File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 5/markSceme-HL-paper1html
File size: 940.93 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="specification">
<p>The following diagram shows a frame that is made from wire. The total length of wire is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mtext>cm</mtext></math>. The frame is made up of two identical sectors of a circle that are parallel to each other. The sectors have angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> radians and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo> </mo><mtext>cm</mtext></math>. They are connected by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> lengths of wire perpendicular to the sectors. This is shown in the diagram below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The faces of the frame are covered by paper to enclose a volume, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mn>6</mn><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expression <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>θ</mi></mrow></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve algebraically <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>θ</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> that will maximize the volume, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>=</mo><mn>3</mn><mo>+</mo><mn>4</mn><mi>r</mi><mo>+</mo><mn>2</mn><mi>r</mi><mi>θ</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>=</mo><mn>2</mn><mi>r</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for any reasonable working leading to expected result e,g, factorizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mn>6</mn><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use sector area to find volume <em><strong>(M1)</strong></em></p>
<p>volume <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>r</mi><mn>2</mn></msup><mi>θ</mi><mo>×</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mfrac><mn>36</mn><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mo>×</mo><mi>θ</mi><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>18</mn><mi>θ</mi></mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>θ</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup><mo>×</mo><mn>18</mn><mo>-</mo><mn>36</mn><mi>θ</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced></mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>4</mn></msup></mfrac></math> <em><strong>M1A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>θ</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>36</mn><mo>-</mo><mn>18</mn><mi>θ</mi></mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>3</mn></msup></mfrac></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>θ</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>36</mn><mo>-</mo><mn>18</mn><mi>θ</mi></mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>3</mn></msup></mfrac><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award this <em><strong>M1</strong></em> for simplified version equated to zero. The simplified version may have been seen in part (b)(ii).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Several candidates missed that the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> was in radians and used arc and sector formulas with degrees instead. This aside, part (a) was often well done. Part (b)(i) was also correctly answered by many candidates, but their failure to make any attempt to simplify their answer often led to difficulties in part (b)(ii). Again, failing to simplify the result in part (b)(ii) led to yet more difficulties in part (b)(iii). Some candidates used the product rule to differentiate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>18</mn><mi>θ</mi></mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup></mfrac></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mi>θ</mi><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> rather than the quotient rule. This was fine but made solving the equation in (b)(iii) less straightforward.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Several candidates missed that the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> was in radians and used arc and sector formulas with degrees instead. This aside, part (a) was often well done. Part (b)(i) was also correctly answered by many candidates, but their failure to make any attempt to simplify their answer often led to difficulties in part (b)(ii). Again, failing to simplify the result in part (b)(ii) led to yet more difficulties in part (b)(iii). Some candidates used the product rule to differentiate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>18</mn><mi>θ</mi></mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup></mfrac></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mi>θ</mi><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> rather than the quotient rule. This was fine but made solving the equation in (b)(iii) less straightforward.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Several candidates missed that the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> was in radians and used arc and sector formulas with degrees instead. This aside, part (a) was often well done. Part (b)(i) was also correctly answered by many candidates, but their failure to make any attempt to simplify their answer often led to difficulties in part (b)(ii). Again, failing to simplify the result in part (b)(ii) led to yet more difficulties in part (b)(iii). Some candidates used the product rule to differentiate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>18</mn><mi>θ</mi></mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup></mfrac></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mi>θ</mi><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> rather than the quotient rule. This was fine but made solving the equation in (b)(iii) less straightforward.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Several candidates missed that the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> was in radians and used arc and sector formulas with degrees instead. This aside, part (a) was often well done. Part (b)(i) was also correctly answered by many candidates, but their failure to make any attempt to simplify their answer often led to difficulties in part (b)(ii). Again, failing to simplify the result in part (b)(ii) led to yet more difficulties in part (b)(iii). Some candidates used the product rule to differentiate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>18</mn><mi>θ</mi></mrow><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup></mfrac></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mi>θ</mi><msup><mfenced><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> rather than the quotient rule. This was fine but made solving the equation in (b)(iii) less straightforward.</p>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The position vector of a particle, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, relative to a fixed origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>OP</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mi>sin</mi><mo> </mo><mfenced><msup><mi>t</mi><mn>2</mn></msup></mfenced></mtd></mtr><mtr><mtd><mi>cos</mi><mo> </mo><mfenced><msup><mi>t</mi><mn>2</mn></msup></mfenced></mtd></mtr></mtable></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the velocity vector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the acceleration vector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is never parallel to the position vector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt at chain rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi mathvariant="bold-italic">v</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>O</mi><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo></mrow></mfenced><mo> </mo><mfenced><mtable><mtr><mtd><mn>2</mn><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt at product rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>METHOD 1</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></math></p>
<p>finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi></math> using</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">·</mo><mover><mtext>OP</mtext><mo>→</mo></mover><mo>=</mo><mn>2</mn><mi>S</mi><mi>C</mi><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><msup><mi>S</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>S</mi><mi>C</mi><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><msup><mi>C</mi><mn>2</mn></msup><mo>=</mo><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mover><mtext>OP</mtext><mo>→</mo></mover></mfenced><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mo>=</mo><msqrt><msup><mfenced><mrow><mn>2</mn><mi>C</mi><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mi>S</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn><mi>S</mi><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mi>C</mi></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><mn>4</mn><mo>+</mo><mn>16</mn><msup><mi>t</mi><mn>4</mn></msup></msqrt><mo>></mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup></math></p>
<p>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is the angle between them, then</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup></mrow><msqrt><mn>4</mn><mo>+</mo><mn>16</mn><msup><mi>t</mi><mn>4</mn></msup></msqrt></mfrac></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo><</mo><mi>cos</mi><mo> </mo><mi>θ</mi><mo><</mo><mn>0</mn></math> therefore the vectors are never parallel <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>solve</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mo>=</mo><mi>k</mi><mfenced><mtable><mtr><mtd><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced></math> <em><strong>M1</strong></em></p>
<p>then</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>=</mo></mrow></mfenced><mfrac><mrow><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mrow><mrow><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mrow><mrow><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></math></p>
<p><br><strong>Note:</strong> Condone candidates not excluding the division by zero case here. Some might go straight to the next line.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>=</mo><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p>this is never true so the two vectors are never parallel <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>embedding vectors in a 3d space and taking the cross product: <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>×</mo><mfenced><mtable><mtr><mtd><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo> </mo></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><msup><mi>t</mi><mn>2</mn></msup><mo> </mo></mtd></mtr></mtable></mfenced></math></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p>since the cross product is never zero, the two vectors are never parallel <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a), many candidates found the velocity vector correctly. In part (b), however, many candidates failed to use the product rule correctly to find the acceleration vector. To show that the acceleration vector is never parallel to the position vector, a few candidates put <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi mathvariant="bold-italic">r</mi><mrow><mo mathvariant="bold">.</mo><mo mathvariant="bold">.</mo></mrow></mover><mo>=</mo><mi>k</mi><mi mathvariant="bold-italic">r</mi></math> presumably hoping to show that no value of the constant <em>k</em> existed for any <em>t</em> but this usually went nowhere.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - {x^3}">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> is transformed onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 33 - 0.08{x^3}">
<mi>y</mi>
<mo>=</mo>
<mn>33</mn>
<mo>−<!-- − --></mo>
<mn>0.08</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> by a translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> units vertically and a stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis of scale factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The outer dome of a large cathedral has the shape of a hemisphere of diameter 32 m, supported by vertical walls of height 17 m. It is also supported by an inner dome which can be modelled by rotating the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 33 - 0.08{x^3}">
<mi>y</mi>
<mo>=</mo>
<mn>33</mn>
<mo>−</mo>
<mn>0.08</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> through 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = 33, as indicated in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>Find the volume of the space between the two domes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> = 33 <em><strong> A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\sqrt[3]{{0.08}}}} = 2.32">
<mfrac>
<mn>1</mn>
<mrow>
<mroot>
<mrow>
<mn>0.08</mn>
</mrow>
<mn>3</mn>
</mroot>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2.32</mn>
</math></span> <em><strong> M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>volume within outer dome</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}\pi + {16^3} + \pi \times {16^2} \times 17 = 22\,250.85">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mo>+</mo>
<mrow>
<msup>
<mn>16</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>16</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>17</mn>
<mo>=</mo>
<mn>22</mn>
<mspace width="thinmathspace"></mspace>
<mn>250.85</mn>
</math></span> <em><strong> M1A1</strong></em></p>
<p>volume within inner dome</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {\int_0^{33} {\left( {\frac{{33 - y}}{{0.08}}} \right)} ^{\frac{2}{3}}}{\text{d}}y = 3446.92">
<mi>π</mi>
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>33</mn>
</mrow>
</msubsup>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>33</mn>
<mo>−</mo>
<mi>y</mi>
</mrow>
<mrow>
<mn>0.08</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mn>3446.92</mn>
</math></span> <em><strong> M1A1</strong></em></p>
<p>volume between = 22 250.85 − 3446.92 = 18 803.93 m<sup>3</sup> <em><strong> A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced></mrow></msup><mo>,</mo><mo> </mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>. Part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> have coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>)</mo></math>, and lie on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is a local maximum and the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is a local minimum.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>, of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>substitute coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mn>0</mn></mfenced></mrow></msup><mo>=</mo><mn>6</mn><mo>.</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mi>q</mi></msup></math> <em><strong>(A1)</strong></em></p>
<p><br>substitute coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn><mi>r</mi></mrow></mfenced></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mo>-</mo><mi>p</mi><mi>q</mi><mi>r</mi><mo> </mo><mi>sin</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p>minimum occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>p</mi><mi>q</mi><mi>r</mi><mo> </mo><mi>sin</mi><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn><mi>r</mi></mrow></mfenced><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn><mi>r</mi></mrow></mfenced></mrow></msup><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>×</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>=</mo><mi mathvariant="normal">π</mi></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>minimum value occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>×</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>=</mo><mi mathvariant="normal">π</mi></math> <em><strong>(A1)</strong></em></p>
<p><strong><br>OR</strong></p>
<p>period <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>=</mo><mn>10</mn><mo>.</mo><mn>4</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mrow><mn>10</mn><mo>.</mo><mn>4</mn></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mrow><mn>5</mn><mo>.</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>604152</mn><mo>…</mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>604</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn><mo>=</mo><mi>p</mi><mo> </mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>q</mi></mrow></msup></math> <em><strong>(A1)</strong></em></p>
<p>eliminate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mn>2</mn><mi>q</mi></mrow></msup><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn><mo>=</mo><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>74</mn><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>74062</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>14017</mn><mo>…</mo><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>14</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was a challenging question and suitably positioned at the end of the examination. Candidates who attempted it were normally able to substitute points A and B into the given equation. Some were able to determine the first derivative. Only a few candidates were able to earn significant marks for this question.</p>
</div>
<br><hr><br><div class="specification">
<p>The production of oil <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>P</mi></mfenced></math>, in barrels per day, from an oil field satisfies the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1000</mn><mrow><mn>2</mn><mo>+</mo><mi>t</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is measured in days from the start of production.</p>
</div>
<div class="specification">
<p>The production of oil at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo>,</mo><mn>000</mn></math> barrels per day.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>5</mn></msubsup><mfrac><mn>1000</mn><mrow><mn>2</mn><mo>+</mo><mi>t</mi></mrow></mfrac><mtext>d</mtext><mi>t</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State in context what this value represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>365</mn></msubsup><mi>P</mi><mfenced><mi>t</mi></mfenced><mo> </mo><mtext>d</mtext><mi>t</mi></math> and state what it represents.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1252</mn><mo>.</mo><mn>7</mn><mo>…</mo><mo>≈</mo><mn>1250</mn></math> (barrels per day) <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is the increase (change) in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> (production per day) between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>5</mn></math> (or during the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> days) <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>1000</mn><mo> </mo><mi>ln</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mi>t</mi></mrow></mfenced><mo>+</mo><mi>c</mi></math> <strong>(M1)A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>20000</mn><mo>-</mo><mn>1000</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>≈</mo><mn>19306</mn><mo>.</mo><mn>8</mn><mo>…</mo></math> <strong>(M1)A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>1000</mn><mo> </mo><mi>ln</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mi>t</mi></mrow></mfenced><mo>+</mo><mn>19300</mn></math></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>20000</mn><mi>P</mi></munderover><mtext>d</mtext><mi>P</mi><mo>=</mo><munderover><mo>∫</mo><mn>0</mn><mi>t</mi></munderover><mfrac><mn>1000</mn><mrow><mn>2</mn><mo>+</mo><mi>x</mi></mrow></mfrac><mtext>d</mtext><mi>x</mi></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mi>P</mi></mfenced><mn>20000</mn><mi>P</mi></msubsup><mo>=</mo><mn>1000</mn><msubsup><mfenced open="[" close="]"><mrow><mi>ln</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mn>0</mn><mi>t</mi></msubsup></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note: A1</strong> is for the correct integral, with the correct limits.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>-</mo><mn>20000</mn><mo>=</mo><mn>1000</mn><mfenced><mrow><mi>ln</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mi>t</mi></mrow></mfenced><mo>-</mo><mi>ln</mi><mo> </mo><mn>2</mn></mrow></mfenced></math> <strong>(M1)A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>1000</mn><mo> </mo><mi>ln</mi><mfenced><mfrac><mrow><mn>2</mn><mo>+</mo><mi>t</mi></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>20000</mn></math></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8847883</mn><mo>≈</mo><mn>8850000</mn></math> (barrels) <strong>A1</strong></p>
<p>Total production of oil in barrels in the first year (or first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>365</mn></math> days) <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> For the final <strong>A1</strong> “barrels”’ must be present either in the statement or as the units.</p>
<p> </p>
<p>Accept any value which rounds correctly to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8850000</mn></math></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A tank of water initially contains <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>400</mn></math> litres. Water is leaking from the tank such that after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> minutes there are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>324</mn></math> litres remaining in the tank.</p>
<p>The volume of water, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> litres, remaining in the tank after <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> minutes, can be modelled by the differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>k</mi><msqrt><mi>V</mi></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is a constant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><msup><mfenced><mrow><mn>20</mn><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time taken for the tank to empty.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>V</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></math></p>
<p>use of separation of variables <em><strong> (M1)</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mo>∫</mo><msup><mi>V</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo> </mo><mtext>d</mtext><mi>V</mi><mo>=</mo><mo>∫</mo><mo>-</mo><mi>k</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong> A1</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>V</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mo>=</mo><mo>-</mo><mi>k</mi><mi>t</mi><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong> A1</strong></em> </p>
<p>considering initial conditions <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>=</mo><mi>c</mi></math> <em><strong> A1</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msqrt><mn>324</mn></msqrt><mo>=</mo><mo>-</mo><mn>10</mn><mi>k</mi><mo>+</mo><mn>40</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> <em><strong> A1</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msqrt><mi>V</mi></msqrt><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi>t</mi><mo>+</mo><mn>40</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msqrt><mi>V</mi></msqrt><mo>=</mo><mn>20</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn><mi>t</mi></math> <em><strong> A1</strong></em> </p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for any correct intermediate step that leads to the <em><strong>AG</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>V</mi><mo>=</mo><msup><mfenced><mrow><mn>20</mn><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></mfenced><mn>2</mn></msup></math> <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Do not award the final <strong><em>A1</em></strong> if the <em><strong>AG</strong></em> line is not stated.</p>
<p><em><strong><br>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><msup><mfenced><mrow><mn>20</mn><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>⇒</mo><mi>t</mi><mo>=</mo><mn>100</mn></math> minutes <em><strong> (M1)A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><mo>-</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mi>a</mi></msqrt><mo>,</mo><mo> </mo><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
</div>
<div class="specification">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>></mo><mn>0</mn></math> the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> has a single local maximum.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> at which the maximum occurs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> has the smallest possible maximum value.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><msup><mfenced><mrow><mo>-</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mi>a</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></math></p>
<p> </p>
<p><strong>Note: M1</strong> is for use of the chain rule.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><mo>-</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mi>a</mi></msqrt></mrow></mfrac></math> <strong>M1A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Value of local maximum <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><mo>-</mo><mi>a</mi><mo>×</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>+</mo><mi>a</mi></msqrt></math> <strong>M1A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><mfrac><mn>1</mn><mrow><mn>4</mn><mi>a</mi></mrow></mfrac><mo>+</mo><mi>a</mi></msqrt></math></p>
<p>This has a minimum value when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{2^a},\,b \times {2^{ - 3a}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mn>2</mn>
<mi>a</mi>
</msup>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>a</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> where <em>a</em>, <em>b</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \in \mathbb{Q}">
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Q</mi>
</mrow>
</math></span>. Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to differentiate <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = - 3{x^{ - 4}} - 3x">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for using quotient or product rule award <em><strong>A1</strong> </em>if correct derivative seen even in unsimplified form, for example <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{ - 15{x^4} \times 2{x^3} - 6{x^2}\left( {2 - 3{x^5}} \right)}}{{{{\left( {2{x^3}} \right)}^2}}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>15</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{{{x^4}}} - 3x = 0">
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {x^5} = - 1 \Rightarrow x = - 1">
<mo stretchy="false">⇒</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( { - 1,\, - \frac{5}{2}} \right)">
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 0">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 12{x^{ - 5}} - 3\left( { = 0} \right)">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct derivative seen even if not simplified.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)">
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mroot>
<mn>4</mn>
<mn>5</mn>
</mroot>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>hence (at most) one point of inflexion <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> This mark is independent of the two <em><strong>A1</strong> </em>marks above. If they have shown or stated their equation has only one solution this mark can be awarded.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right)">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> changes sign at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)">
<mi>x</mi>
<mo>=</mo>
<mroot>
<mn>4</mn>
<mn>5</mn>
</mroot>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>R1</strong></em></p>
<p>so exactly one point of inflexion</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt[5]{4} = {2^{\frac{2}{5}}}\left( { \Rightarrow a = \frac{2}{5}} \right)">
<mi>x</mi>
<mo>=</mo>
<mroot>
<mn>4</mn>
<mn>5</mn>
</mroot>
<mo>=</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo stretchy="false">⇒</mo>
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {{2^{\frac{2}{5}}}} \right) = \frac{{2 - 3 \times {2^2}}}{{2 \times {2^{\frac{6}{5}}}}} = - 5 \times {2^{ - \frac{6}{5}}}\left( { \Rightarrow b = - 5} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>6</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>5</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mo>−</mo>
<mfrac>
<mn>6</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo stretchy="false">⇒</mo>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for the substitution of their value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>A1A1A1A1</strong></em></p>
<p><em><strong>A1</strong></em> for shape for <em>x</em> < 0<br><em><strong>A1 </strong></em>for shape for <em>x</em> > 0<br><em><strong>A1 </strong></em>for maximum at A<br><em><strong>A1 </strong></em>for POI at B.</p>
<p><strong>Note:</strong> Only award last two <em><strong>A1</strong></em>s if A and B are placed in the correct quadrants, allowing for follow through.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Juri skis from the top of a hill to a finishing point at the bottom of the hill. She takes the shortest route, heading directly to the finishing point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mtext>F</mtext><mo>)</mo></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> define the height of the hill above <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> at a horizontal distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> from the starting point at the top of the hill.</p>
<p>The graph of the <strong>derivative</strong> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is shown below. The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> has local minima and maxima when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math>. The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>,</mo><mo> </mo><mi>d</mi></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> value of the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>|</mo><mi>h</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo></math> has its maximum value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret this point in the given context.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Juri starts at a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> metres and finishes at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>f</mi></math>.</p>
<p>Sketch a possible diagram of the hill on the following pair of coordinate axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the hill is at its steepest / largest slope of hill <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1A1A1</strong></em></p>
<p><strong><br>Note: </strong>Award <em><strong>(A1)</strong></em> for decreasing function from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and increasing from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>; <em><strong>(A1)</strong></em> for minimum at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and max at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>; <em><strong>(A1)</strong></em> for starting at height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> and finishing at a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. If reasonable curvature not evident on graph (i.e. only straight lines used) award <em><strong>A1A0A1</strong></em>.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was one of the weakest questions on the paper. Many candidates failed to appreciate the significance of the absolute value and gave <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> as the maximum value rather than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>. Another common error was to interpret the maximum value as greatest velocity or highest point rather than the point where the hill was steepest. A few candidates drew a graph that went from the starting point to the finishing point. What happened in between, often, showed little understanding of the relationship between the graphs of a function and its derivative. The section of the syllabus that mentions understanding derivatives through graphical methods needs more support from teachers.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was one of the weakest questions on the paper. Many candidates failed to appreciate the significance of the absolute value and gave <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> as the maximum value rather than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>. Another common error was to interpret the maximum value as greatest velocity or highest point rather than the point where the hill was steepest. A few candidates drew a graph that went from the starting point to the finishing point. What happened in between, often, showed little understanding of the relationship between the graphs of a function and its derivative. The section of the syllabus that mentions understanding derivatives through graphical methods needs more support from teachers.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The slope field for the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></msup><mo>-</mo><mi>y</mi></math> is shown in the following two graphs.</p>
</div>
<div class="specification">
<p>On the second graph,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the first graph, a curve that represents the points where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) sketch the solution curve that passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<p>(ii) sketch the solution curve that passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>75</mn><mo>)</mo></math>.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mtext>e</mtext><mn>0</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:30px;"><img src=""></p>
<p>gradient <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>correct shape <em><strong>A1</strong></em></p>
<p> <br><strong>Note:</strong> Award second <em><strong>A1</strong></em> for horizontal asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math>, and general symmetry about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:30px;"><img src=""></p>
<p>(i) positive gradient at origin <em><strong>A1</strong></em></p>
<p> correct shape <em><strong>A1</strong></em></p>
<p> <br><strong>Note:</strong> Award second <em><strong>A1</strong></em> for a single maximum in 1<sup>st</sup> quadrant and tending toward an asymptote.</p>
<p> </p>
<p>(ii) positive gradient at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>75</mn><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p> correct shape <em><strong>A1</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award second <em><strong>A1</strong></em> for a single minimum in 2<sup>nd</sup> quadrant, single maximum in 1<sup>st</sup> quadrant and tending toward an asymptote.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this question. Care needs to be taken over graph sketching, and the existence of asymptotes or the position of intersections needs to be shown clearly. Many candidates correctly found <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi mathvariant="normal">d</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> in part (a). However, they were then misled into finding a solution curve through this point rather than graphing the points where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi mathvariant="normal">d</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> as required in part (b). Part (c) was answered well with a number of correct answers. Often the curve through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow></mfenced></math> had a flat central section and did not show a clear maximum and minimum. The asymptotes were generally poorly drawn with the curves meeting the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and stopping or worse still crossing over it.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this question. Care needs to be taken over graph sketching, and the existence of asymptotes or the position of intersections needs to be shown clearly. Many candidates correctly found <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi mathvariant="normal">d</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> in part (a). However, they were then misled into finding a solution curve through this point rather than graphing the points where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi mathvariant="normal">d</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> as required in part (b). Part (c) was answered well with a number of correct answers. Often the curve through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow></mfenced></math> had a flat central section and did not show a clear maximum and minimum. The asymptotes were generally poorly drawn with the curves meeting the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and stopping or worse still crossing over it.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this question. Care needs to be taken over graph sketching, and the existence of asymptotes or the position of intersections needs to be shown clearly. Many candidates correctly found <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi mathvariant="normal">d</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> in part (a). However, they were then misled into finding a solution curve through this point rather than graphing the points where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi mathvariant="normal">d</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> as required in part (b). Part (c) was answered well with a number of correct answers. Often the curve through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow></mfenced></math> had a flat central section and did not show a clear maximum and minimum. The asymptotes were generally poorly drawn with the curves meeting the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and stopping or worse still crossing over it.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The region bounded by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mfrac><mo>+</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>2</mn></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis is rotated through <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>π</mi></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis to form a solid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mfrac><mn>1</mn><mi>u</mi></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><msup><mfenced><mrow><mfrac><mn>1</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the solid formed. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo> </mo><mi>ln</mi><mfenced><mi>c</mi></mfenced></mrow></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>u</mi><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mn>2</mn><mi>u</mi></mfrac><mo>+</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><msup><mfenced><mrow><mfrac><mn>1</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mn>2</mn><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>d</mo><mi>x</mi></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><msup><mi>u</mi><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mn>2</mn><mi>u</mi></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>d</mo><mi>u</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mfrac><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mi>x</mi><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for first expression, <em><strong>A1</strong> </em>for second two expressions. <br>Award <em><strong>A1A0</strong> </em>for a final answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mi>u</mi></mfrac><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mfenced><mi>u</mi></mfenced><mo>+</mo><mi>u</mi><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math>.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>volume <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mfrac><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mi>x</mi></mrow></mfenced><mn>0</mn><mn>2</mn></msubsup></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mfenced><mn>4</mn></mfenced><mo>+</mo><mn>2</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>9</mn><mn>4</mn></mfrac><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mfenced><mn>4</mn></mfenced><mo>-</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn></mrow></mfenced></math></p>
<p>use of log laws seen, for example <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>9</mn><mn>4</mn></mfrac><mo>+</mo><mn>4</mn><mo> </mo><mi>ln</mi><mfenced><mn>2</mn></mfenced><mo>-</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>9</mn><mn>4</mn></mfrac><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mfenced><mfrac><mn>4</mn><mn>2</mn></mfrac></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mfenced><mrow><mn>9</mn><mo>+</mo><mn>8</mn><mo> </mo><mi>ln</mi><mo> </mo><mfenced><mn>2</mn></mfenced></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>9</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>8</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Other correct integer solutions are possible and should be accepted for example <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>9</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mi>c</mi><mo>=</mo><mn>4</mn></math>.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Some candidates could answer part (a) (i). The link between parts (i) and (ii) was, however, lost to the majority. Those who did see the link were often able to give a reasonable answer to (ii). But some candidates lacked the skills to integrate without the use of technology, so an indefinite integral presented many problems. Even those who successfully navigated part (a) went on to fail to see the link to part (b). Either the integration was attempted as something totally new and unconnected or it was simply found with the GDC which did not lead to a final answer in the required form.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mi>x</mi><mfenced><mrow><mn>4</mn><mo>-</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mtext>d</mtext><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The curve has a point of inflexion at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></mrow></mfenced></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of product rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mfenced><mrow><mn>4</mn><mo>-</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced><mo>+</mo><mn>2</mn><mi>x</mi><mfenced><mrow><mo>-</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mi>x</mi></msup><mo>-</mo><mn>2</mn><mi>x</mi><msup><mtext>e</mtext><mi>x</mi></msup></math></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of product rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mi>x</mi></msup><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mi>x</mi></msup><mo>-</mo><mn>2</mn><mi>x</mi><msup><mtext>e</mtext><mi>x</mi></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>4</mn><msup><mtext>e</mtext><mi>x</mi></msup><mo>-</mo><mn>2</mn><mi>x</mi><msup><mtext>e</mtext><mi>x</mi></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mn>2</mn><mo>+</mo><mi>x</mi></mrow></mfenced><msup><mtext>e</mtext><mi>x</mi></msup></math></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mfenced><mrow><mn>2</mn><mo>+</mo><mi>a</mi></mrow></mfenced><msup><mtext>e</mtext><mi>a</mi></msup><mo>=</mo><mn>0</mn></math> <strong>OR </strong>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept indicated <strong>OR </strong>finding the local maximum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>8</mn><mo>.</mo><mn>27</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mo>-</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Some candidates attempted to apply the product rule in parts (a)(i) and (ii) but often incorrectly, particularly in part (ii) when finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mtext>d</mtext><mn>2</mn></msup><mi>y</mi></mrow><mrow><mtext>d</mtext><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math>. In part (b) there was little understanding shown of the point of inflexion. There were some attempts, some of which were correct, but many where either the function or the first derivative were set to zero rather than the second derivative.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The rates of change of the area covered by two types of fungi, X and Y, on a particular tree are given by the following equations, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is the area covered by X and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> is the area covered by Y.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 3x - 2y">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>3</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mi>y</mi>
</math></span></p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = 2x - 2y">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mi>y</mi>
</math></span></p>
<p>The matrix <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3&{ - 2} \\ 2&{ - 2} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> has eigenvalues of 2 and −1 with corresponding eigenvectors <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Initially <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = 8 cm<sup>2</sup> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = 10 cm<sup>2</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the following axes, sketch a possible trajectory for the growth of the two fungi, making clear any asymptotic behaviour.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{16 - 20}}{{24 - 20}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>16</mn>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mrow>
<mn>24</mn>
<mo>−</mo>
<mn>20</mn>
</mrow>
</mfrac>
</math></span> <em><strong>M1</strong></em></p>
<p>= −1 <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>asymptote of trajectory along <em><strong>r </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = k\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right)">
<mo>=</mo>
<mi>k</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0</strong></em> if asymptote along <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>trajectory begins at (8, 10) with negative gradient <em><strong> A1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(x + h)^2} + k">
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>k</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, indicating on it the equations of the asymptotes, the coordinates of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}">
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {f(x){\text{d}}x = \ln (p)} ">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mi>ln</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the lines with equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2 = {\left( {x + \frac{3}{2}} \right)^2} - \frac{1}{4}">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2 = (x + 2)(x + 1)">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_13.58.40.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.b/M"></p>
<p><strong><em>A1</em></strong> for the shape</p>
<p><strong><em>A1</em></strong> for the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><strong><em>A1</em></strong> for asymptotes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 2">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span></p>
<p><strong><em>A1</em></strong> for coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \frac{3}{2},{\text{ }} - 4} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><strong><em>A1</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0,{\text{ }}\frac{1}{2}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{{(x + 2) - (x + 1)}}{{(x + 1)(x + 2)}}">
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{{x^2} + 3x + 2}}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
</math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^1 {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}{\text{d}}x} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</munderover>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ {\ln (x + 1) - \ln (x + 2)} \right]_0^1">
<mo>=</mo>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mi>ln</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mn>0</mn>
<mn>1</mn>
</msubsup>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \ln 2 - \ln 3 - \ln 1 + \ln 2">
<mo>=</mo>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
<mo>−</mo>
<mi>ln</mi>
<mo></mo>
<mn>3</mn>
<mo>−</mo>
<mi>ln</mi>
<mo></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \ln \left( {\frac{4}{3}} \right)">
<mo>=</mo>
<mi>ln</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore p = \frac{4}{3}">
<mo>∴</mo>
<mi>p</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
</math></span></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_14.20.03.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.e/M"></p>
<p>symmetry about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis <strong><em>M1</em></strong></p>
<p>correct shape <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Allow <strong><em>FT </em></strong>from part (b).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\int_0^1 {f(x){\text{d}}x} ">
<mn>2</mn>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\ln \left( {\frac{4}{3}} \right)">
<mo>=</mo>
<mn>2</mn>
<mi>ln</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong><em>FT </em></strong>from part (e).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle, A, moves so that its velocity (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\nu ">
<mi>ν<!-- ν --></mi>
</math></span> ms<sup>−1</sup>) at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\nu ">
<mi>ν<!-- ν --></mi>
</math></span> = 2 sin <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≥ 0.</p>
<p>The kinetic energy (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E">
<mi>E</mi>
</math></span>) of the particle A is measured in joules (J) and is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E">
<mi>E</mi>
</math></span> = 5<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\nu ">
<mi>ν<!-- ν --></mi>
</math></span><sup>2</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E">
<mi>E</mi>
</math></span> as a function of time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}E}}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>E</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise find the first time at which the kinetic energy is changing at a rate of 5 J s<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = 5{\left( {2\,{\text{sin}}\,t} \right)^2}\,\left( { = 20\,{\text{si}}{{\text{n}}^2}\,t} \right)">
<mi>E</mi>
<mo>=</mo>
<mn>5</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>20</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}E}}{{{\text{d}}t}} = 40\,{\text{sin}}\,t\,{\text{cos}}\,t">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>E</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>40</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>t</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>t</mi>
</math></span> <em><strong>(M1)A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.126 <em><strong>(M1)A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ 5 is shown in the following diagram. The curve intercepts the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at (1, 0) and (4, 0) and has a local minimum at (3, −1).</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The shaded area enclosed by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis is 0.5. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = 3">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span>,</p>
</div>
<div class="specification">
<p>The area enclosed by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4">
<mi>x</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> is 2.5 .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate of the point of inflexion on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 4 \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ 5 indicating clearly the coordinates of the maximum and minimum points and any intercepts with the coordinate axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use definite integral of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {f'\left( x \right){\text{d}}x} = 0.5">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right) - f\left( 0 \right) = 0.5">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
</math></span> <em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right) = 0.5 + 3">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
<mo>+</mo>
<mn>3</mn>
</math></span></p>
<p>= 3.5 <em><strong> A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_1^4 {f'\left( x \right){\text{d}}x} = - 2.5">
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mn>4</mn>
</msubsup>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>2.5</mn>
</math></span> <em><strong> (A1)</strong></em></p>
<p><strong>Note:</strong> <em><strong>(A1)</strong></em> is for −2.5.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 4 \right) - f\left( 1 \right) = - 2.5">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>2.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 4 \right) = 3.5 - 2.5">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3.5</mn>
<mo>−</mo>
<mn>2.5</mn>
</math></span></p>
<p>= 1 <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong> A1A1A1</strong></em></p>
<p><em><strong>A1</strong></em> for correct shape over approximately the correct domain<br><em><strong>A1</strong></em> for maximum and minimum (coordinates or horizontal lines from 3.5 and 1 are required),<br><em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept at 3</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>It is given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{1}{2}{\text{lo}}{{\text{g}}_r}\,x">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</msub>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>r</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r,\,x \in {\mathbb{R}^ + }">
<mi>r</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈</mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>. Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p{x^q}">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<msup>
<mi>x</mi>
<mi>q</mi>
</msup>
</mrow>
</math></span>, where <em>p</em> , <em>q</em> are constants.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region <em>R</em>, is bounded by the graph of the function found in part (b), the <em>x</em>-axis, and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \alpha ">
<mi>x</mi>
<mo>=</mo>
<mi>α</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha > 1">
<mi>α</mi>
<mo>></mo>
<mn>1</mn>
</math></span>. The area of <em>R</em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 2 ">
<msqrt>
<mn>2</mn>
</msqrt>
</math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{{{\text{lo}}{{\text{g}}_r}\,{r^2}}}\left( { = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{{{\text{2}}\,{\text{lo}}{{\text{g}}_r}\,r}}} \right)">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</msub>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>r</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>r</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>r</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>2</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>r</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>r</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong> M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{2}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>r</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{1}{{{\text{lo}}{{\text{g}}_x}\,{r^2}}}">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</msub>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>x</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{2\,{\text{lo}}{{\text{g}}_x}\,r}}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>x</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>r</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{2}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mi>r</mi>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,2{x^2} = 0">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2{x^2} = 0">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y = - \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2{x^2}">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y = {\text{lo}}{{\text{g}}_2}\left( {\frac{1}{{\sqrt {2x} }}} \right)">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>=</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
<mi>x</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\sqrt 2 }}{x^{ - 1}}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note</strong>: For the final <em><strong>A</strong></em> mark, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> must be expressed in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p{x^q}">
<mi>p</mi>
<mrow>
<msup>
<mi>x</mi>
<mi>q</mi>
</msup>
</mrow>
</math></span>.</p>
<p><em><strong>[5 marks]</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,x + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2x = 0">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_2}\,{x^{\frac{1}{2}}} + {\text{lo}}{{\text{g}}_2}\,{\left( {2x} \right)^{\frac{1}{2}}} = 0">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,\left( {\sqrt 2 xy} \right) = 0">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 2 xy = 1">
<msqrt>
<mn>2</mn>
</msqrt>
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\sqrt 2 }}{x^{ - 1}}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note</strong>: For the final <em><strong>A</strong></em> mark, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> must be expressed in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p{x^q}">
<mi>p</mi>
<mrow>
<msup>
<mi>x</mi>
<mi>q</mi>
</msup>
</mrow>
</math></span>.</p>
<p><em><strong>[5 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the area of <em>R</em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_1^\alpha {\frac{1}{{\sqrt 2 }}} {x^{ - 1}}{\text{d}}x">
<munderover>
<mo>∫</mo>
<mn>1</mn>
<mi>α</mi>
</munderover>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ {\frac{1}{{\sqrt 2 }}{\text{ln}}\,x} \right]_1^\alpha ">
<mo>=</mo>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>]</mo>
</mrow>
<mn>1</mn>
<mi>α</mi>
</msubsup>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{\sqrt 2 }}{\text{ln}}\,\alpha ">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>α</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\sqrt 2 }}{\text{ln}}\,\alpha = \sqrt 2 ">
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>α</mi>
<mo>=</mo>
<msqrt>
<mn>2</mn>
</msqrt>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = {{\text{e}}^2}">
<mi>α</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Only follow through from part (b) if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> is in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p{x^q}">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<msup>
<mi>x</mi>
<mi>q</mi>
</msup>
</mrow>
</math></span></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the second order differential equation</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>¨</mo></mover><mo>+</mo><mn>4</mn><msup><mfenced><mover><mi>x</mi><mo>˙</mo></mover></mfenced><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>t</mi><mo>=</mo><mn>0</mn></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is the displacement of a particle for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the differential equation as a system of coupled first order differential equations.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mover><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mn>0</mn></math></p>
<p>Use Euler’s method with a step length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math> to find an estimate for the value of the displacement and velocity of the particle when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>y</mi></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mn>2</mn><mi>t</mi><mo>-</mo><mn>4</mn><msup><mi>y</mi><mn>2</mn></msup></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>t</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>x</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><msub><mi>y</mi><mi>n</mi></msub></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>y</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>y</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><mfenced><mrow><mn>2</mn><msub><mi>t</mi><mi>n</mi></msub><mo>-</mo><mn>4</mn><msubsup><mi>y</mi><mi>n</mi><mn>2</mn></msubsup></mrow></mfenced></math> <strong>(M1)(A1)</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>M1</strong> for a correct attempt to substitute the functions in part (a) into the formula for Euler’s method for coupled systems.</p>
<p> </p>
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>202</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>20201</mn><mo>…</mo></mrow></mfenced></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mn>0</mn><mo>.</mo><mn>598</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>59822</mn><mo>…</mo></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>598</mn></math>.</p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The wind chill index <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> is a measure of the temperature, in <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>°</mo><mtext>C</mtext></math>, felt when taking into account the effect of the wind.</p>
<p>When Frieda arrives at the top of a hill, the relationship between the wind chill index and the speed of the wind <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> in kilometres per hour <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo></math> is given by the equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>=</mo><mn>19</mn><mo>.</mo><mn>34</mn><mo>-</mo><mn>7</mn><mo>.</mo><mn>405</mn><msup><mi>v</mi><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow></msup></math></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>W</mi></mrow><mrow><mo>d</mo><mi>v</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When Frieda arrives at the top of a hill, the speed of the wind is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> kilometres per hour and increasing at a rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mtext>minute</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p>Find the rate of change of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> at this time.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of power rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>W</mi></mrow><mrow><mo>d</mo><mi>v</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>1848</mn><msup><mi>v</mi><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>84</mn></mrow></msup></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>.</mo><mn>18</mn><msup><mi>v</mi><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>84</mn></mrow></msup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>5</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>W</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>×</mo><mfrac><mrow><mo>d</mo><mi>W</mi></mrow><mrow><mo>d</mo><mi>v</mi></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mo>d</mo><mi>W</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>5</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>1848</mn><msup><mi>v</mi><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>84</mn></mrow></msup></mrow></mfenced></math></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>10</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>W</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>5</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>1848</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>84</mn></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>856</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>856278</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo>°</mo><msup><mtext>C min</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>A2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept a negative answer communicated in words, “decreasing at a rate of…”. <br>Accept a final answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>852809</mn><mo>…</mo><mo> </mo><mo>°</mo><msup><mtext>C min</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> from use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>.</mo><mn>18</mn></math>.<br>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>4</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>2</mn></math>)<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>°</mo><msup><mtext>C hour</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There was some success in using the power rule to differentiate the function in part (a). Many failed to recognize that part (b) was a related rates of change problem. There was also confusion about the term “rate of change” and with the units used in this question.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A slope field for the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mi>y</mi><mn>2</mn></mfrac></math> is shown.</p>
<p><img src=""></p>
<p>Some of the solutions to the differential equation have a local maximum point and a local minimum point.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the curve on which all these maximum and minimum points lie.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch this curve on the slope field.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solution to the differential equation that passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>2</mn><mo>)</mo></math> has both a local maximum point and a local minimum point.</p>
<p>On the slope field, sketch the solution to the differential equation that passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>2</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mi>y</mi><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></math> drawn on diagram (correct shape with a maximum at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math>) <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape with a local maximum and minimum, passing through <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>2</mn><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p>local maximum and minimum on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was very poorly done and frequently left blank. Few candidates understood the connection between the differential equation and maximum and minimum points. Even when the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>y</mi></mrow><mrow><mtext>d</mtext><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> was correctly solved, it was rare to see the curve correctly drawn on the slope field. Some were able to draw a solution to the differential equation on the slope field though often not through the given initial condition.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The sides of a bowl are formed by rotating the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>,</mo><mo> </mo><mn>0</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>9</mn></math>, about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> are measured in centimetres. The bowl contains water to a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo> </mo><mtext>cm</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of water, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">π</mi><mfenced><mrow><msup><mi mathvariant="normal">e</mi><mstyle displaystyle="false"><mfrac><mi>h</mi><mn>3</mn></mfrac></mstyle></msup><mo>-</mo><mn>1</mn></mrow></mfenced></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum capacity of the bowl in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cm</mtext><mn>3</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mi>a</mi><mi>b</mi></msubsup><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo>d</mo><mi>y</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mtext>e</mtext><mfrac><mi>y</mi><mn>6</mn></mfrac></msup></math> or any reasonable attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>0</mn><mi>h</mi></msubsup><msup><mtext>e</mtext><mfrac><mi>y</mi><mn>3</mn></mfrac></msup><mo> </mo><mo>d</mo><mi>y</mi></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Correct limits must be seen for the <em><strong>A1</strong></em> to be awarded.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mn>3</mn><msup><mtext>e</mtext><mfrac><mi>y</mi><mn>3</mn></mfrac></msup></mrow></mfenced><mn>0</mn><mi>h</mi></msubsup></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Condone the absence of limits for this <em><strong>A1</strong></em> mark.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mi mathvariant="normal">π</mi><mfenced open="[" close="]"><mrow><msup><mtext>e</mtext><mfrac><mi>h</mi><mn>3</mn></mfrac></msup><mo>-</mo><msup><mtext>e</mtext><mn>0</mn></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mi mathvariant="normal">π</mi><mfenced open="[" close="]"><mrow><msup><mtext>e</mtext><mfrac><mi>h</mi><mn>3</mn></mfrac></msup><mo>-</mo><mn>1</mn></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> If the variable used in the integral is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>0</mn><mi>h</mi></msubsup><msup><mtext>e</mtext><mfrac><mi>x</mi><mn>3</mn></mfrac></msup><mo> </mo><mo>d</mo><mi>x</mi></math>) and the candidate has not stated that they are interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> then award at most <em><strong>M1M1A0A1A1AG</strong></em>.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>maximum volume when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>9</mn><mo> </mo><mtext>cm</mtext></math> <em><strong>(M1)</strong></em></p>
<p>max volume <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>180</mn><mo> </mo><msup><mtext>cm</mtext><mn>3</mn></msup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A number of candidates switched variables so that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mi>ln</mi><mi>x</mi></math> and then used <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>∫</mo><msup><mi>y</mi><mn>2</mn></msup><mi mathvariant="normal">d</mi><mi>x</mi></math>. Other candidates who correctly found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> failed to use the limits <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, using <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> instead. As part (a) was to <em><strong>show that</strong> </em>the volume was equal to the final expression it was necessary for examiners to see steps in obtaining the result. It was common to miss out any expression involving <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">e</mi><mn>0</mn></msup></math>. Since the value <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> could be written from the answer given, where this value came from needed to be shown. It was encouraging to see correct answers to (b), even when candidates had failed to gain marks for (a). Some candidates successfully used their GDC to calculate the value of the definite integral numerically.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A number of candidates switched variables so that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mi>ln</mi><mi>x</mi></math> and then used <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>∫</mo><msup><mi>y</mi><mn>2</mn></msup><mi mathvariant="normal">d</mi><mi>x</mi></math>. Other candidates who correctly found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> failed to use the limits <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, using <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> instead. As part (a) was to <em><strong>show that</strong> </em>the volume was equal to the final expression it was necessary for examiners to see steps in obtaining the result. It was common to miss out any expression involving <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">e</mi><mn>0</mn></msup></math>. Since the value <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> could be written from the answer given, where this value came from needed to be shown. It was encouraging to see correct answers to (b), even when candidates had failed to gain marks for (a). Some candidates successfully used their GDC to calculate the value of the definite integral numerically.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The shape of a vase is formed by rotating a curve about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<p>The vase is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mtext>cm</mtext></math> high. The internal radius of the vase is measured at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mtext>cm</mtext></math> intervals along the height:</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Use the trapezoidal rule to estimate the volume of water that the vase can hold.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>0</mn><mn>10</mn></munderover><msup><mi>y</mi><mn>2</mn></msup><mo> </mo><mo>d</mo><mi>x</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>0</mn><mn>10</mn></munderover><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo>d</mo><mi>y</mi></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≈</mo><mi mathvariant="normal">π</mi><mo>×</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>2</mn><mo>×</mo><mfenced><mrow><mfenced><mrow><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>5</mn><mn>2</mn></msup></mrow></mfenced><mo>+</mo><mn>2</mn><mo>×</mo><mfenced><mrow><msup><mn>6</mn><mn>2</mn></msup><mo>+</mo><msup><mn>8</mn><mn>2</mn></msup><mo>+</mo><msup><mn>7</mn><mn>2</mn></msup><mo>+</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></mrow></mfenced></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1120</mn><mo> </mo><msup><mtext>cm</mtext><mn>3</mn></msup><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>1121</mn><mo>.</mo><mn>548</mn><mo>…</mo></mrow></mfenced></math> <strong><em>A1</em></strong></p>
<p><br><strong>Note:</strong> Do not award the second <em><strong>M1</strong> </em>If the terms are not squared.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was a straightforward question on the trapezoidal rule, presented in an unfamiliar way, but only a tiny minority answered it correctly. It may be that candidates were introduced to the trapezium rule as an approximation to the area under a curve and here they were being asked to find an approximation to a volume and they were unable to see how that could be done.</p>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\text{si}}{{\text{n}}^2}\theta ,\,\,0 \leqslant \theta \leqslant \pi ">
<mi>y</mi>
<mo>=</mo>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ<!-- θ --></mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>θ<!-- θ --></mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}\theta }}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the values of <em>θ</em> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2y">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mi>y</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt at chain rule or product rule <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta ">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta = 2{\text{si}}{{\text{n}}^2}\theta ">
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mn>2</mn>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
</math></span></p>
<p>sin <em>θ </em>= 0 <strong><em>(A1)</em></strong></p>
<p><em>θ </em>= 0, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> <em><strong>A1</strong></em></p>
<p>obtaining cos <em>θ </em>= sin <em>θ<strong> (M1)</strong></em></p>
<p>tan <em>θ</em> = 1 <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{4}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A window is made in the shape of a rectangle with a semicircle of radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> metres on top, as shown in the diagram. The perimeter of the window is a constant P metres.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-08_om_17.46.34.png" alt="M17/5/MATHL/HP1/ENG/TZ2/10"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the window in terms of P and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the width of the window in terms of P when the area is a maximum, justifying that this is a maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that in this case the height of the rectangle is equal to the radius of the semicircle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the width of the rectangle is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2r">
<mn>2</mn>
<mi>r</mi>
</math></span> and let the height of the rectangle be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 2r + 2h + \pi r">
<mi>P</mi>
<mo>=</mo>
<mn>2</mn>
<mi>r</mi>
<mo>+</mo>
<mn>2</mn>
<mi>h</mi>
<mo>+</mo>
<mi>π</mi>
<mi>r</mi>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2rh + \frac{{\pi {r^2}}}{2}">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>r</mi>
<mi>h</mi>
<mo>+</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{{\text{P}} - 2r - \pi r}}{2}">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>r</mi>
<mo>−</mo>
<mi>π</mi>
<mi>r</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2r\left( {\frac{{{\text{P}} - 2r - \pi r}}{2}} \right) + \frac{{\pi {r^2}}}{2}\,\,\,\left( { = \operatorname{P} r - 2{r^2} - \frac{{\pi {r^2}}}{2}} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>r</mi>
<mo>−</mo>
<mi>π</mi>
<mi>r</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mi mathvariant="normal">P</mi>
<mo></mo>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}} = {\text{P}} - 4r - \pi r">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>A</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>r</mi>
<mo>−</mo>
<mi>π</mi>
<mi>r</mi>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}} = 0">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>A</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow r = \frac{{\text{P}}}{{4 + \pi }}">
<mo stretchy="false">⇒</mo>
<mi>r</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mn>4</mn>
<mo>+</mo>
<mi>π</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p>hence the width is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2{\text{P}}}}{{4 + \pi }}">
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<mtext>P</mtext>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mo>+</mo>
<mi>π</mi>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{d}}^2}A}}{{{\text{d}}{r^2}}} = - 4 - \pi < 0">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>d</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>A</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
<mo>−</mo>
<mi>π</mi>
<mo><</mo>
<mn>0</mn>
</math></span> <strong><em>R1</em></strong></p>
<p>hence maximum <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{{\text{P}} - 2r - \pi r}}{2}">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>r</mi>
<mo>−</mo>
<mi>π</mi>
<mi>r</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{{\text{P}} - \frac{{2{\text{P}}}}{{4 + \pi }} - \frac{{{\text{P}}\pi }}{{4 + \pi }}}}{2}">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<mtext>P</mtext>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mo>+</mo>
<mi>π</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mi>π</mi>
</mrow>
<mrow>
<mn>4</mn>
<mo>+</mo>
<mi>π</mi>
</mrow>
</mfrac>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{4{\text{P}} + \pi {\text{P}} - 2{\text{P}} - \pi {\text{P}}}}{{2(4 + \pi )}}">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>+</mo>
<mi>π</mi>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mi>π</mi>
<mrow>
<mtext>P</mtext>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo>+</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{\text{P}}}{{(4 + \pi )}} = r">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo>+</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
<mo>=</mo>
<mi>r</mi>
</math></span> <strong><em>AG</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{{\text{P}} - 2r - \pi r}}{2}">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>r</mi>
<mo>−</mo>
<mi>π</mi>
<mi>r</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = r(4 + \pi )">
<mi>P</mi>
<mo>=</mo>
<mi>r</mi>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo>+</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{r(4 + \pi ) - 2r - \pi r}}{2}">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>r</mi>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo>+</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>2</mn>
<mi>r</mi>
<mo>−</mo>
<mi>π</mi>
<mi>r</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{4r + \pi r - 2r - \pi r}}{2} = r">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mi>r</mi>
<mo>+</mo>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>r</mi>
<mo>−</mo>
<mi>π</mi>
<mi>r</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mi>r</mi>
</math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle moves along a straight line. Its displacement, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> metres, at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = t + \cos 2t,{\text{ }}t \geqslant 0">
<mi>s</mi>
<mo>=</mo>
<mi>t</mi>
<mo>+</mo>
<mi>cos</mi>
<mo><!-- --></mo>
<mn>2</mn>
<mi>t</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span>. The first two times when the particle is at rest are denoted by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_1}">
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_2}">
<mrow>
<msub>
<mi>t</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_1} < {t_2}">
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
<mo><</mo>
<mrow>
<msub>
<mi>t</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_1}">
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_2}">
<mrow>
<msub>
<mi>t</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the displacement of the particle when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {t_1}">
<mi>t</mi>
<mo>=</mo>
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = t + \cos 2t">
<mi>s</mi>
<mo>=</mo>
<mi>t</mi>
<mo>+</mo>
<mi>cos</mi>
<mo></mo>
<mn>2</mn>
<mi>t</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}s}}{{{\text{d}}t}} = 1 - 2\sin 2t">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>s</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mi>sin</mi>
<mo></mo>
<mn>2</mn>
<mi>t</mi>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0">
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \sin 2t = \frac{1}{2}">
<mo stretchy="false">⇒</mo>
<mi>sin</mi>
<mo></mo>
<mn>2</mn>
<mi>t</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_1} = \frac{\pi }{{12}}(s),{\text{ }}{t_2} = \frac{{5\pi }}{{12}}(s)">
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mi>t</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>5</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A0A0 </em></strong>if answers are given in degrees.</p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{\pi }{{12}} + \cos \frac{\pi }{6}\,\,\,\left( {s = \frac{\pi }{{12}} + \frac{{\sqrt 3 }}{2}(m)} \right)">
<mi>s</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>6</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>s</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>m</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A particle moves in a straight line such that at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(t \geqslant 0)">
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo>⩾</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span>, its velocity <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span>, in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{m}}{{\text{s}}^{ - 1}}">
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>, is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 10t{{\text{e}}^{ - 2t}}">
<mi>v</mi>
<mo>=</mo>
<mn>10</mn>
<mi>t</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span>. Find the exact distance travelled by the particle in the first half-second.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \int\limits_0^{\frac{1}{2}} {10t{{\text{e}}^{ - 2t}}{\text{d}}t} ">
<mi>s</mi>
<mo>=</mo>
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</munderover>
<mrow>
<mn>10</mn>
<mi>t</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span></p>
<p>attempt at integration by parts <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ { - 5t{{\text{e}}^{ - 2t}}} \right]_0^{\frac{1}{2}} - \int\limits_0^{\frac{1}{2}} { - 5{{\text{e}}^{ - 2t}}{\text{d}}t} ">
<mo>=</mo>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mo>−</mo>
<mn>5</mn>
<mi>t</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>0</mn>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msubsup>
<mo>−</mo>
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</munderover>
<mrow>
<mo>−</mo>
<mn>5</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ { - 5t{{\text{e}}^{ - 2t}} - \frac{5}{2}{{\text{e}}^{ - 2t}}} \right]_0^{\frac{1}{2}}">
<mo>=</mo>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mo>−</mo>
<mn>5</mn>
<mi>t</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>0</mn>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msubsup>
</math></span> <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Condone absence of limits (or incorrect limits) and missing factor of 10 up to this point.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \int\limits_0^{\frac{1}{2}} {10t{{\text{e}}^{ - 2t}}{\text{d}}t} ">
<mi>s</mi>
<mo>=</mo>
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</munderover>
<mrow>
<mn>10</mn>
<mi>t</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 5{{\text{e}}^{ - 1}} + \frac{5}{2}{\text{ }}\left( { = \frac{{ - 5}}{{\text{e}}} + \frac{5}{2}} \right){\text{ }}\left( { = \frac{{5{\text{e}} - 10}}{{2{\text{e}}}}} \right)">
<mo>=</mo>
<mo>−</mo>
<mn>5</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mrow>
<mtext>e</mtext>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>5</mn>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>−</mo>
<mn>10</mn>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Consider the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{1 - x}} + \frac{4}{{x - 4}}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>x</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>4</mn>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
</mrow>
</mfrac>
</math></span>.</p>
<p>Find the <em>x</em>-coordinates of the points on the curve where the gradient is zero.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{{{{\left( {1 - x} \right)}^2}}} - \frac{4}{{{{\left( {x - 4} \right)}^2}}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>4</mn>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>A1A1</strong></em></p>
<p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2,\,\,x = - 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span> <em><strong>A1A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The cross-section of a beach is modelled by the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>02</mn><msup><mi>x</mi><mn>2</mn></msup></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>10</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the height of the beach (in metres) at a horizontal distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> metres from an origin. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time in hours after low tide.</p>
<p>At <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> the water is at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>. The height of the water rises at a rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> metres per hour. The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>W</mtext><mo>(</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mo> </mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math> indicates where the water level meets the beach at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p> </p>
</div>
<div class="specification">
<p>A snail is modelled as a single point. At <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> it is positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>02</mn><mo>)</mo></math>. The snail travels away from the incoming water at a speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> metre per hour in the direction along the curve of the cross-section of the beach. The following diagram shows this for a value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>0</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>W</mtext></math> has an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>, find the horizontal component of the velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>W</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time taken for the snail to reach the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>10</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the snail reaches the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>10</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math> before the water does.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of chain rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>04</mn><mo>×</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>5</mn><mo> </mo><msup><mtext>m h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>if the position of the snail is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>X</mi><mo>,</mo><mo> </mo><mi>Y</mi></mrow></mfenced></math></p>
<p>from part (a) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>X</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mn>0</mn><mo>.</mo><mn>04</mn><mi>X</mi></mrow></mfrac><mfrac><mrow><mo>d</mo><mi>Y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p>since speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>:</p>
<p>finding modulus of velocity vector and equating to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>=</mo><msqrt><msup><mfenced><mfrac><mover><mi>Y</mi><mo>˙</mo></mover><mrow><mn>0</mn><mo>.</mo><mn>04</mn><mi>X</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo>+</mo><msup><mover><mi>Y</mi><mo>˙</mo></mover><mn>2</mn></msup></msqrt></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>=</mo><msqrt><msup><mover><mi>X</mi><mo>˙</mo></mover><mn>2</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>0016</mn><msup><mi>X</mi><mn>2</mn></msup><msup><mover><mi>X</mi><mo>˙</mo></mover><mn>2</mn></msup></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>=</mo><msup><mover><mi>Y</mi><mo>˙</mo></mover><mn>2</mn></msup><mfenced><mrow><mfrac><mn>1</mn><mrow><mn>0</mn><mo>.</mo><mn>0016</mn><msup><mi>X</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>=</mo><msup><mover><mi>X</mi><mo>˙</mo></mover><mn>2</mn></msup><mfenced><mrow><mn>1</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0016</mn><msup><mi>X</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>Y</mi><mo>˙</mo></mover><mo>=</mo><msqrt><mfrac><mn>1</mn><mstyle displaystyle="true"><mfrac><mn>1</mn><mrow><mn>0</mn><mo>.</mo><mn>08</mn><mi>Y</mi></mrow></mfrac><mo>+</mo><mn>1</mn></mstyle></mfrac></msqrt></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>X</mi><mo>˙</mo></mover><mo>=</mo><msqrt><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0016</mn><msup><mi>X</mi><mn>2</mn></msup></mrow></mfrac></msqrt></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>02</mn></mrow><mn>2</mn></munderover><msqrt><mfrac><mn>1</mn><mrow><mn>0</mn><mo>.</mo><mn>08</mn><mi>Y</mi></mrow></mfrac><mo>+</mo><mn>1</mn></msqrt><mo>d</mo><mi>Y</mi><mo>=</mo><munderover><mo>∫</mo><mn>0</mn><mi>T</mi></munderover><mo>d</mo><mi>t</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>1</mn><mn>10</mn></munderover><msqrt><mn>1</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0016</mn><msup><mi>X</mi><mn>2</mn></msup></msqrt><mo>d</mo><mi>X</mi><mo>=</mo><munderover><mo>∫</mo><mn>0</mn><mi>T</mi></munderover><mo>d</mo><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>9</mn><mo>.</mo><mn>26</mn></math> hours <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>time for water to reach top is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mn>10</mn></math> hours (seen anywhere) <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>or at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>9</mn><mo>.</mo><mn>26</mn></math>, height of water is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>26</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>852</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>THEN</strong></p>
<p>so the water will not reach the snail <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a), a small minority of candidates found the horizontal component of velocity correctly. Few candidates made any significant progress in part (b).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A curve has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x - 2{y^2}{{\text{e}}^{x - 1}} = 2">
<mn>3</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>2</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equations of the tangents to this curve at the points where the curve intersects the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to differentiate implicitly <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 - \left( {4y\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2{y^2}} \right){{\text{e}}^{x - 1}} = 0">
<mn>3</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mi>y</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>A1A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correctly differentiating each term.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3 \bullet {{\text{e}}^{1 - x}} - 2{y^2}}}{{4y}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mo>∙</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mi>y</mi>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>This final answer may be expressed in a number of different ways.</p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 - 2{y^2} = 2 \Rightarrow {y^2} = \frac{1}{2} \Rightarrow y = \pm \sqrt {\frac{1}{2}} ">
<mn>3</mn>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mo stretchy="false">⇒</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">⇒</mo>
<mi>y</mi>
<mo>=</mo>
<mo>±</mo>
<msqrt>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</msqrt>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3 - 2 \bullet \frac{1}{2}}}{{ \pm 4\sqrt {\frac{1}{2}} }} = \pm \frac{{\sqrt 2 }}{2}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mo>−</mo>
<mn>2</mn>
<mo>∙</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mrow>
<mo>±</mo>
<mn>4</mn>
<msqrt>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mo>±</mo>
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p>at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1,{\text{ }}\sqrt {\frac{1}{2}} } \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<msqrt>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> the tangent is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - \sqrt {\frac{1}{2}} = \frac{{\sqrt 2 }}{2}(x - 1)">
<mi>y</mi>
<mo>−</mo>
<msqrt>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</msqrt>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> and <strong><em>A1</em></strong></p>
<p>at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1,{\text{ }} - \sqrt {\frac{1}{2}} } \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<msqrt>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> the tangent is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y + \sqrt {\frac{1}{2}} = - \frac{{\sqrt 2 }}{2}(x - 1)">
<mi>y</mi>
<mo>+</mo>
<msqrt>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</msqrt>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>These equations simplify to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \pm \frac{{\sqrt 2 }}{2}x">
<mi>y</mi>
<mo>=</mo>
<mo>±</mo>
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mi>x</mi>
</math></span>.</p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A0M1A1A0 </em></strong>if just the positive value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> is considered and just one tangent is found.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Find the coordinates of the points on the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^3} + 3x{y^2} - {x^3} = 27">
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>27</mn>
</math></span> at which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt at implicit differentiation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + 3{y^2} + 6xy\frac{{{\text{d}}y}}{{{\text{d}}x}} - 3{x^2} = 0">
<mn>3</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mi>y</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for the second & third terms, <em><strong>A1</strong></em> for the first term, fourth term & RHS equal to zero.</p>
<p>substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{y^2} - 3{x^2} = 0">
<mn>3</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow y = \pm x">
<mo stretchy="false">⇒</mo>
<mi>y</mi>
<mo>=</mo>
<mo>±</mo>
<mi>x</mi>
</math></span> <em><strong>A1</strong></em></p>
<p>substitute either variable into original equation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x \Rightarrow {x^3} = 9 \Rightarrow x = \sqrt[3]{9}">
<mi>y</mi>
<mo>=</mo>
<mi>x</mi>
<mo stretchy="false">⇒</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>9</mn>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mroot>
<mn>9</mn>
<mn>3</mn>
</mroot>
</math></span> (or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^3} = 9 \Rightarrow y = \sqrt[3]{9}">
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>9</mn>
<mo stretchy="false">⇒</mo>
<mi>y</mi>
<mo>=</mo>
<mroot>
<mn>9</mn>
<mn>3</mn>
</mroot>
</math></span>) <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - x \Rightarrow {x^3} = 27 \Rightarrow x = 3">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mi>x</mi>
<mo stretchy="false">⇒</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>27</mn>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> (or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^3} = - 27 \Rightarrow y = - 3">
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>27</mn>
<mo stretchy="false">⇒</mo>
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span>) <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\sqrt[3]{9}{\text{,}}\,\,\sqrt[3]{9}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mroot>
<mn>9</mn>
<mn>3</mn>
</mroot>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mroot>
<mn>9</mn>
<mn>3</mn>
</mroot>
</mrow>
<mo>)</mo>
</mrow>
</math></span> , (3, −3) <em><strong>A1</strong></em></p>
<p><em><strong>[9 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A camera at point C is 3 m from the edge of a straight section of road as shown in the following diagram. The camera detects a car travelling along the road at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0. It then rotates, always pointing at the car, until the car passes O, the point on the edge of the road closest to the camera.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A car travels along the road at a speed of 24 ms<sup>−1</sup>. Let the position of the car be X and let OĈX = <em>θ</em>.</p>
<p style="text-align: left;">Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span>, the rate of rotation of the camera, in radians per second, at the instant the car passes the point O .</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>let OX = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span></p>
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 24">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>24</mn>
</math></span> (or −24) <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}x}}{{{\text{d}}t}} \times \frac{{{\text{d}}\theta }}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\,{\text{tan}}\,\theta = x">
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mi>x</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\,{\text{se}}{{\text{c}}^2}\,\theta = \frac{{{\text{d}}x}}{{{\text{d}}\theta }}">
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>se</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>c</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{24}}{{3\,{\text{se}}{{\text{c}}^2}\,\theta }}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>24</mn>
</mrow>
<mrow>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>se</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>c</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<p>attempt to substitute for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = 0">
<mi>θ</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> into their differential equation<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> </span><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><strong>M1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = {\text{arctan}}\left( {\frac{x}{3}} \right)">
<mi>θ</mi>
<mo>=</mo>
<mrow>
<mtext>arctan</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>x</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = \frac{1}{3} \times \frac{1}{{1 + \frac{{{x^2}}}{9}}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>9</mn>
</mfrac>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 24 \times \frac{1}{{3\left( {1 + \frac{{{x^2}}}{9}} \right)}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>24</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>attempt to substitute for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> into their differential equation <em><strong>M1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{24}}{3} = 8">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>24</mn>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>8</mn>
</math></span> (rad s<sup>−1</sup>) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept −8 rad s<sup>−1</sup>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 24">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>24</mn>
</math></span> (or −24) <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\,{\text{tan}}\,\theta = x">
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mi>x</mi>
</math></span> <em><strong>A1</strong></em></p>
<p>attempt to differentiate implicitly with respect to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\,{\text{se}}{{\text{c}}^2}\,\theta \times \frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}x}}{{{\text{d}}t}}">
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>se</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>c</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{24}}{{3\,{\text{se}}{{\text{c}}^2}\,\theta }}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>24</mn>
</mrow>
<mrow>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>se</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>c</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<p>attempt to substitute for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = 0">
<mi>θ</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> into their differential equation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{24}}{3} = 8">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>24</mn>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>8</mn>
</math></span> (rad s<sup>−1</sup>) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept −8 rad s<sup>−1</sup>.</p>
<p><strong>Note:</strong> Can be done by consideration of CX, use of Pythagoras.</p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>let the position of the car be at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d - 24t">
<mi>d</mi>
<mo>−</mo>
<mn>24</mn>
<mi>t</mi>
</math></span> from O <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = \frac{{d - 24t}}{3}\left( { = \frac{d}{3} - 8t} \right)">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>d</mi>
<mo>−</mo>
<mn>24</mn>
<mi>t</mi>
</mrow>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mi>d</mi>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mn>8</mn>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = \frac{{24t}}{3}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>24</mn>
<mi>t</mi>
</mrow>
<mn>3</mn>
</mfrac>
</math></span> award <em><strong>A0M1</strong></em> and follow through.</p>
<p><strong>EITHER</strong></p>
<p>attempt to differentiate implicitly with respect to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{se}}{{\text{c}}^2}\,\theta \frac{{{\text{d}}\theta }}{{{\text{d}}t}} = - 8">
<mrow>
<mtext>se</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>c</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>8</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>attempt to substitute for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = 0">
<mi>θ</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> into their differential equation <em><strong>M1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = {\text{arctan}}\left( {\frac{d}{3} - 8t} \right)">
<mi>θ</mi>
<mo>=</mo>
<mrow>
<mtext>arctan</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>d</mi>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mn>8</mn>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{8}{{1 + {{\left( {\frac{d}{3} - 8t} \right)}^2}}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>8</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>d</mi>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mn>8</mn>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>at O, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{d}{{24}}">
<mi>t</mi>
<mo>=</mo>
<mfrac>
<mi>d</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = - 8">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>8</mn>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2}^2 {f\left( x \right){\text{d}}x = 10} ">
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mrow>
<mn>2</mn>
</msubsup>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>10</mn>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^2 {f\left( x \right){\text{d}}x = 12} ">
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mn>0</mn>
<mn>2</mn>
</msubsup>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>12</mn>
</mrow>
</math></span>, find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2}^0 {\left( {f\left( x \right){\text{ + 2}}} \right){\text{d}}x} "> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mn>0</mn> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mtext> + 2</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2}^0 {f\left( {x{\text{ + 2}}} \right){\text{d}}x} "> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mn>0</mn> </msubsup> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mrow> <mtext> + 2</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2}^0 {f\left( x \right){\text{d}}x = 10} - 12 = - 2"> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mn>0</mn> </msubsup> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mn>10</mn> </mrow> <mo>−</mo> <mn>12</mn> <mo>=</mo> <mo>−</mo> <mn>2</mn> </math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2}^0 {2{\text{d}}x = \left[ {2x} \right]} _{ - 2}^0 = 4"> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mn>0</mn> </msubsup> <msubsup> <mrow> <mn>2</mn> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mi>x</mi> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mn>0</mn> </msubsup> <mo>=</mo> <mn>4</mn> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2}^0 {\left( {f\left( x \right){\text{ + 2}}} \right){\text{d}}x} = 2"> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mn>0</mn> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mtext> + 2</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <mn>2</mn> </math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2}^0 {f\left( {x{\text{ + 2}}} \right){\text{d}}x} = \int_0^2 {f\left( x \right){\text{d}}x} "> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mn>0</mn> </msubsup> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mrow> <mtext> + 2</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>2</mn> </msubsup> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p>= 12 <em><strong>A</strong><strong>1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A right circular cone of radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> is inscribed in a sphere with centre O and radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> as shown in the following diagram. The perpendicular height of the cone is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>, X denotes the centre of its base and B a point where the cone touches the sphere.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of the cone may be expressed by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \frac{\pi }{3}\left( {2R{h^2} - {h^3}} \right)">
<mi>V</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>R</mi>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>h</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that there is one inscribed cone having a maximum volume, show that the volume of this cone is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{32\pi {R^3}}}{{81}}">
<mfrac>
<mrow>
<mn>32</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>R</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to use Pythagoras in triangle OXB <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {r^2} = {R^2} - {\left( {h - R} \right)^2}">
<mo stretchy="false">⇒</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>h</mi>
<mo>−</mo>
<mi>R</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>substitution of their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2}">
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> into formula for volume of cone <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \frac{{\pi {r^2}h}}{3}">
<mi>V</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>h</mi>
</mrow>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\pi h}}{3}\left( {{R^2} - {{\left( {h - R} \right)}^2}} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mi>h</mi>
</mrow>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>h</mi>
<mo>−</mo>
<mi>R</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\pi h}}{3}\left( {{R^2} - \left( {{h^2} + {R^2} - 2hR} \right)} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mi>h</mi>
</mrow>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>h</mi>
<mi>R</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> This <strong>A</strong> mark is independent and may be seen anywhere for the correct expansion of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{{\left( {h - R} \right)}^2}}">
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>h</mi>
<mo>−</mo>
<mi>R</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\pi h}}{3}\left( {2hR - {h^2}} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mi>h</mi>
</mrow>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>h</mi>
<mi>R</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\pi }{3}\left( {2R{h^2} - {h^3}} \right)">
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>R</mi>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>h</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at max, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}h}} = 0">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>h</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}h}} = \frac{\pi }{3}\left( {4Rh - 3{h^2}} \right)">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>h</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mi>R</mi>
<mi>h</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 4Rh = 3{h^2}">
<mo stretchy="false">⇒</mo>
<mn>4</mn>
<mi>R</mi>
<mi>h</mi>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow h = \frac{{4R}}{3}">
<mo stretchy="false">⇒</mo>
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mi>R</mi>
</mrow>
<mn>3</mn>
</mfrac>
</math></span> (since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h \ne 0">
<mi>h</mi>
<mo>≠</mo>
<mn>0</mn>
</math></span>) <em><strong>A1</strong></em></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{V_{{\text{max}}}} = \frac{\pi }{3}\left( {2R{h^2} - {h^3}} \right)">
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mrow>
<mtext>max</mtext>
</mrow>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>R</mi>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>h</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> from part (a)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\pi }{3}\left( {2R{{\left( {\frac{{4R}}{3}} \right)}^2} - {{\left( {\frac{{4R}}{3}} \right)}^3}} \right)">
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>R</mi>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>4</mn>
<mi>R</mi>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>4</mn>
<mi>R</mi>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\pi }{3}\left( {2R\frac{{16{R^2}}}{9} - \left( {\frac{{64{R^3}}}{{27}}} \right)} \right)">
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>R</mi>
<mfrac>
<mrow>
<mn>16</mn>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>9</mn>
</mfrac>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>64</mn>
<mrow>
<msup>
<mi>R</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2} = {R^2} - {\left( {\frac{{4R}}{3} - R} \right)^2}">
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>4</mn>
<mi>R</mi>
</mrow>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mi>R</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2} = {R^2} - \frac{{{R^2}}}{9} = \frac{{8{R^2}}}{9}">
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>9</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>8</mn>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>9</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {V_{{\text{max}}}} = \frac{{\pi {r^2}}}{3}\left( {\frac{{4R}}{3}} \right)">
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>V</mi>
<mrow>
<mrow>
<mtext>max</mtext>
</mrow>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>4</mn>
<mi>R</mi>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{4\pi R}}{9}\left( {\frac{{8{R^2}}}{9}} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mi>π</mi>
<mi>R</mi>
</mrow>
<mn>9</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>8</mn>
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{32\pi {R^3}}}{{81}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>32</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>R</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {{\text{e}}^x}\sin x">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>x</mi>
</msup>
</mrow>
<mi>sin</mi>
<mo><!-- --></mo>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {{\text{e}}^x}\sin x,{\text{ }}0 \leqslant x \leqslant \pi ">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>x</mi>
</msup>
</mrow>
<mi>sin</mi>
<mo><!-- --></mo>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>The curvature at any point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x,{\text{ }}y)">
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo stretchy="false">)</mo>
</math></span> on a graph is defined as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\kappa = \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}">
<mi>κ<!-- κ --></mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>|</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>d</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>|</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^x}\cos x"> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>d</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> has a local maximum value when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of the point of inflexion of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, clearly indicating the position of the local maximum point, the point of inflexion and the axes intercepts.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis.</p>
<p> </p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the curvature of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at the local maximum point.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\kappa "> <mi>κ</mi> </math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{2}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span> and comment on its meaning with respect to the shape of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x{\text{ }}\left( { = {{\text{e}}^x}(\sin x + \cos x)} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mo stretchy="false">(</mo> <mi>sin</mi> <mo></mo> <mi>x</mi> <mo>+</mo> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>M1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = {{\text{e}}^x}(\sin x + \cos x) + {{\text{e}}^x}(\cos x - \sin x)"> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>d</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mo stretchy="false">(</mo> <mi>sin</mi> <mo></mo> <mi>x</mi> <mo>+</mo> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>−</mo> <mi>sin</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2{{\text{e}}^x}\cos x"> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^{\frac{{3\pi }}{4}}}\left( {\sin \frac{{3\pi }}{4} + \cos \frac{{3\pi }}{4}} \right) = 0"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo></mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>cos</mi> <mo></mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>R1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^{\frac{{3\pi }}{4}}}\cos \frac{{3\pi }}{4} < 0"> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>d</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </msup> </mrow> <mi>cos</mi> <mo></mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo><</mo> <mn>0</mn> </math></span> <strong><em>R1</em></strong></p>
<p>hence maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 0 \Rightarrow 2{{\text{e}}^x}\cos x = 0"> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>d</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = \frac{\pi }{2}"> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1A0 </em></strong>if extra zeros are seen.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-02-28_om_14.29.02.png" alt="N16/5/MATHL/HP1/ENG/TZ0/11.e/M"></p>
<p>correct shape and correct domain <strong><em>A1</em></strong></p>
<p>max at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span>, point of inflexion at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{2}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p>zeros at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pi "> <mi>x</mi> <mo>=</mo> <mi>π</mi> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Penalize incorrect domain with first <strong><em>A </em></strong>mark; allow <strong><em>FT </em></strong>from (d) on extra points of inflexion.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^x {{{\text{e}}^x}\sin x{\text{d}}x = [{{\text{e}}^x}\sin x]_0^\pi - \int_0^\pi {{{\text{e}}^x}\cos x{\text{d}}x} } "> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>x</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <msubsup> <mo stretchy="false">]</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mo>−</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> </math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^\pi {{{\text{e}}^x}\sin x{\text{d}}x = [{{\text{e}}^x}\sin x]_0^\pi - \left( {[{{\text{e}}^x}\cos x]_0^x + \int_0^\pi {{{\text{e}}^x}\sin x{\text{d}}x} } \right)} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <msubsup> <mo stretchy="false">]</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">[</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> <msubsup> <mo stretchy="false">]</mo> <mn>0</mn> <mi>x</mi> </msubsup> <mo>+</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^\pi {{{\text{e}}^x}\sin x{\text{d}}x = [ - {{\text{e}}^x}\cos x]_0^\pi + \int_0^\pi {{{\text{e}}^x}\cos x{\text{d}}x} } "> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> <msubsup> <mo stretchy="false">]</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mo>+</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> </math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^\pi {{{\text{e}}^x}\sin x{\text{d}}x = [ - {{\text{e}}^x}\cos x]} _0^\pi + \left( {[{{\text{e}}^x}\sin x]_0^\pi - \int_0^\pi {{{\text{e}}^x}\sin x{\text{d}}x} } \right)"> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">]</mo> </mrow> <mn>0</mn> <mi>π</mi> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">[</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <msubsup> <mo stretchy="false">]</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mo>−</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^\pi {{{\text{e}}^x}\sin x{\text{d}}x = \frac{1}{2}\left( {[{{\text{e}}^x}\sin x]_0^x - [{{\text{e}}^x}\cos x]_0^x} \right)} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">[</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <msubsup> <mo stretchy="false">]</mo> <mn>0</mn> <mi>x</mi> </msubsup> <mo>−</mo> <mo stretchy="false">[</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> <msubsup> <mo stretchy="false">]</mo> <mn>0</mn> <mi>x</mi> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> </math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^\pi {{{\text{e}}^x}\sin x{\text{d}}x = \frac{1}{2}({{\text{e}}^x} + 1)} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo stretchy="false">(</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{d^2}y}}{{d{x^2}}} = 2{e^{\frac{{3\pi }}{4}}}\cos \frac{{3\pi }}{4} = - \sqrt 2 {e^{\frac{{3\pi }}{4}}}"> <mfrac> <mrow> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mrow> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mi>e</mi> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </msup> </mrow> <mi>cos</mi> <mo></mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <msqrt> <mn>2</mn> </msqrt> <mrow> <msup> <mi>e</mi> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </msup> </mrow> </math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\kappa = \frac{{\left| { - \sqrt 2 {{\text{e}}^{\frac{{3\pi }}{4}}}} \right|}}{1} = \sqrt 2 {{\text{e}}^{\frac{{3\pi }}{4}}}"> <mi>κ</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mo>−</mo> <msqrt> <mn>2</mn> </msqrt> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> <mn>1</mn> </mfrac> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </msup> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\kappa = 0"> <mi>κ</mi> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>A1</em></strong></p>
<p>the graph is approximated by a straight line <strong><em>R1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the slope field for the differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced><mo>,</mo><mo> </mo><mo>-</mo><mn>4</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>5</mn></math>.</p>
<p>The graphs of the two solutions to the differential equation that pass through points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>)</mo></math> are shown.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>For the two solutions given, the local minimum points lie on the straight line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>, giving your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the two solutions given, the local maximum points lie on the straight line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>.</p>
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>0</mn></math> <em><strong> (M1)</strong></em></p>
<p>(the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>x</mi></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mi mathvariant="normal">π</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi mathvariant="normal">π</mi></math> <em><strong> (M1)A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f,\,\,g,">
<mi>f</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>g</mi>
<mo>,</mo>
</math></span> defined for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>, given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^{ - x}}\,{\text{sin}}\,x">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {{\text{e}}^{ - x}}\,{\text{cos}}\,x">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( x \right)"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^\pi {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x} "> <munderover> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </munderover> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt at product rule <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = - {{\text{e}}^{ - x}}\,{\text{sin}}\,x + {{\text{e}}^{ - x}}\,{\text{cos}}\,x"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( x \right) = - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - {{\text{e}}^{ - x}}\,{\text{sin}}\,x"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>Attempt to add <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( x \right)"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) + g'\left( x \right) = - 2{{\text{e}}^{ - x}}\,{\text{sin}}\,x"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^\pi {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x} = \left[ { - \frac{{{{\text{e}}^{ - x}}}}{2}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)} \right]_0^\pi "> <munderover> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </munderover> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mi>π</mi> </msubsup> </math></span> (or equivalent) <em><strong>A1</strong></em></p>
<p><strong>Note</strong>: Condone absence of limits.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left( {1 + {{\text{e}}^{ - \pi }}} \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>π</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="I = \int {{{\text{e}}^{ - x}}} \,{\text{sin}}\,x\,{\text{d}}x"> <mi>I</mi> <mo>=</mo> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - \int {{{\text{e}}^{ - x}}} \,{\text{cos}}\,x\,{\text{d}}x"> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span> <strong>OR </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - {{\text{e}}^{ - x}}\,{\text{sin}}\,x + \int {{{\text{e}}^{ - x}}} \,{\text{cos}}\,x\,{\text{d}}x"> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span> <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - {{\text{e}}^{ - x}}\,{\text{sin}}\,x - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - \int {{{\text{e}}^{ - x}}} \,{\text{sin}}\,x\,{\text{d}}x"> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="I = \frac{1}{2}{{\text{e}}^{ - x}}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)"> <mi>I</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^\pi {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x = \frac{1}{2}\left( {1 + {{\text{e}}^{ - \pi }}} \right)} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>π</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The folium of Descartes is a curve defined by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^3} + {y^3} - 3xy = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, shown in the following diagram.</p>
<p><img src="images/Schermafbeelding_2018-02-07_om_18.23.15.png" alt="N17/5/MATHL/HP1/ENG/TZ0/07"></p>
<p>Determine the exact coordinates of the point P on the curve where the tangent line is parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^3} + {y^3} - 3xy = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2} + 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} - 3x\frac{{{\text{d}}y}}{{{\text{d}}x}} - 3y = 0">
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mn>3</mn>
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Differentiation wrt <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> is also acceptable.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3y - 3{x^2}}}{{3{y^2} - 3x}}{\text{ }}\left( { = \frac{{y - {x^2}}}{{{y^2} - x}}} \right)">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mi>y</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>y</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>All following marks may be awarded if the denominator is correct, but the numerator incorrect.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^2} - x = 0">
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {y^2}">
<mi>x</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^6} + {y^3} - 3{y^3} = 0">
<mrow>
<msup>
<mi>y</mi>
<mn>6</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^6} - 2{y^3} = 0">
<mrow>
<msup>
<mi>y</mi>
<mn>6</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^3}({y^3} - 2) = 0">
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(y \ne 0)\therefore y = \sqrt[3]{2}">
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>≠</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>∴</mo>
<mi>y</mi>
<mo>=</mo>
<mroot>
<mn>2</mn>
<mn>3</mn>
</mroot>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\left( {\sqrt[3]{2}} \right)^2}{\text{ }}\left( { = \sqrt[3]{4}} \right)">
<mi>x</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mroot>
<mn>2</mn>
<mn>3</mn>
</mroot>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mroot>
<mn>4</mn>
<mn>3</mn>
</mroot>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^3} + xy - 3xy = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
<mi>y</mi>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x({x^2} - 2y) = 0">
<mi>x</mi>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>y</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \ne 0 \Rightarrow y = \frac{{{x^2}}}{2}">
<mi>x</mi>
<mo>≠</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y^2} = \frac{{{x^4}}}{4}">
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{{x^4}}}{4}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x({x^3} - 4) = 0">
<mi>x</mi>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x \ne 0)\therefore x = \sqrt[3]{4}">
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>≠</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>∴</mo>
<mi>x</mi>
<mo>=</mo>
<mroot>
<mn>4</mn>
<mn>3</mn>
</mroot>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{{{\left( {\sqrt[3]{4}} \right)}^2}}}{2} = \sqrt[3]{2}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mroot>
<mn>4</mn>
<mn>3</mn>
</mroot>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mroot>
<mn>2</mn>
<mn>3</mn>
</mroot>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>