd></mtr></mtable></mfenced></math> <strong> <em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> This <em><strong>M1</strong></em> can be awarded for attempting to find either eigenvector.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>=</mo><mo>-</mo><mn>4</mn><mi>y</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>y</mi></math></p>
<p>possible eigenvector is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math> (or any real multiple)<strong> <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mo>-</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn><mi>x</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>y</mi></mtd></mtr></mtable></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>1</mn></math></p>
<p>possible eigenvector is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> (or any real multiple)<strong> <em>A1</em></strong></p>
<p><em><strong><br>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>4</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <strong> <em>(M1)A1</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>M1A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>4</mn><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>3</mn><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>4</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></math>, <em><strong>M1A0</strong></em> if LHS is missing or incorrect.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two (distinct) real negative eigenvalues <strong><em>R1</em></strong></p>
<p>(or equivalent (<em>eg</em> both <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mn>4</mn><mi>t</mi></mrow></msup><mo>→</mo><mn>0</mn><mo>,</mo><mo> </mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup><mo>→</mo><mn>0</mn></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>→</mo><mo>∞</mo></math>))</p>
<p>⇒ stable equilibrium point <strong><em>A1</em></strong></p>
<p><strong><br>Note:</strong> Do not award <em><strong>R0A1</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi></mrow><mrow><mo>-</mo><mn>4</mn><mi>x</mi></mrow></mfrac></math> <strong><em>(M1)</em></strong></p>
<p>(i) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math> <strong><em>A1</em></strong></p>
<p>(ii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong><em>A1</em></strong><strong><em>A1</em></strong><strong><em>A1</em></strong><strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for a phase plane, with correct axes (condone omission of labels) and at least three non-overlapping trajectories. Award <em><strong>A1</strong></em> for all trajectories leading to a stable node at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>. Award <em><strong>A1</strong></em> for showing gradient is negative at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn></math>. Award <em><strong>A1</strong></em> for both eigenvectors on diagram.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A ball is attached to the end of a string and spun horizontally. Its position relative to a given point, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>, is given by the equation</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math> where all displacements are in metres.</p>
</div>
<div class="specification">
<p>The string breaks when the magnitude of the ball’s acceleration exceeds <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the ball is moving in a circle with its centre at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and state the radius of the circle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of the ball at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the velocity of the ball is always perpendicular to the position vector of the ball.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the acceleration of the ball at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at the instant the string breaks.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>How many complete revolutions has the ball completed from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> to the instant at which the string breaks?</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">r</mi></mfenced><mo>=</mo><msqrt><mn>1</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mn>1</mn></math> <strong>R1</strong></p>
<p> </p>
<p><strong>Note:</strong> use of the identity needs to be explicitly stated.</p>
<p> </p>
<p>Hence moves in a circle as displacement from a fixed point is constant. <strong>R1</strong></p>
<p>Radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">v</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math> <strong>M1A</strong><strong>1</strong></p>
<p> </p>
<p><strong>Note:</strong> <strong>M1</strong> is for an attempt to differentiate each term</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">v</mi><mo mathvariant="bold">∙</mo><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced><mo>∙</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math> <strong>M1</strong></p>
<p> </p>
<p><strong>Note:</strong> <strong>M1</strong> is for an attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">v</mi><mo mathvariant="bold">∙</mo><mi mathvariant="bold-italic">r</mi></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>×</mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>=</mo><mn>0</mn></math> <strong>A</strong><strong>1</strong></p>
<p>Hence velocity and position vector are perpendicular. <strong>AG</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math> <strong>M1A1A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>400</mn></math> <strong>(M1)(A1)</strong></p>
<p> </p>
<p><strong>Note:</strong> <strong>M1</strong> is for an attempt to equate the magnitude of the acceleration to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>18</mn><mo>.</mo><mn>3</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>18</mn><mo>.</mo><mn>256</mn><mo>…</mo></mrow></mfenced><mo> </mo><mfenced><mtext>s</mtext></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Angle turned through is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>18</mn><mo>.</mo><msup><mn>256</mn><mn>2</mn></msup><mo>=</mo></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>33</mn><mo>.</mo><mn>329</mn><mo>…</mo></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>33</mn><mo>.</mo><mn>329</mn></mrow><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow></mfrac></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>33</mn><mo>.</mo><mn>329</mn></mrow><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow></mfrac><mo>=</mo><mn>5</mn><mo>.</mo><mn>30</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> complete revolutions <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A change in grazing habits has resulted in two species of herbivore, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math>, competing for food on the same grasslands. At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> environmentalists begin to record the sizes of both populations. Let the size of the population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, and the size of the population <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>. The following model is proposed for predicting the change in the sizes of the two populations:</p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mi>y</mi></math></p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi>y</mi></math></p>
<p style="padding-left: 60px;">for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>></mo><mn>0</mn></math></p>
</div>
<div class="specification">
<p>For this system of coupled differential equations find</p>
</div>
<div class="specification">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> has a population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2000</mn></math>.</p>
</div>
<div class="specification">
<p>It is known that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> has an initial population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2900</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the eigenvalues.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the eigenvectors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the general solution of the system of equations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the phase portrait for this system, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>></mo><mn>0</mn></math>.</p>
<p>On your sketch show</p>
<ul>
<li>the equation of the line defined by the eigenvector in the first quadrant</li>
<li>at least two trajectories either side of this line using arrows on those trajectories to represent the change in populations as <em>t</em> increases</li>
</ul>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a condition on the size of the initial population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> if it is to avoid its population reducing to zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> at this value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>. Give your answer to the nearest <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> herbivores.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>3</mn><mo>-</mo><mi>λ</mi></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>4</mn><mo>-</mo><mi>λ</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math> <strong>(M1)(A1)</strong></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Attempt to solve either</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math> <strong>or </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math></p>
<p>or equivalent <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <strong>A1</strong><strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> accept equivalent forms</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>2</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong>A1</strong><strong>A1</strong><strong>A1</strong></p>
<p> </p>
<p><strong>Note: A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> correctly labelled, <strong>A1</strong> for at least two trajectories above <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> and <strong>A1</strong> for at least two trajectories below <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math>, including arrows.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>></mo><mn>2000</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>A</mi><msup><mtext mathvariant="italic">e</mtext><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>B</mi><msup><mtext mathvariant="italic">e</mtext><mrow><mn>0</mn><mo>.</mo><mn>2</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
<p>At <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2000</mn><mo>=</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>,</mo><mo> </mo><mn>2900</mn><mo>=</mo><mo>-</mo><mn>2</mn><mi>A</mi><mo>+</mo><mi>B</mi></math> <strong>M1A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>M1</strong> for the substitution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2000</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2900</mn></math></p>
<p> </p>
<p>Hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mo>-</mo><mn>300</mn><mo>,</mo><mo> </mo><mi>B</mi><mo>=</mo><mn>2300</mn></math> <strong>A1</strong><strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mo>-</mo><mn>300</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup><mo>+</mo><mn>2300</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>2</mn><mi>t</mi></mrow></msup></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>79</mn><mo> </mo><mfenced><mrow><mn>6</mn><mo>.</mo><mn>7896</mn><mo>…</mo></mrow></mfenced></math> (years) <strong>A1</strong></p>
<p> </p>
<p><strong>[6 marks]</strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>600</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>6</mn><mo>.</mo><mn>79</mn></mrow></msup><mo>+</mo><mn>2300</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>6</mn><mo>.</mo><mn>79</mn></mrow></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26827</mn><mo>.</mo><mn>9</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26830</mn></math> (to the nearest <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> animals) <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> moves along the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. The velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><msup><mtext> m s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>−</mo><mn>2</mn><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn><mi>t</mi><mo>−</mo><mn>24</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the times when <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is at instantaneous rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the magnitude of the particle’s acceleration at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> seconds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the greatest speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> in the interval <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>6</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The particle starts from the origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>. Find an expression for the displacement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> in the interval <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>4</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>solving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>0</mn></math><strong> <em>M1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>t</mi><mo>=</mo><mn>6</mn></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of power rule<strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mi>t</mi><mo>+</mo><mn>16</mn></math><strong> <em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>t</mi><mo>=</mo><mn>6</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>=</mo><mo>-</mo><mn>8</mn></math><strong> <em>(A1)</em></strong></p>
<p>magnitude <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>using a sketch graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> <strong> <em>(M1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD ONE</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>∫</mo><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p>attempt at integration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> <strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mn>2</mn><msup><mi>t</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac><mo>+</mo><mn>8</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>24</mn><mi>t</mi><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math><strong> <em>A1</em></strong></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> (use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math>) <strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>0</mn></math> <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>2</mn><msup><mi>t</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac><mo>+</mo><mn>8</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>24</mn><mi>t</mi></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD TWO</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>t</mi></msubsup><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p>attempt at integration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> <strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mrow><mn>2</mn><msup><mi>t</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac><mo>+</mo><mn>8</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>24</mn><mi>t</mi></mrow></mfenced><mn>0</mn><mi>t</mi></msubsup></math><strong> <em>A1</em></strong></p>
<p>attempt to substituted limits into their integral <strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>2</mn><msup><mi>t</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac><mo>+</mo><mn>8</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>24</mn><mi>t</mi></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>4</mn></msubsup><mfenced open="|" close="|"><mi>v</mi></mfenced><mo> </mo><mo>d</mo><mi>t</mi></math> <strong> <em>(M1)(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for using the absolute value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>, or separating into two integrals, <em><strong>A1</strong></em> for the correct expression.<br><br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>32</mn><mo> </mo><mtext>m</mtext></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A shock absorber on a car contains a spring surrounded by a fluid. When the car travels over uneven ground the spring is compressed and then returns to an equilibrium position.</p>
<p style="text-align: center;"><img src=""></p>
<p>The displacement, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, of the spring is measured, in centimetres, from the equilibrium position of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>. The value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> can be modelled by the following second order differential equation, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, measured in seconds, after the initial displacement.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>¨</mo></mover><mo>+</mo><mn>3</mn><mover><mi>x</mi><mo>˙</mo></mover><mo>+</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
</div>
<div class="specification">
<p>The differential equation can be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mover><mi>x</mi><mo>˙</mo></mover></mtd></mtr><mtr><mtd><mover><mi>y</mi><mo>˙</mo></mover></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="bold-italic">A</mi><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>2</mn></math> matrix.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mover><mi>x</mi><mo>˙</mo></mover></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>−</mo><mn>3</mn><mi>y</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues of matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvectors of matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> the shock absorber is displaced <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo> </mo><mtext>cm</mtext></math> and its velocity is zero, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mover><mi>x</mi><mo>˙</mo></mover><mo>⇒</mo><mover><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mover><mi>x</mi><mo>¨</mo></mover></math> <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>˙</mo></mover><mo>+</mo><mn>3</mn><mfenced><mi>y</mi></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>=</mo><mn>0</mn></math> <strong><em>R1</em></strong></p>
<p><br><strong>Note:</strong> If no explicit reference is made to <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mover><mi>x</mi><mo>¨</mo></mover></math>, or equivalent, award <em><strong>A0R1</strong></em> if second line is seen. If <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> used instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>, award <em><strong>A0R0</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mo>−</mo><mn>3</mn><mi>y</mi><mo>−</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi></math> <strong><em>AG</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>.</mo><mn>25</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mi>λ</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>.</mo><mn>25</mn></mtd><mtd><mo>-</mo><mn>3</mn><mo>-</mo><mi>λ</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mfenced><mrow><mi>λ</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>25</mn><mo>=</mo><mn>0</mn></math> <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo> </mo><mo>;</mo><mo> </mo><mi>λ</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn><mo>.</mo><mn>5</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>.</mo><mn>25</mn></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>5</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mn>1</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></math> <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>.</mo><mn>25</mn></mtd><mtd><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mn>2</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <strong><em>A1</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for a valid attempt to find either eigenvector. Accept equivalent forms of the eigenvectors. <br>Do not award <em><strong>FT</strong></em> for eigenvectors that do not satisfy both rows of the matrix.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <strong><em>M1A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo> </mo><mo>⇒</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>8</mn><mo>,</mo><mo> </mo><mover><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>y</mi><mo>=</mo><mn>0</mn></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>A</mi><mo>-</mo><mn>2</mn><mi>B</mi><mo>=</mo><mn>8</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mi>A</mi><mo>+</mo><mi>B</mi><mo>=</mo><mn>0</mn></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>1</mn><mo> </mo><mo>;</mo><mo> </mo><mi>B</mi><mo>=</mo><mo>-</mo><mn>5</mn></math> <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup><mo>+</mo><mn>10</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup></math> <strong><em>A1</em></strong></p>
<p><strong><br>Note:</strong> Do not award the final <em><strong>A1</strong></em> if the answer is given in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>.</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem, although simple errors often complicated things. In part (a) an explicit statement of the relationship between the second derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and the first derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> was often issing. Then in part (b) there seemed to be confusion about the matrix, with the correct values often placed in the wrong row or column of the matrix. Despite these errors, candidates made good attempts at finding eigenvalues and eigenvectors. It is to be noted that an error in solving the quadratic equation to find the eigenvectors means that follow-through marks are unlikely to be awarded since the eigenvectors are not reasonable answers and will not be consistent with the eigenvalues. Candidates need to take real care at this point of a question in part (c)(i). A significant number of candidates did not write down the final answer correctly, leaving their final answer in vector form, rather than “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo></math> ….” as asked for in the question.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem, although simple errors often complicated things. In part (a) an explicit statement of the relationship between the second derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and the first derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> was often issing. Then in part (b) there seemed to be confusion about the matrix, with the correct values often placed in the wrong row or column of the matrix. Despite these errors, candidates made good attempts at finding eigenvalues and eigenvectors. It is to be noted that an error in solving the quadratic equation to find the eigenvectors means that follow-through marks are unlikely to be awarded since the eigenvectors are not reasonable answers and will not be consistent with the eigenvalues. Candidates need to take real care at this point of a question in part (c)(i). A significant number of candidates did not write down the final answer correctly, leaving their final answer in vector form, rather than “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo></math> ….” as asked for in the question.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem, although simple errors often complicated things. In part (a) an explicit statement of the relationship between the second derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and the first derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> was often issing. Then in part (b) there seemed to be confusion about the matrix, with the correct values often placed in the wrong row or column of the matrix. Despite these errors, candidates made good attempts at finding eigenvalues and eigenvectors. It is to be noted that an error in solving the quadratic equation to find the eigenvectors means that follow-through marks are unlikely to be awarded since the eigenvectors are not reasonable answers and will not be consistent with the eigenvalues. Candidates need to take real care at this point of a question in part (c)(i). A significant number of candidates did not write down the final answer correctly, leaving their final answer in vector form, rather than “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo></math> ….” as asked for in the question.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem, although simple errors often complicated things. In part (a) an explicit statement of the relationship between the second derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and the first derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> was often issing. Then in part (b) there seemed to be confusion about the matrix, with the correct values often placed in the wrong row or column of the matrix. Despite these errors, candidates made good attempts at finding eigenvalues and eigenvectors. It is to be noted that an error in solving the quadratic equation to find the eigenvectors means that follow-through marks are unlikely to be awarded since the eigenvectors are not reasonable answers and will not be consistent with the eigenvalues. Candidates need to take real care at this point of a question in part (c)(i). A significant number of candidates did not write down the final answer correctly, leaving their final answer in vector form, rather than “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo></math> ….” as asked for in the question.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem, although simple errors often complicated things. In part (a) an explicit statement of the relationship between the second derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and the first derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> was often issing. Then in part (b) there seemed to be confusion about the matrix, with the correct values often placed in the wrong row or column of the matrix. Despite these errors, candidates made good attempts at finding eigenvalues and eigenvectors. It is to be noted that an error in solving the quadratic equation to find the eigenvectors means that follow-through marks are unlikely to be awarded since the eigenvectors are not reasonable answers and will not be consistent with the eigenvalues. Candidates need to take real care at this point of a question in part (c)(i). A significant number of candidates did not write down the final answer correctly, leaving their final answer in vector form, rather than “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo></math> ….” as asked for in the question.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The cross-sectional view of a tunnel is shown on the axes below. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math> represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>8</mn></math>, relative to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>)</mo></math>, and point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>Find the height of the tunnel when</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum height of the tunnel.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>6</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule, with three intervals, to estimate the cross-sectional area of the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integral which can be used to find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of power rule (at least one correct term seen) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>33</mn><mo> </mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>33333</mn><mo>…</mo><mo>,</mo><mo> </mo><mfrac><mn>16</mn><mn>3</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>33333</mn><msup><mo>…</mo><mn>3</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>33333</mn><msup><mo>…</mo><mn>2</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for substituting their zero for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo> </mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>333</mn><mo>…</mo></mrow></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>59</mn><mo> </mo><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><mo> </mo><mfenced><mrow><mn>7</mn><mo>.</mo><mn>58519</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M0A0M0A0</strong></em> for an unsupported <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>59</mn></math>. <br>Award at most <em><strong>M0A0M1A0</strong></em> if only the last two lines in the solution are seen. <br>Award at most <em><strong>M1A0M1A1</strong></em> if their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>33</mn></math> is not seen.</p>
<p><strong><br></strong><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>One correct substitution seen <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>4</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>2</mn><mfenced><mrow><mfenced><mrow><mn>2</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>0</mn></mrow></mfenced><mo>+</mo><mn>2</mn><mfenced><mrow><mn>6</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>7</mn><mo>.</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>(A1)(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>2</mn></math> seen. Award <em><strong>M1</strong></em> for correct substitution into the trapezoidal rule (the zero can be omitted in working).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>29</mn><mo>.</mo><mn>6</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msubsup><mo>∫</mo><mn>2</mn><mn>8</mn></msubsup><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo>d</mo><mi>x</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msubsup><mo>∫</mo><mn>2</mn><mn>8</mn></msubsup><mi>y</mi><mo> </mo><mo>d</mo><mi>x</mi></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for a correct integral, <em><strong>A</strong><strong>1</strong></em> for correct limits in the correct location. Award at most <em><strong>A0A1</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>d</mtext><mi>x</mi></math> is omitted.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>32</mn><mo>.</mo><mn>4</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>A2</strong></em></p>
<p><strong><br>Note:</strong> As per the marking instructions, <em><strong>FT</strong></em> from their integral in part (d)(i). Award at most <em><strong>A1FTA0</strong></em> if their area is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>></mo><mn>48</mn></math>, this is outside the constraints of the question (a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>×</mo><mn>8</mn></math> rectangle).</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle moves such that its displacement, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> metres, from a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds is given by the differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>5</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
</div>
<div class="specification">
<p>The equation for the motion of the particle is amended to</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>5</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>3</mn><mi>t</mi><mo>+</mo><mn>4</mn></math>.</p>
</div>
<div class="specification">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> the particle is stationary at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the substitution <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> to show that this equation can be written as</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues for the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state the long-term velocity of the particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the substitution <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> to write the differential equation as a system of coupled, first order differential equations.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method with a step length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math> to find the displacement of the particle when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the long-term velocity of the particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>5</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>0</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>5</mn><mi>y</mi><mo>+</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><strong><br>Note:</strong> Award <strong>M1</strong> for substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>det</mtext><mfenced><mtable><mtr><mtd><mo>-</mo><mi>λ</mi><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>5</mn><mo>-</mo><mi>λ</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><br><em><strong>Note:</strong></em> Award <em><strong>M1</strong> </em>for an attempt to find eigenvalues. Any indication that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>det</mtext><mfenced><mrow><mi mathvariant="bold-italic">M</mi><mo>-</mo><mi>λ</mi><mi mathvariant="bold-italic">I</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> has been used is sufficient for the <em><strong>(M1)</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>λ</mi><mfenced><mrow><mo>-</mo><mn>5</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>+</mo><mn>6</mn><mo>=</mo><mn>0</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>λ</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>λ</mi><mo>+</mo><mn>6</mn><mo>=</mo><mn>0</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(on a phase portrait the particle approaches <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> increases so long term velocity (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>) is)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>Note:</strong></em> Only award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> if both eigenvalues in part (a)(ii) are negative. If at least one is positive accept an answer of ‘<em>no limit</em>’ or ‘<em>infinity</em>’, or in the case of one positive and one negative also accept ‘<em>no limit or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">0</mn></math> (depending on initial conditions)</em>’.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>5</mn><mi>y</mi><mo>+</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>3</mn><mi>t</mi><mo>+</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></math> in any recurrence formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>t</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>t</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>x</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><msub><mi>y</mi><mi>n</mi></msub></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>y</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>y</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><mfenced><mrow><mn>3</mn><msub><mi>t</mi><mi>n</mi></msub><mo>+</mo><mn>4</mn><mo>-</mo><mn>5</mn><msub><mi>y</mi><mi>n</mi></msub><mo>-</mo><mn>6</mn><msub><mi>x</mi><mi>n</mi></msub></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>(when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math>,) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>64402</mn><mo>…</mo><mo>≈</mo><mn>0</mn><mo>.</mo><mn>644</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the velocity</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>It was clear that second order differential equations had not been covered by many schools. Fortunately, many were able to successfully answer part (ii) as this was independent of the other two parts. For part (iii) it was expected that candidates would know that two negative eigenvalues mean the system tends to the origin and so the long-term velocity is 0. Some candidates tried to solve the system. It should be noted that when the command term is ‘state’ then no further working out is expected to be seen.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Forming a coupled system from a second order differential equation and solving it using Euler’s method is a technique included in the course guide. Candidates who had learned this technique were successful in this question.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is shown in the graph, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 10">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>10</mn>
</math></span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> passes through the following points.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>It is required to find the area bounded by the curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span><em>-</em>axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span><em>-</em>axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 10">
<mi>x</mi>
<mo>=</mo>
<mn>10</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>One possible model for the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is a cubic function.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule to find an estimate for the area.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use all the coordinates in the table to find the equation of the least squares cubic regression curve.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coefficient of determination.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for the area enclosed by the cubic regression curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 10">
<mi>x</mi>
<mo>=</mo>
<mn>10</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{2}\left( {2 + 2\left( {4.5 + 4.2 + 3.3 + 4.5} \right) + 8} \right)">
<mfrac>
<mn>2</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>+</mo>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>4.5</mn>
<mo>+</mo>
<mn>4.2</mn>
<mo>+</mo>
<mn>3.3</mn>
<mo>+</mo>
<mn>4.5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>8</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p>Area = 43 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0.0389{x^3} - 0.534{x^2} + 2.06x + 2.06">
<mi>y</mi>
<mo>=</mo>
<mn>0.0389</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>0.534</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2.06</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2.06</mn>
</math></span> <em><strong>M1A2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{R^2} = 0.991">
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0.991</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{10} {y\,dx} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>10</mn>
</mrow>
</munderover>
<mrow>
<mi>y</mi>
<mspace width="thinmathspace"></mspace>
<mi>d</mi>
<mi>x</mi>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>42.5 <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>At an archery tournament, a particular competition sees a ball launched into the air while an archer attempts to hit it with an arrow.</p>
<p>The path of the ball is modelled by the equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><msub><mi>u</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>u</mi><mi>y</mi></msub><mo>-</mo><mn>5</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is the horizontal displacement from the archer and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the vertical displacement from the ground, both measured in metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, in seconds, since the ball was launched.</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub></math> is the horizontal component of the initial velocity</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub></math> is the vertical component of the initial velocity.</li>
</ul>
<p>In this question both the ball and the arrow are modelled as single points. The ball is launched with an initial velocity such that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub><mo>=</mo><mn>8</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub><mo>=</mo><mn>10</mn></math>.</p>
</div>
<div class="specification">
<p>An archer releases an arrow from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math>. The arrow is modelled as travelling in a straight line, in the same plane as the ball, with speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> and an angle of elevation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>°</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the initial speed of the ball.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle of elevation of the ball as it is launched.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum height reached by the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the ground is horizontal and the ball is not hit by the arrow, find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinate of the point where the ball lands.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the path of the ball, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the two positions where the path of the arrow intersects the path of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time when the arrow should be released to hit the ball before the ball reaches its maximum height.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mn>10</mn><mn>2</mn></msup><mo>+</mo><msup><mn>8</mn><mn>2</mn></msup></msqrt></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>12</mn><mo>.</mo><mn>8</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>12</mn><mo>.</mo><mn>8062</mn><mo>…</mo><mo>,</mo><mo> </mo><msqrt><mn>164</mn></msqrt></mrow></mfenced><mo> </mo><mfenced><mrow><mtext>m</mtext><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>tan</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mn>10</mn><mn>8</mn></mfrac></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>896</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>3</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>896055</mn><mo>…</mo></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>3401</mn><mo>…</mo><mo>°</mo></math>) <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>897</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>4</mn></math> from use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arcsin</mtext><mfenced><mfrac><mn>10</mn><mrow><mn>12</mn><mo>.</mo><mn>8</mn></mrow></mfrac></mfenced></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>t</mi><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mi>t</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong> </em>might be implied by a correct graph or use of the correct equation.</p>
<p> </p>
<p><strong>METHOD 1 – graphical Method</strong></p>
<p>sketch graph <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong> </em>might be implied by correct graph or correct maximum (eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math>).</p>
<p><br>max occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em><br><br></p>
<p><strong>METHOD 2 – calculus</strong><br><br>differentiating and equating to zero <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>10</mn><mo>-</mo><mn>10</mn><mi>t</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mfenced><mrow><mo>=</mo><mn>1</mn><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3 – symmetry</strong></p>
<p>line of symmetry is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mfenced><mrow><mo>=</mo><mn>1</mn><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>5</mn><mo>+</mo><mn>8</mn><mo>×</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mo> </mo><mn>21</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em><br><br></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong> </em>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> is also seen.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></mfenced><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mo>×</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>k</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>21</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>13</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>5</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>5</mn><mrow><mfenced><mrow><mn>13</mn><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mn>13</mn><mo>-</mo><mn>21</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>21</mn></mrow></mfenced></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>25</mn><mi>a</mi><mo>+</mo><mn>5</mn><mi>b</mi><mo>+</mo><mi>c</mi></math><br> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>169</mn><mi>a</mi><mo>+</mo><mn>13</mn><mi>b</mi><mo>+</mo><mi>c</mi></math><br> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>441</mn><mi>a</mi><mo>+</mo><mn>21</mn><mi>b</mi><mo>+</mo><mi>c</mi></math> <em><strong>M1A1</strong></em></p>
<p>solving simultaneously, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mo>,</mo><mo> </mo><mi>c</mi><mo>=</mo><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math>)</p>
<p> </p>
<p><strong>METHOD 4</strong><br><br>use quadratic regression on <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>13</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>21</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Question asks for expression; condone omission of "<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo></math>".</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>trajectory of arrow is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>10</mn><mo>+</mo><mn>2</mn></math> <em><strong>(A1)</strong></em></p>
<p>intersecting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>10</mn><mo>+</mo><mn>2</mn></math> and their answer to (d) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>8</mn><mo>.</mo><mn>66</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>53</mn></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mfenced><mrow><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>52647</mn><mo>…</mo></mrow></mfenced></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>15</mn><mo>.</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>66</mn></mrow></mfenced><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mfenced><mrow><mn>15</mn><mo>.</mo><mn>0859</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>66006</mn><mo>…</mo></mrow></mfenced></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mtext>target</mtext></msub><mo>=</mo><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>,</mo><mo> </mo><mo> </mo><msub><mi>t</mi><mtext>target</mtext></msub><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>457132</mn><mo>…</mo><mo> </mo><mtext>s</mtext></math> <em><strong>(A1)</strong></em></p>
<p>attempt to find the distance from point of release to intersection <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>8</mn><mo>.</mo><mn>65705</mn><msup><mo>…</mo><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>3</mn><mo>.</mo><mn>52647</mn><mo>…</mo><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>8</mn><mo>.</mo><mn>79060</mn><mo>…</mo><mo> </mo><mtext>m</mtext></mrow></mfenced></math></p>
<p>time for arrow to get there is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>79060</mn><mo>…</mo></mrow><mn>60</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>146510</mn><mo>…</mo><mtext>s</mtext></math> <em><strong>(A1)</strong></em></p>
<p>so the arrow should be released when</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>311</mn><mo> </mo><mfenced><mtext>s</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>310622</mn><mo>…</mo><mo> </mo><mfenced><mtext>s</mtext></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was found to be the most difficult on the paper. There were a good number of good solutions to parts (a) and part (b), frequently with answers just written down with no working. Part (c) caused some difficulties with confusing variables. The most significant difficulties started with part (d) and became greater to the end of the question. Few candidates were able to work through the final two parts.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A biologist introduces <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> rabbits to an island and records the size of their population <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>x</mi><mo>)</mo></math> over a period of time. The population growth of the rabbits can be approximately modelled by the following differential equation, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is time measured in years.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi>x</mi></math></p>
</div>
<div class="specification">
<p>A population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> foxes is introduced to the island when the population of rabbits has reached <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math>. The subsequent population growth of rabbits and foxes, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the population of foxes at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, can be approximately modelled by the coupled equations:</p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mfenced><mrow><mn>2</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>01</mn><mi>y</mi></mrow></mfenced></math></p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0002</mn><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></mfenced></math></p>
</div>
<div class="specification">
<p>Use Euler’s method with a step size of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>25</mn></math>, to find</p>
</div>
<div class="specification">
<p>The graph of the population sizes, according to this model, for the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> years after the foxes were introduced is shown below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Describe the changes in the populations of rabbits and foxes for these <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> years at</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the population of rabbits <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> year after they were introduced.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) the population of rabbits 1 year after the foxes were introduced.</p>
<p>(ii) the population of foxes 1 year after the foxes were introduced.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the non-zero equilibrium point for the populations of rabbits and foxes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>1</mn><mi>x</mi></mfrac><mo>d</mo><mi>x</mi><mo>=</mo><mo>∫</mo><mn>2</mn><mo>d</mo><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>2</mn><mi>t</mi><mo>+</mo><mi>c</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>100</mn><mo>⇒</mo><mi>A</mi><mo>=</mo><mn>100</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>100</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>739</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>738</mn></math> for the final <em><strong>A1</strong></em>.</p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>t</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>25</mn></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> This may be inferred from a correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> column, where this is seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>x</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>25</mn><msub><mi>x</mi><mi>n</mi></msub><mo> </mo><mfenced><mrow><mn>2</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>01</mn><msub><mi>y</mi><mi>n</mi></msub></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>y</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>y</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>25</mn><msub><mi>y</mi><mi>n</mi></msub><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0002</mn><msub><mi>x</mi><mi>n</mi></msub><mo>-</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p style="padding-left:120px;"><img src=""> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for whole line correct when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>75</mn></math>. The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> column may be omitted and implied by the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> values. The formulas are implied by the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> columns.</p>
<p><br>(i) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2840</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2836</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2837</mn></math>) <em><strong>A1</strong></em></p>
<p>(ii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>59</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>both populations are increasing <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rabbits are decreasing and foxes are increasing <em><strong>A1A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>setting at least one <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DE</mtext></math> to zero <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4000</mn><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>=</mo><mn>200</mn></math> <em><strong>A1A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Jorge is carefully observing the rise in sales of a new app he has created.</p>
<p>The number of sales in the first four months is shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Jorge believes that the increase is exponential and proposes to model the number of sales <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> in month <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> with the equation</p>
<p style="text-align: left; padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mi>r</mi><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mi>A</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math></p>
</div>
<div class="specification">
<p>Jorge plans to adapt Euler’s method to find an approximate value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<p>With a step length of one month the solution to the differential equation can be approximated using Euler’s method where</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≈</mo><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>,</mo><mo> </mo><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></math></p>
</div>
<div class="specification">
<p>Jorge decides to take the mean of these values as the approximation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> for his model. He also decides the graph of the model should pass through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>52</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>The sum of the square residuals for these points for the least squares regression model is approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>555</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Jorge’s model satisfies the differential equation</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>r</mi><mi>N</mi></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow><mrow><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow></mfrac></math></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find three approximations for the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation for Jorge’s model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the sum of the square residuals for Jorge’s model using the values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment how well Jorge’s model fits the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give two possible sources of error in the construction of his model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>r</mi><mi>A</mi><msup><mtext>e</mtext><mrow><mi>r</mi><mi>t</mi></mrow></msup></math> <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>Note: M1</strong> is for an attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>r</mi><mi>N</mi></math> <strong>AG</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept solution of the differential equation by separating variables</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≈</mo><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>⇒</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>≈</mo><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>r</mi><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>≈</mo><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></math> <strong>M1A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>r</mi><mo>≈</mo><mfrac><mrow><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow><mrow><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow></mfrac></math> <strong>AG</strong></p>
<p> </p>
<p><strong>Note:</strong> Do not penalize the use of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math> sign.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Correct method <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>52</mn><mo>-</mo><mn>40</mn></mrow><mn>40</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>70</mn><mo>-</mo><mn>52</mn></mrow><mn>52</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>346</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>98</mn><mo>-</mo><mn>70</mn></mrow><mn>70</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> <strong>A2</strong></p>
<p> </p>
<p><strong>Note: A1</strong> for a single error <strong>A0</strong> for two or more errors.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>349</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>34871</mn><mo>…</mo></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>68</mn><mn>195</mn></mfrac></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>52</mn><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>34871</mn><mo>…</mo><mo>×</mo><mn>2</mn></mrow></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>8887</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>9</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>349</mn><mi>t</mi></mrow></msup></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>36</mn><mo>.</mo><mn>6904</mn><mo>…</mo><mo>-</mo><mn>40</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>0</mn><mo>+</mo><msup><mfenced><mrow><mn>73</mn><mo>.</mo><mn>6951</mn><mo>…</mo><mo>-</mo><mn>70</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>104</mn><mo>.</mo><mn>4435</mn><mo>…</mo><mo>-</mo><mn>98</mn></mrow></mfenced><mn>2</mn></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>66</mn><mo>.</mo><mn>1</mn><mo> </mo><mfenced><mrow><mn>66</mn><mo>.</mo><mn>126</mn><mo>…</mo></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The sum of the square residuals is approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> times as large as the minimum possible, so Jorge’s model is unlikely to fit the data exactly <strong>R1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For example</p>
<p>Selecting a single point for the curve to pass through</p>
<p>Approximating the gradient of the curve by the gradient of a chord <strong>R1R1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigating the relationship between chemical reactions and temperature finds the Arrhenius equation on the internet.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></mrow></msup></math></p>
<p>This equation links a variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> with the temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> are positive constants and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>The Arrhenius equation predicts that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> is a straight line.</p>
</div>
<div class="specification">
<p>Write down</p>
</div>
<div class="specification">
<p>The following data are found for a particular reaction, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> is measured in Kelvin and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is measured in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cm</mtext><mn>3</mn></msup><mo> </mo><msup><mtext>mol</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mtext>s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Find an estimate of</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>k</mi></mrow><mrow><mo>d</mo><mi>T</mi></mrow></mfrac></math> is always positive.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>→</mo><mo>∞</mo></mrow></munder><mi>k</mi><mo>=</mo><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>→</mo><mn>0</mn></mrow></munder><mi>k</mi><mo>=</mo><mn>0</mn></math>, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) the gradient of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>;</p>
<p>(ii) the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use chain rule, including the differentiation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>k</mi></mrow><mrow><mo>d</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mi>A</mi><mo>×</mo><mfrac><mi>c</mi><msup><mi>T</mi><mn>2</mn></msup></mfrac><mo>×</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></mrow></msup></math> <em><strong>A1</strong></em></p>
<p>this is the product of positive quantities so must be positive <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>R1</strong> </em>may be awarded for correct argument from <strong>their</strong> derivative. <em><strong>R1</strong> </em>is not possible if their derivative is not always positive.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for an increasing graph, entirely in first quadrant, becoming concave down for larger values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, <em><strong>A1</strong></em> for tending towards the origin and <em><strong>A1</strong> </em>for asymptote labelled at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mi>A</mi></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>taking <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi></math> of both sides <strong>OR</strong> substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mi>T</mi></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>A</mi><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>ln</mi><mo> </mo><mi>A</mi></math> <em><strong>(A1)</strong></em></p>
<p><br>(i) so gradient is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>c</mi></math> <em><strong>A1</strong></em></p>
<p><br>(ii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>A</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The implied <em><strong>(M1)</strong></em> and <em><strong>(A1)</strong></em> can only be awarded if <strong>both</strong> correct answers are seen. Award zero if only one value is correct <strong>and</strong> no working is seen.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an attempt to convert data to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math> <em><strong>(M1)</strong></em></p>
<p>e.g. at least one correct row in the following table</p>
<p><img src=""></p>
<p>line is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi><mo>=</mo><mo>-</mo><mn>13400</mn><mo>×</mo><mfrac><mn>1</mn><mi>T</mi></mfrac><mo>+</mo><mn>15</mn><mo>.</mo><mn>0</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>13383</mn><mo>.</mo><mn>1</mn><mo>…</mo><mo>×</mo><mfrac><mn>1</mn><mi>T</mi></mfrac><mo>+</mo><mn>15</mn><mo>.</mo><mn>0107</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>13400</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>13383</mn><mo>.</mo><mn>1</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to rearrange or solve graphically <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>A</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>0107</mn><mo>…</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>3</mn><mo> </mo><mn>300</mn><mo> </mo><mn>000</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>3</mn><mo> </mo><mn>304</mn><mo> </mo><mn>258</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> <strong>Note</strong>: Accept an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3269017</mn></math>… from use of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3</mn><mi>sf</mi></math> value.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question caused significant difficulties for many candidates and many did not even attempt the question. Very few candidates were able to differentiate the expression in part (a) resulting in difficulties for part (b). Responses to parts (c) to (e) illustrated a lack of understanding of linearizing a set of data. Those candidates that were able to do part (d) frequently lost a mark as their answer was given in <em>x</em> and <em>y</em>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The voltage <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> in a circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 3\,{\text{sin}}\left( {100\pi t} \right)">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \geqslant 0">
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is measured in seconds.</p>
</div>
<div class="specification">
<p>The current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
<mi>i</mi>
</math></span> in this circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\left( t \right) = 2\,{\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right)">
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> in this circuit is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = v\left( t \right) \times i\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>×<!-- × --></mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The average power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span> in this circuit from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = T">
<mi>t</mi>
<mo>=</mo>
<mi>T</mi>
</math></span> is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right) = \frac{1}{T}\int_0^T {p\left( t \right){\text{d}}t} ">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>T</mi>
</mfrac>
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mn>0</mn>
<mi>T</mi>
</msubsup>
<mrow>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T > 0">
<mi>T</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum and minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two transformations that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = v\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = i\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time in the interval 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> ≥ 3.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span>(0.007).</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right)">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
</math></span> > 0 for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> > 0.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = a\,{\text{sin}}\left( {b\left( {t - c} \right)} \right) + d">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>b</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>−</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>d</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> > 0, use your graph to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3, −3 <em><strong>A1</strong></em><em><strong>A1</strong></em> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis invariant), scale factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 0.003} \\ 0 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>0.003</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (shift to the left by 0.003) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Can be done in either order.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape over correct domain with correct endpoints <em><strong>A1</strong></em><br>first maximum at (0.0035, 4.76) <em><strong>A1</strong></em><br>first minimum at (0.0085, −1.24) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> ≥ 3 between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.0016762 and 0.0053238 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.011676 and 0.015324 <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A1</strong></em> for either interval.</p>
<p>= 0.00730 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}} = \frac{1}{{0.007}}\int_0^{0.007} {6\,{\text{sin}}\left( {100\pi t} \right)} {\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right){\text{d}}t">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.007</mn>
</mrow>
</mfrac>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>0.007</mn>
</mrow>
</msubsup>
<mrow>
<mn>6</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π</mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 2.87 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in each cycle the area under the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> axis is smaller than area above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> axis <em><strong>R1</strong></em></p>
<p>the curve begins with the positive part of the cycle <em><strong>R1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{4.76 - \left( { - 1.24} \right)}}{2}">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.76</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.24</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 3.00">
<mi>a</mi>
<mo>=</mo>
<mn>3.00</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = \frac{{4.76 + \left( { - 1.24} \right)}}{2}">
<mi>d</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.76</mn>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.24</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = 1.76">
<mi>d</mi>
<mo>=</mo>
<mn>1.76</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{2\pi }}{{0.01}}">
<mi>b</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>0.01</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 628\left( { = 200\pi } \right)">
<mi>b</mi>
<mo>=</mo>
<mn>628</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>200</mn>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.0035 - \frac{{0.01}}{4}">
<mi>c</mi>
<mo>=</mo>
<mn>0.0035</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>0.01</mn>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.00100">
<mi>c</mi>
<mo>=</mo>
<mn>0.00100</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the system of paired differential equations</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot x = 3x + 2y">
<mrow>
<mover>
<mi>x</mi>
<mo>˙<!-- ˙ --></mo>
</mover>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mi>y</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot y = 2x + 3y">
<mrow>
<mover>
<mi>y</mi>
<mo>˙<!-- ˙ --></mo>
</mover>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mi>y</mi>
</math></span>.</p>
<p>This represents the populations of two species of symbiotic toadstools in a large wood.</p>
<p>Time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is measured in decades.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the eigenvalue method to find the general solution to this system of equations.</p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given the initial conditions that when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 150">
<mi>x</mi>
<mo>=</mo>
<mn>150</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 50">
<mi>y</mi>
<mo>=</mo>
<mn>50</mn>
</math></span>, find the particular solution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the solution when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1">
<mi>t</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \to \infty ">
<mi>t</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</math></span>, find an asymptote to the trajectory of the particular solution found in (b)(i) and state if this trajectory will be moving towards or away from the origin.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>The characteristic equation is given by</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\begin{array}{*{20}{c}} {3 - \lambda }&2 \\ 2&{3 - \lambda } \end{array}} \right| = 0 \Rightarrow {\lambda ^2} - 6\lambda + 5 = 0 \Rightarrow \lambda = 1{\text{ or 5}}">
<mrow>
<mo>|</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>3</mn>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</mtd>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mrow>
<mn>3</mn>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mrow>
<msup>
<mi>λ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mi>λ</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>λ</mi>
<mo>=</mo>
<mn>1</mn>
<mrow>
<mtext> or 5</mtext>
</mrow>
</math></span> <em><strong>M1A1A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 1{\text{ }}\left( {\begin{array}{*{20}{c}} 2&2 \\ 2&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} p \\ q \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \end{array}} \right){\text{ gives an eigenvector of form }}\left( {\begin{array}{*{20}{c}} 1 \\ { - 1} \end{array}} \right)">
<mi>λ</mi>
<mo>=</mo>
<mn>1</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>q</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext> gives an eigenvector of form </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 5{\text{ }}\left( {\begin{array}{*{20}{c}} { - 2}&2 \\ 2&{ - 2} \end{array}} \right)\left( {\begin{array}{*{20}{c}} p \\ q \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \end{array}} \right){\text{ gives an eigenvector of form }}\left( {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right)">
<mi>λ</mi>
<mo>=</mo>
<mn>5</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mtd>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>q</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext> gives an eigenvector of form </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p>General solution is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = A{e^t}\left( {\begin{array}{*{20}{c}} 1 \\ { - 1} \end{array}} \right) + B{e^{5t}}\left( {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>y</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>A</mi>
<mrow>
<msup>
<mi>e</mi>
<mi>t</mi>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>B</mi>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mn>5</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1A1</strong></em></p>
<p><em><strong>[10 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Require <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A + B = 150,{\text{ }} - A + B = 50 \Rightarrow A = 50,{\text{ B = 100}}">
<mi>A</mi>
<mo>+</mo>
<mi>B</mi>
<mo>=</mo>
<mn>150</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mi>A</mi>
<mo>+</mo>
<mi>B</mi>
<mo>=</mo>
<mn>50</mn>
<mo stretchy="false">⇒</mo>
<mi>A</mi>
<mo>=</mo>
<mn>50</mn>
<mo>,</mo>
<mrow>
<mtext> B = 100</mtext>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p>Particular solution is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = 50{e^t}\left( {\begin{array}{*{20}{c}} 1 \\ { - 1} \end{array}} \right) + 100{e^{5t}}\left( {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>y</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>50</mn>
<mrow>
<msup>
<mi>e</mi>
<mi>t</mi>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>100</mn>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mn>5</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1 \Rightarrow \left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {15000} \\ {14700} \end{array}} \right){\text{ }}\left( {3sf} \right)">
<mi>t</mi>
<mo>=</mo>
<mn>1</mn>
<mo stretchy="false">⇒</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>y</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>15000</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>14700</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mi>s</mi>
<mi>f</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The dominant term is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="100{e^{5t}}\left( {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right)">
<mn>100</mn>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mn>5</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> so as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \to \infty ">
<mi>t</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) \simeq 100{e^{5t}}\left( {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>y</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>≃</mo>
<mn>100</mn>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mn>5</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p>Giving the asymptote as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
<mi>y</mi>
<mo>=</mo>
<mi>x</mi>
</math></span> <em><strong>A1</strong></em></p>
<p>The trajectory is moving away from the origin. <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><mi>x</mi></msqrt></math>.</p>
</div>
<div class="specification">
<p>The shape of a piece of metal can be modelled by the region bounded by the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>, as shown in the following diagram. The units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes are measured in metres.</p>
<p style="text-align: center;"><img src=""></p>
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><msqrt><mi>x</mi></msqrt><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>16</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>16</mn><mo><</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></math></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is obtained from the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> by:</p>
<ul>
<li>a stretch scale factor of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> direction,</li>
<li>followed by a stretch scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> direction,</li>
<li>followed by a translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> units to the right.</li>
</ul>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>825</mn><mo>)</mo></math>. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> under the given transformations and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><mi>h</mi><mfenced><mi>x</mi></mfenced><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>a</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mi>b</mi><mo> </mo><mo> </mo></mtd><mtd><mi>a</mi><mo><</mo><mi>x</mi><mo>≤</mo><mi>p</mi></mtd></mtr></mtable></math></p>
</div>
<div class="specification">
<p>The area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0627292</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> correct to six significant figures.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the equation of the tangent to the curve at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region on the diagram.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>16</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mfrac><mn>1</mn><msqrt><mn>0</mn><mo>.</mo><mn>16</mn></msqrt></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>16</mn></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow></mfenced><mo>+</mo><mi>b</mi></math> <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not allow working backwards from the given answer.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>,</mo><mo> </mo><mo> </mo><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4125</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>413</mn></math>) (accept " <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4125</mn><mo>)</mo></math> ") <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msqrt><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></msqrt></math> <em><strong>A2</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>if only two correct transformations are seen. </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>28</mn></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>Correct substitution of their part (b) (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>28</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math>) into the given expression <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>.</mo><mn>25</mn><mo>×</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for transforming the equivalent expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> correctly.</p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>b</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>15</mn></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing need to add two integrals <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow></msubsup><msqrt><mi>x</mi></msqrt><mo>d</mo><mi>x</mi><mo>+</mo><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>d</mo><mi>x</mi></math> <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> The second integral could be replaced by the formula for the area of a trapezoid <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>34</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>825</mn></mrow></mfenced></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>251</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>250916</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>area of a trapezoid <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4125</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>825</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math> <strong><em>(M1)(A1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>45</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>8</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math> <strong><em>(M1)(A1)</em></strong></p>
<p><strong><br>Note:</strong> If the rounded answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>413</mn></math> from part (b) is used, the integral is <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>45</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>8</mn><mo>.</mo><mn>24</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>.</mo><mn>295</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>03095</mn></math> which would be awarded <strong><em>(M1)(A1)</em></strong>.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>shaded area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>250916</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>0627292</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for the subtraction of both <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0627292</mn><mo>…</mo></math> and their area for the trapezoid from their answer to (a)(i).</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>157</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>15725</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The differentiation using the power rule was well done. In part (ii) some candidates felt it was sufficient to refer to the equation being the same as the one generated by their calculator. Generally, for ‘show that’ questions an algebraic derivation is expected.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The candidates were successful at applying transformations to points but very few were able to apply these transformations to derive the correct function <em>h</em>. In most cases it was due to not appreciating the effect the horizontal transformations have on <em>x</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The candidates were successful at applying transformations to points but very few were able to apply these transformations to derive the correct function <em>h</em>. In most cases it was due to not appreciating the effect the horizontal transformations have on <em>x</em>.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (i) was frequently done well using the inbuilt functionality of the GDC. Part (ii) was less structured, and candidates needed to create a clear diagram so they could easily see which areas needed to be subtracted. Most of those who were successful used the formula for the trapezoid for the area they needed to find, though others were also successful through finding the equation of the line AB.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A sector of a circle, centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>, is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A square field with side <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo> </mo><mtext>m</mtext></math> has a goat tied to a post in the centre by a rope such that the goat can reach all parts of the field up to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> from the post.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;"><sup>[Source: mynamepong, n.d. Goat [image online] Available at: <a href="https://thenounproject.com/term/goat/1761571/">https://thenounproject.com/term/goat/1761571/</a></sup><br><sup>This file is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)</sup><br><sup><a href="https://creativecommons.org/licenses/by-sa/3.0/deed.en">https://creativecommons.org/licenses/by-sa/3.0/deed.en</a> [Accessed 22 April 2010] Source adapted.]</sup></p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> be the volume of grass eaten by the goat, in cubic metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> be the length of time, in hours, that the goat has been in the field.</p>
<p>The goat eats grass at the rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>t</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded segment.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the field that can be reached by the goat.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which the goat is eating grass at the greatest rate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The goat is tied in the field for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> hours.</p>
<p>Find the total volume of grass eaten by the goat during this time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mtext>AÔB</mtext><mo>=</mo></mrow></mfenced><mo> </mo><mtext>arccos</mtext><mfenced><mfrac><mn>4</mn><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfrac></mfenced><mo>=</mo><mn>27</mn><mo>.</mo><mn>266</mn><mo>…</mo></math> <em><strong>(M1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext><mo>=</mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo><mo>≈</mo><mn>54</mn><mo>.</mo><mn>5</mn><mo>°</mo></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>951764</mn><mo>…</mo><mo>≈</mo><mn>0</mn><mo>.</mo><mn>952</mn></math> radians) <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Other methods may be seen; award <em><strong>(M1)(A1)</strong></em> for use of a correct trigonometric method to find an appropriate angle and then <em><strong>A1</strong> </em>for the correct answer.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding area of triangle</p>
<p><strong>EITHER</strong></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>×</mo><mi>sin</mi><mfenced><mrow><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for correct substitution into formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>25</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>2</mn><mo>×</mo><msqrt><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>-</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><mo>=</mo><mn>4</mn><mo>.</mo><mn>1231</mn><mo>…</mo></math> <em><strong>(M1)</strong></em></p>
<p>area triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>1231</mn><mo>…</mo><mo>×</mo><mn>4</mn></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>25</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p>finding area of sector</p>
<p><strong>EITHER</strong></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>≈</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>9517641</mn><mo>…</mo><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>≈</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>area of segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>-</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>39</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>39040</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p style="padding-left:60px;"><img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>63</mn><mo>.</mo><mn>6172</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>39040</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo> </mo><mo> </mo><mo> </mo><mo>(</mo><mn>5</mn><mo>.</mo><mn>56160</mn><mo>)</mo></math> <em><strong>(A1)</strong></em></p>
<p>subtraction of four segments from area of circle <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>58</mn><mo>.</mo><mn>055</mn><mo>…</mo><mo> </mo></mrow></mfenced></math> <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>angle of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>90</mn><mo>-</mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>-</mo><mn>0</mn><mo>.</mo><mn>951764</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>90</mn><mo>-</mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>6</mn><mo>.</mo><mn>26771</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>area is made up of four triangles and four sectors <em><strong>(M1)</strong></em></p>
<p>total area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>4</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>2462</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>4</mn><mo>×</mo><mn>6</mn><mo>.</mo><mn>26771</mn><mo>…</mo></mrow></mfenced></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>58</mn><mo>.</mo><mn>055</mn><mo>…</mo><mo> </mo></mrow></mfenced></math> <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>110363</mn><mo>…</mo></math> <strong>OR </strong>attempt to find where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>V</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math> hour <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>d</mo><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>8</mn></msubsup><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>d</mo><mi>t</mi></math> <em><strong>(A1)</strong></em></p>
<p>volume eaten is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>299</mn><mo>…</mo><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>299094</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Generally, this question was answered well but provided a good example of final marks being lost due to premature rounding. Some candidates gave a correct three significant figure intermediate answer of 27.3˚ for the angle in the right-angles triangle and then doubled it to get 54.6˚ as a final answer. This did not receive the final answer mark as the correct answer is 54.5˚ to three significant figures. Premature rounding needs to be avoided in all questions.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Unfortunately, many candidates failed to see the connection to part (a). Indeed, the most common answer was to assume the goat could eat all the grass in a circle of radius 4.5m.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates completed this question successfully by graphing the function. A few tried to differentiate the function again and, in some cases, also managed to obtain the correct answer.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a question that was pleasingly answered correctly by many candidates who recognized that integration was needed to find the answer. As in part (c) a few tried to do the integration ‘by hand’, and were largely unsuccessful.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 < x < \pi ">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mi>x</mi>
</msqrt>
</mrow>
<mrow>
<mi>sin</mi>
<mo><!-- --></mo>
<mi>x</mi>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the region bounded by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>6</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate of the minimum point on the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> satisfies the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x">
<mi>tan</mi>
<mo></mo>
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> is a decreasing function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> showing clearly the minimum point and any asymptotic behaviour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> where the normal to the graph is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - x">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mi>x</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This region is now rotated through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
<mn>2</mn>
<mi>π</mi>
</math></span> radians about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis. Find the volume of revolution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule or product rule <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}{\text{ }}\left( { = \frac{1}{{2\sqrt x \sin x}} - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}} \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<msqrt>
<mi>x</mi>
</msqrt>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mi>sin</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<msqrt>
<mi>x</mi>
</msqrt>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<msqrt>
<mi>x</mi>
</msqrt>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mi>sin</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{2\sqrt x \sin x}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<msqrt>
<mi>x</mi>
</msqrt>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> or equivalent and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}">
<mo>−</mo>
<mfrac>
<mrow>
<msqrt>
<mi>x</mi>
</msqrt>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mi>sin</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> or equivalent.</p>
<p> </p>
<p>setting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = 0">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin x}}{{2\sqrt x }} - \sqrt x \cos x = 0">
<mfrac>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<msqrt>
<mi>x</mi>
</msqrt>
</mrow>
</mfrac>
<mo>−</mo>
<msqrt>
<mi>x</mi>
</msqrt>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin x}}{{2\sqrt x }} = \sqrt x \cos x">
<mfrac>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<msqrt>
<mi>x</mi>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<msqrt>
<mi>x</mi>
</msqrt>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</math></span> or equivalent <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x">
<mi>tan</mi>
<mo></mo>
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
</math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.17">
<mi>x</mi>
<mo>=</mo>
<mn>1.17</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x \leqslant 1.17">
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo>⩽</mo>
<mn>1.17</mn>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x">
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
</math></span> and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \leqslant 1.17">
<mi>x</mi>
<mo>⩽</mo>
<mn>1.17</mn>
</math></span>. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < 1.17">
<mi>x</mi>
<mo><</mo>
<mn>1.17</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.19.25.png" alt="N17/5/MATHL/HP2/ENG/TZ0/10.b/M"></p>
<p>concave up curve over correct domain with one minimum point above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis. <strong><em>A1</em></strong></p>
<p>approaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> asymptotically <strong><em>A1</em></strong></p>
<p>approaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pi ">
<mi>x</mi>
<mo>=</mo>
<mi>π</mi>
</math></span> asymptotically <strong><em>A1</em></strong></p>
<p> </p>
<p>Note: For the final <strong><em>A1 </em></strong>an asymptote must be seen, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> must be seen on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis or in an equation.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x){\text{ }}\left( { = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}} \right) = 1">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<msqrt>
<mi>x</mi>
</msqrt>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mi>sin</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p>attempt to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.96">
<mi>x</mi>
<mo>=</mo>
<mn>1.96</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(1.96 \ldots )">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>1.96</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1.51">
<mo>=</mo>
<mn>1.51</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{x{\text{d}}x}}{{{{\sin }^2}x}}} ">
<mi>V</mi>
<mo>=</mo>
<mi>π</mi>
<msubsup>
<mo>∫</mo>
<mrow>
<mfrac>
<mi>π</mi>
<mn>6</mn>
</mfrac>
</mrow>
<mrow>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
</msubsup>
<mrow>
<mfrac>
<mrow>
<mi>x</mi>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mi>sin</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>M1 </em></strong>is for an integral of the correct squared function (with or without limits and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span>).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2.68{\text{ }}( = 0.852\pi )">
<mo>=</mo>
<mn>2.68</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mn>0.852</mn>
<mi>π</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>An environmental scientist is asked by a river authority to model the effect of a leak from a power plant on the mercury levels in a local river. The variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> measures the concentration of mercury in micrograms per litre.</p>
<p>The situation is modelled using the second order differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mtext>d</mtext><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>3</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math> is the time measured in days since the leak started. It is known that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>If the mercury levels are greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math> micrograms per litre, fishing in the river is considered unsafe and is stopped.</p>
</div>
<div class="specification">
<p>The river authority decides to stop people from fishing in the river for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> longer than the time found from the model.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the system of coupled first order equations:</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi></math></p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi></math></p>
<p style="text-align:left;">can be written as the given second order differential equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues of the system of coupled first order equations given in part (a).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact solution of the second order differential equation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, labelling the maximum point of the graph with its coordinates.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to calculate the total amount of time when fishing should be stopped.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down one reason, with reference to the context, to support this decision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>differentiating first equation. <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p>substituting in for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p>therefore <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>3</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>0</mn></math> <strong><em>AG</em></strong></p>
<p><br><strong>Note:</strong> The <strong>AG</strong> line must be seen to award the final <em><strong>M1</strong></em> mark.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the relevant matrix is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math> is also possible.</p>
<p><br>(this has characteristic equation) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>λ</mi><mfenced><mrow><mo>-</mo><mn>3</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER </strong></p>
<p>the general solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></math> <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Must have constants, but condone sign error for the <em><strong>M1</strong></em>.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></math> <em><strong>M1A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempt to find eigenvectors <em><strong>(M1)</strong></em></p>
<p>respective eigenvectors are <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> (or any multiple)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(M1)A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>the initial conditions become:</p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>A</mi><mo>+</mo><mi>B</mi></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>=</mo><mo>-</mo><mi>A</mi><mo>-</mo><mn>2</mn><mi>B</mi></math> <em><strong>M1</strong></em></p>
<p>this is solved by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>B</mi><mo>=</mo><mo>-</mo><mn>1</mn></math></p>
<p>so the solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src=""> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for correct shape (needs to go through origin, have asymptote at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> and a single maximum; condone <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn></math>). Award <em><strong>A1</strong></em> for correct coordinates of maximum.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>intersecting graph with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p style="padding-left:60px;"><img src=""></p>
<p>so the time fishing is stopped between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>1830</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>11957</mn><mo>…</mo></math> <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>06</mn><mo> </mo><mfenced><mrow><mn>343</mn><mo>…</mo></mrow></mfenced></math> days <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any reasonable answer. For example:</em></p>
<p>There are greater downsides to allowing fishing when the levels may be dangerous than preventing fishing when the levels are safe.</p>
<p>The concentration of mercury may not be uniform across the river due to natural variation / randomness.</p>
<p>The situation at the power plant might get worse.</p>
<p>Mercury levels are low in water but still may be high in fish. <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>for a reasonable answer that refers to this specific context (and not a generic response that could apply to <em>any</em> model).</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates did not get this far, but the attempts at the question that were seen were generally good. The greater difficulties were seen in parts (e) and (f), but this could be a problem with time running out.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> radians.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_11.09.30.png" alt="M17/5/MATHL/HP2/ENG/TZ1/08"></p>
</div>
<div class="specification">
<p>The volume of water is increasing at a constant rate of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008{\text{ }}{{\text{m}}^3}{{\text{s}}^{ - 1}}">
<mn>0.0008</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the volume of water <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{\text{ }}({{\text{m}}^3})">
<mi>V</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> in the trough in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{3}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>area of segment <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2} \times {0.5^2} \times (\theta - \sin \theta )">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<msup>
<mn>0.5</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = {\text{area of segment}} \times 10">
<mi>V</mi>
<mo>=</mo>
<mrow>
<mtext>area of segment</mtext>
</mrow>
<mo>×</mo>
<mn>10</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \frac{5}{4}(\theta - \sin \theta )">
<mi>V</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{5}{4}(1 - \cos \theta )\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008 = \frac{5}{4}\left( {1 - \cos \frac{\pi }{3}} \right)\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mn>0.0008</mn>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128{\text{ }}({\text{rad}}\,{s^{ - 1}})">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.00128</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>rad</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>s</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}\theta }}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}\theta }} = \frac{5}{4}(1 - \cos \theta )">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{4 \times 0.0008}}{{5\left( {1 - \cos \frac{\pi }{3}} \right)}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>0.0008</mn>
</mrow>
<mrow>
<mn>5</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128\left( {\frac{4}{{3125}}} \right)({\text{rad }}{s^{ - 1}})">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.00128</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mrow>
<mn>3125</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>rad </mtext>
</mrow>
<mrow>
<msup>
<mi>s</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Charlotte decides to model the shape of a cupcake to calculate its volume.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>From rotating a photograph of her cupcake she estimates that its cross-section passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>7</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, where all units are in centimetres. The cross-section is symmetrical in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, as shown below:</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>She models the section from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> as a straight line.</p>
</div>
<div class="specification">
<p>Charlotte models the section of the cupcake that passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>7</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> with a quadratic curve.</p>
</div>
<div class="specification">
<p>Charlotte thinks that a quadratic with a maximum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> and that passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> would be a better fit.</p>
</div>
<div class="specification">
<p>Believing this to be a better model for her cupcake, Charlotte finds the volume of revolution about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis to estimate the volume of the cupcake.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line passing through these two points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares regression quadratic curve for these four points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the gradient of this curve when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>, explain why it may not be a good model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the new model.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for her estimate of the volume as a sum of two integrals.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of Charlotte’s estimate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>5</mn><mn>8</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>625</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>625</mn><mi>x</mi></math>, <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>5</mn></math>.<br>Award a maximum of <em><strong>A0A1</strong></em> if not part of an equation.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>975</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>9</mn><mo>.</mo><mn>56</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>.</mo><mn>7</mn></math> <em><strong>(M1)A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>974630</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>9</mn><mo>.</mo><mn>55919</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>.</mo><mn>6569</mn><mo>…</mo></mrow></mfenced></math></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient of curve is positive at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> <em><strong>R1</strong></em></p>
<p><em><br></em><strong>Note:</strong> Accept a sensible rationale that refers to the gradient.</p>
<p><strong><br></strong><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math></p>
<p>differentiating or using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math></p>
<p>substituting in the coordinates<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mi>a</mi><mo>+</mo><mn>7</mn><mo>.</mo><mn>5</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></math> <em><strong>(A1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>4</mn><mn>2</mn></msup><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>6</mn></math> <em><strong>(A1)</strong></em></p>
<p>solve to get<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>192</mn><mn>49</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>90</mn><mn>49</mn></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>490</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mo>.</mo><mn>92</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>84</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Use of quadratic regression with points using the symmetry of the graph is a valid method.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>a</mi><msup><mfenced><mrow><mn>7</mn><mo>.</mo><mn>5</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>490</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mfenced><mrow><mfrac><mn>5</mn><mn>8</mn></mfrac><mi>x</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi><mo>+</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>4</mn><mrow><mn>7</mn><mo>.</mo><mn>5</mn></mrow></msubsup><msup><mfenced><mrow><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math> <em><strong>(M1)(M1) (M1)A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)(M1)(M1)A0</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> is omitted but response is otherwise correct. Award <em><strong>(M1)</strong></em> for an integral that indicates volume,<em><strong> (M1)</strong></em> for their part (a) within their volume integral, <em><strong>(M1)</strong></em> for their part (b)(i) within their volume integral, <em><strong>A1</strong></em> for their correct two integrals with all correct limits.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>501</mn><mo> </mo><msup><mtext>cm</mtext><mn>3</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>501</mn><mo>.</mo><mn>189</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in D">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mi>D</mi>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in \left] {1,{\text{ }}\infty } \right[">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mo>]</mo>
<mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi mathvariant="normal">∞<!-- ∞ --></mi>
</mrow>
<mo>[</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest possible domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> to be a function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> does not exist.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and state its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 1 > 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>></mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < - 1">
<mi>x</mi>
<mo><</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 1">
<mi>x</mi>
<mo>></mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_15.40.09.png" alt="M17/5/MATHL/HP2/ENG/TZ1/12.b/M"></p>
<p>shape <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercepts <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is symmetrical about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f( - x) = f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>R1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is not one-to-one function <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>horizontal line cuts twice <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept any equivalent correct statement.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1 + \ln \left( {\sqrt {{y^2} - 1} } \right)">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} = {y^2} - 1">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}(x) = \sqrt {{{\text{e}}^{2x + 2}} + 1} ,{\text{ }}x \in \mathbb{R}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> <strong><em>A1A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{1}{{\sqrt {{x^2} - 1} }} \times \frac{{2x}}{{2\sqrt {{x^2} - 1} }}">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{x}{{{x^2} - 1}}">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{x}{{{x^2} - 1}} = 0 \Rightarrow x = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p>which is not in the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> (hence no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>) <strong><em>R1</em></strong></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = \frac{{{{\text{e}}^{2x + 2}}}}{{\sqrt {{{\text{e}}^{2x + 2}} + 1} }}">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p>as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} > 0 \Rightarrow ({g^{ - 1}})'(x) > 0">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>></mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>></mo>
<mn>0</mn>
</math></span> so no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept: equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} = 0">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> has no solutions.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{\sin ^2}x + 7\sin 2x + \tan x - 9,{\text{ }}0 \leqslant x < \frac{\pi }{2}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>sin</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mn>7</mn>
<mi>sin</mi>
<mo><!-- --></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>tan</mi>
<mo><!-- --></mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \tan x">
<mi>u</mi>
<mo>=</mo>
<mi>tan</mi>
<mo><!-- --></mo>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}">
<mn>0</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate(s) of the point(s) of inflexion of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, labelling these clearly on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x">
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x">
<mi>sin</mi>
<mo></mo>
<mn>2</mn>
<mi>x</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span> can be expressed as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u^3} - 7{u^2} + 15u - 9 = 0">
<mrow>
<msup>
<mi>u</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>7</mn>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>15</mn>
<mi>u</mi>
<mo>−</mo>
<mn>9</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>, giving your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\arctan k">
<mi>arctan</mi>
<mo></mo>
<mi>k</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}">
<mi>k</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = 4\sin x\cos x + 14\cos 2x + {\sec ^2}x">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>4</mn>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mo>+</mo>
<mn>14</mn>
<mi>cos</mi>
<mo></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msup>
<mi>sec</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
</math></span> (or equivalent) <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.47.49.png" alt="N17/5/MATHL/HP2/ENG/TZ0/11.a.ii/M"> <strong><em>A1A1A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct behaviour at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <strong><em>A1 </em></strong>for correct domain and correct behaviour for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to \frac{\pi }{2}">
<mi>x</mi>
<mo stretchy="false">→</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span>, <strong><em>A1 </em></strong>for two clear intersections with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and minimum point, <strong><em>A1 </em></strong>for clear maximum point.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.0736">
<mi>x</mi>
<mo>=</mo>
<mn>0.0736</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.13">
<mi>x</mi>
<mo>=</mo>
<mn>1.13</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to write <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x">
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> only <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x = \frac{u}{{\sqrt {1 + {u^2}} }}">
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>u</mi>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos x = \frac{1}{{\sqrt {1 + {u^2}} }}">
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p>attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x = 2\sin x\cos x{\text{ }}\left( { = 2\frac{u}{{\sqrt {1 + {u^2}} }}\frac{1}{{\sqrt {1 + {u^2}} }}} \right)">
<mi>sin</mi>
<mo></mo>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>2</mn>
<mfrac>
<mi>u</mi>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x = \frac{{2u}}{{1 + {u^2}}}">
<mi>sin</mi>
<mo></mo>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>u</mi>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\sin ^2}x + 7\sin 2x + \tan x - 9 = 0">
<mn>2</mn>
<mrow>
<msup>
<mi>sin</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mn>7</mn>
<mi>sin</mi>
<mo></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>tan</mi>
<mo></mo>
<mi>x</mi>
<mo>−</mo>
<mn>9</mn>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2{u^2}}}{{1 + {u^2}}} + \frac{{14u}}{{1 + {u^2}}} + u - 9{\text{ }}( = 0)">
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mn>14</mn>
<mi>u</mi>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>+</mo>
<mi>u</mi>
<mo>−</mo>
<mn>9</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2{u^2} + 14u + u(1 + {u^2}) - 9(1 + {u^2})}}{{1 + {u^2}}} = 0">
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>14</mn>
<mi>u</mi>
<mo>+</mo>
<mi>u</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>9</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> (or equivalent) <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u^3} - 7{u^2} + 15u - 9 = 0">
<mrow>
<msup>
<mi>u</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>7</mn>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>15</mn>
<mi>u</mi>
<mo>−</mo>
<mn>9</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 1">
<mi>u</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 3">
<mi>u</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \arctan (1)">
<mi>x</mi>
<mo>=</mo>
<mi>arctan</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \arctan (3)">
<mi>x</mi>
<mo>=</mo>
<mi>arctan</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Only accept answers given the required form.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A point P moves in a straight line with velocity <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> ms<sup>−1</sup> given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = {{\text{e}}^{ - t}} - 8{t^2}{{\text{e}}^{ - 2t}}">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>8</mn>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span> at time <em>t</em> seconds, where <em>t</em> ≥ 0.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the first time <em>t</em><sub>1</sub> at which P has zero velocity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the acceleration of P at time <em>t</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the acceleration of P at time <em>t</em><sub>1</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 0">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> for <em>t</em> or equivalent <em><strong>(M1)</strong></em></p>
<p><em>t</em><sub>1</sub> = 0.441(s) <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( t \right) = \frac{{{\text{d}}v}}{{{\text{d}}t}} = - {{\text{e}}^{ - t}} - 16t{{\text{e}}^{ - 2t}} + 16{t^2}{{\text{e}}^{ - 2t}}">
<mi>a</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>v</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>16</mn>
<mi>t</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>16</mn>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to differentiate using the product rule.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( {{t_1}} \right) = - 2.28">
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>2.28</mn>
</math></span> (ms<sup>−2</sup>) <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A curve <em>C</em> is given by the implicit equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y - {\text{cos}}\left( {xy} \right) = 0">
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>−<!-- − --></mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="xy = - \frac{\pi }{2}">
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span> intersects <em>C</em> at P and Q.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>y</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P and Q.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the gradients of the tangents to <em>C</em> at P and Q are <em>m</em><sub>1</sub> and <em>m</em><sub>2</sub> respectively, show that <em>m</em><sub>1</sub> × <em>m</em><sub>2</sub> = 1.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the three points on <em>C</em>, nearest the origin, where the tangent is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - x">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mi>x</mi>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt at implicit differentiation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + \frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right){\text{sin}}\left( {xy} \right) = 0">
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>y</mi>
<mo>+</mo>
<mi>x</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for first two terms. Award <em><strong>M1</strong> </em>for an attempt at chain rule <em><strong>A1</strong> </em>for last term.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 + x\,{\text{sin}}\left( {xy} \right)} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 1 - y\,{\text{sin}}\left( {xy} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
<mo>−</mo>
<mi>y</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>y</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="xy = - \frac{\pi }{2},\,\,{\text{cos}}\,xy = 0">
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x + y = 0">
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - \frac{\pi }{{2x}} - {\text{cos}}\left( {\frac{{ - \pi }}{2}} \right) = 0">
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> or equivalent <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - \frac{\pi }{{2x}} = 0">
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><strong>THEN</strong></p>
<p>therefore <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} = \frac{\pi }{2}\left( {x = \pm \sqrt {\frac{\pi }{2}} } \right)\left( {x = \pm 1.25} \right)">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>=</mo>
<mo>±</mo>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>=</mo>
<mo>±</mo>
<mn>1.25</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\sqrt {\frac{\pi }{2}} ,\, - \sqrt {\frac{\pi }{2}} } \right),\,\,{\text{Q}}\left( { - \sqrt {\frac{\pi }{2}} ,\,\sqrt {\frac{\pi }{2}} } \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>Q</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>or</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( {1.25,\, - 1.25} \right),\,Q\left( { - 1.25,\,1.25} \right)">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.25</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>1.25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.25</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mn>1.25</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m</em><sub>1 </sub>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \left( {\frac{{1 - \sqrt {\frac{\pi }{2}} \times - 1}}{{1 + \sqrt {\frac{\pi }{2}} \times - 1}}} \right)">
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
<mo>×</mo>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
<mo>×</mo>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><em>m</em><sub>2 </sub>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \left( {\frac{{1 + \sqrt {\frac{\pi }{2}} \times - 1}}{{1 - \sqrt {\frac{\pi }{2}} \times - 1}}} \right)">
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>+</mo>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
<mo>×</mo>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<msqrt>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msqrt>
<mo>×</mo>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em>m</em><sub>1 </sub><em>m</em><sub>2 </sub>= 1 <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0A0</strong> </em>if decimal approximations are used.<br><strong>Note:</strong> No <strong>FT</strong> applies.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equate derivative to −1 <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {y - x} \right){\text{sin}}\left( {xy} \right) = 0">
<mrow>
<mo>(</mo>
<mrow>
<mi>y</mi>
<mo>−</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x,\,{\text{sin}}\left( {xy} \right) = 0">
<mi>y</mi>
<mo>=</mo>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p>in the first case, attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x = {\text{cos}}\left( {{x^2}} \right)">
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p>(0.486,0.486) <strong>A1</strong></p>
<p>in the second case, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\left( {xy} \right) = 0 \Rightarrow xy = 0">
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y = 1">
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p>(0,1), (1,0) <em><strong> A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following graph shows the two parts of the curve defined by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}y = 5 - {y^4}">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mn>5</mn>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>y</mi>
<mn>4</mn>
</msup>
</mrow>
</math></span>, and the normal to the curve at the point P(2 , 1).</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there are exactly two points on the curve where the gradient is zero.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the normal to the curve at the point P.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The normal at P cuts the curve again at the point Q. Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate of Q.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The shaded region is rotated by 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>differentiating implicitly: <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2xy + {x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 4{y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mn>2</mn>
<mi>x</mi>
<mi>y</mi>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each side.</p>
<p>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> then either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong> M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0 \Rightarrow ">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
</math></span> two solutions for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y\left( {y = \pm \sqrt[4]{5}} \right)">
<mi>y</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>y</mi>
<mo>=</mo>
<mo>±</mo>
<mroot>
<mn>5</mn>
<mn>4</mn>
</mroot>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong> R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> not possible (as 0 ≠ 5) <em><strong>R1</strong></em></p>
<p>hence exactly two points <strong><em>AG</em></strong></p>
<p><strong>Note:</strong> For a solution that only refers to the graph giving two solutions at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> and no solutions for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> award <strong><em>R1</em></strong> only.</p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at (2, 1) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4 + 4\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 4\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mn>4</mn>
<mo>+</mo>
<mn>4</mn>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> <em><strong> M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{1}{2}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(A1)</strong></em></p>
<p>gradient of normal is 2 <em><strong>M1</strong></em></p>
<p>1 = 4 + <em>c</em> <em><strong> (M1)</strong></em></p>
<p>equation of normal is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2x - 3">
<mi>y</mi>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}\left( {2x - 3} \right) = 5 - {\left( {2x - 3} \right)^4}">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>5</mn>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{{y + 3}}{2}} \right)^2}\,y = 5 - {y^4}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>y</mi>
<mo>+</mo>
<mn>3</mn>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>=</mo>
<mn>5</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>4</mn>
</msup>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.724">
<mi>x</mi>
<mo>=</mo>
<mn>0.724</mn>
</math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of two volumes <em><strong>(M1)</strong></em></p>
<p>volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = \pi \int_1^{\sqrt[4]{5}} {\frac{{5 - {y^4}}}{y}} {\text{d}}y\left( { = 101\pi = 3.178 \ldots } \right)">
<mn>1</mn>
<mo>=</mo>
<mi>π</mi>
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mrow>
<mroot>
<mn>5</mn>
<mn>4</mn>
</mroot>
</mrow>
</msubsup>
<mrow>
<mfrac>
<mrow>
<mn>5</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mi>y</mi>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>101</mn>
<mi>π</mi>
<mo>=</mo>
<mn>3.178</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong> M1A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int {{x^2}} {\text{d}}y">
<mi>π</mi>
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</math></span>, <em><strong>A1</strong></em> for limits, <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{5 - {y^4}}}{y}}">
<mrow>
<mfrac>
<mrow>
<mn>5</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mi>y</mi>
</mfrac>
</mrow>
</math></span> Condone omission of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> at this stage.</p>
<p>volume 2</p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{3}\pi \times {2^2} \times 4\left( { = 16.75 \ldots } \right)">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>16.75</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong> <em>(M1)(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \pi \int_{ - 3}^1 {{{\left( {\frac{{y + 3}}{2}} \right)}^2}} {\text{d}}y\left( { = \frac{{16\pi }}{3} = 16.75 \ldots } \right)">
<mo>=</mo>
<mi>π</mi>
<msubsup>
<mo>∫</mo>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mn>1</mn>
</msubsup>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>y</mi>
<mo>+</mo>
<mn>3</mn>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>16</mn>
<mi>π</mi>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>16.75</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><strong>THEN</strong></p>
<p>total volume = 19.9 <em><strong>A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> satisfies the conditions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = - 4">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right) = 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> and its second derivative is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 15\sqrt x + \frac{1}{{{{\left( {x + 1} \right)}^2}}}">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>15</mn>
<msqrt>
<mi>x</mi>
</msqrt>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 0.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \int {\left( {15\sqrt x + \frac{1}{{{{\left( {x + 1} \right)}^2}}}} \right)} \,{\text{d}}x = 10{x^{\frac{3}{2}}} - \frac{1}{{x + 1}}\left( { + c} \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>15</mn>
<msqrt>
<mi>x</mi>
</msqrt>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>10</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)A1A1</strong></em></p>
<p><strong>Note:</strong> <em><strong>A1</strong></em> for first term, <em><strong>A1</strong></em> for second term. Withhold one <em><strong>A1</strong></em> if extra terms are seen.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \int {\left( {10{x^{\frac{3}{2}}} - \frac{1}{{x + 1}} + c} \right)} \,{\text{d}}x = 4{x^{\frac{5}{2}}} - {\text{ln}}\left( {x + 1} \right) + cx + d">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>10</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>c</mi>
<mi>x</mi>
<mo>+</mo>
<mi>d</mi>
</math></span> <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Allow FT from incorrect <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> if it is of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = A{x^{\frac{3}{2}}} + \frac{B}{{x + 1}} + c">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>A</mi>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mi>B</mi>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left| {x + 1} \right|">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>|</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>|</mo>
</mrow>
</math></span>.</p>
<p> </p>
<p>attempt to use at least one boundary condition in their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 4">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
</math></span></p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = - 4">
<mi>d</mi>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = 4 - {\text{ln}}\,2 + c - 4">
<mn>0</mn>
<mo>=</mo>
<mn>4</mn>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mo>+</mo>
<mi>c</mi>
<mo>−</mo>
<mn>4</mn>
</math></span></p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = {\text{ln}}\,2\left( { = 0.693} \right)">
<mi>c</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>0.693</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 4{x^{\frac{5}{2}}} - {\text{ln}}\left( {x + 1} \right) + x\,{\text{ln}}\,2 - 4">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mo>−</mo>
<mn>4</mn>
</math></span></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Xavier, the parachutist, jumps out of a plane at a height of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> metres above the ground. After free falling for 10 seconds his parachute opens. His velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\,{\text{m}}{{\text{s}}^{ - 1}}">
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds after jumping from the plane, can be modelled by the function</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(t) = \left\{ {\begin{array}{*{20}{l}} {9.8t{\text{,}}}&{0 \leqslant t \leqslant 10} \\ {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }},}&{t > 10} \end{array}} \right.">
<mi>v</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mo>{</mo>
<mrow>
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>9.8</mn>
<mi>t</mi>
<mrow>
<mtext>,</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>t</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo>−<!-- − --></mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>t</mi>
<mo>></mo>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>His velocity when he reaches the ground is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.8{\text{ m}}{{\text{s}}^{ - 1}}">
<mn>2.8</mn>
<mrow>
<mtext> m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find his velocity when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 15">
<mi>t</mi>
<mo>=</mo>
<mn>15</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the vertical distance Xavier travelled in the first 10 seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(15) = \frac{{98}}{{\sqrt {1 + {{(15 - 10)}^2}} }}">
<mi>v</mi>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo>−</mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(15) = 19.2{\text{ }}({\text{m}}{{\text{s}}^{ - 1}})">
<mi>v</mi>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>19.2</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{10} {9.8t\,{\text{d}}t} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>10</mn>
</mrow>
</munderover>
<mrow>
<mn>9.8</mn>
<mi>t</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 490{\text{ }}({\text{m}})">
<mo>=</mo>
<mn>490</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>m</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }} = 2.8">
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo>−</mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2.8</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 44.985 \ldots {\text{ }}({\text{s}})">
<mi>t</mi>
<mo>=</mo>
<mn>44.985</mn>
<mo>…</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>s</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 490 + \int\limits_{10}^{44.9...} {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }}{\text{d}}t} ">
<mi>h</mi>
<mo>=</mo>
<mn>490</mn>
<mo>+</mo>
<munderover>
<mo>∫</mo>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>44.9...</mn>
</mrow>
</munderover>
<mrow>
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo>−</mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 906{\text{ (m}})">
<mi>h</mi>
<mo>=</mo>
<mn>906</mn>
<mrow>
<mtext> (m</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2\arcsin (x - 1) - \frac{\pi }{4}">
<mi>y</mi>
<mo>=</mo>
<mn>2</mn>
<mi>arcsin</mi>
<mo><!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>4</mn>
</mfrac>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{\pi }{4}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a definite integral to represent the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\arcsin (x - 1) - \frac{\pi }{4} = \frac{\pi }{4}">
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1 + \frac{1}{{\sqrt 2 }}\,\,\,( = 1.707 \ldots )">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mn>1.707</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{1 + \frac{1}{{\sqrt 2 }}} {\frac{\pi }{4} - \left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right)dx} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</munderover>
<mrow>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>d</mi>
<mi>x</mi>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1 </em></strong>for an attempt to find the difference between two functions, <strong><em>A1 </em></strong>for all correct.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0,{\text{ }}y = \frac{{ - 5\pi }}{4}\,\,\,( = - 3.93)">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>5</mn>
<mi>π</mi>
</mrow>
<mn>4</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mo>−</mo>
<mn>3.93</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1 + \sin \left( {\frac{{4y + \pi }}{8}} \right)">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mi>sin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>4</mn>
<mi>y</mi>
<mo>+</mo>
<mi>π</mi>
</mrow>
<mn>8</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1 </em></strong>for an attempt to find the inverse function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{\frac{{ - 5\pi }}{4}}^{\frac{\pi }{4}} {\left( {1 + \sin \left( {\frac{{4y + \pi }}{8}} \right)} \right){\text{d}}y} ">
<msubsup>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>5</mn>
<mi>π</mi>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mrow>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msubsup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>sin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>4</mn>
<mi>y</mi>
<mo>+</mo>
<mi>π</mi>
</mrow>
<mn>8</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{1.38...} {\left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right){\text{d}}x} \left| + \right.\int\limits_0^{1.71...} {\frac{\pi }{4}{\text{d}}x - \int\limits_{1.38...}^{1.71...} {\left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right)dx} } ">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>1.38...</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mo>|</mo>
<mo>+</mo>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>1.71...</mn>
</mrow>
</munderover>
<mrow>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>−</mo>
<munderover>
<mo>∫</mo>
<mrow>
<mn>1.38...</mn>
</mrow>
<mrow>
<mn>1.71...</mn>
</mrow>
</munderover>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>d</mi>
<mi>x</mi>
</mrow>
</mrow>
</math></span> <strong><em>M1A1A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1 </em></strong>for considering the area below the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and <strong><em>A1 </em></strong>for each correct integral.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = 3.30{\text{ (square units)}}">
<mrow>
<mtext>area</mtext>
</mrow>
<mo>=</mo>
<mn>3.30</mn>
<mrow>
<mtext> (square units)</mtext>
</mrow>
</math></span> <strong><em>A2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\left( {x - 1} \right)^2}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 1 and the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^2} + 1">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 0.</p>
<p>The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> is bounded by the curves <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 9">
<mi>y</mi>
<mo>=</mo>
<mn>9</mn>
</math></span> as shown on the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The shape of a clay vase can be modelled by rotating the region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> through 360˚ about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis.</p>
<p style="text-align: left;">Find the volume of clay used to make the vase.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \pi {\int_0^9 {\left( {{y^{\frac{1}{2}}} + 1} \right)} ^2}{\text{d}}y - \pi \int_1^9 {\left( {y - 1} \right)} {\text{d}}y">
<mo>=</mo>
<mi>π</mi>
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>9</mn>
</msubsup>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>y</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
<mo>−</mo>
<mi>π</mi>
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mn>9</mn>
</msubsup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>y</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</math></span> <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M1)(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for use of formula for rotating about <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis, <em><strong>(M1)</strong></em> for finding at least one inverse, <em><strong>(M1)</strong></em> for subtracting volumes, <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em>for each correct expression, including limits.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 268.6 \ldots - 100.5 \ldots \left( {85.5\pi - 32\pi } \right)">
<mo>=</mo>
<mn>268.6</mn>
<mo>…</mo>
<mo>−</mo>
<mn>100.5</mn>
<mo>…</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>85.5</mn>
<mi>π</mi>
<mo>−</mo>
<mn>32</mn>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 168\left( { = 53.5\pi } \right)">
<mo>=</mo>
<mn>168</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>53.5</mn>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A2</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> is defined by equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="xy - \ln y = 1,{\text{ }}y > 0">
<mi>x</mi>
<mi>y</mi>
<mo>−<!-- − --></mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mi>y</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equation of the tangent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{2}{{\text{e}}},{\text{ e}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> e</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y + x\frac{{{\text{d}}y}}{{{\text{d}}x}} - \frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0">
<mi>y</mi>
<mo>+</mo>
<mi>x</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mi>y</mi>
</mfrac>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for the first two terms, <strong><em>A1 </em></strong>for the third term and the 0.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{y^2}}}{{1 - xy}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>x</mi>
<mi>y</mi>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - {y^2}}}{{\ln y}}">
<mfrac>
<mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>ln</mi>
<mo></mo>
<mi>y</mi>
</mrow>
</mfrac>
</math></span>.</p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - y}}{{x - \frac{1}{y}}}">
<mfrac>
<mrow>
<mo>−</mo>
<mi>y</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mi>y</mi>
</mfrac>
</mrow>
</mfrac>
</math></span>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_T} = \frac{{{{\text{e}}^2}}}{{1 - {\text{e}} \times \frac{2}{{\text{e}}}}}">
<mrow>
<msub>
<mi>m</mi>
<mi>T</mi>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</mfrac>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_T} = - {{\text{e}}^2}">
<mrow>
<msub>
<mi>m</mi>
<mi>T</mi>
</msub>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - {\text{e}} = - {{\text{e}}^2}x + 2{\text{e}}">
<mi>y</mi>
<mo>−</mo>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {{\text{e}}^2}x - y + 3{\text{e}} = 0">
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mi>y</mi>
<mo>+</mo>
<mn>3</mn>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> or equivalent <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 7.39x + 8.15">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>7.39</mn>
<mi>x</mi>
<mo>+</mo>
<mn>8.15</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An object is placed into the top of a long vertical tube, filled with a thick viscous fluid, at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> seconds.</p>
<p>Initially it is thought that the resistance of the fluid would be proportional to the velocity of the object. The following model was proposed, where the object’s displacement, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, from the top of the tube, measured in metres, is given by the differential equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{d}}^2}x}}{{{\text{d}}{t^2}}} = 9.81 - 0.9\left( {\frac{{{\text{d}}x}}{{{\text{d}}t}}} \right)">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>d</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>9.81</mn>
<mo>−<!-- − --></mo>
<mn>0.9</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The maximum velocity approached by the object as it falls is known as the terminal velocity.</p>
</div>
<div class="specification">
<p>An experiment is performed in which the object is placed in the fluid on a number of occasions and its terminal velocity recorded. It is found that the terminal velocity was consistently smaller than that predicted by the model used. It was suggested that the resistance to motion is actually proportional to the velocity squared and so the following model was set up.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{{\text{d}}^2}x}}{{{\text{d}}{t^2}}} = 9.81 - 0.9{\left( {\frac{{{\text{d}}x}}{{{\text{d}}t}}} \right)^2}">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>d</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>9.81</mn>
<mo>−<!-- − --></mo>
<mn>0.9</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>At terminal velocity the acceleration of an object is equal to zero.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \frac{{{\text{d}}x}}{{{\text{d}}t}}"> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> </math></span> into the equation, find an expression for the velocity of the particle at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>. Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = f(t)"> <mi>v</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From your solution to part (a), or otherwise, find the terminal velocity of the object predicted by this model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the differential equation as a system of first order differential equations.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method, with a step length of 0.2, to find the displacement and velocity of the object when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0.6"> <mi>t</mi> <mo>=</mo> <mn>0.6</mn> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By repeated application of Euler’s method, find an approximation for the terminal velocity, to five significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the differential equation to find the terminal velocity for the object.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to parts (d), (e) and (f) to comment on the accuracy of the Euler approximation to this model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}v}}{{{\text{d}}t}} = 9.81 - 0.9v"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>v</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>9.81</mn> <mo>−</mo> <mn>0.9</mn> <mi>v</mi> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{9.81 - 0.9v}}} {\text{d}}v = \int 1 \,{\text{d}}t"> <mo>∫</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>9.81</mn> <mo>−</mo> <mn>0.9</mn> <mi>v</mi> </mrow> </mfrac> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>v</mi> <mo>=</mo> <mo>∫</mo> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{1}{{0.9}}{\text{ln}}\left( {9.81 - 0.9v} \right) = t + c"> <mo>−</mo> <mfrac> <mn>1</mn> <mrow> <mn>0.9</mn> </mrow> </mfrac> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>9.81</mn> <mo>−</mo> <mn>0.9</mn> <mi>v</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>t</mi> <mo>+</mo> <mi>c</mi> </math></span> <strong><em> A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9.81 - 0.9v = A{{\text{e}}^{ - 0.9t}}"> <mn>9.81</mn> <mo>−</mo> <mn>0.9</mn> <mi>v</mi> <mo>=</mo> <mi>A</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>0.9</mn> <mi>t</mi> </mrow> </msup> </mrow> </math></span> <strong><em> A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \frac{{9.81 - A{{\text{e}}^{ - 0.9t}}}}{{0.9}}"> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <mn>9.81</mn> <mo>−</mo> <mi>A</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>0.9</mn> <mi>t</mi> </mrow> </msup> </mrow> </mrow> <mrow> <mn>0.9</mn> </mrow> </mfrac> </math></span> <strong><em> A1</em></strong></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 0"> <mi>v</mi> <mo>=</mo> <mn>0</mn> </math></span> hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 9.81"> <mi>A</mi> <mo>=</mo> <mn>9.81</mn> </math></span> <strong><em> A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \frac{{9.81\left( {1 - {{\text{e}}^{ - 0.9t}}} \right)}}{{0.9}}"> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <mn>9.81</mn> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>0.9</mn> <mi>t</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>0.9</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 10.9\left( {1 - {{\text{e}}^{ - 0.9t}}} \right)"> <mi>v</mi> <mo>=</mo> <mn>10.9</mn> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>0.9</mn> <mi>t</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em> A1</em></strong></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>either</strong> let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> tend to infinity, or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}v}}{{{\text{d}}t}} = 0"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>v</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 10.9"> <mi>v</mi> <mo>=</mo> <mn>10.9</mn> </math></span> <strong><em> A1</em></strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = y"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mi>y</mi> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{dy}}}}{{{\text{d}}t}} = 9.81 - 0.9{y^2}"> <mfrac> <mrow> <mrow> <mtext>dy</mtext> </mrow> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>9.81</mn> <mo>−</mo> <mn>0.9</mn> <mrow> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong><em> A1</em></strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x_{n + 1}} = {x_n} + 0.2{y_n}"> <mrow> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> <mo>+</mo> <mn>0.2</mn> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y_{n + 1}} = {y_n} + 0.2\left( {9.81 - 0.9{{\left( {{y_n}} \right)}^2}} \right)"> <mrow> <msub> <mi>y</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> </mrow> <mo>+</mo> <mn>0.2</mn> <mrow> <mo>(</mo> <mrow> <mn>9.81</mn> <mo>−</mo> <mn>0.9</mn> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.04"> <mi>x</mi> <mo>=</mo> <mn>1.04</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 3.31"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>3.31</mn> </math></span> <em><strong>(M1)A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3.3015 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = 9.81 - 0.9{\left( v \right)^2}"> <mn>0</mn> <mo>=</mo> <mn>9.81</mn> <mo>−</mo> <mn>0.9</mn> <mrow> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow v = \sqrt {\frac{{9.81}}{{0.9}}} = 3.301511 \ldots \,\,\left( { = 3.30} \right)"> <mo stretchy="false">⇒</mo> <mi>v</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mn>9.81</mn> </mrow> <mrow> <mn>0.9</mn> </mrow> </mfrac> </msqrt> <mo>=</mo> <mn>3.301511</mn> <mo>…</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>3.30</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the model found the terminal velocity very accurately, so good approximation <em><strong>R1</strong></em></p>
<p>intermediate values had object exceeding terminal velocity so not good approximation <em><strong>R1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="question">
<p>An earth satellite moves in a path that can be described by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="72.5{x^2} + 71.5{y^2} = 1"> <mn>72.5</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>71.5</mn> <mrow> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>1</mn> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = x(t)"> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = y(t)"> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span> are in thousands of kilometres and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> is time in seconds.</p>
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 7.75 \times {10^{ - 5}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>7.75</mn> <mo>×</mo> <mrow> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3.2 \times {10^{ - 3}}"> <mi>x</mi> <mo>=</mo> <mn>3.2</mn> <mo>×</mo> <mrow> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </math></span>, find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> </math></span>.</p>
<p>Give your answers in standard form.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>substituting for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and attempting to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> (or vice versa) <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ( \pm )0.11821 \ldots "> <mi>y</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>±</mo> <mo stretchy="false">)</mo> <mn>0.11821</mn> <mo>…</mo> </math></span> <strong><em>(A1)</em></strong></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="145x + 143y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0{\text{ }}\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{145x}}{{143y}}} \right)"> <mn>145</mn> <mi>x</mi> <mo>+</mo> <mn>143</mn> <mi>y</mi> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>145</mn> <mi>x</mi> </mrow> <mrow> <mn>143</mn> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="145x\frac{{{\text{d}}x}}{{{\text{d}}t}} + 143y\frac{{{\text{d}}y}}{{{\text{d}}t}} = 0"> <mn>145</mn> <mi>x</mi> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mn>143</mn> <mi>y</mi> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>M1A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>attempting to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}}{\text{ }}\left( {\frac{{{\text{d}}y}}{{{\text{d}}t}} = - \frac{{145(3.2 \times {{10}^{ - 3}})}}{{143\left( {( \pm )0.11821 \ldots } \right)}} \times (7.75 \times {{10}^{ - 5}})} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>145</mn> <mo stretchy="false">(</mo> <mn>3.2</mn> <mo>×</mo> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>143</mn> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mo>±</mo> <mo stretchy="false">)</mo> <mn>0.11821</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>×</mo> <mo stretchy="false">(</mo> <mn>7.75</mn> <mo>×</mo> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = \pm 2.13 \times {10^{ - 6}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>±</mo> <mn>2.13</mn> <mo>×</mo> <mrow> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award all marks except the final <strong><em>A1 </em></strong>to candidates who do not consider ±.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ( \pm )\sqrt {\frac{{1 - 72.5{x^2}}}{{71.5}}} "> <mi>y</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>±</mo> <mo stretchy="false">)</mo> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mn>72.5</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>71.5</mn> </mrow> </mfrac> </msqrt> </math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = ( \pm )0.0274 \ldots "> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo stretchy="false">(</mo> <mo>±</mo> <mo stretchy="false">)</mo> <mn>0.0274</mn> <mo>…</mo> </math></span> <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = ( \pm )0.0274 \ldots \times 7.75 \times {10^{ - 5}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo stretchy="false">(</mo> <mo>±</mo> <mo stretchy="false">)</mo> <mn>0.0274</mn> <mo>…</mo> <mo>×</mo> <mn>7.75</mn> <mo>×</mo> <mrow> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = \pm 2.13 \times {10^{ - 6}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>±</mo> <mn>2.13</mn> <mo>×</mo> <mrow> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award all marks except the final <strong><em>A1 </em></strong>to candidates who do not consider ±.</p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2\,{\text{ln}}\,x + 1}}{{x - 3}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</math></span>, 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> < 3.</p>
</div>
<div class="specification">
<p>Draw a set of axes showing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> values between −3 and 3. On these axes</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find the coordinates of the point of inflexion on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, showing clearly any axis intercepts and giving the equations of any asymptotes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f^{ - 1}}\left( x \right)"> <mi>y</mi> <mo>=</mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, showing clearly any axis intercepts and giving the equations of any asymptotes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) > {f^{ - 1}}\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>></mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{\frac{{2\left( {x - 3} \right)}}{x} - \left( {2\,{\text{ln}}\,x + 1} \right)}}{{{{\left( {x - 3} \right)}^2}}}\left( { = \frac{{2\left( {x - 3} \right) - x\left( {2\,{\text{ln}}\,x + 1} \right)}}{{x{{\left( {x - 3} \right)}^2}}}} \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mi>x</mi> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>x</mi> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)A1A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempt at quotient rule, <em><strong>A1A1</strong></em> for numerator and <em><strong>A1</strong></em> for denominator.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \left( {2\,{\text{ln}}\,x + 1} \right){\left( {x - 3} \right)^{ - 1}}"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \left( {\frac{2}{x}} \right){\left( {x - 3} \right)^{ - 1}} - \left( {2\,{\text{ln}}\,x + 1} \right){\left( {x - 3} \right)^{ - 2}}\left( { = \frac{{2\left( {x - 3} \right) - x\left( {2\,{\text{ln}}\,x + 1} \right)}}{{x{{\left( {x - 3} \right)}^2}}}} \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>2</mn> <mi>x</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>x</mi> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)A1A1</strong></em></p>
<p><strong>Note:</strong> Award<em><strong> M1</strong></em> for attempt at product rule, <em><strong>A1</strong></em> for first term, <em><strong>A1</strong></em> for second term.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding turning point of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> or finding root of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f''\left( x \right)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.899"> <mi>x</mi> <mo>=</mo> <mn>0.899</mn> </math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {0.899048 \ldots } \right) = - 0.375"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mn>0.899048</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.375</mn> </math></span> <em><strong>(M1)A1</strong></em></p>
<p>(0.899, −0.375)</p>
<p><strong>Note:</strong> Do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.9"> <mi>x</mi> <mo>=</mo> <mn>0.9</mn> </math></span>. Accept <em>y</em>-coordinates rounding to −0.37 or −0.375 but not −0.38.<br> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>smooth curve over the correct domain which does not cross the <em>y</em>-axis</p>
<p>and is concave down for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> > 1 <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-intercept at 0.607 <em><strong>A1</strong></em></p>
<p>equations of asymptotes given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 3 (the latter must be drawn) <em><strong>A1A1</strong></em><br> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>attempt to reflect graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <em><strong>(M1)</strong></em></p>
<p>smooth curve over the correct domain which does not cross the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and is concave down for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> > 1 <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-intercept at 0.607 <em><strong>A1</strong></em></p>
<p>equations of asymptotes given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = 3 (the latter must be drawn) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> For <em><strong>FT</strong></em> from (i) to (ii) award max <em><strong>M1A0A1A0</strong></em>.</p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {f^{ - 1}}\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = x"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </math></span> to get <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 0.372 <em><strong>(M1)</strong></em><em><strong>A1</strong></em></p>
<p>0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < 0.372 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>FT</strong> </em>marks.</p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>A particle moves along a horizontal line such that at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≥ 0, its acceleration <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> = 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> − 1. When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 6 , its displacement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> from a fixed origin O is 18.25 m. When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 15, its displacement from O is 922.75 m. Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to integrate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \int {a\,{\text{d}}t = \int {\left( {2t - 1} \right)} } \,{\text{d}}t">
<mi>v</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>t</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {t^2} - t + c">
<mo>=</mo>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>t</mi>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \int {v\,{\text{d}}t = \int {\left( {{t^2} - t + c} \right)} } \,{\text{d}}t">
<mi>s</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>t</mi>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} + ct + d">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mi>t</mi>
<mo>+</mo>
<mi>d</mi>
</math></span> <em><strong>A1</strong></em></p>
<p>attempt at substitution of given values <em><strong>(M1)</strong></em></p>
<p>at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 6{\text{,}}\,\,\,18.25 = 72 - 18 + 6c + d">
<mi>t</mi>
<mo>=</mo>
<mn>6</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>18.25</mn>
<mo>=</mo>
<mn>72</mn>
<mo>−</mo>
<mn>18</mn>
<mo>+</mo>
<mn>6</mn>
<mi>c</mi>
<mo>+</mo>
<mi>d</mi>
</math></span></p>
<p>at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 15{\text{,}}\,\,\,922.75 = 1125 - 112.5 + 15c + d">
<mi>t</mi>
<mo>=</mo>
<mn>15</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>922.75</mn>
<mo>=</mo>
<mn>1125</mn>
<mo>−</mo>
<mn>112.5</mn>
<mo>+</mo>
<mn>15</mn>
<mi>c</mi>
<mo>+</mo>
<mi>d</mi>
</math></span></p>
<p>solve simultaneously: <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = - 6{\text{,}}\,\,d = 0.25">
<mi>c</mi>
<mo>=</mo>
<mo>−</mo>
<mn>6</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>d</mi>
<mo>=</mo>
<mn>0.25</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow s = \frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} + - 6t + \frac{1}{4}">
<mo stretchy="false">⇒</mo>
<mi>s</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mo>−</mo>
<mn>6</mn>
<mi>t</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l"> <mi>l</mi> </math></span> be the tangent to the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x{{\text{e}}^{2x}}"> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>2</mn> <mi>x</mi> </mrow> </msup> </mrow> </math></span> at the point (1, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^2}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> </math></span>).</p>
<p>Find the coordinates of the point where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l"> <mi>l</mi> </math></span> meets the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>equation of tangent is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 22.167 \ldots x - 14.778 \ldots "> <mi>y</mi> <mo>=</mo> <mn>22.167</mn> <mo>…</mo> <mi>x</mi> <mo>−</mo> <mn>14.778</mn> <mo>…</mo> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 7.389 \ldots = 22.167 \ldots \left( {x - 1} \right)"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>7.389</mn> <mo>…</mo> <mo>=</mo> <mn>22.167</mn> <mo>…</mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)(A1)</strong></em></p>
<p>meets the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.667"> <mi>x</mi> <mo>=</mo> <mn>0.667</mn> </math></span></p>
<p>meets <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis at (0.667, 0)<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \left( {\frac{2}{3},\,\,0} \right)} \right)"> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{2}{3}"> <mi>x</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.667"> <mi>x</mi> <mo>=</mo> <mn>0.667</mn> </math></span> seen and <em><strong>A1</strong></em> for coordinates (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>, 0) given.</p>
<p> </p>
<p><strong>METHOD 1</strong></p>
<p>Attempt to differentiate <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^{2x}} + 2x{{\text{e}}^{2x}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>2</mn> <mi>x</mi> </mrow> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>2</mn> <mi>x</mi> </mrow> </msup> </mrow> </math></span></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = 3{{\text{e}}^2}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p>equation of the tangent is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - {{\text{e}}^2} = 3{{\text{e}}^2}\left( {x - 1} \right)"> <mi>y</mi> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 3{{\text{e}}^2}x - 2{{\text{e}}^2}"> <mi>y</mi> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>meets <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{2}{3}"> <mi>x</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{2}{3},\,\,0} \right)}"> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mrow> </math></span> <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{2}{3}"> <mi>x</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.667"> <mi>x</mi> <mo>=</mo> <mn>0.667</mn> </math></span> seen and <em><strong>A1</strong></em> for coordinates (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>, 0) given.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>