File "HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 5/HL-paper2html
File size: 373.27 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>An ice-skater is skating such that her position vector when viewed from above at time&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp;seconds can be modelled by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi></mtd></mtr><mtr><mtd><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
<p>with respect to a rectangular coordinate system from a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, where the non-zero&nbsp;constants <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> can be determined. All distances are in metres.</p>
</div>

<div class="specification">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, the displacement of the ice-skater is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math> and the velocity of the ice‑skater is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn><mo>.</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the velocity vector at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the velocity of the ice-skater at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is given by</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the magnitude of the velocity of the ice-skater when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, the ice-skater is skating parallel to the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis for the first time.</p>
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OP</mtext></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following system of coupled differential equations.</p>
<p style="padding-left: 210px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mi>x</mi></math></p>
<p style="padding-left: 210px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi></math></p>
</div>

<div class="specification">
<p>Find the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues and corresponding eigenvectors of the matrix&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down the general solution of the system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, with justification, whether the equilibrium point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math> is stable or unstable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)&nbsp; &nbsp;at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>.</p>
<p>(ii)&nbsp; at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a phase portrait for the general solution to the system of coupled differential&nbsp;equations for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><mn>6</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>6</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><mn>6</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>6</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A ball is attached to the end of a string and spun horizontally. Its position relative to a given&nbsp;point, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>, is given by the equation</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math>&nbsp;where all displacements are in metres.</p>
</div>

<div class="specification">
<p>The string breaks when the magnitude of the ball’s acceleration exceeds <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the ball is moving in a circle with its centre at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and state the radius of the circle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of the ball at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the velocity of the ball is always perpendicular to the position vector of the ball.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the acceleration of the ball at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at the instant the string breaks.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>How many complete revolutions has the ball completed from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> to the instant at which the string breaks?</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A change in grazing habits has resulted in two species of herbivore, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math>, competing for&nbsp;food on the same grasslands. At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> environmentalists begin to record the sizes of&nbsp;both populations. Let the size of the population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, and the size of the population <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math>&nbsp;be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>. The following model is proposed for predicting the change in the sizes of the two&nbsp;populations:</p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mi>y</mi></math></p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi>y</mi></math></p>
<p style="padding-left: 60px;">for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo>&nbsp;</mo><mi>y</mi><mo>&gt;</mo><mn>0</mn></math></p>
</div>

<div class="specification">
<p>For this system of coupled differential equations find</p>
</div>

<div class="specification">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math> has a population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2000</mn></math>.</p>
</div>

<div class="specification">
<p>It is known that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> has an initial population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2900</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the eigenvalues.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the eigenvectors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the general solution of the system of equations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the phase portrait for this system, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>On your sketch show</p>
<ul>
<li>the equation of the line defined by the eigenvector in the first quadrant</li>
<li>at least two trajectories either side of this line using arrows on those trajectories to represent the change in populations as <em>t</em> increases</li>
</ul>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a condition on the size of the initial population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> if it is to avoid its population reducing to zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> at this value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>. Give your answer to the nearest <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> herbivores.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> moves along the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. The velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><msup><mtext> m s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>−</mo><mn>2</mn><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn><mi>t</mi><mo>−</mo><mn>24</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the times when <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is at instantaneous rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the magnitude of the particle’s acceleration at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> seconds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the greatest speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> in the interval <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>6</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The particle starts from the origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>. Find an expression for the displacement of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> in the interval <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>4</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A shock absorber on a car contains a spring surrounded by a fluid. When the car travels over&nbsp;uneven ground the spring is compressed and then returns to an equilibrium position.</p>
<p style="text-align: center;"><img src=""></p>
<p>The displacement, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, of the spring is measured, in centimetres, from the equilibrium position&nbsp;of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>. The value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> can be modelled by the following second order differential equation,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, measured in seconds, after the initial displacement.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>&#168;</mo></mover><mo>+</mo><mn>3</mn><mover><mi>x</mi><mo>&#729;</mo></mover><mo>+</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
</div>

<div class="specification">
<p>The differential equation can be expressed in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mover><mi>x</mi><mo>&#729;</mo></mover></mtd></mtr><mtr><mtd><mover><mi>y</mi><mo>&#729;</mo></mover></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="bold-italic">A</mi><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi></math>&nbsp;is a&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>&#215;</mo><mn>2</mn></math>&nbsp;matrix.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mover><mi>x</mi><mo>˙</mo></mover></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>−</mo><mn>3</mn><mi>y</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues of matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvectors of matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> the shock absorber is displaced <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo> </mo><mtext>cm</mtext></math> and its velocity is zero, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The cross-sectional view of a tunnel is shown on the axes below. The line&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math>&nbsp;represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>8</mn></math>, relative to an origin&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>, point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>&nbsp;has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>)</mo></math>, and point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>&nbsp;has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>Find the height of the tunnel when</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum height of the tunnel.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>6</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule, with three intervals, to estimate the cross-sectional area of the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integral which can be used to find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle moves such that its displacement, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> metres, from a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds&nbsp;is given by the differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>5</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
</div>

<div class="specification">
<p>The equation for the motion of the particle is amended to</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>5</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>3</mn><mi>t</mi><mo>+</mo><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> the particle is stationary at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the substitution <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> to show that this equation can be written as</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues for the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state the long-term velocity of the particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the substitution <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> to write the differential equation as a system of coupled, first order differential equations.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method with a step length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math> to find the displacement of the particle when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the long-term velocity of the particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is shown in the graph, for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 10">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>10</mn>
</math></span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;passes through the following points.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>It is required to find the area bounded by the curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span><em>-</em>axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span><em>-</em>axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 10">
  <mi>x</mi>
  <mo>=</mo>
  <mn>10</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>One possible model for the curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is a cubic function.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule to find an estimate for the area.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use all the coordinates in the table to find the equation of the least squares cubic regression curve.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coefficient of determination.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for the area enclosed by the cubic regression curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 10">
  <mi>x</mi>
  <mo>=</mo>
  <mn>10</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>At an archery tournament, a particular competition sees a ball launched into the air while an&nbsp;archer attempts to hit it with an arrow.</p>
<p>The path of the ball is modelled by the equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><msub><mi>u</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>u</mi><mi>y</mi></msub><mo>-</mo><mn>5</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is the horizontal displacement from the archer and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the vertical displacement&nbsp;from the ground, both measured in metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, in seconds, since the ball&nbsp;was launched.</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub></math> is the horizontal component of the initial velocity</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub></math> is the vertical component of the initial velocity.</li>
</ul>
<p>In this question both the ball and the arrow are modelled as single points. The ball is launched&nbsp;with an initial velocity such that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub><mo>=</mo><mn>8</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub><mo>=</mo><mn>10</mn></math>.</p>
</div>

<div class="specification">
<p>An archer releases an arrow from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mn>2</mn><mo>)</mo></math>. The arrow is modelled as travelling in a&nbsp;straight line, in the same plane as the ball, with speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo>&#8202;</mo><msup><mtext>m&#8202;s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> and an angle of elevation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>&#176;</mo></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the initial speed of the ball.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle of elevation of the ball as it is launched.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum height reached by the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the ground is horizontal and the ball is not hit by the arrow, find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinate of the point where the ball lands.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the path of the ball, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the two positions where the path of the arrow intersects the path of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time when the arrow should be released to hit the ball before the ball reaches its maximum height.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A biologist introduces <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> rabbits to an island and records the size of their population <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>x</mi><mo>)</mo></math> over&nbsp;a period of time. The population growth of the rabbits can be approximately modelled by the&nbsp;following differential equation, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is time measured in years.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi>x</mi></math></p>
</div>

<div class="specification">
<p>A population of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> foxes is introduced to the island when the population of rabbits has&nbsp;reached <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math>. The subsequent population growth of rabbits and foxes, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the&nbsp;population of foxes at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, can be approximately modelled by the coupled equations:</p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mfenced><mrow><mn>2</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>01</mn><mi>y</mi></mrow></mfenced></math></p>
<p style="padding-left: 240px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0002</mn><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></mfenced></math></p>
</div>

<div class="specification">
<p>Use Euler’s method with a step size of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>25</mn></math>, to find</p>
</div>

<div class="specification">
<p>The graph of the population sizes, according to this model, for the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> years after the&nbsp;foxes were introduced is shown below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Describe the changes in the populations of rabbits and foxes for these <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> years at</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the population of rabbits <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> year after they were introduced.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)&nbsp; &nbsp;the population of rabbits 1 year after the foxes were introduced.</p>
<p>(ii)&nbsp; the population of foxes 1 year after the foxes were introduced.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the non-zero equilibrium point for the populations of rabbits and foxes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Jorge is carefully observing the rise in sales of a new app he has created.</p>
<p>The number of sales in the first four months is shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Jorge believes that the increase is exponential and proposes to model the number of sales&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> in month <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> with the equation</p>
<p style="text-align: left; padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mi>r</mi><mi>t</mi></mrow></msup><mo>,</mo><mo>&nbsp;</mo><mi>A</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math></p>
</div>

<div class="specification">
<p>Jorge plans to adapt Euler’s method to find an approximate value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<p>With a step length of one month the solution to the differential equation can be approximated using Euler’s method where</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≈</mo><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></math></p>
</div>

<div class="specification">
<p>Jorge decides to take the mean of these values as the approximation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> for his model. He&nbsp;also decides the graph of the model should pass through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>52</mn><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>The sum of the square residuals for these points for the least squares regression model is&nbsp;approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>555</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Jorge’s model satisfies the differential equation</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>r</mi><mi>N</mi></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow><mrow><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow></mfrac></math></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find three approximations for the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation for Jorge’s model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the sum of the square residuals for Jorge’s model using the values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment how well Jorge’s model fits the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give two possible sources of error in the construction of his model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigating the relationship between chemical reactions and temperature finds&nbsp;the Arrhenius equation on the internet.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></mrow></msup></math></p>
<p>This equation links a variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> with the temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> are positive&nbsp;constants and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>The Arrhenius equation predicts that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>&#8202;</mo><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> is a straight line.</p>
</div>

<div class="specification">
<p>Write down</p>
</div>

<div class="specification">
<p>The following data are found for a particular reaction, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> is measured in Kelvin&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is measured in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cm</mtext><mn>3</mn></msup><mo>&#8202;</mo><msup><mtext>mol</mtext><mrow><mo>&#8722;</mo><mn>1</mn></mrow></msup><mo>&#8202;</mo><msup><mtext>s</mtext><mrow><mo>&#8722;</mo><mn>1</mn></mrow></msup></math>:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Find an estimate of</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>k</mi></mrow><mrow><mo>d</mo><mi>T</mi></mrow></mfrac></math> is always positive.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>→</mo><mo>∞</mo></mrow></munder><mi>k</mi><mo>=</mo><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>→</mo><mn>0</mn></mrow></munder><mi>k</mi><mo>=</mo><mn>0</mn></math>, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)   the gradient of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>;</p>
<p>(ii)  the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The voltage <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span> in a circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 3\,{\text{sin}}\left( {100\pi t} \right)">
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>100</mn>
      <mi>π<!-- π --></mi>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \geqslant 0">
  <mi>t</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span>&nbsp;where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is measured in seconds.</p>
</div>

<div class="specification">
<p>The current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
  <mi>i</mi>
</math></span> in this circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\left( t \right) = 2\,{\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right)">
  <mi>i</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>100</mn>
      <mi>π<!-- π --></mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>t</mi>
          <mo>+</mo>
          <mn>0.003</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> in this circuit is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = v\left( t \right) \times i\left( t \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>×<!-- × --></mo>
  <mi>i</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The average power&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
</math></span> in this circuit from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
  <mi>t</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = T">
  <mi>t</mi>
  <mo>=</mo>
  <mi>T</mi>
</math></span> is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right) = \frac{1}{T}\int_0^T {p\left( t \right){\text{d}}t} ">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>T</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mi>T</mi>
  </mfrac>
  <msubsup>
    <mo>∫<!-- ∫ --></mo>
    <mn>0</mn>
    <mi>T</mi>
  </msubsup>
  <mrow>
    <mi>p</mi>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T > 0">
  <mi>T</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum and minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two transformations that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = v\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = i\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>i</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time in the interval&nbsp;0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 0.02 for which&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;≥ 3.</p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
</math></span>(0.007).</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;explain why&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right)">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>T</mi>
    <mo>)</mo>
  </mrow>
</math></span> &gt; 0 for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
  <mi>T</mi>
</math></span> &gt; 0.</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> can be written as&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = a\,{\text{sin}}\left( {b\left( {t - c} \right)} \right) + d">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>a</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>t</mi>
          <mo>−</mo>
          <mi>c</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>d</mi>
</math></span>&nbsp;where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span> &gt; 0,&nbsp;use your graph to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span>.</p>
<p>&nbsp;</p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the system of paired differential equations</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot x = 3x + 2y">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo>˙<!-- ˙ --></mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>y</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\dot y = 2x + 3y">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo>˙<!-- ˙ --></mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>3</mn>
  <mi>y</mi>
</math></span>.</p>
<p>This represents the populations of two species of symbiotic toadstools in a large wood.</p>
<p>Time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is measured in decades.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the eigenvalue method to find the general solution to this system of equations.</p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given the initial conditions that when&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
  <mi>t</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 150">
  <mi>x</mi>
  <mo>=</mo>
  <mn>150</mn>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 50">
  <mi>y</mi>
  <mo>=</mo>
  <mn>50</mn>
</math></span>,&nbsp;find the particular solution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the solution when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 1">
  <mi>t</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \to \infty ">
  <mi>t</mi>
  <mo stretchy="false">→</mo>
  <mi mathvariant="normal">∞</mi>
</math></span>, find an asymptote to the trajectory of the particular solution found in (b)(i) and state if this trajectory will be moving towards or away from the origin.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><mi>x</mi></msqrt></math>.</p>
</div>

<div class="specification">
<p>The shape of a piece of metal can be modelled by the region bounded by the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>,&nbsp;the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>, as shown in the following diagram. The units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes are measured in metres.</p>
<p style="text-align: center;"><img src=""></p>
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><msqrt><mi>x</mi></msqrt><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mn>0</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mn>0</mn><mo>.</mo><mn>16</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>16</mn><mo>&#60;</mo><mi>x</mi><mo>&#8804;</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></math></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is obtained from the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> by:</p>
<ul>
<li>a stretch scale factor of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> direction,</li>
<li>followed by a stretch scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> direction,</li>
<li>followed by a translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> units to the right.</li>
</ul>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&#160;</mo><mn>0</mn><mo>.</mo><mn>825</mn><mo>)</mo></math>. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;under the given transformations and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>p</mi><mo>,</mo><mo>&#160;</mo><mi>q</mi><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>2</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mi>a</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mi>b</mi><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mi>a</mi><mo>&#60;</mo><mi>x</mi><mo>&#8804;</mo><mi>p</mi></mtd></mtr></mtable></math></p>
</div>

<div class="specification">
<p>The area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0627292</mn><mo>&#8202;</mo><msup><mtext>m</mtext><mn>2</mn></msup></math> correct to&nbsp;six significant figures.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the equation of the tangent to the curve at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region on the diagram.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A sector of a circle, centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>&#8202;</mo><mtext>m</mtext></math>, is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A square field with side <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>&#8202;</mo><mtext>m</mtext></math> has a goat tied to a post in the centre by a rope such that the&nbsp;goat can reach all parts of the field up to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>&#8202;</mo><mtext>m</mtext></math> from the post.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;"><sup>[Source: mynamepong, n.d. Goat [image online] Available at: <a href="https://thenounproject.com/term/goat/1761571/">https://thenounproject.com/term/goat/1761571/</a></sup><br><sup>This file is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)</sup><br><sup><a href="https://creativecommons.org/licenses/by-sa/3.0/deed.en">https://creativecommons.org/licenses/by-sa/3.0/deed.en</a> [Accessed 22 April 2010] Source adapted.]</sup></p>
</div>

<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> be the volume of grass eaten by the goat, in cubic metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> be the length of time,&nbsp;in hours, that the goat has been in the field.</p>
<p>The goat eats grass at the rate of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>&#8202;</mo><mi>t</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded segment.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the field that can be reached by the goat.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which the goat is eating grass at the greatest rate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The goat is tied in the field for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> hours.</p>
<p>Find the total volume of grass eaten by the goat during this time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 < x < \pi ">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mi>x</mi>
      </msqrt>
    </mrow>
    <mrow>
      <mi>sin</mi>
      <mo>⁡<!-- ⁡ --></mo>
      <mi>x</mi>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mi>π<!-- π --></mi>
</math></span>.</p>
</div>

<div class="specification">
<p>Consider the region bounded by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>6</mn>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>3</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinate of the minimum point on the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> satisfies the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x">
  <mi>tan</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is a decreasing function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> showing clearly the minimum point and any asymptotic behaviour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> where the normal to the graph is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =&nbsp; - x">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This region is now rotated through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
  <mn>2</mn>
  <mi>π</mi>
</math></span> radians about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. Find the volume of revolution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>An environmental scientist is asked by a river authority to model the effect of a leak from a power plant on the mercury levels in a local river. The variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> measures the concentration of mercury in micrograms per litre.</p>
<p>The situation is modelled using the second order differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mtext>d</mtext><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>3</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
<p>where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>&#8805;</mo><mn>0</mn></math>&nbsp;is the time measured in days since the leak started. It is known that when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>If the mercury levels are greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math> micrograms per litre, fishing in the river is considered unsafe and is stopped.</p>
</div>

<div class="specification">
<p>The river authority decides to stop people from fishing in the river for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> longer than the time found from the model.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the system of coupled first order equations:</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi></math></p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi></math></p>
<p style="text-align:left;">can be written as the given second order differential equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues of the system of coupled first order equations given in part (a).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact solution of the second order differential equation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, labelling the maximum point of the graph with its coordinates.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to calculate the total amount of time when fishing should be stopped.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down one reason, with reference to the context, to support this decision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span> radians.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_11.09.30.png" alt="M17/5/MATHL/HP2/ENG/TZ1/08"></p>
</div>

<div class="specification">
<p>The volume of water is increasing at a constant rate of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008{\text{ }}{{\text{m}}^3}{{\text{s}}^{ - 1}}">
  <mn>0.0008</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the volume of water <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{\text{ }}({{\text{m}}^3})">
  <mi>V</mi>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span> in the trough in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>θ</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>t</mi>
    </mrow>
  </mfrac>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{3}">
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π</mi>
    <mn>3</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Charlotte decides to model the shape of a cupcake to calculate its volume.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>From rotating a photograph of her cupcake she estimates that its cross-section passes&nbsp;through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>4</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>7</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>, where all units are in&nbsp;centimetres. The cross-section is symmetrical in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, as shown below:</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>She models the section from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo></math> as a straight line.</p>
</div>

<div class="specification">
<p>Charlotte models the section of the cupcake that passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>4</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>7</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math> with a quadratic curve.</p>
</div>

<div class="specification">
<p>Charlotte thinks that a quadratic with a maximum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo></math> and that passes through&nbsp;the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math> would be a better fit.</p>
</div>

<div class="specification">
<p>Believing this to be a better model for her cupcake, Charlotte finds the volume of revolution&nbsp;about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis to estimate the volume of the cupcake.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line passing through these two points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares regression quadratic curve for these&nbsp;four points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the gradient of this curve when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>, explain why it may not be&nbsp;a good model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the new model.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for her estimate of the volume as a sum of two integrals.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of Charlotte’s estimate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
</div>

<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in D">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mi>D</mi>
</math></span></p>
</div>

<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in \left] {1,{\text{ }}\infty } \right[">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mo>]</mo>
    <mrow>
      <mn>1</mn>
      <mo>,</mo>
      <mrow>
        <mtext>&nbsp;</mtext>
      </mrow>
      <mi mathvariant="normal">∞<!-- ∞ --></mi>
    </mrow>
    <mo>[</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest possible domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> to be a function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> does not exist.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> and state its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <msup>
    <mo stretchy="false">)</mo>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{\sin ^2}x + 7\sin 2x + \tan x - 9,{\text{ }}0 \leqslant x < \frac{\pi }{2}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>sin</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mi>x</mi>
  <mo>+</mo>
  <mn>7</mn>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mi>tan</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>9</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \tan x">
  <mi>u</mi>
  <mo>=</mo>
  <mi>tan</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>x</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)">
  <mi>y</mi>
  <mo>=</mo>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}">
  <mn>0</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinate(s) of the point(s) of inflexion of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>, labelling these clearly on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)">
  <mi>y</mi>
  <mo>=</mo>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x">
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>x</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x">
  <mi>sin</mi>
  <mo>⁡</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
  <mi>u</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span> can be expressed as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u^3} - 7{u^2} + 15u - 9 = 0">
  <mrow>
    <msup>
      <mi>u</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>7</mn>
  <mrow>
    <msup>
      <mi>u</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>15</mn>
  <mi>u</mi>
  <mo>−</mo>
  <mn>9</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, giving your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\arctan k">
  <mi>arctan</mi>
  <mo>⁡</mo>
  <mi>k</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}">
  <mi>k</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">Z</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A point P moves in a straight line with velocity <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span> ms<sup>−1</sup> given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = {{\text{e}}^{ - t}} - 8{t^2}{{\text{e}}^{ - 2t}}">
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>8</mn>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>2</mn>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> at time&nbsp;<em>t</em> seconds, where&nbsp;<em>t</em>&nbsp;≥ 0.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the first time <em>t</em><sub>1</sub> at which P has zero velocity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the acceleration of P at time <em>t</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the acceleration of P at time <em>t</em><sub>1</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A curve <em>C</em> is given by the implicit equation&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y - {\text{cos}}\left( {xy} \right) = 0">
  <mi>x</mi>
  <mo>+</mo>
  <mi>y</mi>
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mi>y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="xy =&nbsp; - \frac{\pi }{2}">
  <mi>x</mi>
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;intersects <em>C</em> at P and Q.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} =&nbsp; - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>y</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>1</mn>
          <mo>+</mo>
          <mi>y</mi>
          <mspace width="thinmathspace"></mspace>
          <mrow>
            <mtext>sin</mtext>
          </mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>x</mi>
              <mi>y</mi>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mrow>
          <mn>1</mn>
          <mo>+</mo>
          <mi>x</mi>
          <mspace width="thinmathspace"></mspace>
          <mrow>
            <mtext>sin</mtext>
          </mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>x</mi>
              <mi>y</mi>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P and Q.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the gradients of the tangents to <em>C</em> at P and Q are <em>m</em><sub>1</sub> and <em>m</em><sub>2</sub>&nbsp;respectively, show that <em>m</em><sub>1</sub> × <em>m</em><sub>2</sub> = 1.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the three points on <em>C</em>, nearest the origin, where the tangent is parallel to the line&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =&nbsp; - x">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following graph shows the two parts of the curve defined by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}y = 5 - {y^4}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mi>y</mi>
  <mo>=</mo>
  <mn>5</mn>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>y</mi>
      <mn>4</mn>
    </msup>
  </mrow>
</math></span>, and the normal to the curve at the point P(2 , 1).</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there are exactly two points on the curve where the gradient is zero.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the normal to the curve at the point P.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The normal at P cuts the curve again at the point Q. Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinate of Q.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The shaded region is rotated by 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>A function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> satisfies the conditions&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) =&nbsp; - 4">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mn>0</mn>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mo>−</mo>
  <mn>4</mn>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right) = 0">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mn>1</mn>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and its second derivative is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 15\sqrt x&nbsp; + \frac{1}{{{{\left( {x + 1} \right)}^2}}}">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>15</mn>
  <msqrt>
    <mi>x</mi>
  </msqrt>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mi>x</mi>
                <mo>+</mo>
                <mn>1</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≥ 0.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Xavier, the parachutist, jumps out of a plane at a height of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> metres above the ground. After free falling for 10 seconds his parachute opens. His velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\,{\text{m}}{{\text{s}}^{ - 1}}">
  <mi>v</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>m</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds after jumping from the plane, can be modelled by the function</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(t) = \left\{ {\begin{array}{*{20}{l}} {9.8t{\text{,}}}&amp;{0 \leqslant t \leqslant 10} \\ {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }},}&amp;{t > 10} \end{array}} \right.">
  <mi>v</mi>
  <mo stretchy="false">(</mo>
  <mi>t</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo>{</mo>
    <mrow>
      <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>9.8</mn>
              <mi>t</mi>
              <mrow>
                <mtext>,</mtext>
              </mrow>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mn>0</mn>
              <mo>⩽<!-- ⩽ --></mo>
              <mi>t</mi>
              <mo>⩽<!-- ⩽ --></mo>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mfrac>
                <mrow>
                  <mn>98</mn>
                </mrow>
                <mrow>
                  <msqrt>
                    <mn>1</mn>
                    <mo>+</mo>
                    <mrow>
                      <msup>
                        <mrow>
                          <mo stretchy="false">(</mo>
                          <mi>t</mi>
                          <mo>−<!-- − --></mo>
                          <mn>10</mn>
                          <mo stretchy="false">)</mo>
                        </mrow>
                        <mn>2</mn>
                      </msup>
                    </mrow>
                  </msqrt>
                </mrow>
              </mfrac>
              <mo>,</mo>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mi>t</mi>
              <mo>&gt;</mo>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo fence="true" stretchy="true" symmetric="true"></mo>
  </mrow>
</math></span></p>
</div>

<div class="specification">
<p>His velocity when he reaches the ground is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.8{\text{ m}}{{\text{s}}^{ - 1}}">
  <mn>2.8</mn>
  <mrow>
    <mtext>&nbsp;m</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find his velocity when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 15">
  <mi>t</mi>
  <mo>=</mo>
  <mn>15</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the vertical distance Xavier travelled in the first 10 seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2\arcsin (x - 1) - \frac{\pi }{4}">
  <mi>y</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mi>arcsin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>4</mn>
  </mfrac>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{\pi }{4}">
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a definite integral to represent the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\left( {x - 1} \right)^2}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≥ 1&nbsp;and the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^2} + 1">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≥ 0.</p>
<p>The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> is bounded by the curves&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;and the lines&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
  <mi>y</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 9">
  <mi>y</mi>
  <mo>=</mo>
  <mn>9</mn>
</math></span>&nbsp;as shown on the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The&nbsp;shape of a clay vase can be modelled by rotating the region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> through 360˚ about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis.</p>
<p style="text-align: left;">Find the volume of clay used to make the vase.</p>
</div>
<br><hr><br><div class="specification">
<p>The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> is defined by equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="xy - \ln y = 1,{\text{ }}y > 0">
  <mi>x</mi>
  <mi>y</mi>
  <mo>−<!-- − --></mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>y</mi>
  <mo>=</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>y</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>y</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
  </mfrac>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equation of the tangent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{2}{{\text{e}}},{\text{ e}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>2</mn>
        <mrow>
          <mtext>e</mtext>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mrow>
        <mtext>&nbsp;e</mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An object is placed into the top of a long vertical tube, filled with a thick viscous fluid,&nbsp;at time&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
  <mi>t</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> seconds.</p>
<p>Initially it is thought that the resistance of the fluid would be proportional to the velocity of&nbsp;the object. The following model was proposed, where the object’s displacement, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, from&nbsp;the top of the tube, measured in metres, is given by the differential equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{d}}^2}x}}{{{\text{d}}{t^2}}} = 9.81 - 0.9\left( {\frac{{{\text{d}}x}}{{{\text{d}}t}}} \right)">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>d</mtext>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mi>t</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>9.81</mn>
  <mo>−<!-- − --></mo>
  <mn>0.9</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <mtext>d</mtext>
          </mrow>
          <mi>x</mi>
        </mrow>
        <mrow>
          <mrow>
            <mtext>d</mtext>
          </mrow>
          <mi>t</mi>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The maximum velocity approached by the object as it falls is known as the terminal velocity.</p>
</div>

<div class="specification">
<p>An experiment is performed in which the object is placed in the fluid on a number of occasions&nbsp;and its terminal velocity recorded. It is found that the terminal velocity was consistently smaller&nbsp;than that predicted by the model used. It was suggested that the resistance to motion is actually&nbsp;proportional to the velocity squared and so the following model was set up.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{{\text{d}}^2}x}}{{{\text{d}}{t^2}}} = 9.81 - 0.9{\left( {\frac{{{\text{d}}x}}{{{\text{d}}t}}} \right)^2}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>d</mtext>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mi>t</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>9.81</mn>
  <mo>−<!-- − --></mo>
  <mn>0.9</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mrow>
                <mtext>d</mtext>
              </mrow>
              <mi>x</mi>
            </mrow>
            <mrow>
              <mrow>
                <mtext>d</mtext>
              </mrow>
              <mi>t</mi>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></p>
</div>

<div class="specification">
<p>At terminal velocity the acceleration of an object is equal to zero.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By substituting&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \frac{{{\text{d}}x}}{{{\text{d}}t}}"> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> </math></span> into the equation, find an expression for the velocity of the&nbsp;particle at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>. Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = f(t)"> <mi>v</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From your solution to part (a), or otherwise, find the terminal velocity of the object&nbsp;predicted by this model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the differential equation as a system of first order differential equations.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method, with a step length of 0.2, to find the displacement and velocity of&nbsp;the object when&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0.6"> <mi>t</mi> <mo>=</mo> <mn>0.6</mn> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By repeated application of Euler’s method, find an approximation for the terminal velocity,&nbsp;to five significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the differential equation to find the terminal velocity for the object.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to parts (d), (e) and (f) to comment on the accuracy of the Euler&nbsp;approximation to this model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="question">
<p>An earth satellite moves in a path that can be described by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="72.5{x^2} + 71.5{y^2} = 1"> <mn>72.5</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>71.5</mn> <mrow> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>1</mn> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = x(t)"> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = y(t)"> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span> are in thousands of kilometres and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> is time in seconds.</p>
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 7.75 \times {10^{ - 5}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>7.75</mn> <mo>×</mo> <mrow> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3.2 \times {10^{ - 3}}"> <mi>x</mi> <mo>=</mo> <mn>3.2</mn> <mo>×</mo> <mrow> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </math></span>, find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> </math></span>.</p>
<p>Give your answers in standard form.</p>
</div>
<br><hr><br><div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2\,{\text{ln}}\,x + 1}}{{x - 3}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
</math></span>, 0 &lt;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &lt; 3.</p>
</div>

<div class="specification">
<p>Draw a set of axes showing&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>&nbsp;values between −3 and 3. On these axes</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find the coordinates of the point of inflexion on the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, showing clearly any axis intercepts and giving the equations of any asymptotes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f^{ - 1}}\left( x \right)"> <mi>y</mi> <mo>=</mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, showing clearly any axis intercepts and giving the equations of any asymptotes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) > {f^{ - 1}}\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>A particle moves along a horizontal line such that at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≥ 0, its acceleration <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> = 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> − 1. When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 6 , its displacement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
  <mi>s</mi>
</math></span> from a fixed origin O is 18.25 m.&nbsp;When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 15, its displacement from O is 922.75 m. Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
  <mi>s</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l"> <mi>l</mi> </math></span> be the tangent to the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x{{\text{e}}^{2x}}"> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>2</mn> <mi>x</mi> </mrow> </msup> </mrow> </math></span> at the point (1, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^2}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> </math></span>).</p>
<p>Find the coordinates of the point where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l"> <mi>l</mi> </math></span> meets the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis.</p>
</div>
<br><hr><br>