File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 4/markSceme-SL-paper2html
File size: 2.47 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A wind turbine is designed so that the rotation of the blades generates electricity. The turbine is built on horizontal ground and is made up of a vertical tower and three blades.</p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is on the base of the tower directly below point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> at the top of the tower. The height of the tower, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math>, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&#8202;</mo><mtext>m</mtext></math>. The blades of the turbine are centred at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and are each of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>&#8202;</mo><mtext>m</mtext></math>. This is shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The end of one of the blades of the turbine is represented by point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> on the diagram. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> be the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground, measured in metres, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> varies as the blade rotates.</p>
</div>

<div class="specification">
<p>Find the</p>
</div>

<div class="specification">
<p>The blades of the turbine complete <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> rotations per minute under normal conditions, moving at a constant rate.</p>
</div>

<div class="specification">
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> can be modelled by the following function. Time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is measured&nbsp;from the instant when the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> first passes <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math> and is measured in seconds.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo>&#8202;</mo><mi>cos</mi><mfenced><mrow><mn>72</mn><mi>t</mi><mo>&#176;</mo></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mi>t</mi><mo>&#8805;</mo><mn>0</mn></math></p>
</div>

<div class="specification">
<p>Looking through his window, Tim has a partial view of the rotating wind turbine. The position&nbsp;of his window means that he cannot see any part of the wind turbine that is <strong>more than</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">100</mn><mo mathvariant="bold">&#160;</mo><mtext mathvariant="bold">m</mtext></math>&nbsp;above the ground. This is illustrated in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, it takes for the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> to make one complete rotation under these conditions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle, in degrees, that the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> turns through in one second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amplitude of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>5</mn></math>, clearly labelling the coordinates of the maximum and minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is above a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mtext>m</mtext></math>, during each complete rotation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At any given instant, find the probability that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is visible from Tim’s window.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wind speed increases. The blades rotate at twice the speed, but still at a constant rate.</p>
<p>At any given instant, find the probability that Tim can see point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> from his window. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>maximum <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>130</mn></math> metres             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>minimum <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>50</mn></math> metres             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>60</mn><mo>÷</mo><mn>12</mn><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>5</mn><mo> </mo><mtext>seconds</mtext></math>             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>÷</mo><mn>5</mn></math>            <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn></math> divided by their time for one revolution.<br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>72</mn><mo>°</mo></math>             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(amplitude =)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math>         <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(period <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>360</mn><mn>72</mn></mfrac><mo>=</mo></math>)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>         <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>Maximum point labelled with correct coordinates.         <strong><em>A1</em></strong></p>
<p>At least one minimum point labelled. Coordinates seen for any minimum points must be correct.         <strong><em>A1</em></strong></p>
<p>Correct shape with an attempt at symmetry and “concave up" evident as it approaches the minimum points. Graph must be drawn in the given domain.         <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mn>144</mn><mo>°</mo></mrow></mfenced></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>122</mn><mo> </mo><mtext>m</mtext><mo> </mo><mo> </mo><mfenced><mrow><mn>122</mn><mo>.</mo><mn>3606</mn><mo>…</mo></mrow></mfenced></math>           <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on graph  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mn>72</mn><mi>t</mi></mrow></mfenced></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>55</mn><mo> </mo><mo>(</mo><mn>3</mn><mo>.</mo><mn>54892</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>45</mn><mo> </mo><mo>(</mo><mn>1</mn><mo>.</mo><mn>45107</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math> or equivalent           <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for either <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>-coordinate seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>10</mn></math> seconds  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>09784</mn><mo>…</mo></mrow></mfenced></math>           <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>09784</mn><mo>…</mo></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mfenced><mrow><mn>2</mn><mo>.</mo><mn>902153</mn><mo>…</mo></mrow></mfenced><mn>5</mn></mfrac></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>580</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>580430</mn><mo>…</mo></mrow></mfenced></math>           <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>changing the frequency/dilation of the graph will not change the proportion of time that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is visible.         <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>580</mn><mo> </mo><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>580430</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math>           <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>correct calculation of relevant found values</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mn>2</mn><mo>.</mo><mn>902153</mn><mo>…</mo></mrow></mfenced><mo>/</mo><mn>2</mn></mrow><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></mfrac></math>           <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>580</mn><mo> </mo><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>580430</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math>           <strong><em>A1</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>A0A1</strong> </em>for an unsupported correct probability.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Judging by the responses in parts (a), (b) and (c), transferring and interpreting the information from a diagram is a skill that requires further nurturing. The amplitude should be expressed as a positive value. Overall, the sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced></math> reflected the correct general shape. Common flaws included a lack of symmetry about the mean, 'concave up' not evident as the curve approached the minimum points, and the curve being drawn beyond the given domain. At least one correct pair of coordinates was seen, though some gave their answers inaccurately, suggesting they found an approximate solution using the "trace" feature in their GDC. Most were able to find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> and make an attempt to find a time at which point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>100</mn><mo> </mo><mi mathvariant="normal">m</mi></math>. It was pleasing to see a number of candidates draw <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on their sketch, which would no doubt have assisted the candidates in visualizing the solution. Part (f) proved to be a high-grade discriminator, with few attaining full marks. Premature rounding in part (f)(i) resulted in an inaccurate final answer. It is recommended that candidates retrieve and use unrounded values from previous calculations in their GDC. Though many recognized the probability was independent of the speed of rotation, most were not able to support their answer through a correct calculation or written explanation.</p>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows values of ln <em>x</em> and ln <em>y</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between ln <em>x</em> and ln <em>y</em> can be modelled by the regression equation ln <em>y</em> = <em>a</em> ln <em>x</em> + <em>b</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the value of <em>y</em> when<em> x</em> = 3.57.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The relationship between <em>x</em> and <em>y</em> can be modelled using the formula <em>y</em> = <em>kx<sup>n</sup></em>, where <em>k</em> ≠ 0 , <em>n</em> ≠ 0 , <em>n</em> ≠ 1.</p>
<p>By expressing ln <em>y</em> in terms of ln <em>x</em>, find the value of <em>n</em> and of <em>k</em>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg </em> one correct value</p>
<p>−0.453620, 6.14210</p>
<p><em>a</em> = −0.454, <em>b</em> = 6.14      <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution    <em><strong> (A1)</strong></em></p>
<p><em>eg   </em>−0.454 ln 3.57 + 6.14</p>
<p>correct working     <em><strong>(A1)</strong></em></p>
<p><em>eg </em> ln <em>y</em> = 5.56484</p>
<p>261.083 (260.409 from 3 sf)</p>
<p><em>y</em> = 261, (<em>y</em> = 260 from 3sf)       <em><strong>A1 N3</strong></em></p>
<p><strong>Note:</strong> If no working shown, award <em><strong>N1</strong></em> for 5.56484.<br>If no working shown, award <em><strong>N2</strong> </em>for ln <em>y</em> = 5.56484.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>valid approach for expressing ln <em>y</em> in terms of ln <em>x</em>      <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = {\text{ln}}\,\left( {k{x^n}} \right),\,\,{\text{ln}}\,\left( {k{x^n}} \right) = a\,{\text{ln}}\,x + b">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mrow>
        <msup>
          <mi>x</mi>
          <mi>n</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mrow>
        <msup>
          <mi>x</mi>
          <mi>n</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>a</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span></p>
<p>correct application of addition rule for logs      <em><strong>(A1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,k + {\text{ln}}\,\left( {{x^n}} \right)">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>k</mi>
  <mo>+</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mi>n</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>correct application of exponent rule for logs       <em><strong>A1</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,k + n\,{\text{ln}}\,x">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>k</mi>
  <mo>+</mo>
  <mi>n</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
</math></span></p>
<p>comparing one term with regression equation (check <em><strong>FT</strong></em>)      <em><strong>(M1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = a,\,\,b = {\text{ln}}\,k">
  <mi>n</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>b</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>k</mi>
</math></span></p>
<p>correct working for <em>k</em>      <strong>(A1)</strong></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,k = 6.14210,\,\,\,k = {e^{6.14210}}">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>k</mi>
  <mo>=</mo>
  <mn>6.14210</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>k</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mn>6.14210</mn>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p>465.030</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n =  - 0.454,\,\,k = 465">
  <mi>n</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.454</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>k</mi>
  <mo>=</mo>
  <mn>465</mn>
</math></span> (464 from 3sf)     <em><strong>A1A1 N2N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{{\text{ln}}\,y}} = {e^{a\,{\text{ln}}\,x + b}}">
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mrow>
          <mtext>ln</mtext>
        </mrow>
        <mspace width="thinmathspace"></mspace>
        <mi>y</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mi>a</mi>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <mtext>ln</mtext>
        </mrow>
        <mspace width="thinmathspace"></mspace>
        <mi>x</mi>
        <mo>+</mo>
        <mi>b</mi>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p>correct use of exponent laws for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{a\,{\text{ln}}\,x + b}}">
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mi>a</mi>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <mtext>ln</mtext>
        </mrow>
        <mspace width="thinmathspace"></mspace>
        <mi>x</mi>
        <mo>+</mo>
        <mi>b</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>     <em><strong>(A1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{a\,{\text{ln}}\,x}} \times {e^b}">
  <mrow>
    <msup>
      <mi>e</mi>
      <mrow>
        <mi>a</mi>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <mtext>ln</mtext>
        </mrow>
        <mspace width="thinmathspace"></mspace>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>e</mi>
      <mi>b</mi>
    </msup>
  </mrow>
</math></span></p>
<p>correct application of exponent rule for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\,{\text{ln}}\,x">
  <mi>a</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
</math></span>     <em><strong>(A1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,{x^a}">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mi>x</mi>
      <mi>a</mi>
    </msup>
  </mrow>
</math></span></p>
<p>correct equation in<em> y</em>      <em><strong>A1</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {x^a} \times {e^b}">
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mi>a</mi>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>e</mi>
      <mi>b</mi>
    </msup>
  </mrow>
</math></span></p>
<p>comparing one term with equation of model (check <em><strong>FT</strong></em>)      <em><strong>(M1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = {e^b},\,\,n = a">
  <mi>k</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>e</mi>
      <mi>b</mi>
    </msup>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>n</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span></p>
<p>465.030</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n =  - 0.454,\,\,k = 465">
  <mi>n</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.454</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>k</mi>
  <mo>=</mo>
  <mn>465</mn>
</math></span> (464 from 3sf)     <em><strong>A1A1 N2N2</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>valid approach for expressing ln <em>y</em> in terms of ln <em>x</em> (seen anywhere)      <em><strong>(M1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = {\text{ln}}\,\left( {k{x^n}} \right),\,\,{\text{ln}}\,\left( {k{x^n}} \right) = a\,{\text{ln}}\,x + b">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mrow>
        <msup>
          <mi>x</mi>
          <mi>n</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mrow>
        <msup>
          <mi>x</mi>
          <mi>n</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>a</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span></p>
<p>correct application of exponent rule for logs (seen anywhere)      <em><strong>(A1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,\left( {{x^a}} \right) + b">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mi>a</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
</math></span></p>
<p>correct working for <em>b</em> (seen anywhere)      <em><strong>(A1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = {\text{ln}}\,\left( {{e^b}} \right)">
  <mi>b</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mi>e</mi>
          <mi>b</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>correct application of addition rule for logs      <em><strong>A1</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,\left( {{e^b}{x^a}} \right)">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mi>e</mi>
          <mi>b</mi>
        </msup>
      </mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mi>a</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>comparing one term with equation of model (check <em><strong>FT</strong></em>)     <em><strong>(M1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = {e^b},\,\,n = a">
  <mi>k</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>e</mi>
      <mi>b</mi>
    </msup>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>n</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span></p>
<p>465.030</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n =  - 0.454,\,\,k = 465">
  <mi>n</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.454</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>k</mi>
  <mo>=</mo>
  <mn>465</mn>
</math></span> (464 from 3sf)     <em><strong>A1A1 N2N2</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In the month before their IB Diploma examinations, eight male students recorded the number of hours they spent on social media.</p>
<p>For each student, the number of hours spent on social media (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>) and the number of IB Diploma points obtained (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>) are shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.43.52.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p>Use your graphic display calculator to find</p>
</div>

<div class="specification">
<p>Ten female students also recorded the number of hours they spent on social media in the month before their IB Diploma examinations. Each of these female students spent between 3 and 30 hours on social media.</p>
<p>The equation of the regression line <em>y </em>on <em>x </em>for these ten female students is</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="y = &nbsp;- \frac{2}{3}x + \frac{{125}}{3}.">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <mi>x</mi>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>125</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>.</mo>
</math></span></p>
<p>An eleventh girl spent 34 hours on social media in the month before her IB Diploma examinations.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On graph paper, draw a scatter diagram for these data. Use a scale of 2 cm to represent 5 hours on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and 2 cm to represent 10 points on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
  <mrow>
    <mrow>
      <mover>
        <mi>x</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean number of hours spent on social media;</p>
<p>(ii)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean number of IB Diploma points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x,{\text{ }}\bar y)">
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span> on your scatter diagram and label this point M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for these eight male students.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line, from part (e), on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the given equation of the regression line to estimate the number of IB Diploma points that this girl obtained.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a reason why this estimate is not reliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-07_om_08.41.53.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01.a/M">     <strong><em>(A4)</em></strong></p>
<p> </p>
<p><strong>Notes</strong>:     Award <strong><em>(A1) </em></strong>for correct scale and labelled axes.</p>
<p>Award <strong><em>(A3) </em></strong>for 7 or 8 points correctly plotted,</p>
<p><strong><em>(A2) </em></strong>for 5 or 6 points correctly plotted,</p>
<p><strong><em>(A1) </em></strong>for 3 or 4 points correctly plotted.</p>
<p>Award at most <strong><em>(A0)(A3) </em></strong>if axes reversed.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> sufficient for labelling.</p>
<p>If graph paper is not used, award <strong><em>(A0)</em></strong>.</p>
<p>If an inconsistent scale is used, award <strong><em>(A0)</em></strong><em>. </em>Candidates’ points should be read from this scale <strong>where possible </strong>and awarded accordingly.</p>
<p>A scale which is too small to be meaningful (ie mm instead of cm) earns <strong><em>(A0) </em></strong>for plotted points.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x = 21">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mn>21</mn>
</math></span>     <strong><em>(A1)</em></strong></p>
<p>(ii)    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y = 31">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mn>31</mn>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x,{\text{ }}\bar y)">
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span> correctly plotted on graph     <strong><em>(A1)</em>(ft)</strong></p>
<p>this point labelled M     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from parts (b)(i) and (b)(ii).</p>
<p>Only accept M for labelling.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - 0.761x + 47.0{\text{ }}(y =  - 0.760638 \ldots x + 46.9734 \ldots )">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.761</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>47.0</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.760638</mn>
  <mo>…</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>46.9734</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>    <strong><em>(A1)(A1)(G2)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.761x">
  <mo>−</mo>
  <mn>0.761</mn>
  <mi>x</mi>
</math></span> and <strong><em>(A1)</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + 47.0">
  <mo>+</mo>
  <mn>47.0</mn>
</math></span>. Award a maximum of <strong><em>(A1)(A0) </em></strong>if answer is not an equation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line on graph     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for <strong>straight line </strong>that passes through their M, <strong><em>(A1)</em>(ft) </strong>for line (extrapolated if necessary) that passes through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}47.0)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>47.0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p>If M is not plotted or labelled, follow through from part (e).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - \frac{2}{3}(34) + \frac{{125}}{3}">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <mo stretchy="false">(</mo>
  <mn>34</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>125</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution.</p>
<p> </p>
<p>19 (points)     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>extrapolation     <strong><em>(R1)</em></strong></p>
<p><strong>OR</strong></p>
<p>34 hours is outside the given range of data     <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Do not accept ‘outlier’.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A medical centre is testing patients for a certain disease. This disease occurs in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> of&nbsp;the population.</p>
<p>They test every patient who comes to the centre on a particular day.</p>
</div>

<div class="specification">
<p>It is intended that if a patient has the disease, they test “positive”, and if a patient does not&nbsp;have the disease, they test “negative”.</p>
<p>However, the tests are not perfect, and only <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>99</mn><mo>%</mo></math> of people who have the disease test positive.&nbsp;Also, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> of people who <strong>do not</strong> have the disease test positive.</p>
<p>The tree diagram shows some of this information.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Write down the value of</p>
</div>

<div class="specification">
<p>Use the tree diagram to find the probability that a patient selected at random</p>
</div>

<div class="specification">
<p>The staff at the medical centre looked at the care received by all visiting patients on a&nbsp;randomly chosen day. All the patients received at least one of these services: they had&nbsp;medical tests (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>), were seen by a nurse (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>), or were seen by a doctor (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math>). It was found that:</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>78</mn></math> had medical tests,</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> were seen by a nurse;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> were seen by a doctor;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> had medical tests and were seen by a doctor and a nurse;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math> had medical tests and were seen by a doctor but were not seen by a nurse;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn></math> patients were seen by a nurse and had medical tests but were not seen by a doctor;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> patients were seen by a doctor without being seen by nurse and without having medical tests.</li>
</ul>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the sampling method being used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>will not have the disease and will test positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>will test negative.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>has the disease given that they tested negative.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The medical centre finds the actual number of positive results in their sample is&nbsp;different than predicted by the tree diagram. Explain why this might be the case.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a Venn diagram to illustrate this information, placing all relevant information on&nbsp;the diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total number of patients who visited the centre during this day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>convenience sampling&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>(</strong><em><strong>A1)</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>95</mn><mo>%</mo></math> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>%</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>98</mn><mo>%</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>95</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>02</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>019</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>05</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>95</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>98</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for summing two products and <em><strong>M1</strong></em> for correct products seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>932</mn><mo>&nbsp;</mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>9315</mn><mo>)</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of conditional probability &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>05</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>05</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>95</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>98</mn></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>000537</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>000536768</mn><mo>…</mo><mo>)</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>000536</mn></math> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>932</mn></math> used.</p>
<p><em><strong><br>[3 marks]</strong></em><br><br></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong><br>sample may not be representative of population&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>OR</strong><br>sample is not randomly selected&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>OR</strong><br>unrealistic to think expected and observed values will be exactly equal &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em>&nbsp; &nbsp;</p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for rectangle and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> labelled circles and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> in centre region; <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>40</mn><mo>,</mo><mo>&nbsp;</mo><mn>24</mn></math>; <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo>,</mo><mo>&nbsp;</mo><mn>1</mn><mo>,</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn></math>.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo>+</mo><mn>9</mn><mo>+</mo><mn>1</mn><mo>+</mo><mn>11</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>40</mn><mo>+</mo><mn>24</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em>&nbsp; &nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>105</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em><br><br>Note:</strong> Follow through from the entries on their Venn diagram in part (e). Working required for <em><strong>FT</strong>.</em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 800 students answered 40 questions on a category of their choice out of History, Science and Literature.</p>
<p>For each student the category and the number of correct answers, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, was recorded. The results obtained are represented in the following table.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_14.11.54.png" alt="N17/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test at the 5% significance level is carried out on the results. The critical value for this test is 12.592.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span> is a discrete or a continuous variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, the modal class;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, the mid-interval value of the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected frequency of students choosing the Science category and obtaining 31 to 40 correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis for this test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value for the test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the result of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>discrete     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11 \leqslant N \leqslant 20">
  <mn>11</mn>
  <mo>⩽</mo>
  <mi>N</mi>
  <mo>⩽</mo>
  <mn>20</mn>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>15.5     <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="21.2{\text{ }}(21.2125)">
  <mn>21.2</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>21.2125</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9.60{\text{ }}(9.60428 \ldots )">
  <mn>9.60</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>9.60428</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G1)</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{260}}{{800}} \times \frac{{157}}{{800}} \times 800">
  <mfrac>
    <mrow>
      <mn>260</mn>
    </mrow>
    <mrow>
      <mn>800</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>157</mn>
    </mrow>
    <mrow>
      <mn>800</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>800</mn>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{260 \times 157}}{{800}}">
  <mfrac>
    <mrow>
      <mn>260</mn>
      <mo>×</mo>
      <mn>157</mn>
    </mrow>
    <mrow>
      <mn>800</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution into expected frequency formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 51.0{\text{ }}(51.025)">
  <mo>=</mo>
  <mn>51.0</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>51.025</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>choice of category and number of correct answers are independent     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Accept “no association” between (choice of) category and number of correct answers. Do not accept “not related” or “not correlated” or “influenced”.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6     <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<p> </p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0644{\text{ }}(0.0644123 \ldots )">
  <mn>0.0644</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.0644123</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11.9{\text{ }}(11.8924 \ldots )">
  <mn>11.9</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>11.8924</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the null hypothesis is not rejected (the null hypothesis is accepted)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong><em>OR</em></strong></p>
<p>(choice of) category and number of correct answers are independent     <strong><em>(A1)</em>(ft)</strong></p>
<p>as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11.9 &lt; 12.592">
  <mn>11.9</mn>
  <mo>&lt;</mo>
  <mn>12.592</mn>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0644 &gt; 0.05">
  <mn>0.0644</mn>
  <mo>&gt;</mo>
  <mn>0.05</mn>
</math></span>     <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(R1) </em></strong>for a correct comparison of either their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> statistic to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> critical value or their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value to the significance level. Award <strong><em>(A1)</em>(ft) </strong>from that comparison.</p>
<p>Follow through from part (f). Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Fiona walks from her house to a bus stop where she gets a bus to school. Her time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> minutes,&nbsp;to walk to the bus stop is normally distributed with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>12</mn><mo>,</mo><mo>&nbsp;</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></math>.</p>
<p>Fiona always leaves her house at 07:15. The first bus that she can get departs at 07:30.</p>
</div>

<div class="specification">
<p>The length of time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> minutes, of the bus journey to Fiona’s school is normally distributed&nbsp;with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>50</mn><mo>,</mo><mo>&nbsp;</mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></math>. The probability that the bus journey takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> minutes is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>941</mn></math>.</p>
</div>

<div class="specification">
<p>If Fiona misses the first bus, there is a second bus which departs at 07:45. She must arrive&nbsp;at school by 08:30&nbsp;to be on time. Fiona will not arrive on time if she misses both buses.&nbsp;The variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> are independent.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that it will take Fiona between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to walk to the bus stop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the bus journey takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Fiona will arrive on time.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This year, Fiona will go to school on <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>183</mn></math> days.</p>
<p>Calculate the number of days Fiona is expected to arrive on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>158655</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>15</mn><mo>&lt;</mo><mi>W</mi><mo>&lt;</mo><mn>30</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>159</mn></math>    <em><strong>A2   N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding standardized value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math>       <em><strong>(A1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>56322</mn></math></p>
<p>correct substitution using <strong>their</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>-value       <em><strong>(A1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>60</mn><mo>-</mo><mn>50</mn></mrow><mi>σ</mi></mfrac><mo>=</mo><mn>1</mn><mo>.</mo><mn>56322</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>60</mn><mo>-</mo><mn>50</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>56322</mn></mrow></mfrac><mo>=</mo><mi>σ</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>39703</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>40</mn></math>    <em><strong>A1   N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>217221</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>B</mi><mo>&lt;</mo><mn>45</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.217</mo></math>    <em><strong>A2   N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find one possible way of being on time (do not penalize incorrect use of strict inequality signs)       <em><strong>(M1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>≤</mo><mn>15</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>&lt;</mo><mn>60</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>&lt;</mo><mi>W</mi><mo>≤</mo><mn>30</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>&lt;</mo><mn>45</mn></math></p>
<p>correct calculation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>W</mi><mo>≤</mo><mn>15</mn><mo> </mo><mtext>and</mtext><mo> </mo><mi>B</mi><mo>&lt;</mo><mn>60</mn></mrow></mfenced></math> (seen anywhere)       <em><strong>(A1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>841</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>941</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>7917</mn></math></p>
<p>correct calculation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>15</mn><mo>&lt;</mo><mi>W</mi><mo>≤</mo><mn>30</mn><mo> </mo><mtext>and</mtext><mo> </mo><mi>B</mi><mo>&lt;</mo><mn>45</mn></mrow></mfenced></math> (seen anywhere)       <em><strong>(A1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>159</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>217</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>03446</mn></math></p>
<p>correct working       <em><strong>(A1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>841</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>941</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>159</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>217</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>7917</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>03446</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>826168</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P </mtext></math>(on time) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>826</mn></math>    <em><strong>A1   N2</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing binomial with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>183</mn><mo>,</mo><mo> </mo><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>826168</mn></math>       <em><strong>(M1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>183</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>826</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>151</mn><mo>.</mo><mn>188</mn></math>   (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>151</mn><mo>.</mo><mn>158</mn></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo> </mo><mtext>sf </mtext></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>151</mn></math>    <em><strong>A1   N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A company performs an experiment on the efficiency of a liquid that is used to detect a nut allergy.</p>
<p>A group of 60 people took part in the experiment. In this group 26 are allergic to nuts. One person from the group is chosen at random.</p>
</div>

<div class="specification">
<p>A second person is chosen from the group.</p>
</div>

<div class="specification">
<p>When the liquid is added to a person’s blood sample, it is expected to turn blue if the person is allergic to nuts and to turn red if the person is not allergic to nuts.</p>
<p>The company claims that the probability that the test result is correct is 98% for people who are allergic to nuts and 95% for people who are not allergic to nuts.</p>
<p>It is known that 6 in every 1000 adults are allergic to nuts.</p>
<p>This information can be represented in a tree diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.31.34.png" alt="N17/5/MATSD/SP2/ENG/TZ0/04.c.d.e.f.g"></p>
</div>

<div class="specification">
<p>An adult, who was not part of the original group of 60, is chosen at random and tested using this liquid.</p>
</div>

<div class="specification">
<p>The liquid is used in an office to identify employees who might be allergic to nuts. The liquid turned blue for <strong>38 </strong><strong>employees</strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this person is <strong>not </strong>allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both people chosen are <strong>not </strong>allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy </strong>and complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this adult is allergic to nuts and the liquid turns blue.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the liquid turns blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the tested adult is allergic to nuts given that the liquid turned blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of employees, from this 38, who are allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{34}}{{60}}{\text{ }}\left( {\frac{{17}}{{30}},{\text{ }}0.567,{\text{ }}0.566666 \ldots ,{\text{ }}56.7\% } \right)">
  <mfrac>
    <mrow>
      <mn>34</mn>
    </mrow>
    <mrow>
      <mn>60</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>17</mn>
        </mrow>
        <mrow>
          <mn>30</mn>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.567</mn>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.566666</mn>
      <mo>…</mo>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>56.7</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for correct numerator, <strong><em>(A1) </em></strong>for correct denominator.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{34}}{{60}} \times \frac{{33}}{{59}}">
  <mfrac>
    <mrow>
      <mn>34</mn>
    </mrow>
    <mrow>
      <mn>60</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>33</mn>
    </mrow>
    <mrow>
      <mn>59</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:    </strong>Award <strong><em>(M1) </em></strong>for their correct product.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.317{\text{ }}\left( {\frac{{187}}{{590}},{\text{ }}0.316949 \ldots ,{\text{ }}31.7\% } \right)">
  <mo>=</mo>
  <mn>0.317</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>187</mn>
        </mrow>
        <mrow>
          <mn>590</mn>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.316949</mn>
      <mo>…</mo>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>31.7</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:    </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-14_om_05.54.09.png" alt="N17/5/MATSD/SP2/ENG/TZ0/04.c/M">     <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for each correct pair of branches.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.006 \times 0.98">
  <mn>0.006</mn>
  <mo>×</mo>
  <mn>0.98</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for multiplying 0.006 by 0.98.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.00588{\text{ }}\left( {\frac{{147}}{{25000}},{\text{ }}0.588\% } \right)">
  <mo>=</mo>
  <mn>0.00588</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>147</mn>
        </mrow>
        <mrow>
          <mn>25000</mn>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.588</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.006 \times 0.98 + 0.994 \times 0.05{\text{ }}(0.00588 + 0.994 \times 0.05)">
  <mn>0.006</mn>
  <mo>×</mo>
  <mn>0.98</mn>
  <mo>+</mo>
  <mn>0.994</mn>
  <mo>×</mo>
  <mn>0.05</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.00588</mn>
  <mo>+</mo>
  <mn>0.994</mn>
  <mo>×</mo>
  <mn>0.05</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for their two correct products, <strong><em>(M1) </em></strong>for adding two products.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.0556{\text{ }}\left( {0.05558,{\text{ }}5.56\% ,{\text{ }}\frac{{2779}}{{50000}}} \right)">
  <mo>=</mo>
  <mn>0.0556</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.05558</mn>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>5.56</mn>
      <mi mathvariant="normal">%</mi>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mfrac>
        <mrow>
          <mn>2779</mn>
        </mrow>
        <mrow>
          <mn>50000</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from parts (c) and (d).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.006 \times 0.98}}{{0.05558}}">
  <mfrac>
    <mrow>
      <mn>0.006</mn>
      <mo>×</mo>
      <mn>0.98</mn>
    </mrow>
    <mrow>
      <mn>0.05558</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for their correct numerator, <strong><em>(M1) </em></strong>for their correct denominator.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.106{\text{ }}\left( {0.105793 \ldots ,{\text{ }}10.6\% ,{\text{ }}\frac{{42}}{{397}}} \right)">
  <mo>=</mo>
  <mn>0.106</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.105793</mn>
      <mo>…</mo>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>10.6</mn>
      <mi mathvariant="normal">%</mi>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mfrac>
        <mrow>
          <mn>42</mn>
        </mrow>
        <mrow>
          <mn>397</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from parts (d) and (e).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.105793 \ldots  \times 38">
  <mn>0.105793</mn>
  <mo>…</mo>
  <mo>×</mo>
  <mn>38</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for multiplying 38 by their answer to part (f).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4.02{\text{ }}(4.02015 \ldots )">
  <mo>=</mo>
  <mn>4.02</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>4.02015</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Follow through from part (f). Use of 3 sf result from part (f) results in an answer of 4.03 (4.028).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey was conducted on a group of people. The first question asked how many pets they each own. The results are summarized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The second question asked each member of the group to state their age and preferred pet. The data obtained is organized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test is carried out at the 10 % significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the total number of people, from this group, who are <strong>pet owners</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal number of pets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the median number of pets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the ratio of teenagers to non-teenagers in its simplest form.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of teenagers that prefer cats.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for this test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>140       <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1       <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2       <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1       <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3       <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>17:15  <strong>OR</strong>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{17}}{{15}}">
  <mfrac>
    <mrow>
      <mn>17</mn>
    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
  </mfrac>
</math></span>      <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> for 85:75 or 1.13:1.</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>preferred pet is independent of “whether or not the respondent was a teenager" or "age category”     <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept there is no association between pet and age. Do not accept “not related” or “not correlated” or “influenced”.</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>preferred pet is not independent of age    <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (e)(i) <em>i.e.</em> award <em><strong>(A1)</strong></em><strong>(ft)</strong> if their alternative hypothesis is the negation of their null hypothesis. Accept “associated” or “dependent”.</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3    <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{85 \times 55}}{{160}}">
  <mfrac>
    <mrow>
      <mn>85</mn>
      <mo>×</mo>
      <mn>55</mn>
    </mrow>
    <mrow>
      <mn>160</mn>
    </mrow>
  </mfrac>
</math></span>  <strong>OR  </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{85}}{{160}} \times \frac{{55}}{{160}} \times 160">
  <mfrac>
    <mrow>
      <mn>85</mn>
    </mrow>
    <mrow>
      <mn>160</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>55</mn>
    </mrow>
    <mrow>
      <mn>160</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>160</mn>
</math></span>     <em><strong>(M1)</strong></em></p>
<p>29.2 (29.2187…)      <em><strong>(A1)(G2)</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.208 &gt; 0.1      <em><strong>(R1)</strong></em></p>
<p>accept null hypothesis  <strong>OR</strong>  fail to reject null hypothesis      <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(R1)</strong></em> for a correct comparison of their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value to the significance level, award <strong><em>(A1)</em>(ft)</strong> for the correct result from that comparison. Accept “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value &gt; 0.1” as part of the comparison but only if their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value is explicitly seen in part (h). Follow through from their answer to part (h). Do not award <strong><em>(R0)(A1)</em></strong>.</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>Sila High School has 110 students. They each take exactly one language class from a choice of English, Spanish or Chinese. The following table shows the number of female and male students in the three different language classes.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>&nbsp;test was carried out at the 5 % significance level to analyse the relationship between gender and student choice of language class.</p>
</div>

<div class="specification">
<p>Use your graphic display calculator to write down</p>
</div>

<div class="specification">
<p>The critical value at the 5 % significance level for this test is 5.99.</p>
</div>

<div class="specification">
<p>One student is chosen at random from this school.</p>
</div>

<div class="specification">
<p>Another student is chosen at random from this school.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis, H<sub>0 </sub>, for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the expected frequency of female students who chose to take the Chinese class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether or not H<sub>0</sub> should be rejected. Justify your statement.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student does not take the Spanish class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that neither of the two students take the Spanish class.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the two students is female.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(H<sub>0</sub>:) (choice of) language is independent of gender       <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept “there is no association between language (choice) and gender”. Accept “language (choice) is not dependent on gender”. Do not accept “not related” or “not correlated” or “not influenced”.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2       <em><strong>(AG)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>16.4  (16.4181…)      <em><strong>(G1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(we) reject the null hypothesis      <strong><em>(A1)</em>(ft)</strong></p>
<p>8.68507… &gt; 5.99     <strong><em>(R1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (c)(ii). Accept “do not accept” in place of “reject.” Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p><strong>OR</strong></p>
<p>(we) reject the null hypothesis       <em><strong>(A1)</strong></em></p>
<p>0.0130034 &lt; 0.05       <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Accept “do not accept” in place of “reject.” Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{88}}{{110}}\,\,\,\left( {\frac{4}{5}{\text{,}}\,\,0.8{\text{,}}\,\,80{\text{% }}} \right)">
  <mfrac>
    <mrow>
      <mn>88</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>4</mn>
        <mn>5</mn>
      </mfrac>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>0.8</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>80</mn>
      <mrow>
        <mtext>% </mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>   <strong><em>(A1)</em></strong><strong><em>(A1)</em></strong><strong><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for correct numerator, <strong><em>(A1)</em></strong> for correct denominator.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{88}}{{110}} \times \frac{{87}}{{109}}">
  <mfrac>
    <mrow>
      <mn>88</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>87</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
</math></span>    <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for multiplying two fractions. Award <strong><em>(M1)</em></strong> for multiplying their correct fractions.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{46}}{{110}}} \right)\left( {\frac{{45}}{{109}}} \right) + 2\left( {\frac{{46}}{{110}}} \right)\left( {\frac{{42}}{{109}}} \right) + \left( {\frac{{42}}{{110}}} \right)\left( {\frac{{41}}{{109}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>46</mn>
        </mrow>
        <mrow>
          <mn>110</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>45</mn>
        </mrow>
        <mrow>
          <mn>109</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>46</mn>
        </mrow>
        <mrow>
          <mn>110</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>42</mn>
        </mrow>
        <mrow>
          <mn>109</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>42</mn>
        </mrow>
        <mrow>
          <mn>110</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>41</mn>
        </mrow>
        <mrow>
          <mn>109</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct products; <strong><em>(M1)</em></strong> for adding 4 products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.639\,\,\,\left( {0.638532 \ldots {\text{,}}\,\,\frac{{348}}{{545}}{\text{,}}\,\,63.9{\text{% }}} \right)">
  <mn>0.639</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.638532</mn>
      <mo>…</mo>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mrow>
          <mn>348</mn>
        </mrow>
        <mrow>
          <mn>545</mn>
        </mrow>
      </mfrac>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>63.9</mn>
      <mrow>
        <mtext>% </mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their answer to part (e)(i).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{{67}}{{110}} \times \frac{{66}}{{109}}">
  <mn>1</mn>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>67</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>66</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
</math></span>   <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for multiplying two correct fractions. Award <strong><em>(M1)</em></strong> for subtracting their product of two fractions from 1.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{43}}{{110}} \times \frac{{42}}{{109}} + \frac{{43}}{{110}} \times \frac{{67}}{{109}} + \frac{{67}}{{110}} \times \frac{{43}}{{109}}">
  <mfrac>
    <mrow>
      <mn>43</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>42</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>43</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>67</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>67</mn>
    </mrow>
    <mrow>
      <mn>110</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>43</mn>
    </mrow>
    <mrow>
      <mn>109</mn>
    </mrow>
  </mfrac>
</math></span>   <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct products; <strong><em>(M1)</em></strong> for adding three products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.631\,\,\,\left( {0.631192 \ldots {\text{,}}\,\,63.1{\text{% ,}}\,\,\frac{{344}}{{545}}} \right)">
  <mn>0.631</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.631192</mn>
      <mo>…</mo>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>63.1</mn>
      <mrow>
        <mtext>% ,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mrow>
          <mn>344</mn>
        </mrow>
        <mrow>
          <mn>545</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>There are three fair six-sided dice. Each die has two green faces, two yellow faces and two red faces.</p>
<p>All three dice are rolled.</p>
</div>

<div class="specification">
<p>Ted plays a game using these dice. The rules are:</p>
<ul>
<li>Having a turn means to roll all three dice.</li>
<li>He wins $10 for each green face rolled and adds this to his winnings.</li>
<li>After a turn Ted can either:<br>
<ul>
<li>end the game (and keep his winnings), or</li>
<li>have another turn (and try to increase his winnings).</li>
</ul>
</li>
<li>If two or more red faces are rolled in a turn, all winnings are lost and the game ends.</li>
</ul>
</div>

<div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span> ($) represents how much is added to his winnings after a turn.</p>
<p>The following table shows the distribution for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span>, where $<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> represents his winnings in the game so far.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of rolling exactly one red face.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of rolling two or more red faces.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, after a turn, the probability that Ted adds exactly $10 to his winnings is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{3}}">
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mn>3</mn>
    </mfrac>
  </mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ted will always have another turn if he expects an increase to his winnings.</p>
<p>Find the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> for which Ted should end the game instead of having another turn.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">valid approach to find P(one red)     (M1)<br></span></p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><em>eg</em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_n{C_a} \times {p^a} \times {q^{n - a}}">
  <msub>
    <mrow>

    </mrow>
    <mi>n</mi>
  </msub>
  <mrow>
    <msub>
      <mi>C</mi>
      <mi>a</mi>
    </msub>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>p</mi>
      <mi>a</mi>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>q</mi>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mi>a</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {n{\text{, }}p} \right)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>n</mi>
      <mrow>
        <mtext>, </mtext>
      </mrow>
      <mi>p</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{1}{3}} \right){\left( {\frac{2}{3}} \right)^2}">
  <mn>3</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>2</mn>
            <mn>3</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  3 \\   1  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></span></p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">listing all possible cases for exactly one red (may be indicated on tree diagram)</span></p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">P(1 red) = 0.444 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{4}{9}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mn>4</mn>
        <mn>9</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>   [0.444, 0.445]       </span><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">    </span><em style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><strong>A1  N2</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"> [3 marks] [5 maximum for parts (a.i) and (a.ii)]</span></em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">valid approach     <em><strong>(M1)</strong></em><br></span></p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><em>eg</em>  P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = 2">
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>) + P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = 3">
  <mi>X</mi>
  <mo>=</mo>
  <mn>3</mn>
</math></span>), 1 − P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> ≤ 1),  binomcdf<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3{\text{,}}\,\,\frac{1}{3}{\text{,}}\,\,2{\text{,}}\,\,3} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mn>1</mn>
        <mn>3</mn>
      </mfrac>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></span></p>
<p>correct working       <em><strong>(A1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{9} + \frac{1}{{27}}">
  <mfrac>
    <mn>2</mn>
    <mn>9</mn>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
</math></span>,   0.222 + 0.037 ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\left( {\frac{2}{3}} \right)^3} - \frac{4}{9}">
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>2</mn>
            <mn>3</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mfrac>
    <mn>4</mn>
    <mn>9</mn>
  </mfrac>
</math></span></p>
<p>0.259259</p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">P(at least two red) = 0.259 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{7}{27}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mn>7</mn>
        <mn>27</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      </span><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">    </span><em style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><strong>A1  N3</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]  [5 maximum for parts (a.i) and (a.ii)]</span></em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that winning $10 means rolling exactly one green        <em><strong>(M1)</strong></em></p>
<p>recognition that winning $10 also means rolling at most 1 red        <em><strong>(M1)</strong></em></p>
<p><em>eg</em> “cannot have 2 or more reds”</p>
<p>correct approach        <strong><em>A1</em></strong></p>
<p><em>eg</em>  P(1G ∩ 0R) + P(1G ∩ 1R),  P(1G) − P(1G ∩ 2R),</p>
<p>      “one green and two yellows or one of each colour”</p>
<p><strong>Note:</strong> Because this is a “show that” question, do not award this <strong><em>A1</em></strong> for purely numerical expressions.</p>
<p>one correct probability for their approach        <em><strong>(A1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{1}{3}} \right){\left( {\frac{1}{3}} \right)^2}">
  <mn>3</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>3</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{6}{27}}">
  <mrow>
    <mfrac>
      <mn>6</mn>
      <mn>27</mn>
    </mfrac>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{1}{3}} \right){\left( {\frac{2}{3}} \right)^2}">
  <mn>3</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>2</mn>
            <mn>3</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{9}}">
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mn>9</mn>
    </mfrac>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{2}{9}}">
  <mrow>
    <mfrac>
      <mn>2</mn>
      <mn>9</mn>
    </mfrac>
  </mrow>
</math></span></p>
<p>correct working leading to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{3}}">
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mn>3</mn>
    </mfrac>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{27}} + \frac{6}{{27}}">
  <mfrac>
    <mn>3</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>6</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{12}{{27}} - \frac{3}{{27}}">
  <mfrac>
    <mn>12</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mn>3</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{9}} + \frac{2}{{9}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>9</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>2</mn>
    <mrow>
      <mn>9</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>probability = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{3}}">
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mn>3</mn>
    </mfrac>
  </mrow>
</math></span>      <em><strong>AG N0</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[5 marks]</span></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{7}{{27}}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mn>7</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
</math></span>,  0.259 (check <em><strong>FT</strong></em> from (a)(ii))      <em><strong>A1 N1</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[1 mark]</span></em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of summing probabilities to 1       <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum { = 1} ">
  <mo>∑</mo>
  <mrow>
    <mo>=</mo>
    <mn>1</mn>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + \frac{1}{3} + \frac{2}{9} + \frac{1}{{27}} = 1">
  <mi>x</mi>
  <mo>+</mo>
  <mi>y</mi>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>2</mn>
    <mn>9</mn>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>1</mn>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{7}{{27}} - \frac{9}{{27}} - \frac{6}{{27}} - \frac{1}{{27}}">
  <mn>1</mn>
  <mo>−</mo>
  <mfrac>
    <mn>7</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mn>9</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mn>6</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.148147  (0.148407 if working with <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> value to 3 sf)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{4}{{27}}">
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mn>4</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
</math></span>  (exact), 0.148     <em><strong>A1 N2</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[2 marks]</span></em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into the formula for expected value      <em><strong>(A1)</strong></em></p>
<p><em>eg </em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - w \cdot \frac{7}{{27}} + 10 \cdot \frac{9}{{27}} + 20 \cdot \frac{6}{{27}} + 30 \cdot \frac{1}{{27}}">
  <mo>−</mo>
  <mi>w</mi>
  <mo>⋅</mo>
  <mfrac>
    <mn>7</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>10</mn>
  <mo>⋅</mo>
  <mfrac>
    <mn>9</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>20</mn>
  <mo>⋅</mo>
  <mfrac>
    <mn>6</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>30</mn>
  <mo>⋅</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>27</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>correct critical value (accept inequality)       <em><strong>A1</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> = 34.2857  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{{240}}{7}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>240</mn>
        </mrow>
        <mn>7</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> &gt; 34.2857</p>
<p>$40      <em><strong>A1 N2</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Don took part in a project investigating wind speed,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, and the time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> minutes, to fully charge a solar powered robot.</p>
<p>The investigation was carried out six times. The results are recorded in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> is the point with coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><menclose notation="top"><mi>x</mi></menclose><mo>,</mo><mo>&nbsp;</mo><menclose notation="top"><mi>y</mi></menclose><mo>)</mo></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>On graph paper</strong>, draw a scatter diagram to show the results of Don’s investigation. Use a scale of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> to represent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> to represent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>x</mi></menclose></math>, the mean wind speed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>y</mi></menclose></math>, the mean time to fully charge the robot.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the correlation between the wind speed and the time to fully charge the robot.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>c</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw this regression line on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise estimate the charging time when the wind speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Don concluded from his investigation: “There is no causation between wind speed and the time to fully charge the robot”.</p>
<p>In the context of the question, briefly explain the meaning of “no causation”.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="">       <em><strong>(A4)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for correct scales and labels.<br>Award <em><strong>(A3)</strong></em> for all six points correctly plotted.<br>Award <em><strong>(A2)</strong></em> for four or five points correctly plotted.<br>Award <em><strong>(A1)</strong></em> for two or three points correctly plotted.<br>Award at most <em><strong>(A0)</strong></em><em><strong>(A3)</strong></em> if axes reversed.<br>If graph paper is not used, award at most <em><strong>(A1)</strong></em><em><strong>(A0)</strong></em><em><strong>(A0)</strong></em><em><strong>(A0)</strong></em>.</p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn><mo> </mo><mfenced><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math>       <em><strong>(A1)</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn></math>  (minutes)      <em><strong>(A1)</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>point in correct position, labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)<br><br></strong></em><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for point plotted in correct position, <em><strong>(A1)</strong></em> for point labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> Follow through from their part (b).</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>r</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mo> </mo><mn>0</mn><mo>.</mo><mn>944</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>943733</mn><mo>…</mo></mrow></mfenced></math>     <em><strong>(G2</strong></em><em><strong>)<br><br></strong></em><strong>Note:</strong> Award <em><strong>(G1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>943</mn></math> (incorrect rounding).<br><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(very) strong positive correlation   <em><strong>(A1</strong></em><em><strong>)</strong></em><strong>(ft)<em>(A1</em><em>)</em>(ft)</strong><em><strong><br><br></strong></em><strong>Note:</strong> Award <strong><em>(A1</em><em>)</em>(ft)</strong> for (very) <em>strong</em>. Award <strong><em>(A1</em><em>)</em>(ft)</strong> for <em>positive</em>. Follow though from their part (d)(i). If there is no answer to part (d)(i), award at most <em><strong>(A0</strong></em><em><strong>)</strong></em><em><strong>(A1</strong></em><em><strong>)</strong></em> for a correct direction.<br><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>465</mn><mi>x</mi><mo>+</mo><mn>23</mn><mo>.</mo><mn>2</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>465020</mn><mo>…</mo><mo> </mo><mi>x</mi><mo>+</mo><mn>23</mn><mo>.</mo><mn>1646</mn><mo>…</mo></mrow></mfenced></math>   <em><strong>(A1</strong></em><em><strong>)</strong></em><strong><em>(A1</em><em>)(G2)</em></strong><em><strong><br><br></strong></em><strong>Note:</strong> Award <strong><em>(A1</em><em>)</em></strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>465</mn><mi>x</mi></math>. Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>23</mn><mo>.</mo><mn>2</mn></math>. If the answer is not an equation, award at most <em><strong>(A1)(A0)</strong></em>.<br><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>regression line through their <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math>        <em><strong>(A1</strong></em><em><strong>)</strong></em><strong>(ft)<br></strong></p>
<p>regression line through their <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>23</mn><mo>.</mo><mn>2</mn><mo>)</mo></math>        <em><strong>(A1</strong></em><em><strong>)</strong></em><strong>(ft)</strong><em><strong><br><br></strong></em></p>
<p><strong>Note:</strong> Award a maximum of <em><strong>(A1)(A0)</strong></em> if the line is not straight/ruler not used. Award <em><strong>(A0)(A0)</strong></em> if the points are connected.<br>Follow through from their point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> in part (b) and their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept in part (e)(i).<br>If <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> is not plotted or labelled, then follow through from part (b).<br><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>465020</mn><mo>…</mo><mfenced><mn>27</mn></mfenced><mo>+</mo><mn>23</mn><mo>.</mo><mn>1646</mn><mo>…</mo></math>        <em><strong>(M1</strong></em><em><strong>)<br></strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into their regression equation.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn><mo>.</mo><mn>7</mn></math> (minutes) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>35</mn><mo>.</mo><mn>7201</mn><mo>…</mo></mrow></mfenced></math>        <em><strong>(A1</strong></em><em><strong>)</strong></em><strong>(ft)<em>(G2</em><em>)</em></strong></p>
<p><strong><br>Note:</strong> Follow through from their equation in part (e)(i).</p>
<p><strong><br>OR</strong></p>
<p>an attempt to use their regression line to find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> value at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>27</mn></math></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for an indication of using their regression line. This must be illustrated by vertical <strong>and</strong> horizontal lines or marks at the correct place(s) on their scatter diagram.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn><mo>.</mo><mn>7</mn></math> (minutes)        <em><strong>(A1</strong></em><em><strong>)</strong></em><strong>(ft)</strong></p>
<p><strong><br></strong><strong>Note:</strong> Follow through from part (e)(ii).</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wind speed <strong>does not cause a change</strong> in the time to charge (the robot)      <em><strong>(A1</strong></em><em><strong>)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for a statement that communicates the meaning of a non-causal relationship between the two variables.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>It is known that the weights of male Persian cats are normally distributed with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>1</mn><mo> </mo><mtext>kg</mtext></math>&nbsp;and variance <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><msup><mtext>kg</mtext><mn>2</mn></msup></math>.</p>
</div>

<div class="specification">
<p>A group of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> male Persian cats are drawn from this population.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a diagram showing the above information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the proportion of male Persian cats weighing between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the expected number of cats in this group that have a weight of less&nbsp;than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>3</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is found that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> of the cats weigh more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mtext>kg</mtext></math>. Estimate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ten of the cats are chosen at random. Find the probability that exactly one of them&nbsp;weighs over <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>25</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for a normal curve with mean labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>1</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math>, <em><strong>A1</strong></em> for indication of SD <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>)</mo><mo>:</mo></math> marks on horizontal axis at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>6</mn></math> and/or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>6</mn></math>&nbsp;<strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> and/or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> on the correct side and approximately correct position.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>6</mn><mo>.</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>5</mn><mo>.</mo><mn>5</mn><mo>&lt;</mo><mi>X</mi><mo>&lt;</mo><mn>6</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong>labelled sketch of region&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>673</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>673074</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&lt;</mo><mn>5</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>0547992</mn><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0547992</mn><mo>…</mo><mo>×</mo><mn>80</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>38</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>38393</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>15</mn></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>85</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>15</mn></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&lt;</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>85</mn></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong>labelled sketch of region&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>62</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>6</mn><mo>.</mo><mn>61821</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>6</mn><mo>.</mo><mn>25</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>382088</mn><mo>…</mo></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></p>
<p>recognition of binomial&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p>e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>10</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>382088</mn><mo>…</mo><mo>)</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0502</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0501768</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A2</em></strong></p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In a company it is found that 25 % of the employees encountered traffic on their way to work. From those who encountered traffic the probability of being late for work is 80 %.</p>
<p>From those who did not encounter traffic, the probability of being late for work is 15 %.</p>
<p>The tree diagram illustrates the information.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The company investigates the different means of transport used by their employees in the past year to travel to work. It was found that the three most common means of transport used to travel to work were public transportation (<em>P </em>), car (<em>C </em>) and bicycle (<em>B </em>).</p>
<p>The company finds that 20 employees travelled by car, 28 travelled by bicycle and 19 travelled by public transportation in the last year.</p>
<p>Some of the information is shown in the Venn diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>There are 54 employees in the company.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>a</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>b</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;encountered traffic and was late for work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;was late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;encountered traffic given that they were late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>y</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees who, in the last year, did not travel to work by car, bicycle or public transportation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {\left( {C \cup B} \right) \cap P'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>C</mi> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>∩</mo> <msup> <mi>P</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>a</em> = 0.2     <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>b</em> = 0.85&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.25&nbsp;× 0.8&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note</strong>: Award <em><strong>(M1)</strong></em> for a correct product.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.2\,\,\,\left( {\,\frac{1}{5},\,\,\,20\% } \right)">
  <mo>=</mo>
  <mn>0.2</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mn>1</mn>
        <mn>5</mn>
      </mfrac>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>20</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.25&nbsp;× 0.8 + 0.75&nbsp;× 0.15&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for their (0.25&nbsp;× 0.8) and (0.75&nbsp;× 0.15),&nbsp;<em><strong>(M1)</strong></em> for adding two products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.313\,\,\,\left( {0.3125,\,\,\,\frac{5}{{16}},\,\,\,31.3\% } \right)"> <mo>=</mo> <mn>0.313</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.3125</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>5</mn> <mrow> <mn>16</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>31.3</mn> <mi mathvariant="normal">%</mi> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; <em><strong>(A1)</strong></em><strong>(ft)<em>(G3)</em></strong></p>
<p><strong>Note:</strong> Award the final <em><strong>(A1)</strong></em><strong>(ft)</strong> only if answer does not exceed 1. Follow through from part (b)(i).</p>
<p><strong><em>[3 marks]</em></strong></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.25 \times 0.8}}{{0.25 \times 0.8 + 0.75 \times 0.15}}"> <mfrac> <mrow> <mn>0.25</mn> <mo>×</mo> <mn>0.8</mn> </mrow> <mrow> <mn>0.25</mn> <mo>×</mo> <mn>0.8</mn> <mo>+</mo> <mn>0.75</mn> <mo>×</mo> <mn>0.15</mn> </mrow> </mfrac> </math></span>&nbsp; &nbsp; <strong><em>(A1)</em>(ft)</strong><strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for a correct numerator (their part (b)(i)), <strong><em>(A1)</em>(ft)</strong> for a correct denominator (their part (b)(ii)). Follow through from parts (b)(i) and (b)(ii).</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.64\,\,\,\left( {\frac{{16}}{{25}},\,\,64{\text{% }}} \right)"> <mo>=</mo> <mn>0.64</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mn>25</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>64</mn> <mrow> <mtext>%&nbsp;</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp;&nbsp; <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p><strong>Note:</strong> Award final <strong><em>(A1)</em>(ft)</strong> only if answer does not exceed 1.</p>
<p><em><strong>[3&nbsp;marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>x</em> =) 3&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em><strong>[1 Mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>y</em>&nbsp;=) 10&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Following through from part (c)(i) but only if their <em>x</em> is less than or equal to 13.</p>
<p><em><strong>[1 Mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>54&nbsp;− (10 + 3 + 4 + 2 + 6 + 8 + 13)&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting their correct sum from 54. Follow through from their part (c).</p>
<p>= 8&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> only if their sum does not exceed 54. Follow through from their part (c).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 + 8 + 13&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note</strong>: Award (M1) for summing 6, 8 and 13.</p>
<p>27&nbsp; &nbsp; &nbsp;<em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In a school, all Mathematical Studies SL students were given a test. The test contained four questions, each one on a different topic from the syllabus. The quality of each response was classified as satisfactory or not satisfactory. Each student answered only three of the four questions, each on a separate answer sheet.</p>
<p>The table below shows the number of satisfactory and not satisfactory responses for each question.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.16.22.png" alt="M17/5/MATSD/SP2/ENG/TZ2/01"></p>
</div>

<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test is carried out at the 5% significance level for the data in the table.</p>
</div>

<div class="specification">
<p>The critical value for this test is 7.815.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a response to the Calculus question;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a satisfactory response to the Calculus question;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a satisfactory response, given that it is a response to the Calculus question.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The teacher groups the responses by topic, and chooses two responses to the Logic question. Find the probability that both are not satisfactory.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null hypothesis for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the expected frequency of satisfactory Calculus responses is 12.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> statistic for this data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of this <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{5}{\text{ }}\left( {\frac{{18}}{{90}};{\text{ }}0.2;{\text{ }}20\% } \right)">
  <mfrac>
    <mn>1</mn>
    <mn>5</mn>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>18</mn>
        </mrow>
        <mrow>
          <mn>90</mn>
        </mrow>
      </mfrac>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.2</mn>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>20</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)(A1)(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for correct numerator, <strong><em>(A1) </em></strong>for correct denominator.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{9}{\text{ }}\left( {\frac{{10}}{{90}};{\text{ }}0{\text{.}}\bar 1;{\text{ }}0.111111 \ldots ;{\text{ }}11.1\% } \right)">
  <mfrac>
    <mn>1</mn>
    <mn>9</mn>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mn>90</mn>
        </mrow>
      </mfrac>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0</mn>
      <mrow>
        <mtext>.</mtext>
      </mrow>
      <mrow>
        <mover>
          <mn>1</mn>
          <mo stretchy="false">¯</mo>
        </mover>
      </mrow>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.111111</mn>
      <mo>…</mo>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>11.1</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)(A1)(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for correct numerator, <strong><em>(A1) </em></strong>for correct denominator.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{9}{\text{ }}\left( {\frac{{10}}{{18}};{\text{ }}0.\bar 5;{\text{ }}0.555556 \ldots ;{\text{ }}55.6\% } \right)">
  <mfrac>
    <mn>5</mn>
    <mn>9</mn>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mn>18</mn>
        </mrow>
      </mfrac>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.</mn>
      <mrow>
        <mover>
          <mn>5</mn>
          <mo stretchy="false">¯</mo>
        </mover>
      </mrow>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.555556</mn>
      <mo>…</mo>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>55.6</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)(A1)(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for correct numerator, <strong><em>(A1) </em></strong>for correct denominator.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{6}{{20}} \times \frac{5}{{19}}">
  <mfrac>
    <mn>6</mn>
    <mrow>
      <mn>20</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>5</mn>
    <mrow>
      <mn>19</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(A1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for two correct fractions seen, <strong><em>(M1) </em></strong>for multiplying their two fractions.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{38}}{\text{ }}\left( {\frac{{30}}{{380}};{\text{ }}0.0789473 \ldots ;{\text{ }}7.89\% } \right)">
  <mfrac>
    <mn>3</mn>
    <mrow>
      <mn>38</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>30</mn>
        </mrow>
        <mrow>
          <mn>380</mn>
        </mrow>
      </mfrac>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.0789473</mn>
      <mo>…</mo>
      <mo>;</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>7.89</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{H}}_0}">
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mn>0</mn>
    </msub>
  </mrow>
</math></span>: quality (of response) and topic (from the syllabus) are independent     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept there is no association between quality (of response) and topic (from the syllabus). Do not accept “not related” or “not correlated” or “influenced”.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{18}}{{90}} \times \frac{{60}}{{90}} \times 90">
  <mfrac>
    <mrow>
      <mn>18</mn>
    </mrow>
    <mrow>
      <mn>90</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>60</mn>
    </mrow>
    <mrow>
      <mn>90</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>90</mn>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{18 \times 60}}{{90}}">
  <mfrac>
    <mrow>
      <mn>18</mn>
      <mo>×</mo>
      <mn>60</mn>
    </mrow>
    <mrow>
      <mn>90</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution in expected value formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( = ){\text{ }}12">
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>12</mn>
</math></span>     <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     The conclusion, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( = ){\text{ }}12">
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>12</mn>
</math></span>, must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\chi _{calc}^2 = ){\text{ }}1.46{\text{ }}(1.46\overline {36} ;{\text{ }}1.46363 \ldots )">
  <mo stretchy="false">(</mo>
  <msubsup>
    <mi>χ</mi>
    <mrow>
      <mi>c</mi>
      <mi>a</mi>
      <mi>l</mi>
      <mi>c</mi>
    </mrow>
    <mn>2</mn>
  </msubsup>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>1.46</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>1.46</mn>
  <mover>
    <mn>36</mn>
    <mo accent="false">¯</mo>
  </mover>
  <mo>;</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>1.46363</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.46 &lt; 7.815">
  <mn>1.46</mn>
  <mo>&lt;</mo>
  <mn>7.815</mn>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.690688 \ldots  &gt; 0.05">
  <mn>0.690688</mn>
  <mo>…</mo>
  <mo>&gt;</mo>
  <mn>0.05</mn>
</math></span>     <strong><em>(R1)</em></strong></p>
<p>the null hypothesis is not rejected     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>OR</strong></p>
<p>the quality of the response and the topic are independent     <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(R1) </em></strong>for a correct comparison of either their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> statistic to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> critical value or the correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value 0.690688… to the test level, award <strong><em>(A1)</em>(ft) </strong>for the correct result from that comparison. Accept “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\chi _{{\text{calc}}}^2 &lt; \chi _{{\text{crit}}}^2">
  <msubsup>
    <mi>χ</mi>
    <mrow>
      <mrow>
        <mtext>calc</mtext>
      </mrow>
    </mrow>
    <mn>2</mn>
  </msubsup>
  <mo>&lt;</mo>
  <msubsup>
    <mi>χ</mi>
    <mrow>
      <mrow>
        <mtext>crit</mtext>
      </mrow>
    </mrow>
    <mn>2</mn>
  </msubsup>
</math></span>” for the comparison, but only if their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\chi _{{\text{calc}}}^2">
  <msubsup>
    <mi>χ</mi>
    <mrow>
      <mrow>
        <mtext>calc</mtext>
      </mrow>
    </mrow>
    <mn>2</mn>
  </msubsup>
</math></span> value is explicitly seen in part (f). Follow through from their answers to part (f) and part (c). Do not award <strong><em>(R0)(A1)</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Mackenzie conducted an experiment on the reaction times of teenagers. The results of the experiment are displayed in the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Use the graph to estimate the</p>
</div>

<div class="specification">
<p>Mackenzie created the cumulative frequency graph using the following grouped frequency table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Upon completion of the experiment, Mackenzie realized that some values were grouped&nbsp;incorrectly in the frequency table. Some reaction times recorded in the interval <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#60;</mo><mi>t</mi><mo>&#8804;</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>&nbsp;should have been recorded in the interval <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn><mo>&#60;</mo><mi>t</mi><mo>&#8804;</mo><mn>0</mn><mo>.</mo><mn>4</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>median reaction time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>interquartile range of the reaction times.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the estimated number of teenagers who have a reaction time greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn></math> seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mtext>th</mtext></math> percentile of the reaction times from the cumulative frequency graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal class from the table.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find an estimate of the mean reaction time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how, if at all, the estimated mean and estimated median reaction times will change if the errors are corrected. Justify your response.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>58</mn><mo> </mo><mfenced><mtext>s</mtext></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>7</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>42</mn></math>           <em><strong>(A1)(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for correct quartiles seen, <em><strong>M1</strong> </em>for subtraction of their quartiles.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>28</mn><mo> </mo><mfenced><mtext>s</mtext></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> (people have reaction time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≤</mo><mn>0</mn><mo>.</mo><mn>4</mn></math>)           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>31</mn></math> (people have reaction time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>4</mn></math>)          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>90</mn><mo>%</mo><mo>×</mo><mn>40</mn><mo>=</mo></mrow></mfenced><mo> </mo><mn>36</mn></math>   <strong>OR   </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8</mn><mo> </mo><mi>s</mi></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>6</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>b</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>4</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>6</mn><mo>&lt;</mo><mi>t</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>8</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>55</mn><mo> </mo><mtext>s</mtext></math>         <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the mean will increase         <em><strong>A1</strong></em></p>
<p>because the incorrect reaction times are moving from a lower interval to a higher interval which will increase the numerator of the mean calculation         <em><strong>R1</strong></em></p>
<p> </p>
<p>the median will stay the same         <em><strong>A1</strong></em></p>
<p>because the median or middle of the data is greater than both intervals being changed         <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award<em><strong> A1R0</strong></em>.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to determine the median and interquartile range from the given graph. Some lost marks due to use of one significant figure values or because of incorrectly reading the quartiles as 0.75 and 0.25. Candidates were also able to find the estimated number of teenagers with reaction time greater than 0.4s in part (b), but determining the 90th percentile in part (c) proved to be more challenging. Most made a good attempt at completing the frequency table in part (d), but some used cumulative values from the graph incorrectly. Candidates who lost marks in part (d), were able to get “follow through” marks in parts (e) and (f). In part (e), most candidates were able to determine the modal class correctly. Not all candidates used the correct formula to find an estimate for the mean. Candidates who used their calculators usually obtained the correct answer. In part (g), few candidates were able to produce correct statements related to the changes of the mean and the median, and even fewer were able to support these statements with well-articulated reasons.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A pharmaceutical company has developed a new drug to decrease cholesterol. The final stage of testing the new drug is to compare it to their current drug. They have 150 volunteers, all recently diagnosed with high cholesterol, from which they want to select a sample of size 18. They require as close as possible 20% of the sample to be below the age of 30, 30% to be between the ages of 30 and 50 and 50% to be over the age of 50.</p>
</div>

<div class="specification">
<p>Half of the 18 volunteers are given the current drug and half are given the new drug. After six months each volunteer has their cholesterol level measured and the decrease during the six months is shown in the table.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Calculate the mean decrease in cholesterol for</p>
</div>

<div class="specification">
<p>The company uses a t-test, at the 1% significance level, to determine if the new drug is more effective at decreasing cholesterol.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name for this type of sampling technique.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of volunteers in the sample under the age of 30.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The new drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The current drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an assumption that the company is making, in order to use a t-test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hypotheses for this t-test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the p-value for this t-test.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of this test, in context, giving a reason.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>stratified sampling        <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 \times 18 = 3.6">
  <mn>0.2</mn>
  <mo>×</mo>
  <mn>18</mn>
  <mo>=</mo>
  <mn>3.6</mn>
</math></span>       <em><strong>M1A1</strong></em></p>
<p>so 4 volunteers need to be chosen       <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>34.8 mg/dL      <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>24.7 mg/dL      <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER </strong></p>
<p>The decreases in cholesterol are distributed normally    <em><strong>A1</strong></em></p>
<p><strong>OR </strong></p>
<p>The variance of the two groups of volunteers is equal.    <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_0}\,{\text{:}}\,\bar N = \bar C">
  <mrow>
    <msub>
      <mi>H</mi>
      <mn>0</mn>
    </msub>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mover>
      <mi>N</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_1}\,{\text{:}}\,\bar N &gt; \bar C">
  <mrow>
    <msub>
      <mi>H</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mover>
      <mi>N</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>&gt;</mo>
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>         <em><strong>A1</strong></em></p>
<p>where N and C represent the decreases of the new and current drug</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>df = 16, t = 2.77       <em><strong> (M1) </strong></em></p>
<p>p-value = 0.00683        <em><strong>A2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Since 0.00683 &lt; 0.01        <em><strong>R1 </strong></em></p>
<p>Reject H<sub>0</sub>. There is evidence, at the 1% level, that the new drug is more effective.       <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows a probability distribution for the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1.2">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.18.09.png" alt="M17/5/MATME/SP2/ENG/TZ2/10"></p>
</div>

<div class="specification">
<p>A bag contains white and blue marbles, with at least three of each colour. Three marbles are drawn from the bag, without replacement. The number of blue marbles drawn is given by the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>A game is played in which three marbles are drawn from the bag of ten marbles, without replacement. A player wins a prize if three white marbles are drawn.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability of drawing three blue marbles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the probability of drawing three white marbles is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{6}">
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The bag contains a total of ten marbles of which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> are white. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Grant plays the game until he wins two prizes. Find the probability that he wins his second prize on his eighth attempt.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X)">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
</math></span> formula     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0(p) + 1(0.5) + 2(0.3) + 3(q) = 1.2">
  <mn>0</mn>
  <mo stretchy="false">(</mo>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>1</mn>
  <mo stretchy="false">(</mo>
  <mn>0.5</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>2</mn>
  <mo stretchy="false">(</mo>
  <mn>0.3</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>3</mn>
  <mo stretchy="false">(</mo>
  <mi>q</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.2</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = \frac{1}{{30}}">
  <mi>q</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>30</mn>
    </mrow>
  </mfrac>
</math></span>, 0.0333     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of summing probabilities to 1     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p + 0.5 + 0.3 + q = 1">
  <mi>p</mi>
  <mo>+</mo>
  <mn>0.5</mn>
  <mo>+</mo>
  <mn>0.3</mn>
  <mo>+</mo>
  <mi>q</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{1}{6},{\text{ }}0.167">
  <mi>p</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.167</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P (3 blue)}} = \frac{1}{{30}},{\text{ }}0.0333">
  <mrow>
    <mtext>P (3 blue)</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>30</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.0333</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid reasoning     <strong><em>R1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P (3 white)}} = {\text{P(0 blue)}}">
  <mrow>
    <mtext>P (3 white)</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>P(0 blue)</mtext>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P(3 white)}} = \frac{1}{6}">
  <mrow>
    <mtext>P(3 white)</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
</math></span>     <strong><em>AG</em></strong>     <strong><em>N0</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid method     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P(3 white)}} = \frac{w}{{10}} \times \frac{{w - 1}}{9} \times \frac{{w - 2}}{8},{\text{ }}\frac{{_w{C_3}}}{{_{10}{C_3}}}">
  <mrow>
    <mtext>P(3 white)</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mi>w</mi>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mi>w</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mn>9</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mi>w</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mn>8</mn>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mfrac>
    <mrow>
      <msub>
        <mi></mi>
        <mi>w</mi>
      </msub>
      <mrow>
        <msub>
          <mi>C</mi>
          <mn>3</mn>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <msub>
        <mi></mi>
        <mrow>
          <mn>10</mn>
        </mrow>
      </msub>
      <mrow>
        <msub>
          <mi>C</mi>
          <mn>3</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>correct equation     <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{w}{{10}} \times \frac{{w - 1}}{9} \times \frac{{w - 2}}{8} = \frac{1}{6},{\text{ }}\frac{{_w{C_3}}}{{_{10}{C_3}}} = 0.167">
  <mfrac>
    <mi>w</mi>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mi>w</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mn>9</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mi>w</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mn>8</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mfrac>
    <mrow>
      <msub>
        <mi></mi>
        <mi>w</mi>
      </msub>
      <mrow>
        <msub>
          <mi>C</mi>
          <mn>3</mn>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <msub>
        <mi></mi>
        <mrow>
          <mn>10</mn>
        </mrow>
      </msub>
      <mrow>
        <msub>
          <mi>C</mi>
          <mn>3</mn>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.167</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 6">
  <mi>w</mi>
  <mo>=</mo>
  <mn>6</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing one prize in first seven attempts     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right),{\text{ }}{\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>7</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>6</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>1</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>5</mn>
            <mn>6</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>6</mn>
    </msup>
  </mrow>
</math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right){\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6},{\text{ }}0.390714">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>7</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>6</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>1</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>5</mn>
            <mn>6</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>6</mn>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.390714</mn>
</math></span></p>
<p>correct approach     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right){\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6} \times \frac{1}{6}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>7</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>6</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>1</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>5</mn>
            <mn>6</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>6</mn>
    </msup>
  </mrow>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
</math></span></p>
<p>0.065119</p>
<p>0.0651     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Two events <em>A</em> and <em>B</em> are such that P(<em>A</em>) = 0.62 and P<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {A \cap B} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩<!-- ∩ --></mo>
      <mi>B</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> = 0.18.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(<em>A</em> ∩ <em>B′ </em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P((<em>A</em> ∪ <em>B</em>)′<em> </em>) = 0.19, find P(<em>A </em>|<em> </em><em>B</em>′<em> </em>).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach</p>
<p><em>eg</em>  Venn diagram, P(<em>A</em>) − P (<em>A</em> ∩ <em>B</em>), 0.62 − 0.18      <em><strong>(M1) </strong></em></p>
<p>P(<em>A</em> ∩ <em>B' </em>) = 0.44      <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find either P(<em>B</em>′ ) or P(<em>B</em>)      <em><strong>(M1)</strong></em></p>
<p><em>eg  </em><img src=""> (seen anywhere), 1 − P(<em>A</em> ∩ <em>B</em>′<em> </em>) − P((<em>A</em> ∪ <em>B</em>)′<em> </em>)</p>
<p>correct calculation for P(<em>B</em>′ ) or P(<em>B</em>)      <em><strong>(A1)</strong></em></p>
<p><em>eg </em> 0.44 + 0.19, 0.81 − 0.62 + 0.18</p>
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {A \cap B'} \right)}}{{{\text{P}}\left( {B'} \right)}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>A</mi>
          <mo>∩</mo>
          <msup>
            <mi>B</mi>
            <mo>′</mo>
          </msup>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <msup>
            <mi>B</mi>
            <mo>′</mo>
          </msup>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>     <em><strong> (A1)</strong></em></p>
<p><em>eg</em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.44}}{{0.19 + 0.44}},\,\,\frac{{0.44}}{{1 - 0.37}}">
  <mfrac>
    <mrow>
      <mn>0.44</mn>
    </mrow>
    <mrow>
      <mn>0.19</mn>
      <mo>+</mo>
      <mn>0.44</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mrow>
      <mn>0.44</mn>
    </mrow>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mn>0.37</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.698412</p>
<p>P(<em>A </em>|<em> </em><em>B</em>′<em> </em>) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{44}}{{63}}">
  <mfrac>
    <mrow>
      <mn>44</mn>
    </mrow>
    <mrow>
      <mn>63</mn>
    </mrow>
  </mfrac>
</math></span>  (exact), 0.698     <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The weight, <em>W</em>, of basketball players in a tournament is found to be normally distributed with a mean of 65 kg and a standard deviation of 5 kg.</p>
</div>

<div class="specification">
<p>The probability that a basketball player has a weight that is within 1.5 standard deviations of the mean is <em>q</em>.</p>
</div>

<div class="specification">
<p>A basketball coach observed 60 of her players to determine whether their performance and their weight were independent of each other. Her observations were recorded as shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
<p>She decided to conduct a <em>χ </em><sup>2</sup> test for independence at the 5% significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a basketball player has a weight that is less than 61 kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a training session there are 40 basketball players.</p>
<p>Find the expected number of players with a weight less than 61 kg in this training session.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a normal curve to represent this probability.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>q</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P(<em>W</em> &gt; <em>k</em>) = 0.225 , find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test&nbsp;state the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test find the<em> p</em>-value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a conclusion for this test. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>P(<em>W</em> &lt; 61)&nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability statement.</p>
<p><strong>OR</strong></p>
<p><img src="">&nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct region labelled and shaded on diagram.</p>
<p>= 0.212 (0.21185…, 21.2%)&nbsp; &nbsp; &nbsp;<em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>40 × 0.21185…&nbsp; &nbsp; <em><strong>&nbsp;(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for product of 40 and their 0.212.</p>
<p>= 8.47 (8.47421...)&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong>&nbsp;Follow through from their part (a)(i) provided their answer to part (a)(i) is less than 1.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&nbsp;</p>
<p><em><strong><img src="">&nbsp; &nbsp; (A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for two correctly labelled vertical lines in approximately correct positions. The values 57.5 and 72.5, or <em>μ&nbsp;</em>− 1.5<em>σ</em> and <em>μ&nbsp;</em>+ 1.5<em>σ</em> are acceptable labels. Award <em><strong>(M1)</strong></em> for correctly shaded region marked by their two vertical lines.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.866 (0.86638…, 86.6%)&nbsp; &nbsp; &nbsp;<strong><em> (A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from their part (b)(i) shaded region if their values are clear.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(<em>W</em>&nbsp;&lt;&nbsp;<em>k</em>) = 0.775&nbsp;&nbsp; &nbsp;<strong><em> (M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><strong><img src="">&nbsp;&nbsp;<em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct region labelled and shaded on diagram.</p>
<p>(<em>k</em> =) 68.8&nbsp; (68.7770…)&nbsp; &nbsp; &nbsp;<em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(H<sub>0</sub>:) performance (of players) and (their) weight are independent.&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept “there is no association between performance (of players) and (their) weight”. Do not accept "not related" or "not correlated" or "not influenced".</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.287&nbsp; (0.287436…)&nbsp; &nbsp; &nbsp;<em><strong>(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>accept/ do not reject null hypothesis/H<sub>0</sub>&nbsp; &nbsp; &nbsp;<strong><em>(A1)</em>(ft)</strong></p>
<p><strong>OR</strong></p>
<p>performance (of players) and (their) weight are independent. <strong><em>(A1)</em>(ft)</strong></p>
<p>0.287 &gt; 0.05&nbsp; &nbsp; &nbsp;<em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Accept <em>p</em>-value&gt;significance level provided their <em>p</em>-value is seen in b(ii). Accept 28.7% &gt; 5%. Do not award <em><strong>(A1)(R0)</strong></em>. Follow through from part (d).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>On one day 180 flights arrived at a particular airport. The distance travelled and the arrival status for each incoming flight was recorded. The flight was then classified as on time, slightly delayed, or heavily delayed.</p>
<p>The results are shown in the following table.</p>
<p><img src=""></p>
<p>A <em>χ</em><sup>2</sup> test is carried out at the 10 % significance level to determine whether the arrival status of incoming flights is independent of the distance travelled.</p>
</div>

<div class="specification">
<p>The critical value for this test is 7.779.</p>
</div>

<div class="specification">
<p>A flight is chosen at random from the 180 recorded flights.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected frequency of flights travelling at most 500 km and arriving slightly delayed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <em>χ</em><sup>2</sup> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the associated <em>p</em>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, whether you would reject the null hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that this flight arrived on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that this flight was not heavily delayed, find the probability that it travelled between 500 km and 5000 km.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two flights are chosen at random from those which were slightly delayed.</p>
<p>Find the probability that each of these flights travelled at least 5000 km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>The arrival status is dependent on the distance travelled by the incoming flight     <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept “associated” or “not independent”.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{60 \times 45}}{{180}}"> <mfrac> <mrow> <mn>60</mn> <mo>×</mo> <mn>45</mn> </mrow> <mrow> <mn>180</mn> </mrow> </mfrac> </math></span>  <strong>OR  </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{60}}{{180}} \times \frac{{45}}{{180}} \times 180"> <mfrac> <mrow> <mn>60</mn> </mrow> <mrow> <mn>180</mn> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mn>45</mn> </mrow> <mrow> <mn>180</mn> </mrow> </mfrac> <mo>×</mo> <mn>180</mn> </math></span>     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into expected value formula.</p>
<p>= 15    <em><strong> (A1) (G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4     <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if “2 + 2 = 4” is seen.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>9.55 (9.54671…)    <em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(G1)</strong></em> for an answer of 9.54.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.0488 (0.0487961…)     <em><strong>(G1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Reject the Null Hypothesis     <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from their hypothesis in part (a).</p>
<p>9.55 (9.54671…) &gt; 7.779     <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>OR </strong></p>
<p>0.0488 (0.0487961…) &lt; 0.1     <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Do not award <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(R0)</strong></em><strong>(ft)</strong>. Follow through from part (d). Award <em><strong>(R1)</strong></em><strong>(ft)</strong> for a correct comparison, <em><strong>(A1)</strong></em><strong>(ft)</strong> for a consistent conclusion with the answers to parts (a) and (d). Award <em><strong>(R1)</strong></em><strong>(ft)</strong> for <em>χ</em><sup>2</sup><em><sub>calc</sub></em> &gt; <em>χ</em><sup>2</sup><em><sub>crit </sub></em>, provided the calculated value is explicitly seen in part (d)(i).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{52}}{{180}}\,\,\left( {0.289,\,\,\frac{{13}}{{45}},\,\,28.9\,{\text{% }}} \right)"> <mfrac> <mrow> <mn>52</mn> </mrow> <mrow> <mn>180</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.289</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>13</mn> </mrow> <mrow> <mn>45</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>28.9</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>(A1)(A1) (G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{35}}{{97}}\,\,\left( {0.361,\,\,36.1\,{\text{% }}} \right)"> <mfrac> <mrow> <mn>35</mn> </mrow> <mrow> <mn>97</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.361</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>36.1</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>(A1)(A1) (G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{14}}{{45}} \times \frac{{13}}{{44}}"> <mfrac> <mrow> <mn>14</mn> </mrow> <mrow> <mn>45</mn> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mn>13</mn> </mrow> <mrow> <mn>44</mn> </mrow> </mfrac> </math></span>     <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for two correct fractions and <em><strong>(M1)</strong></em> for multiplying their two fractions.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{182}}{{1980}}\,\,\left( {0.0919,\,\,\frac{{91}}{{990}},\,0.091919 \ldots ,\,9.19\,{\text{% }}} \right)"> <mo>=</mo> <mfrac> <mrow> <mn>182</mn> </mrow> <mrow> <mn>1980</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.0919</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>91</mn> </mrow> <mrow> <mn>990</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mn>0.091919</mn> <mo>…</mo> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mn>9.19</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>(A1) (G2)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A transportation company owns 30 buses. The distance that each bus has travelled since being purchased by the company is recorded. The cumulative frequency curve for these data is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>It is known that 8 buses travelled more than <em>m</em> kilometres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance between 15000 and 20000 kilometres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the median distance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the interquartile range.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the percentage of buses that travelled a distance greater than the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance less than or equal to 12 000 km.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>m</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The smallest distance travelled by one of the buses was 2500 km.<br>The longest distance travelled by one of the buses was 23 000 km.</p>
<p><strong>On graph paper</strong>, draw a box-and-whisker diagram for these data. Use a scale of 2 cm to represent 5000 km.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>28 − 20     <em><strong>(A1)</strong></em></p>
<p><em><strong>Note:</strong></em> Award <em><strong>(A1)</strong></em> for 28 and 20 seen.</p>
<p>8     <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>13500     <em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Accept an answer in the range 13500 to 13750.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>10000     <em><strong>(G1)</strong></em></p>
<p><strong>Note:</strong> Accept an answer in the range 10000 to 10250.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>16000     <em><strong>(G1)</strong></em></p>
<p><strong>Note:</strong> Accept an answer in the range 16000 to 16250.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6000     <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from their part (b)(ii) and (iii).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>25%    <strong><em> (A1)</em></strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>11     <em><strong>(G1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>30 − 8  <strong>OR</strong>  22     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting 30 − 8 or 22 seen.</p>
<p>15750    <em><strong> (A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Accept 15750 ± 250.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct label and scale; accept “distance” or “km” for label.</p>
<p><strong><em>(A1)</em>(ft)</strong> for correct median,<br><strong><em>(A1)</em>(ft)</strong> for correct quartiles and box,<br><em><strong>(A1)</strong></em> for endpoints at 2500 and 23 000 joined to box by straight lines.<br>Accept ±250 for the median, quartiles and endpoints.<br>Follow through from their part (b).<br>The final <em><strong>(A1)</strong></em> is not awarded if the line goes through the box.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> has the following probability distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.34.18.png" alt="N17/5/MATME/SP2/ENG/TZ0/04"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2|X &gt; 0)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>total probability = 1</p>
<p>correct equation     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.475 + 2{k^2} + \frac{k}{{10}} + 6{k^2} = 1,{\text{ }}8{k^2} + 0.1k - 0.525 = 0">
  <mn>0.475</mn>
  <mo>+</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mi>k</mi>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>8</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>0.1</mn>
  <mi>k</mi>
  <mo>−</mo>
  <mn>0.525</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 0.25">
  <mi>k</mi>
  <mo>=</mo>
  <mn>0.25</mn>
</math></span>     <strong><em>A2     N3</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2) = 0.025">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.025</mn>
</math></span>     <strong><em>A1     N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach for finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &gt; 0)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 0.475,{\text{ }}2({0.25^2}) + 0.025 + 6({0.25^2}),{\text{ }}1 - {\text{P}}(X = 0),{\text{ }}2{k^2} + \frac{k}{{10}} + 6{k^2}">
  <mn>1</mn>
  <mo>−</mo>
  <mn>0.475</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>2</mn>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mn>0.25</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>0.025</mn>
  <mo>+</mo>
  <mn>6</mn>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mn>0.25</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mi>k</mi>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span></p>
<p>correct substitution into formula for conditional probability     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.025}}{{1 - 0.475}},{\text{ }}\frac{{0.025}}{{0.525}}">
  <mfrac>
    <mrow>
      <mn>0.025</mn>
    </mrow>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mn>0.475</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mn>0.025</mn>
    </mrow>
    <mrow>
      <mn>0.525</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.0476190</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2|X &gt; 0) = \frac{1}{{21}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>21</mn>
    </mrow>
  </mfrac>
</math></span> (exact), 0.0476     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The scores of the eight highest scoring countries in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2019</mn></math> Eurovision song contest are&nbsp;shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>For this data, find</p>
</div>

<div class="specification">
<p>Chester is investigating the relationship between the highest-scoring countries&rsquo; Eurovision&nbsp;score and their population size to determine whether population size can reasonably be&nbsp;used to predict a country&rsquo;s score.</p>
<p>The populations of the countries, to the nearest million, are shown in the table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Chester finds that, for this data, the Pearson&rsquo;s product moment correlation coefficient&nbsp;is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>249</mn></math>.</p>
</div>

<div class="specification">
<p>Chester then decides to find the Spearman&rsquo;s rank correlation coefficient for this data,&nbsp;and creates a table of ranks.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Write down the value of:</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the upper quartile.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine if the Netherlands’ score is an outlier for this data. Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether it would be appropriate for Chester to use the equation of a regression line for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> to predict a country’s Eurovision score. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the Spearman’s rank correlation coefficient <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret the value obtained for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When calculating the ranks, Chester incorrectly read the Netherlands’ score as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>478</mn></math>. Explain why the value of the Spearman’s rank correlation <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math> does not change despite this error.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>370</mn><mo>+</mo><mn>472</mn></mrow><mn>2</mn></mfrac></math>         <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> This <em><strong>(M1)</strong></em> can also be awarded for either a correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Q</mtext><mn>3</mn></msub></math> or a correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Q</mtext><mn>1</mn></msub></math> in part (a)(ii).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Q</mtext><mn>3</mn></msub><mo>=</mo><mn>421</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>their part (a)(i) – their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Q</mtext><mn>1</mn></msub></math>   (clearly stated)        <em><strong>(M1)</strong></em></p>
<p>IQR <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>421</mn><mo>-</mo><mn>318</mn><mo>=</mo></mrow></mfenced><mo> </mo><mn>103</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Q</mtext><mn>3</mn></msub><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>(IQR) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math>) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>421</mn><mo>+</mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>103</mn></mrow></mfenced></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>575</mn><mo>.</mo><mn>5</mn></math></p>
<p>since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>498</mn><mo>&lt;</mo><mn>575</mn><mo>.</mo><mn>5</mn></math>         <em><strong>R1</strong></em></p>
<p>Netherlands is not an outlier         <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>R1</strong> </em>is dependent on the <em><strong>(M1)</strong></em>. Do not award <em><strong>R0A1</strong></em>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not appropriate (“no” is sufficient)          <em><strong>A1</strong></em></p>
<p>as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> is too close to zero / too weak a correlation          <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>683</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>682646</mn><mo>…</mo></mrow></mfenced></math>          <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>there is a (positive) association between the population size and the score        <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>there is a (positive) linear correlation between the ranks of the population size and the ranks of the scores (when compared with the PMCC of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>249</mn></math>).        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lowering the top score by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> does not change its rank so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math> is unchanged       <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> Accept “this would not alter the rank” or “Netherlands still top rank” or similar. Condone any statement that clearly implies the ranks have not changed, for example: “The Netherlands still has the highest score.”</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a), many candidates could use their GDC to find the upper quartile, but many forgot how to find the inter-quartile range.</p>
<p>In part (b), very few candidates knew how to show if a score is an outlier. Many candidates did not know that there is a mathematical definition to “outlier” and simply wrote sentences explaining why or why not a value was an outlier.</p>
<p>In part (c), candidates were able to assess the validity of a regression line. The justifications for their conclusion revealed a partial or imprecise understanding of the topic. Examples of this include “no correlation”, “weak value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>”, “low relationship”, “not close to 1”.</p>
<p>In part (d), about half of the candidates managed to find the correct values missing from the table.</p>
<p>In part (e), many candidates knew how to use their GDC to find Spearman’s rank correlation coefficient. Some mistakenly wrote down the value for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>. Very few candidates could correctly interpret the value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> as they became confused by the fact that linear correlation must go with the rank, otherwise it is about association. They could either have said “there is an <strong>association</strong> between population size and score” or “there is a <strong>linear correlation</strong> between the rank order of the population size and the ranks of the scores”.</p>
<p>In part (f), most candidates were able to work out that, even if the score changed, the rank remained the same.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All lengths in this question are in metres.</strong></p>
<p>&nbsp;</p>
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \sqrt {\frac{{4 - {x^2}}}{8}} ">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>4</mn>
        <mo>−<!-- − --></mo>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
      </mrow>
      <mn>8</mn>
    </mfrac>
  </msqrt>
</math></span>, for −2 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 2.&nbsp;In the following diagram, the shaded&nbsp;region is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A container can be modelled by rotating this region by 360˚ about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis.</p>
</div>

<div class="specification">
<p>Water can flow in and out of the container.</p>
<p>The volume of water in the container is given by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>, for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 4 , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is measured in hours and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> is measured in m<sup>3</sup>. The rate of change of the volume of water in the container is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( t \right) = 0.9 - 2.5\,{\text{cos}}\left( {0.4{t^2}} \right)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.9</mn>
  <mo>−<!-- − --></mo>
  <mn>2.5</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.4</mn>
      <mrow>
        <msup>
          <mi>t</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The volume of water in the container is increasing only when&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>&nbsp;&lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>&nbsp;&lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the container.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During the interval <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>, he volume of water in the container increases by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> m<sup>3</sup>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 0, the volume of water in the container is 2.3 m<sup>3</sup>. It is known that the container is never completely full of water during the 4 hour period.</p>
<p> </p>
<p>Find the minimum volume of empty space in the container during the 4 hour period.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to substitute correct limits or the function into formula involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_{ - 2}^2 {{y^2}\,{\text{d}}y} ">
  <mi>π</mi>
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mn>2</mn>
  </msubsup>
  <mrow>
    <mrow>
      <msup>
        <mi>y</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>y</mi>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {\int {\left( {\sqrt {\frac{{4 - {x^2}}}{8}} } \right)} ^2}{\text{d}}x">
  <mi>π</mi>
  <mrow>
    <mo>∫</mo>
    <msup>
      <mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <msqrt>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mo>−</mo>
                  <mrow>
                    <msup>
                      <mi>x</mi>
                      <mn>2</mn>
                    </msup>
                  </mrow>
                </mrow>
                <mn>8</mn>
              </mfrac>
            </msqrt>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span></p>
<p>4.18879</p>
<p>volume = 4.19,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}\pi ">
  <mfrac>
    <mn>4</mn>
    <mn>3</mn>
  </mfrac>
  <mi>π</mi>
</math></span>  (exact) (m<sup>3</sup>)      <em><strong>A2 N3</strong></em></p>
<p><strong>Note:</strong> If candidates have their GDC incorrectly set in degrees, award <strong><em>M</em></strong> marks where appropriate, but no <em><strong>A</strong></em> marks may be awarded. Answers from degrees are <em>p</em> = 13.1243 and <em>q</em> = 26.9768 in (b)(i) and 12.3130 or 28.3505 in (b)(ii).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing the volume increases when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g'}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span> is positive      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( t \right)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> &gt; 0,  sketch of graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g'}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span> indicating correct interval</p>
<p>1.73387, 3.56393</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> = 1.73,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> = 3.56      <em><strong>A1A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find change in volume      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( q \right) - g\left( p \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>q</mi>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>p</mi>
    <mo>)</mo>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_p^q {g'\left( t \right){\text{d}}t} ">
  <msubsup>
    <mo>∫</mo>
    <mi>p</mi>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
</math></span></p>
<p>3.74541</p>
<p>total amount = 3.75  (m<sup>3</sup>)      <em><strong>A2 N3</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> There may be slight differences in the final answer, depending on which values candidates carry through from previous parts. Accept answers that are consistent with correct working.</p>
<p> </p>
<p>recognizing when the volume of water is a maximum     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   maximum when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = q">
  <mi>t</mi>
  <mo>=</mo>
  <mi>q</mi>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^q {g'\left( t \right){\text{d}}t} ">
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
</math></span></p>
<p>valid approach to find maximum volume of water      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.3 + \int_0^q {g'\left( t \right){\text{d}}t} ">
  <mn>2.3</mn>
  <mo>+</mo>
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.3 + \int_0^p {g'\left( t \right){\text{d}}t}  + 3.74541">
  <mn>2.3</mn>
  <mo>+</mo>
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mi>p</mi>
  </msubsup>
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
  <mo>+</mo>
  <mn>3.74541</mn>
</math></span>,  3.85745</p>
<p>correct expression for the difference between volume of container and maximum value      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4.18879 - \left( {2.3 + \int_0^q {g'\left( t \right){\text{d}}t} } \right)">
  <mn>4.18879</mn>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2.3</mn>
      <mo>+</mo>
      <msubsup>
        <mo>∫</mo>
        <mn>0</mn>
        <mi>q</mi>
      </msubsup>
      <mrow>
        <msup>
          <mi>g</mi>
          <mo>′</mo>
        </msup>
        <mrow>
          <mo>(</mo>
          <mi>t</mi>
          <mo>)</mo>
        </mrow>
        <mrow>
          <mtext>d</mtext>
        </mrow>
        <mi>t</mi>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,  4.19 − 3.85745</p>
<p>0.331334</p>
<p>0.331 (m<sup>3</sup>)      <em><strong>A2 N3</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =&nbsp; - 0.5{x^4} + 3{x^2} + 2x">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>0.5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.09.00.png" alt="M17/5/MATME/SP2/ENG/TZ2/08"></p>
<p>&nbsp;</p>
<p>There are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span>. There is a maximum at A where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
  <mi>x</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span>, and a point of inflexion at B where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
  <mi>x</mi>
  <mo>=</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> be the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> , the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
  <mi>x</mi>
  <mo>=</mo>
  <mi>b</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
  <mi>x</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span>. The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0,{\text{ }}y = 0">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>y</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p>2.73205</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2.73">
  <mi>p</mi>
  <mo>=</mo>
  <mn>2.73</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.87938, 8.11721</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1.88,{\text{ }}8.12)">
  <mo stretchy="false">(</mo>
  <mn>1.88</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>8.12</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A2</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate of change is 0 (do not accept decimals)     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using GDC)</strong></p>
<p>valid approach     <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ = 0">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, max/min on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’,{\text{ }}x =  - 1">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span></p>
<p>sketch of either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
</math></span>, with max/min or root (respectively)     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p>Substituting <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4.5">
  <mi>y</mi>
  <mo>=</mo>
  <mn>4.5</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p><strong>METHOD 2 (analytical)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ =  - 6{x^2} + 6">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p>setting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ = 0">
  <msup>
    <mi>f</mi>
    <mo>″</mo>
  </msup>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p>substituting <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4.5">
  <mi>y</mi>
  <mo>=</mo>
  <mn>4.5</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing rate of change is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y’,{\text{ }}f’(1)">
  <msup>
    <mi>y</mi>
    <mo>′</mo>
  </msup>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>rate of change is 6     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula     <strong><em>(M1)</em></strong></p>
<p>involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}x">
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span>)</p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int {{{( - 0.5{x^4} + 3{x^2} + 2x)}^2}{\text{d}}x,{\text{ }}\int_1^{1.88} {{f^2}} } ">
  <mi>π</mi>
  <mo>∫</mo>
  <mrow>
    <mrow>
      <msup>
        <mrow>
          <mo stretchy="false">(</mo>
          <mo>−</mo>
          <mn>0.5</mn>
          <mrow>
            <msup>
              <mi>x</mi>
              <mn>4</mn>
            </msup>
          </mrow>
          <mo>+</mo>
          <mn>3</mn>
          <mrow>
            <msup>
              <mi>x</mi>
              <mn>2</mn>
            </msup>
          </mrow>
          <mo>+</mo>
          <mn>2</mn>
          <mi>x</mi>
          <mo stretchy="false">)</mo>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>,</mo>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <msubsup>
      <mo>∫</mo>
      <mn>1</mn>
      <mrow>
        <mn>1.88</mn>
      </mrow>
    </msubsup>
    <mrow>
      <mrow>
        <msup>
          <mi>f</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mrow>
</math></span></p>
<p>128.890</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{volume}} = 129">
  <mrow>
    <mtext>volume</mtext>
  </mrow>
  <mo>=</mo>
  <mn>129</mn>
</math></span>     <strong><em>A2</em></strong>     <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The marks obtained by nine Mathematical Studies SL students in their projects (<em>x</em>) and their final IB examination scores (<em>y</em>) were recorded. These data were used to determine whether the project mark is a good predictor of the examination score. The results are shown in the table.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The equation of the regression line <em>y</em> on <em>x</em> is <em>y</em> = <em>mx</em> + <em>c</em>.</p>
</div>

<div class="specification">
<p>A tenth student, Jerome, obtained a project mark of 17.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean examination score.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <em>r </em>, Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <em>m</em> and of <em>c</em> for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression line <em>y</em> on <em>x</em> to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether it is valid to use the regression line y on x to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>54     <em><strong>(G1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.5     <em><strong>(G2)</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m</em> = 0.875, <em>c</em> = 41.75  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {m = \frac{7}{8}{\text{,}}\,\,c = \frac{{167}}{4}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>m</mi>
      <mo>=</mo>
      <mfrac>
        <mn>7</mn>
        <mn>8</mn>
      </mfrac>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>c</mi>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>167</mn>
        </mrow>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>        <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 0.875 seen. Award <em><strong>(A1)</strong></em> for 41.75 seen. If 41.75 is rounded to 41.8 do not award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em> = 0.875(17) + 41.75      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong> </em>for correct substitution into their regression line.</p>
<p> </p>
<p>= 56.6   (56.625)      <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b)(i).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the estimate is valid      <em><strong>(A1)</strong></em></p>
<p>since this is interpolation <strong>and</strong> the correlation coefficient is large enough      <em><strong>(R1)</strong></em></p>
<p><strong>OR</strong></p>
<p>the estimate is not valid      <em><strong>(A1)</strong></em></p>
<p>since the correlation coefficient is not large enough      <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>(A1)(R0)</strong></em>. The <em><strong>(R1)</strong></em> may be awarded for reasoning based on strength of correlation, but do not accept “correlation coefficient is not strong enough” or “correlation is not large enough”.</p>
<p>Award <em><strong>(A0)</strong></em><em><strong>(R0)</strong></em> for this method if no numerical answer to part (a)(iii) is seen.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1280</mn></math> students were asked which electronic device they preferred. The results per age group are given in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>A student from the group is chosen at random. Calculate the probability that the student</p>
</div>

<div class="specification">
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>&#967;</mi><mn>2</mn></msup></math> test for independence was performed on the collected data at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>%</mo></math> significance level. The critical value for the test is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>277</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>prefers a tablet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn><mtext>–</mtext><mn>13</mn></math> years old and prefers a mobile phone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>prefers a laptop <strong>given that</strong> they are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mtext>–</mtext><mn>18</mn></math> years old.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>prefers a tablet or is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn><mtext>–</mtext><mn>16</mn></math> years old.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null and alternative hypotheses.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> test statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for the test in context. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>560</mn><mn>1280</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>7</mn><mn>16</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4375</mn></mrow></mfenced></math>              <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct numerator, <em><strong>A1</strong></em> for correct denominator.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>72</mn><mn>1280</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>9</mn><mn>160</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>05625</mn></mrow></mfenced></math>              <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct numerator, <em><strong>A1</strong></em> for correct denominator.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>153</mn><mn>348</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>51</mn><mn>116</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>439655</mn><mo>…</mo></mrow></mfenced></math>              <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct numerator, <em><strong>A1</strong></em> for correct denominator.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>160</mn><mo>+</mo><mn>224</mn><mo>+</mo><mn>128</mn><mo>+</mo><mn>205</mn><mo>+</mo><mn>131</mn></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>560</mn><mo>+</mo><mn>512</mn><mo>-</mo><mn>224</mn></math>                   <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>848</mn><mn>1280</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>53</mn><mn>80</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>6625</mn></mrow></mfenced></math>              <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct denominator <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1280</mn><mo>)</mo></math> seen, <em><strong>(M1)</strong></em> for correct calculation of the numerator, <em><strong>A1</strong></em> for the correct answer.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo> </mo><mo>:</mo></math> the variables are independent</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo> </mo><mo>:</mo></math> the variables are dependent              <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for for both hypotheses correct. Do not accept “not correlated” or “not related” in place of “independent”.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>              <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>χ</mi><mn>2</mn></msup><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>23</mn><mo>.</mo><mn>3</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>23</mn><mo>.</mo><mn>3258</mn><mo>…</mo></mrow></mfenced></math>             <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>000109</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>000108991</mn><mo>…</mo></mrow></mfenced></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>09</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></math>             <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>23</mn><mo>.</mo><mn>3</mn><mo>&gt;</mo><mn>13</mn><mo>.</mo><mn>277</mn></math>             <em><strong>R1</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>000109</mn><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>01</mn></math>             <em><strong>R1</strong></em></p>
<p><strong><br>THEN</strong></p>
<p>(there is sufficient evidence to accept <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub></math> that) preferred device and age group are not independent             <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> For the final <em><strong>A1</strong></em> the answer must be in context. Do not award <em><strong>A1R0</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common error was to treat these as compound probability events. Candidates who attempted to use the conditional probability formula in part (a)(iii) often accrued at least one mark for a correct method. Some lost one mark for not reducing the total sample space. In part (a)(iv) many found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>A</mi></mfenced><mo>+</mo><mi>P</mi><mfenced><mi>B</mi></mfenced></math>, failing to subtract the intersection of the two events. When stating test hypotheses, terminology such as "related", "correlated", "data is independent" are not acceptable. Few candidates attempted to frame this as a Goodness of Fit test. Candidates correctly wrote down the degrees of freedom. It was pleasing to see most found the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic and associated p-value. Relative to past examination sessions, fewer candidates appeared to compare the critical value with the p-value or the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test statistic with the level of significance. A conclusion consistent with their hypotheses was usually seen, though this was not always expressed in context.</p>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>160 students attend a dual language school in which the students are taught only in Spanish or taught only in English.</p>
<p>A survey was conducted in order to analyse the number of students studying Biology or Mathematics. The results are shown in the Venn diagram.</p>
<p>&nbsp;</p>
<p style="padding-left: 240px;">Set <em>S</em> represents those students who are <strong>taught</strong> in Spanish.</p>
<p style="padding-left: 240px;">Set <em>B</em> represents those students who <strong>study</strong> Biology.</p>
<p style="padding-left: 240px;">Set <em>M</em> represents those students who <strong>study</strong> Mathematics.</p>
<p style="padding-left: 210px;">&nbsp;</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A student from the school is chosen at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that are taught in Spanish.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that study Mathematics in English.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that study both Biology and Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {S \cap \left( {M \cup B} \right)} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mi>S</mi> <mo>∩</mo> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {B \cap M \cap S'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mi>B</mi> <mo>∩</mo> <mi>M</mi> <mo>∩</mo> <msup> <mi>S</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student studies Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student studies neither Biology nor Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student is taught in Spanish, given that the student studies Biology.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>10 + 40 + 28 + 17      <em><strong>(M1)</strong></em></p>
<p>= 95      <em><strong> (A1)(G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for each correct sum (for example: 10 + 40 + 28 + 17) seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>20 + 12      <em><strong>(M1)</strong></em></p>
<p>= 32      <em><strong> (A1)(G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for each correct sum (for example: 10 + 40 + 28 + 17) seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>12 + 40      <em><strong>(M1)</strong></em></p>
<p>= 52      <em><strong> (A1)(G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for each correct sum (for example: 10 + 40 + 28 + 17) seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>78      <em><strong>(A1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>12      <em><strong>(A1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{100}}{{160}}"> <mfrac> <mrow> <mn>100</mn> </mrow> <mrow> <mn>160</mn> </mrow> </mfrac> </math></span>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{5}{8}{\text{,}}\,\,0.625{\text{,}}\,\,62.5\,{\text{% }}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>5</mn> <mn>8</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0.625</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>62.5</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>(A1)(A1) (G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Throughout part (c), award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator. All answers must be probabilities to award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{42}}{{160}}"> <mfrac> <mrow> <mn>42</mn> </mrow> <mrow> <mn>160</mn> </mrow> </mfrac> </math></span>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{21}}{{80}}{\text{,}}\,\,0.263\,\,\left( {0.2625} \right){\text{,}}\,\,26.3\,{\text{% }}\,\,\left( {26.25\,{\text{% }}} \right)} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>21</mn> </mrow> <mrow> <mn>80</mn> </mrow> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0.263</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.2625</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>26.3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>26.25</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>(A1)(A1) (G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Throughout part (c), award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator. All answers must be probabilities to award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{50}}{{70}}"> <mfrac> <mrow> <mn>50</mn> </mrow> <mrow> <mn>70</mn> </mrow> </mfrac> </math></span>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{5}{7}{\text{,}}\,\,0.714\,\,\left( {0.714285 \ldots } \right){\text{,}}\,\,71.4\,{\text{% }}\,\,\left( {71.4285 \ldots \,{\text{% }}} \right)} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>5</mn> <mn>7</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0.714</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.714285</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>71.4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>71.4285</mn> <mo>…</mo> <mspace width="thinmathspace"></mspace> <mrow> <mtext>% </mtext> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>(A1)(A1) (G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Throughout part (c), award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator. All answers must be probabilities to award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>On a school excursion, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> students visited an amusement park. The amusement park’s&nbsp;main attractions are rollercoasters (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">R</mtext></math>), water slides (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">W</mtext></math>), and virtual reality rides (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">V</mtext></math>).</p>
<p>The students were asked which main attractions they visited. The results are shown in the&nbsp;Venn diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A total of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> students visited the rollercoasters or the water slides.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students who visited at least two types of main attraction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>(</mo><mo> </mo><mi>R</mi><mo>∩</mo><mi>W</mi><mo>)</mo><mo> </mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student visited the rollercoasters.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student visited the virtual reality rides.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine whether the events in <strong>parts (d)(i)</strong> and <strong>(d)(ii)</strong> are independent. Justify your reasoning. </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn><mo>-</mo><mfenced><mrow><mn>32</mn><mo>+</mo><mn>12</mn><mo>+</mo><mn>10</mn><mo>+</mo><mn>9</mn><mo>+</mo><mn>5</mn></mrow></mfenced></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn><mo>-</mo><mn>68</mn></math>     <em><strong>(M1)</strong></em></p>
<p><strong><br></strong><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting up a correct expression.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>6</mn></math>       <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>-</mo><mfenced><mrow><mn>74</mn><mo>+</mo><mn>18</mn></mrow></mfenced></math>     <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>-</mo><mn>92</mn></math>     <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>-</mo><mfenced><mrow><mn>32</mn><mo>+</mo><mn>9</mn><mo>+</mo><mn>5</mn><mo>+</mo><mn>12</mn><mo>+</mo><mn>10</mn><mo>+</mo><mn>18</mn><mo>+</mo><mn>6</mn></mrow></mfenced></math>     <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for setting up a correct expression. Follow through from part (a)(i) but only for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≥</mo><mn>0</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>b</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>8</mn></math>       <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong><br>Note:</strong> Follow through from part(a)(i). The value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> must be greater or equal to zero for the <em><strong>(A1)</strong></em><strong>(ft)</strong> to be awarded.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>+</mo><mn>5</mn><mo>+</mo><mn>12</mn><mo>+</mo><mn>10</mn></math>     <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for adding <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>,</mo><mo> </mo><mn>12</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn></math>       <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math>     <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>58</mn><mn>100</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>29</mn><mn>50</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>58</mn><mo>,</mo><mo> </mo><mn>58</mn><mo>%</mo></mrow></mfenced></math>     <em><strong>(A1)(A1)(G2)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator. Award<em><strong>(A1)</strong></em> for the correct denominator. Award <em><strong>(A0)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn></math> only.</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>45</mn><mn>100</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>9</mn><mn>20</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>,</mo><mo> </mo><mn>45</mn><mo>%</mo></mrow></mfenced></math>     <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Follow through from their denominator from part (d)(i).</p>
<p><em><strong><br></strong></em><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>they are not independent     <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>58</mn><mn>100</mn></mfrac><mo>×</mo><mfrac><mn>45</mn><mn>100</mn></mfrac><mo>≠</mo><mfrac><mn>17</mn><mn>100</mn></mfrac></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>261</mn><mo>≠</mo><mn>0</mn><mo>.</mo><mn>17</mn></math>     <em><strong>(R1)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Comparison of numerical values must be seen for <em><strong>(R1)</strong></em> to be awarded.<br>Do not award <em><strong>(A1)(R0)</strong></em>. Follow through from parts (d)(i) and (d)(ii).</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the hand lengths and the heights of five athletes on a sports team.</p>
<p style="text-align: center;"><img src=""></p>
<p>The relationship between <em>x</em> and <em>y</em> can be modelled by the regression line with equation <em>y</em> = <em>ax</em> + <em>b</em>.</p>
</div>

<div class="question">
<p>Another athlete on this sports team has a hand length of 21.5 cm. Use the regression equation to estimate the height of this athlete.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>substituting <em>x</em> = 21.5 into <strong>their</strong> equation      <em><strong> (M1)</strong></em></p>
<p><em>eg</em>    9.91(21.5) − 31.3</p>
<p>181.755</p>
<p>182 (cm)       <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The table below shows the distribution of test grades for 50 IB students at Greendale School.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.25.22.png" alt="M17/5/MATSD/SP2/ENG/TZ1/05"></p>
</div>

<div class="specification">
<p>A student is chosen at random from these 50 students.</p>
</div>

<div class="specification">
<p>A second student is chosen at random from these 50 students.</p>
</div>

<div class="specification">
<p>The number of minutes that the 50 students spent preparing for the test was normally distributed with a mean of 105 minutes and a standard deviation of 20 minutes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean test grade of the students;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard deviation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median test grade of the students.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student scored a grade 5 or higher.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the first student chosen at random scored a grade 5 or higher, find the probability that both students scored a grade 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that a student chosen at random spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of students that spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1(1) + 3(2) + 7(3) + 13(4) + 11(5) + 10(6) + 5(7)}}{{50}} = \frac{{230}}{{50}}">
  <mfrac>
    <mrow>
      <mn>1</mn>
      <mo stretchy="false">(</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mn>3</mn>
      <mo stretchy="false">(</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mn>7</mn>
      <mo stretchy="false">(</mo>
      <mn>3</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mn>13</mn>
      <mo stretchy="false">(</mo>
      <mn>4</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mn>11</mn>
      <mo stretchy="false">(</mo>
      <mn>5</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mn>10</mn>
      <mo stretchy="false">(</mo>
      <mn>6</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mn>5</mn>
      <mo stretchy="false">(</mo>
      <mn>7</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>50</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>230</mn>
    </mrow>
    <mrow>
      <mn>50</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution into mean formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4.6">
  <mo>=</mo>
  <mn>4.6</mn>
</math></span>     <strong><em>(A1)</em></strong>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.46{\text{ }}(1.45602 \ldots )">
  <mn>1.46</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>1.45602</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>5     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - 4">
  <mn>6</mn>
  <mo>−</mo>
  <mn>4</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for 6 and 4 seen.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2">
  <mo>=</mo>
  <mn>2</mn>
</math></span>     <strong><em>(A1)</em></strong>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{11 + 10 + 5}}{{50}}">
  <mfrac>
    <mrow>
      <mn>11</mn>
      <mo>+</mo>
      <mn>10</mn>
      <mo>+</mo>
      <mn>5</mn>
    </mrow>
    <mrow>
      <mn>50</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11 + 10 + 5">
  <mn>11</mn>
  <mo>+</mo>
  <mn>10</mn>
  <mo>+</mo>
  <mn>5</mn>
</math></span> seen.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{26}}{{50}}{\text{ }}\left( {\frac{{13}}{{25}},{\text{ }}0.52,{\text{ }}52\% } \right)">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>26</mn>
    </mrow>
    <mrow>
      <mn>50</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>13</mn>
        </mrow>
        <mrow>
          <mn>25</mn>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>0.52</mn>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>52</mn>
      <mi mathvariant="normal">%</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em></strong>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{10}}{{{\text{their }}26}} \times \frac{9}{{49}}">
  <mfrac>
    <mrow>
      <mn>10</mn>
    </mrow>
    <mrow>
      <mrow>
        <mtext>their </mtext>
      </mrow>
      <mn>26</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>9</mn>
    <mrow>
      <mn>49</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{10}}{{{\text{their }}26}}">
  <mfrac>
    <mrow>
      <mn>10</mn>
    </mrow>
    <mrow>
      <mrow>
        <mtext>their </mtext>
      </mrow>
      <mn>26</mn>
    </mrow>
  </mfrac>
</math></span> seen, <strong><em>(M1) </em></strong>for multiplying their first probability by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{9}{{49}}">
  <mfrac>
    <mn>9</mn>
    <mrow>
      <mn>49</mn>
    </mrow>
  </mfrac>
</math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\frac{{10}}{{50}} \times \frac{9}{{49}}}}{{\frac{{26}}{{50}}}}">
  <mfrac>
    <mrow>
      <mfrac>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mn>50</mn>
        </mrow>
      </mfrac>
      <mo>×</mo>
      <mfrac>
        <mn>9</mn>
        <mrow>
          <mn>49</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mrow>
      <mfrac>
        <mrow>
          <mn>26</mn>
        </mrow>
        <mrow>
          <mn>50</mn>
        </mrow>
      </mfrac>
    </mrow>
  </mfrac>
</math></span></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{10}}{{50}} \times \frac{9}{{49}}}">
  <mrow>
    <mfrac>
      <mrow>
        <mn>10</mn>
      </mrow>
      <mrow>
        <mn>50</mn>
      </mrow>
    </mfrac>
    <mo>×</mo>
    <mfrac>
      <mn>9</mn>
      <mrow>
        <mn>49</mn>
      </mrow>
    </mfrac>
  </mrow>
</math></span> seen, <strong><em>(M1) </em></strong>for dividing their first probability by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{their }}26}}{{50}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>their </mtext>
      </mrow>
      <mn>26</mn>
    </mrow>
    <mrow>
      <mn>50</mn>
    </mrow>
  </mfrac>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{45}}{{637}}{\text{ (}}0.0706,{\text{ }}0.0706436 \ldots ,{\text{ }}7.06436 \ldots \% )">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>45</mn>
    </mrow>
    <mrow>
      <mn>637</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext> (</mtext>
  </mrow>
  <mn>0.0706</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.0706436</mn>
  <mo>…</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>7.06436</mn>
  <mo>…</mo>
  <mi mathvariant="normal">%</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from part (d).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X \geqslant 90)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>⩾</mo>
  <mn>90</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><img src="images/Schermafbeelding_2017-08-16_om_15.40.38.png" alt="M17/5/MATSD/SP2/ENG/TZ1/05.f.i/M">     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for a diagram showing the correct shaded region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( &gt; 0.5)">
  <mo stretchy="false">(</mo>
  <mo>&gt;</mo>
  <mn>0.5</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.773{\text{ }}(0.773372 \ldots ){\text{ }}0.773{\text{ }}(0.773372 \ldots ,{\text{ }}77.3372 \ldots \% )">
  <mn>0.773</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.773372</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.773</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.773372</mn>
  <mo>…</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>77.3372</mn>
  <mo>…</mo>
  <mi mathvariant="normal">%</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em></strong>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.773372 \ldots  \times 50">
  <mn>0.773372</mn>
  <mo>…</mo>
  <mo>×</mo>
  <mn>50</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 38.7{\text{ }}(38.6686 \ldots )">
  <mo>=</mo>
  <mn>38.7</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>38.6686</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (f)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A dice manufacturer claims that for a novelty die he produces the probability of scoring the&nbsp;numbers <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> are all equal, and the probability of a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> is two times the probability of&nbsp;scoring any of the other numbers.</p>
</div>

<div class="specification">
<p>To test the manufacture’s claim one of the novelty dice is rolled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>350</mn></math> times and the numbers&nbsp;scored on the die are shown in the table below.</p>
<p style="padding-left: 30px;"><img src=""></p>
</div>

<div class="specification">
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> goodness of fit test is to be used with a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of scoring a six when rolling the novelty die.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of scoring more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> sixes when this die is rolled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> times.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected frequency for each of the numbers if the manufacturer’s claim is true.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null and alternative hypotheses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the degrees of freedom for the test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the conclusion of the test, clearly justifying your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>Let the probability of scoring <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mo>…</mo><mo> </mo><mo>,</mo><mo> </mo><mn>5</mn></math> be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mo>,</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mi>p</mi><mo>+</mo><mn>2</mn><mi>p</mi><mo>=</mo><mn>1</mn><mo>⇒</mo><mi>p</mi><mo>=</mo><mfrac><mn>1</mn><mn>7</mn></mfrac></math>        <strong>(M1)(A1)</strong></p>
<p>Probability of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>=</mo><mfrac><mn>2</mn><mn>7</mn></mfrac></math>         <strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Let the number of sixes be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mfrac><mn>2</mn><mn>7</mn></mfrac></mrow></mfenced></math>        <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>3</mn></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≤</mo><mn>2</mn></mrow></mfenced></math>        <strong>(M1)</strong></p>
<p>                 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>145</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>144701</mn><mo>…</mo></mrow></mfenced></math>        <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Expected frequency is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>350</mn><mo>×</mo><mi>p</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>350</mn><mo>×</mo><mn>2</mn><mi>p</mi></math>        <strong>(M1)</strong></p>
<p><img src="">         <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo>:</mo></math> The manufacture’s claim is correct         <strong>A1</strong><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo>:</mo></math> The manufacturer’s claim is not correct         <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Degrees of freedom <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>5</mn></math>       <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>p-value <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0984</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0984037</mn><mo>…</mo></mrow></mfenced></math>       <strong>(M1)A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0984</mn><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>05</mn></math>          <strong>R1</strong></p>
<p>Hence insufficient evidence to reject the manufacture’s claim.       <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>The stopping distances for bicycles travelling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> are assumed to follow a normal&nbsp;distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>76</mn><mo> </mo><mtext>m</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>12</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>

<div class="specification">
<p>Under this assumption, find, correct to four decimal places, the probability that a bicycle&nbsp;chosen at random travelling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> manages to stop</p>
</div>

<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> randomly selected bicycles are tested and their stopping distances when travelling&nbsp;at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> are measured.</p>
</div>

<div class="specification">
<p>Find, correct to four significant figures, the expected number of bicycles tested that&nbsp;stop between</p>
</div>

<div class="specification">
<p>The measured stopping distances of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> bicycles are given in the table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>It is decided to perform a <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> goodness of fit test at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> level of significance to decide&nbsp;whether the stopping distances of bicycles travelling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> can be modelled by a&nbsp;normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>76</mn><mo> </mo><mtext>m</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>12</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>in less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>in more than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>75</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>75</mn><mo> </mo><mtext>m</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null and alternative hypotheses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value for the test.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of correct probability<strong>&nbsp; &nbsp; &nbsp; &nbsp;</strong><em><strong>(M1)</strong></em></p>
<p>e.g sketch&nbsp;&nbsp;<strong>OR</strong>&nbsp; correct probability statement, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>&lt;</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>)</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0151</mn></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0228</mn></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; A1</strong></em></p>
<p><strong><br>Note:</strong> Answers should be given to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> decimal place.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>multiplying <strong>their</strong> probability by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math>&nbsp;<strong>&nbsp;</strong><em><strong>&nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>451</mn><mo>.</mo><mn>7</mn></math>&nbsp; <em><strong>&nbsp; &nbsp; &nbsp; A1</strong></em></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>510</mn><mo>.</mo><mn>5</mn></math>&nbsp; <em><strong>&nbsp; &nbsp; &nbsp; A1</strong></em></p>
<p><strong><br>Note: </strong>Answers should be given to 4 sf.</p>
<p><strong><br></strong><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo>:</mo></math> stopping distances can be modelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext><mfenced><mrow><mn>6</mn><mo>.</mo><mn>76</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><msup><mn>12</mn><mn>2</mn></msup></mrow></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo>:</mo></math> stopping distances cannot be modelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext><mo>(</mo><mn>6</mn><mo>.</mo><mn>76</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>12</mn><mrow><msup><mrow></mrow><mn>2</mn></msup><mo>)</mo></mrow></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>&nbsp;A1A1</strong></em></p>
<p><strong>Note</strong>: Award <em><strong>A1</strong></em> for correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math>, including reference to the mean and standard deviation. Award <em><strong>A1</strong></em> for the negation of their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math>.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>1</mn></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn><mo>.</mo><mn>8</mn></math>&nbsp;seen&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0727</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0726542</mn><mo>…</mo><mo>,</mo><mo>&nbsp;</mo><mn>7</mn><mo>.</mo><mn>27</mn><mo>%</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p><strong><br></strong><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>05</mn><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>0727</mn></math>&nbsp; &nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p>there is insufficient evidence to reject <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math> (or “accept <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math>”)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Do not award <em><strong>R0A1</strong></em>.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The maximum temperature <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
  <mi>T</mi>
</math></span>, in degrees Celsius, in a park on six randomly selected days is shown in the following table. The table also shows the number of visitors, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, to the park on each of those six days.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_17.34.22.png" alt="M17/5/MATME/SP2/ENG/TZ2/02"></p>
<p>The relationship between the variables can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = aT + b">
  <mi>N</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>T</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the number of visitors on a day when the maximum temperature is 15 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of set up     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span></p>
<p>0.667315, 22.2117</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 0.667,{\text{ }}b = 22.2">
  <mi>a</mi>
  <mo>=</mo>
  <mn>0.667</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>b</mi>
  <mo>=</mo>
  <mn>22.2</mn>
</math></span>     <strong><em>A1A1</em></strong>     <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.922958</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 0.923">
  <mi>r</mi>
  <mo>=</mo>
  <mn>0.923</mn>
</math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.667(15) + 22.2,{\text{ }}N(15)">
  <mn>0.667</mn>
  <mo stretchy="false">(</mo>
  <mn>15</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>22.2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>N</mi>
  <mo stretchy="false">(</mo>
  <mn>15</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>32.2214 &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>32 (visitors) (must be an integer) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
  <mn>0.5</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
  <mn>2000</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(A = ){\text{ }}\pi {r^2} + 2\pi rh"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span>    <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi rh"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> seen. Award <strong><em>(A1) </em></strong>for two correct terms added together.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </math></span>    <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Units <strong>not </strong>required.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000 = \pi {r^2}h"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span>    <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}h"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> equating to their part (b).</p>
<p>Do not accept unless <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi {r^2}h"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> is explicitly defined as their part (b).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>    <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> seen.</p>
<p>Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> into a <strong>correct </strong>part (a).</p>
<p>Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh = \frac{{500\,000}}{r}"> <mi>π</mi> <mi>r</mi> <mi>h</mi> <mo>=</mo> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span> and substituting for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh"> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> in expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>    <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>The conclusion, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>, must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{10^6}"> <mrow> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </math></span> as equivalent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{1\,000\,000}"> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{{\text{1}}\,{\text{000}}\,{\text{000}}}}{{{r^2}}}"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>    <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r"> <mn>2</mn> <mi>π</mi> <mi>r</mi> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{r^2}}}"> <mfrac> <mn>1</mn> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^{ - 2}}"> <mrow> <msup> <mi>r</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{1}}\,{\text{000}}\,{\text{000}}"> <mo>−</mo> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{1\,000\,000}}{{{r^2}}} = 0"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for equating their part (e) to zero.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = \frac{{1\,000\,000}}{{2\pi }}"> <mrow> <msup> <mi>r</mi> <mn>3</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{\frac{{1\,000\,000}}{{2\pi }}}}"> <mi>r</mi> <mo>=</mo> <mroot> <mrow> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </mrow> <mn>3</mn> </mroot> </math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for isolating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>sketch of derivative function     <strong><em>(M1)</em></strong></p>
<p>with its zero indicated     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(r = ){\text{ }}54.2{\text{ }}({\text{cm}}){\text{ }}(54.1926 \ldots )"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>54.2</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>cm</mtext> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span>    <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {(54.1926 \ldots )^2} + \frac{{1\,000\,000}}{{(54.1926 \ldots )}}"> <mi>π</mi> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution of their part (f) into the given equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 27\,700{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}(27\,679.0 \ldots )"> <mo>=</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>700</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span>    <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27\,679.0 \ldots }}{{2000}}"> <mfrac> <mrow> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> </mrow> <mrow> <mn>2000</mn> </mrow> </mfrac> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for dividing their part (g) by 2000.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 13.8395 \ldots "> <mo>=</mo> <mn>13.8395</mn> <mo>…</mo> </math></span>    <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Follow through from part (g).</p>
<p> </p>
<p>14 (cans)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Final <strong><em>(A1) </em></strong>awarded for rounding up their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13.8395 \ldots "> <mn>13.8395</mn> <mo>…</mo> </math></span> to the next integer.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 66 people went on holiday to Hawaii. During their stay, three trips were arranged: a boat trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span>), a coach trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>) and a helicopter trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
  <mi>H</mi>
</math></span>).</p>
<p>From this group of people:</p>
<table style="width: 691.333px;">
<tbody>
<tr>
<td style="width: 182px; text-align: right;">3&nbsp;</td>
<td style="width: 526.333px;">went on all three trips;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">16&nbsp;</td>
<td style="width: 526.333px;">went on the coach trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">13&nbsp;</td>
<td style="width: 526.333px;">went on the boat trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">5&nbsp;</td>
<td style="width: 526.333px;">went on the helicopter trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;"><em>x&nbsp;</em></td>
<td style="width: 526.333px;">went on the coach trip and the helicopter trip <strong>but not</strong> the boat trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">2<em>x&nbsp;</em>
</td>
<td style="width: 526.333px;">went on the boat trip and the helicopter trip <strong>but not</strong> the coach trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">4<em>x&nbsp;</em>
</td>
<td style="width: 526.333px;">went on the boat trip and the coach trip <strong>but not</strong> the helicopter trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">8&nbsp;</td>
<td style="width: 526.333px;">did not go on any of the trips.</td>
</tr>
</tbody>
</table>
</div>

<div class="specification">
<p>One person in the group is selected at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a Venn diagram to represent the given information, using sets labelled <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C"> <mi>C</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H"> <mi>H</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3"> <mi>x</mi> <mo>=</mo> <mn>3</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n(B \cap C)"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>∩</mo> <mi>C</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this person</p>
<p>(i)     went on at most one trip;</p>
<p>(ii)     went on the coach trip, given that this person also went on both the helicopter trip and the boat trip.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src="images/Schermafbeelding_2017-03-07_om_10.03.03.png" alt="N16/5/MATSD/SP2/ENG/TZ0/02.a/M">     <strong><em>(A5)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1) </em></strong>for rectangle and three labelled intersecting circles (U need not be seen),</p>
<p><strong><em>(A1) </em></strong>for 3 in the correct region,</p>
<p><strong><em>(A1) </em></strong>for 8 in the correct region,</p>
<p><strong><em>(A1) </em></strong>for 5, 13 and 16 in the correct regions,</p>
<p><strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x"> <mn>2</mn> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x"> <mn>4</mn> <mi>x</mi> </math></span> in the correct regions.</p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8 + 13 + 16 + 3 + 5 + x + 2x + 4x = 66"> <mn>8</mn> <mo>+</mo> <mn>13</mn> <mo>+</mo> <mn>16</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mn>5</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>4</mn> <mi>x</mi> <mo>=</mo> <mn>66</mn> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for <strong>either </strong>a completely correct equation <strong>or </strong>adding all the terms from <strong>their </strong>diagram in part (a) and equating to 66.</p>
<p>Award <strong><em>(M0)(A0) </em></strong>if their equation has no <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7x = 66 - 45"> <mn>7</mn> <mi>x</mi> <mo>=</mo> <mn>66</mn> <mo>−</mo> <mn>45</mn> </math></span><strong> OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7x + 45 = 66"> <mn>7</mn> <mi>x</mi> <mo>+</mo> <mn>45</mn> <mo>=</mo> <mn>66</mn> </math></span>     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for adding their like terms correctly, <strong>but only </strong>when the solution to their equation is equal to 3 and is consistent with their original equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3"> <mi>x</mi> <mo>=</mo> <mn>3</mn> </math></span>    <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>The conclusion <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3"> <mi>x</mi> <mo>=</mo> <mn>3</mn> </math></span> must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>15     <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from part (a). The answer must be an integer.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{42}}{{66}}{\text{ }}\left( {\frac{7}{{11}},{\text{ }}0.636,{\text{ }}63.6\% } \right)"> <mfrac> <mrow> <mn>42</mn> </mrow> <mrow> <mn>66</mn> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>7</mn> <mrow> <mn>11</mn> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.636</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>63.6</mn> <mi mathvariant="normal">%</mi> </mrow> <mo>)</mo> </mrow> </math></span>     <strong><em>(A1)</em>(ft)<em>(A1)(G2)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for numerator, <strong><em>(A1) </em></strong>for denominator. Follow through from their Venn diagram.</p>
<p> </p>
<p>(ii)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{9}{\text{ }}\left( {\frac{1}{3},{\text{ }}0.333,{\text{ }}33.3\% } \right)"> <mfrac> <mn>3</mn> <mn>9</mn> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.333</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>33.3</mn> <mi mathvariant="normal">%</mi> </mrow> <mo>)</mo> </mrow> </math></span>     <strong><em>(A1)(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for numerator, <strong><em>(A1)</em>(ft) </strong>for denominator. Follow through from their Venn diagram.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>As part of his mathematics exploration about classic books, Jason investigated the time taken by students in his school to read the book <em>The Old Man and the Sea</em>. He collected his data by stopping and asking students in the school corridor, until he reached his target of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> students from <strong>each</strong> of the literature classes in his school.</p>
</div>

<div class="specification">
<p>Jason constructed the following box and whisker diagram to show the number of hours students in the sample took to read this book.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="458" height="149"></p>
<p style="text-align: center;">&nbsp;</p>
</div>

<div class="specification">
<p>Mackenzie, a member of the sample, took <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn></math> hours to read the novel. Jason believes Mackenzie’s time is not an outlier.</p>
</div>

<div class="specification">
<p>For each student interviewed, Jason recorded the time taken to read <em>The Old Man and the Sea</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>x</mi></mfenced></math>, measured in hours, and paired this with their percentage score on the final exam <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>y</mi></mfenced></math>. These data are represented on the scatter diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Jason correctly calculates the equation of the regression line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for these students to be</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>54</mn><mi>x</mi><mo>+</mo><mn>98</mn><mo>.</mo><mn>8</mn></math>.</p>
<p style="text-align: left;">He uses the equation to estimate the percentage score on the final exam for a student who&nbsp;read the book in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> hours.</p>
</div>

<div class="specification">
<p>Jason found a website that rated the ‘top <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math>’ classic books. He randomly chose eight of these&nbsp;classic books and recorded the number of pages. For example, Book <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext></math> is rated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>44</mn><mtext>th</mtext></math> and has&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>281</mn></math> pages. These data are shown in the table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Jason intends to analyse the data using Spearman’s rank correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State which of the two sampling methods, systematic or quota, Jason has used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median time to read the book.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether Jason is correct. Support your reasoning.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the correlation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage score calculated by Jason.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether it is valid to use the regression line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for Jason’s estimate. Give a&nbsp;reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copy and complete the information in the following table.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret your result.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Quota sampling&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> (hours) &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>-</mo><mn>7</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>M1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>&nbsp; &nbsp;&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>indication of a valid attempt to find the upper fence&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>8</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn></math>&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>&lt;</mo><mn>27</mn></math>&nbsp;(accept equivalent answer in words)&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p>Jason is correct&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Do not award <em><strong>R0A1</strong></em>. Follow through <strong>within</strong> this part from <em>their</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn></math>, but only if their value is supported by a valid attempt <strong>or</strong> clearly and correctly explains what their value represents.</p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>“negative” seen &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Strength cannot be inferred visually; ignore “strong” or “weak”.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>54</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>98</mn><mo>.</mo><mn>8</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>96</mn><mo>.</mo><mn>5</mn><mo> </mo><mfenced><mo>%</mo></mfenced><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>96</mn><mo>.</mo><mn>49</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not reliable &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A</strong><strong>1</strong></em></p>
<p>extrapolation <strong>OR</strong> outside the given range of the data&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R</strong><strong>1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Do not award <em><strong>A1R0</strong></em>. Only accept reasoning that includes reference to the range of the data. Do not accept a contextual reason such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> hours is too short to read the book.</p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Do not award <em><strong>A1&nbsp;</strong></em>for correct ranks for ‘number of pages’. Award <em><strong>A1</strong></em> for correct ranks for ‘top 50 rating’.</p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>714</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>714285</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A2</strong></em></p>
<p><strong><br>Note:</strong> <em><strong>FT</strong></em> from their table.</p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">i.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>there is a (strong/moderate) positive association between the number of pages and the top <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math>&nbsp;rating.&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br></strong></em><strong>OR</strong></p>
<p>there is a (strong/moderate) agreement between the rank order of number of pages and the rank order top <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math>&nbsp;rating.&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br></strong></em><strong>OR</strong></p>
<p>there is a (strong/moderate) positive (linear) correlation between the rank order of number of pages and the rank order top <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math>&nbsp;rating.&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong>&nbsp;Follow through from their value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">i.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Emlyn plays many games of basketball for his school team. The number of minutes he plays in each game follows a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> minutes.</p>
<p>In any game there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo> </mo><mo>%</mo></math> chance he will play less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>6</mn><mo>&nbsp;</mo><mtext>minutes</mtext></math>.</p>
</div>

<div class="specification">
<p>In any game there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo> </mo><mo>%</mo></math> chance he will play less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>8</mn><mo>&nbsp;</mo><mtext>minutes</mtext></math>.</p>
</div>

<div class="specification">
<p>The standard deviation of the number of minutes Emlyn plays in any game is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>There is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><mo>%</mo></math> chance Emlyn plays less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> minutes in a game.</p>
</div>

<div class="specification">
<p>Emlyn will play in two basketball games today.</p>
</div>

<div class="specification">
<p>Emlyn and his teammate Johan each practise shooting the basketball multiple times from&nbsp;a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>. A record of their performance over the weekend is shown in the table below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>On Monday, Emlyn and Johan will practise and each will shoot <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math> times from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a diagram to represent this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>7</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Emlyn plays between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>minutes</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>minutes</mtext></math> in a game.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Emlyn plays more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>minutes</mtext></math> in a game.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability he plays between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>minutes</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>minutes</mtext></math> in one game and more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>minutes</mtext></math> in the other game.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of successful shots Emlyn will make on Monday, based on the results from Saturday and Sunday.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Emlyn claims the results from Saturday and Sunday show that his expected number of successful shots will be more than Johan’s.</p>
<p>Determine if Emlyn’s claim is correct. Justify your reasoning.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong><img src=""> </strong>        <strong><em>(A1)(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for bell shaped curve with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> <strong>or</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>6</mn></math> indicated. Award <em><strong>(A1)</strong></em> for approximately correct shaded region.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>&gt;</mo><mn>17</mn><mo>.</mo><mn>8</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math><strong> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><strong><img src=""> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability equation using <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>3</mn></math> <strong>OR</strong> correctly shaded diagram indicating <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>8</mn></math>. Strict or weak inequalities are accepted in parts (b), (c) and (d).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>13</mn><mo>.</mo><mn>6</mn><mo>+</mo><mn>17</mn><mo>.</mo><mn>8</mn></mrow><mn>2</mn></mfrac></math>   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mfrac><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math>  <strong>OR</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>13</mn><mo>.</mo><mn>6</mn><mo>+</mo><mfrac><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math><strong> </strong>        <strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M0)(M1)</strong></em> for unsupported <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>13</mn><mo>.</mo><mn>6</mn><mo>+</mo><mn>17</mn><mo>.</mo><mn>8</mn></mrow><mn>2</mn></mfrac></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mfrac><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>13</mn><mo>.</mo><mn>6</mn><mo>+</mo><mfrac><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math> <strong>OR</strong> the midpoint of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>8</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn></math>. <br>Award at most <em><strong>(M1)(M0)</strong></em> if the final answer is not seen. Award <em><strong>(M0)(M0)</strong></em> for using known values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>7</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>4</mn></math> to validate <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>&lt;</mo><mn>17</mn><mo>.</mo><mn>8</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>&lt;</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn></math><strong> </strong>        <strong><em>(AG)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>13</mn><mo>≤</mo><mi>T</mi><mo>≤</mo><mn>18</mn></mrow></mfenced></math><strong> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><strong><img src=""> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability equation <strong>OR</strong> correctly shaded diagram indicating <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math>.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>468</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>46</mn><mo>.</mo><mn>8</mn><mo>%</mo><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>467516</mn><mo>…</mo></mrow></mfenced></math> </strong>        <strong><em>(A1)(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>≥</mo><mn>20</mn></mrow></mfenced></math><strong> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><strong><img src=""> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability equation <strong>OR</strong> correctly shaded diagram indicating <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math>.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>141</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>14</mn><mo>.</mo><mn>1</mn><mo>%</mo><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>141187</mn><mo>…</mo></mrow></mfenced></math> </strong>        <strong><em>(A1)(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>&lt;</mo><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></math><strong> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><strong><img src=""> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability equation <strong>OR</strong> for a correctly shaded region with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> indicated to the right-hand side of the mean.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo>.</mo><mn>7</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>16</mn><mo>.</mo><mn>7133</mn><mo>…</mo></mrow></mfenced></math> </strong>        <strong><em>(A1)(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>467516</mn><mo>…</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>141187</mn><mo>…</mo><mo>×</mo><mn>2</mn></math><strong> </strong>        <strong><em>(M1)(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>467516</mn><mo>…</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>141187</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>141187</mn><mo>…</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>467516</mn><mo>…</mo></mrow></mfenced></math>        <strong><em>(M1)(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for the multiplication of their parts (c)(i) and (c)(ii), <em><strong>(M1)</strong></em> for multiplying their product by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> or for adding their products twice. Follow through from part (c).</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>132</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>13</mn><mo>.</mo><mn>2</mn><mo>%</mo><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>132014</mn><mo>…</mo></mrow></mfenced></math> </strong>        <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(G0)</strong></em> for an unsupported final answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>066007</mn><mo>…</mo></math></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>69</mn><mn>102</mn></mfrac><mo>×</mo><mn>200</mn></math><strong> </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability multiplied by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math>.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>135</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>135</mn><mo>.</mo><mn>294</mn><mo>…</mo></mrow></mfenced></math> </strong>        <strong><em>(A1)</em><em>(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>67</mn><mn>98</mn></mfrac><mo>×</mo><mn>200</mn><mo>=</mo></mrow></mfenced><mo> </mo><mn>136</mn><mo>.</mo><mn>734</mn><mo>…</mo></math><strong> </strong>        <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>137</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>136</mn><mo>.</mo><mn>734</mn><mo>…</mo></math> seen.</p>
<p><br>Emlyn is incorrect,<strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>135</mn><mo>&lt;</mo><mn>137</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>135</mn><mo>.</mo><mn>294</mn><mo>…</mo><mo>&lt;</mo><mn>136</mn><mo>.</mo><mn>734</mn><mo>…</mo></mrow></mfenced></math> </strong>        <strong><em>(R1)</em></strong></p>
<p><strong><br>Note:</strong> To award the final <em><strong>(R1)</strong></em>, both the conclusion and the comparison must be seen. Award at most <em><strong>(A0)(R1)</strong></em><strong>(ft)</strong> for consistent incorrect methods in parts (f) and (g).</p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>67</mn><mn>98</mn></mfrac><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>684</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>683673</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>69</mn><mn>102</mn></mfrac><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>676</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>676470</mn><mo>…</mo></mrow></mfenced></math><strong> </strong>        <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for both correct probabilities seen.</p>
<p><br>Emlyn is incorrect,<strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>676</mn><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>684</mn></math> </strong>        <strong><em>(R1)</em></strong></p>
<p><strong><br>Note:</strong> To award the final <em><strong>(R1)</strong></em>, both the conclusion and the comparison must be seen. Award at most <em><strong>(A0)(R1)</strong></em><strong>(ft)</strong> for consistent incorrect methods in parts (f) and (g).</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is normally distributed with mean, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span>. In the following diagram, the shaded region between 9 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span> represents 30% of the distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.15.49.png" alt="M17/5/MATME/SP2/ENG/TZ1/09"></p>
</div>

<div class="specification">
<p>The standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is 2.1.</p>
</div>

<div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
  <mi>Y</mi>
</math></span> is normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> and standard deviation 3.5. The events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X > 9">
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y > 9">
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span> are independent, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( {(X > 9) \cap (Y > 9)} \right) = 0.4">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>&gt;</mo>
      <mn>9</mn>
      <mo stretchy="false">)</mo>
      <mo>∩<!-- ∩ --></mo>
      <mo stretchy="false">(</mo>
      <mi>Y</mi>
      <mo>&gt;</mo>
      <mn>9</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &lt; 9)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y &gt; 9">
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y &lt; 13)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>&lt;</mo>
  <mn>13</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &lt; \mu ) = 0.5,{\text{ }}0.5 - 0.3">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mi>μ</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.5</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.5</mn>
  <mo>−</mo>
  <mn>0.3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &lt; 9) = 0.2">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.2</mn>
</math></span> (exact)     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z =  - 0.841621">
  <mi>z</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.841621</mn>
</math></span> (may be seen in equation)     <strong><em>(A1)</em></strong></p>
<p>valid attempt to set up an equation with <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.842 = \frac{{\mu  - X}}{\sigma },{\text{ }} - 0.842 = \frac{{X - \mu }}{\sigma },{\text{ }}z = \frac{{9 - \mu }}{{2.1}}">
  <mo>−</mo>
  <mn>0.842</mn>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>μ</mi>
      <mo>−</mo>
      <mi>X</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <mn>0.842</mn>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>X</mi>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>z</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>9</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mrow>
      <mn>2.1</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>10.7674</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  = 10.8">
  <mi>μ</mi>
  <mo>=</mo>
  <mn>10.8</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &gt; 9) = 0.8">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.8</mn>
</math></span> (seen anywhere)     <strong><em>(A1)</em></strong></p>
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A) \times {\text{P}}(B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>correct equation     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.8 \times {\text{P}}(Y &gt; 9) = 0.4">
  <mn>0.8</mn>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y &gt; 9) = 0.5">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.5</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = 9">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>9</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N3</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(9 &lt; Y &lt; 13) = 0.373450">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>9</mn>
  <mo>&lt;</mo>
  <mi>Y</mi>
  <mo>&lt;</mo>
  <mn>13</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.373450</mn>
</math></span> (seen anywhere)     <strong><em>(A2)</em></strong></p>
<p>recognizing conditional probability     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A|B),{\text{ P}}(Y &lt; 13|Y &gt; 9)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>&lt;</mo>
  <mn>13</mn>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{0.373}}}}{{0.5}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>0.373</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.5</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.746901</p>
<p>0.747     <strong><em>A1</em></strong>     <strong><em>N3</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The heights of adult males in a country are normally distributed with a mean of 180 cm and a standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma {\text{ cm}}">
  <mi>σ</mi>
  <mrow>
    <mtext> cm</mtext>
  </mrow>
</math></span>. 17% of these men are shorter than 168 cm. 80% of them have heights between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(192 - h){\text{ cm}}">
  <mo stretchy="false">(</mo>
  <mn>192</mn>
  <mo>−</mo>
  <mi>h</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> cm</mtext>
  </mrow>
</math></span> and 192 cm.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>finding the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span>-value for 0.17     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z =  - 0.95416">
  <mi>z</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.95416</mn>
</math></span></p>
<p>setting up equation to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span><em>,     <strong>(M1)</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = \frac{{168 - 180}}{\sigma },{\text{ }} - 0.954 = \frac{{ - 12}}{\sigma }">
  <mi>z</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>168</mn>
      <mo>−</mo>
      <mn>180</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <mn>0.954</mn>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>12</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma  = 12.5765">
  <mi>σ</mi>
  <mo>=</mo>
  <mn>12.5765</mn>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><strong>EITHER (Properties of the Normal curve)</strong></p>
<p>correct value (seen anywhere)     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &lt; 192) = 0.83,{\text{ P}}(X &gt; 192) = 0.17">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>192</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.83</mn>
  <mo>,</mo>
  <mrow>
    <mtext> P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>192</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.17</mn>
</math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &lt; 192 - h) = 0.83 - 0.8,{\text{ P}}(X &lt; 192 - h) = 1 - 0.8 - 0.17,">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>192</mn>
  <mo>−</mo>
  <mi>h</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.83</mn>
  <mo>−</mo>
  <mn>0.8</mn>
  <mo>,</mo>
  <mrow>
    <mtext> P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>192</mn>
  <mo>−</mo>
  <mi>h</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mn>0.8</mn>
  <mo>−</mo>
  <mn>0.17</mn>
  <mo>,</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &gt; 192 - h) = 0.8 + 0.17">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>192</mn>
  <mo>−</mo>
  <mi>h</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.8</mn>
  <mo>+</mo>
  <mn>0.17</mn>
</math></span></p>
<p>correct equation in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(192 - h) - 180}}{{12.576}} =  - 1.88079,{\text{ }}192 - h = 156.346">
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>192</mn>
      <mo>−</mo>
      <mi>h</mi>
      <mo stretchy="false">)</mo>
      <mo>−</mo>
      <mn>180</mn>
    </mrow>
    <mrow>
      <mn>12.576</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1.88079</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>192</mn>
  <mo>−</mo>
  <mi>h</mi>
  <mo>=</mo>
  <mn>156.346</mn>
</math></span>     <strong><em>(A1)</em></strong></p>
<p>35.6536</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 35.7">
  <mi>h</mi>
  <mo>=</mo>
  <mn>35.7</mn>
</math></span>     <strong><em>A1     N3</em></strong></p>
<p><strong>OR (Trial and error using different values of <em>h</em>)</strong></p>
<p><strong>two</strong> correct probabilities whose 2 sf will round up <strong>and</strong> down, respectively, to 0.8     <strong><em>A2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(192 - 35.6 &lt; X &lt; 192) = 0.799706,{\text{ P}}(157 &lt; X &lt; 192) = 0.796284,">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>192</mn>
  <mo>−</mo>
  <mn>35.6</mn>
  <mo>&lt;</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>192</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.799706</mn>
  <mo>,</mo>
  <mrow>
    <mtext> P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>157</mn>
  <mo>&lt;</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>192</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.796284</mn>
  <mo>,</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(192 - 36 &lt; X &lt; 192) = 0.801824">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>192</mn>
  <mo>−</mo>
  <mn>36</mn>
  <mo>&lt;</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>192</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.801824</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 35.7">
  <mi>h</mi>
  <mo>=</mo>
  <mn>35.7</mn>
</math></span>     <strong><em>A2</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Arianne plays a game of darts.</p>
<p style="text-align: center;"><img src=""></p>
<p>The distance that her darts land from the centre, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, of the board can be modelled by a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>&#8202;</mo><mtext>cm</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>&#8202;</mo><mtext>cm</mtext></math>.</p>
</div>

<div class="specification">
<p>Find the probability that</p>
</div>

<div class="specification">
<p>Each of Arianne&rsquo;s throws is independent of her previous throws.</p>
</div>

<div class="specification">
<p>In a competition a player has three darts to throw on each turn. A point is scored if a player throws <strong>all</strong> three darts to land within a central area around <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>. When Arianne throws a dart the probability that it lands within this area is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8143</mn></math>.</p>
</div>

<div class="specification">
<p>In the competition Arianne has ten turns, each with three darts.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a dart lands less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a dart lands more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne throws two consecutive darts that land more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne does <strong>not</strong> score a point on a turn of three darts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points in the competition.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points and less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points, find the probability that Arianne scores less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the random variable “distance from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>”.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>10</mn><mo>,</mo><mo> </mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&lt;</mo><mn>13</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>841</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>841344</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>15</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0478</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0477903</mn></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>15</mn></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>15</mn></mrow></mfenced></math>            <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>00228</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>00228391</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>3</mn></msup></math>            <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>460</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>460050</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> be the random variable “number of points scored”</p>
<p>evidence of use of binomial distribution           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>10</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>539949</mn><mo>…</mo></mrow></mfenced></math>           <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>≥</mo><mn>5</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>717</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>716650</mn><mo>…</mo></mrow></mfenced></math>.            <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi></math> be the random variable “number of times a point is not scored”</p>
<p>evidence of use of binomial distribution           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>10</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>460050</mn><mo>…</mo></mrow></mfenced></math>          <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>Q</mi><mo>≤</mo><mn>5</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>717</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>716650</mn><mo>…</mo></mrow></mfenced></math>          <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>5</mn><mo>≤</mo><mi>Y</mi><mo>&lt;</mo><mn>8</mn></mrow></mfenced></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>628</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>627788</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for a correct probability statement or indication of correct lower and upper bounds, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math>.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mn>5</mn><mo>≤</mo><mi>Y</mi><mo>&lt;</mo><mn>8</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>≥</mo><mn>5</mn></mrow></mfenced></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>627788</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>716650</mn><mo>…</mo></mrow></mfrac></mrow></mfenced></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>876</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>876003</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Candidates appeared well prepared for straightforward questions using the normal distribution. Most were able to earn marks through recognition of the compound probability event in part (b). The wording of the information in part (c) required careful thought. This acted as a clear discriminator, causing difficulty for most candidates. One common error in this part was the calculation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>2</mn></msup></math>. Though at the end of the paper, it was pleasing to see many candidates identify the event in part (d) as binomial. A common error was the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8413</mn></math>. It is recommended that candidates write down the distribution with associated parameters and support this with a probability statement. This will allow method and follow-through marks to be awarded in subsequent parts. Weaker candidates incorrectly used <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> as the upper bound. Those who made it to the end of the paper were often rewarded for correct division of their probabilities found in parts (d)(i)&amp;(ii).</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates appeared well prepared for straightforward questions using the normal distribution. Most were able to earn marks through recognition of the compound probability event in part (b). The wording of the information in part (c) required careful thought. This acted as a clear discriminator, causing difficulty for most candidates. One common error in this part was the calculation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>2</mn></msup></math>. Though at the end of the paper, it was pleasing to see many candidates identify the event in part (d) as binomial. A common error was the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8413</mn></math>. It is recommended that candidates write down the distribution with associated parameters and support this with a probability statement. This will allow method and follow-through marks to be awarded in subsequent parts. Weaker candidates incorrectly used <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> as the upper bound. Those who made it to the end of the paper were often rewarded for correct division of their probabilities found in parts (d)(i)&amp;(ii).</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates appeared well prepared for straightforward questions using the normal distribution. Most were able to earn marks through recognition of the compound probability event in part (b). The wording of the information in part (c) required careful thought. This acted as a clear discriminator, causing difficulty for most candidates. One common error in this part was the calculation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>2</mn></msup></math>. Though at the end of the paper, it was pleasing to see many candidates identify the event in part (d) as binomial. A common error was the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8413</mn></math>. It is recommended that candidates write down the distribution with associated parameters and support this with a probability statement. This will allow method and follow-through marks to be awarded in subsequent parts. Weaker candidates incorrectly used <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> as the upper bound. Those who made it to the end of the paper were often rewarded for correct division of their probabilities found in parts (d)(i)&amp;(ii).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates appeared well prepared for straightforward questions using the normal distribution. Most were able to earn marks through recognition of the compound probability event in part (b). The wording of the information in part (c) required careful thought. This acted as a clear discriminator, causing difficulty for most candidates. One common error in this part was the calculation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>2</mn></msup></math>. Though at the end of the paper, it was pleasing to see many candidates identify the event in part (d) as binomial. A common error was the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8413</mn></math>. It is recommended that candidates write down the distribution with associated parameters and support this with a probability statement. This will allow method and follow-through marks to be awarded in subsequent parts. Weaker candidates incorrectly used <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> as the upper bound. Those who made it to the end of the paper were often rewarded for correct division of their probabilities found in parts (d)(i)&amp;(ii).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates appeared well prepared for straightforward questions using the normal distribution. Most were able to earn marks through recognition of the compound probability event in part (b). The wording of the information in part (c) required careful thought. This acted as a clear discriminator, causing difficulty for most candidates. One common error in this part was the calculation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>2</mn></msup></math>. Though at the end of the paper, it was pleasing to see many candidates identify the event in part (d) as binomial. A common error was the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8413</mn></math>. It is recommended that candidates write down the distribution with associated parameters and support this with a probability statement. This will allow method and follow-through marks to be awarded in subsequent parts. Weaker candidates incorrectly used <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> as the upper bound. Those who made it to the end of the paper were often rewarded for correct division of their probabilities found in parts (d)(i)&amp;(ii).</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates appeared well prepared for straightforward questions using the normal distribution. Most were able to earn marks through recognition of the compound probability event in part (b). The wording of the information in part (c) required careful thought. This acted as a clear discriminator, causing difficulty for most candidates. One common error in this part was the calculation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>2</mn></msup></math>. Though at the end of the paper, it was pleasing to see many candidates identify the event in part (d) as binomial. A common error was the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8413</mn></math>. It is recommended that candidates write down the distribution with associated parameters and support this with a probability statement. This will allow method and follow-through marks to be awarded in subsequent parts. Weaker candidates incorrectly used <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> as the upper bound. Those who made it to the end of the paper were often rewarded for correct division of their probabilities found in parts (d)(i)&amp;(ii).</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates appeared well prepared for straightforward questions using the normal distribution. Most were able to earn marks through recognition of the compound probability event in part (b). The wording of the information in part (c) required careful thought. This acted as a clear discriminator, causing difficulty for most candidates. One common error in this part was the calculation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>2</mn></msup></math>. Though at the end of the paper, it was pleasing to see many candidates identify the event in part (d) as binomial. A common error was the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8413</mn></math>. It is recommended that candidates write down the distribution with associated parameters and support this with a probability statement. This will allow method and follow-through marks to be awarded in subsequent parts. Weaker candidates incorrectly used <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> as the upper bound. Those who made it to the end of the paper were often rewarded for correct division of their probabilities found in parts (d)(i)&amp;(ii).</p>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 7 adult men wanted to see if there was a relationship between their Body Mass Index (BMI) and their waist size. Their waist sizes, in centimetres, were recorded and their BMI calculated. The following table shows the results.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
  <mi>y</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the BMI of an adult man whose waist size is 95 cm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach       <em><strong>(M1)</strong></em></p>
<p><em>eg </em>     correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> (or for correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2}">
  <mrow>
    <msup>
      <mi>r</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> = 0.955631 seen in (ii))</p>
<p>0.141120,  11.1424</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> = 0.141,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> = 11.1     <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.977563</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> = 0.978     <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <strong>their</strong> regression equation       <em><strong>(A1)</strong></em></p>
<p><em>eg</em>      0.141(95) + 11.1</p>
<p>24.5488</p>
<p>24.5       <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{16}}{x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>16</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
</math></span>. The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>&nbsp;is tangent to the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8">
  <mi>x</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> can be expressed in the form <em><strong>r</strong></em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  8 \\   2  \end{array}} \right) + t">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>8</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>t</mi>
</math></span><em><strong>u</strong></em>.</p>
</div>

<div class="specification">
<p>The direction vector of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
  <mi>y</mi>
  <mo>=</mo>
  <mi>x</mi>
</math></span> is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   1  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em><strong>u</strong></em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the obtuse angle formed by the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8"> <mi>x</mi> <mo>=</mo> <mn>8</mn> </math></span> and the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 8 \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </math></span>     <em><strong>(M1)</strong></em></p>
<p><em>eg </em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{y'}"> <mrow> <msup> <mi>y</mi> <mo>′</mo> </msup> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 16{x^{ - 2}}"> <mo>−</mo> <mn>16</mn> <mrow> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </math></span></p>
<p>−0.25 (exact)     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>u</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  4 \\   { - 1}  \end{array}} \right)"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>  or any scalar multiple    <em><strong>A2 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct scalar product and magnitudes           <em><strong>(A1)(A1)(A1)</strong></em></p>
<p>scalar product <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1 \times 4 + 1 \times  - 1\,\,\,\left( { = 3} \right)"> <mo>=</mo> <mn>1</mn> <mo>×</mo> <mn>4</mn> <mo>+</mo> <mn>1</mn> <mo>×</mo> <mo>−</mo> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>magnitudes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {{1^2} + {1^2}} "> <mo>=</mo> <msqrt> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{4^2} + {{\left( { - 1} \right)}^2}} "> <msqrt> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \sqrt 2 {\text{,}}\,\,\sqrt {17} } \right)"> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <msqrt> <mn>17</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>substitution of their values into correct formula          <em><strong> (M1)</strong></em></p>
<p><em>eg</em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 - 1}}{{\sqrt {{1^2} + {1^2}} \sqrt {{4^2} + {{\left( { - 1} \right)}^2}} }}"> <mfrac> <mrow> <mn>4</mn> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <msqrt> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 3}}{{\sqrt 2 \sqrt {17} }}"> <mfrac> <mrow> <mo>−</mo> <mn>3</mn> </mrow> <mrow> <msqrt> <mn>2</mn> </msqrt> <msqrt> <mn>17</mn> </msqrt> </mrow> </mfrac> </math></span>,  2.1112,  120.96° </p>
<p>1.03037 ,  59.0362°</p>
<p>angle = 1.03 ,  59.0°    <em><strong>A1 N4</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">attempt to form composite <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>     <strong><em><span style="font-family: 'Verdana',sans-serif;">(M1)</span></em></strong></span></p>
<p><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">eg </span></em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {f\left( x \right)} \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {\frac{{16}}{x}} \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16}}{{f\left( x \right)}}"> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">correct working     <strong><em><span style="font-family: 'Verdana',sans-serif;">(A1)</span></em></strong></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16}}{{\frac{{16}}{x}}}"> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </mrow> </mfrac> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="16 \times \frac{x}{{16}}"> <mn>16</mn> <mo>×</mo> <mfrac> <mi>x</mi> <mrow> <mn>16</mn> </mrow> </mfrac> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right) = x"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </math></span>     <strong><em><span style="font-family: 'Verdana',sans-serif;">A1 N2</span></em></strong></span></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right) = \frac{{16}}{x}"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </math></span>  (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{16}}{x}"> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16}}{x}"> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </math></span>)    </span><strong style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><em>A1 N1</em></strong></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>A0</strong></em> in part (ii) if part (i) is incorrect.<br>Award <em><strong>A0</strong></em> in part (ii) if the candidate has found <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right) = \frac{{16}}{x}"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> </mrow> <mi>x</mi> </mfrac> </math></span> by interchanging <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>.</p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[1 mark]</span></em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>recognition of symmetry about <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span>    <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   (2, 8) ⇔ (8, 2) <img src=""></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">evidence of doubling <strong>their</strong> angle       <strong><em> (M1)</em></strong><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times 1.03"> <mn>2</mn> <mo>×</mo> <mn>1.03</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times 59.0"> <mn>2</mn> <mo>×</mo> <mn>59.0</mn> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06075, 118.072°</span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06 (radians)  (118 degrees)     <em><strong>A1  N2</strong></em></span></p>
<p> </p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><strong>METHOD 2</strong><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">finding direction vector for tangent line at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span>      <em><strong>(A1)</strong></em><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 1} \\   4  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   { - 4}  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">substitution of <strong>their</strong> values into correct formula (must be from vectors)      <em><strong>(M1)</strong></em><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 4 - 4}}{{\sqrt {{1^2} + {4^2}} \sqrt {{4^2} + {{\left( { - 1} \right)}^2}} }}"> <mfrac> <mrow> <mo>−</mo> <mn>4</mn> <mo>−</mo> <mn>4</mn> </mrow> <mrow> <msqrt> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{8}{{\sqrt {17} \sqrt {17} }}"> <mfrac> <mn>8</mn> <mrow> <msqrt> <mn>17</mn> </msqrt> <msqrt> <mn>17</mn> </msqrt> </mrow> </mfrac> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06075, 118.072°</span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06 (radians)  (118 degrees)     <em><strong>A1  N2</strong></em></span></p>
<p> </p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><strong>METHOD 3</strong><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">using trigonometry to find an angle with the horizontal      <em><strong>(M1)</strong></em><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta  =  - \frac{1}{4}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta  =  - 4"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mn>4</mn> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">finding both angles of rotation     <em><strong> (A1)</strong></em><br></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _1} = 0.244978{\text{,  14}}{\text{.0362}}^\circ "> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mn>0.244978</mn> <mrow> <mtext>,  14</mtext> </mrow> <msup> <mrow> <mtext>.0362</mtext> </mrow> <mo>∘</mo> </msup> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _1} = 1.81577{\text{,  104}}{\text{.036}}^\circ "> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mn>1.81577</mn> <mrow> <mtext>,  104</mtext> </mrow> <msup> <mrow> <mtext>.036</mtext> </mrow> <mo>∘</mo> </msup> </math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06075, 118.072°</span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.06 (radians)  (118 degrees)     <em><strong>A1  N2</strong></em></span></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, in grams, of oranges grown in an orchard, are normally distributed with a mean of 297 g. It is known that 79 % of the oranges weigh more than 289 g and 9.5 % of the oranges weigh more than 310 g.</p>
</div>

<div class="specification">
<p>The weights of the oranges have a standard deviation of σ.</p>
</div>

<div class="specification">
<p>The grocer at a local grocery store will buy the oranges whose weights exceed the&nbsp;35th percentile.</p>
</div>

<div class="specification">
<p>The orchard packs oranges in boxes of 36.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that an orange weighs between 289 g and 310 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standardized value for 289 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of σ.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>To the nearest gram, find the minimum weight of an orange that the grocer will buy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the grocer buys more than half the oranges in a box&nbsp;selected at random.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The grocer selects two boxes at random.</p>
<p>Find the probability that the grocer buys more than half the oranges in each box.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct approach indicating subtraction&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; 0.79 − 0.095, appropriate shading in diagram</p>
<p>P(289 &lt; <em>w</em> &lt; 310) = 0.695 (exact), 69.5 %&nbsp; &nbsp; &nbsp; <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>valid approach&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>eg&nbsp; &nbsp; 1 − <em>p</em>, 21</p>
<p>−0.806421</p>
<p><em>z</em> = −0.806&nbsp; &nbsp; &nbsp; <em><strong>A1 N2</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>(i) &amp; (ii)</p>
<p>correct expression for <em>z</em> (seen anywhere)&nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em>eg&nbsp;&nbsp;</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{289 - u}}{\sigma }">
  <mfrac>
    <mrow>
      <mn>289</mn>
      <mo>−</mo>
      <mi>u</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
</math></span></p>
<p>valid approach&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg&nbsp; &nbsp;</em> 1 −&nbsp;<em>p</em>, 21</p>
<p>−0.806421</p>
<p><em>z</em>&nbsp;= −0.806 (seen anywhere)&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 N2</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempt to standardize &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>eg&nbsp; &nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma&nbsp; = \frac{{289 - 297}}{z},\,\,\frac{{289 - 297}}{\sigma }">
  <mi>σ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>289</mn>
      <mo>−</mo>
      <mn>297</mn>
    </mrow>
    <mi>z</mi>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mrow>
      <mn>289</mn>
      <mo>−</mo>
      <mn>297</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
</math></span></p>
<p>correct substitution with their <em>z</em> (do not accept a probability)&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>eg&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.806 = \frac{{289 - 297}}{\sigma },\,\,\frac{{289 - 297}}{{ - 0.806}}">
  <mo>−</mo>
  <mn>0.806</mn>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>289</mn>
      <mo>−</mo>
      <mn>297</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mrow>
      <mn>289</mn>
      <mo>−</mo>
      <mn>297</mn>
    </mrow>
    <mrow>
      <mo>−</mo>
      <mn>0.806</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>9.92037</p>
<p>σ = 9.92&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 N2</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>(i) &amp; (ii)</p>
<p>correct expression for <em>z</em> (seen anywhere)&nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em>eg&nbsp;&nbsp;</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{289 - u}}{\sigma }">
  <mfrac>
    <mrow>
      <mn>289</mn>
      <mo>−</mo>
      <mi>u</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
</math></span></p>
<p>valid approach&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg&nbsp; &nbsp;</em> 1 −&nbsp;<em>p</em>, 21</p>
<p>−0.806421</p>
<p><em>z</em>&nbsp;= −0.806 (seen anywhere)&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 N2</strong></em></p>
<p>valid attempt to set up an equation with <strong>their</strong> <em>z</em>&nbsp;(do not accept a probability)&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>eg&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.806 = \frac{{289 - 297}}{\sigma },\,\,\frac{{289 - 297}}{{ - 0.806}}">
  <mo>−</mo>
  <mn>0.806</mn>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>289</mn>
      <mo>−</mo>
      <mn>297</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mrow>
      <mn>289</mn>
      <mo>−</mo>
      <mn>297</mn>
    </mrow>
    <mrow>
      <mo>−</mo>
      <mn>0.806</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>9.92037</p>
<p>σ = 9.92&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg&nbsp;</em> P(<em>W</em> &lt; <em>w</em>) = 0.35, −0.338520 (accept 0.385320), diagram showing&nbsp;values in a standard normal distribution</p>
<p>correct score at the 35th percentile&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; 293.177</p>
<p>294 (g)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1 N2</strong></em></p>
<p><strong>Note:</strong> If working shown, award <em><strong>(M1)(A1)A0</strong></em> for 293.<br>If no working shown, award <em><strong>N1</strong></em> for 293.177, <em><strong>N1</strong></em> for 293.</p>
<p>Exception to the <em><strong>FT</strong> </em>rule: If the score is incorrect, and working shown, award <em><strong>A1FT</strong></em> for correctly finding their minimum weight (by rounding up)</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of recognizing binomial (seen anywhere)&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg&nbsp;&nbsp;</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{B}}\left( {36,\,\,p} \right),\,\,{}_n{C_a} \times {p^a} \times {q^{n - a}}">
  <mi>X</mi>
  <mo>∼</mo>
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>36</mn>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>p</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <msub>
    <mrow>

    </mrow>
    <mi>n</mi>
  </msub>
  <mrow>
    <msub>
      <mi>C</mi>
      <mi>a</mi>
    </msub>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>p</mi>
      <mi>a</mi>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>q</mi>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mi>a</mi>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p>correct probability (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 0.65</p>
<p><strong>EITHER</strong></p>
<p>finding P(<em>X</em>&nbsp;≤ 18) from GDC&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em>eg</em> 0.045720</p>
<p>evidence of using complement&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg</em> 1−P(<em>X</em>&nbsp;≤ 18)</p>
<p>0.954279</p>
<p>P(<em>X</em>&nbsp;&gt; 18) = 0.954&nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p><strong>OR</strong></p>
<p>recognizing&nbsp;P(<em>X</em>&nbsp;&gt;&nbsp;18) =&nbsp;P(<em>X</em> ≥ 19)&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>summing terms from 19 to 36&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp;&nbsp;P(<em>X</em>&nbsp;= 19) +&nbsp;P(<em>X</em>&nbsp;=&nbsp;20) + … +&nbsp;P(<em>X</em>&nbsp;= 36)</p>
<p>0.954279</p>
<p>P(<em>X</em>&nbsp;&gt;&nbsp;18) = 0.954&nbsp; &nbsp; &nbsp;<em><strong>A1&nbsp; N2</strong></em></p>
<p><strong>[<em>5</em><em> marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct calculation&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{0.954^2},\,\,\left( \begin{gathered}  2 \hfill \\  2 \hfill \\  \end{gathered} \right){0.954^2}{\left( {1 - 0.954} \right)^0}">
  <mrow>
    <msup>
      <mn>0.954</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>2</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>2</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mn>0.954</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>1</mn>
          <mo>−</mo>
          <mn>0.954</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>0</mn>
    </msup>
  </mrow>
</math></span></p>
<p>0.910650</p>
<p>0.911&nbsp; &nbsp; &nbsp; <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows a probability distribution for the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1.2">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.18.09.png" alt="M17/5/MATME/SP2/ENG/TZ2/10"></p>
</div>

<div class="specification">
<p>A bag contains white and blue marbles, with at least three of each colour. Three marbles are drawn from the bag, without replacement. The number of blue marbles drawn is given by the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>A game is played in which three marbles are drawn from the bag of ten marbles, without replacement. A player wins a prize if three white marbles are drawn.</p>
</div>

<div class="question">
<p>Jill plays the game nine times. Find the probability that she wins exactly two prizes.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(n,{\text{ }}p),{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){p^r}{q^{n - r}},{\text{ }}{(0.167)^2}{(0.833)^7},{\text{ }}\left( {\begin{array}{*{20}{c}} 9 \\ 2 \end{array}} \right)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>n</mi>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>n</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>r</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>p</mi>
      <mi>r</mi>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mi>q</mi>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mi>r</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>0.167</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>0.833</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>7</mn>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>9</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>0.279081</p>
<p>0.279     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Ten students were surveyed about the number of hours, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, they spent browsing the Internet during week 1 of the school year. The results of the survey are given below.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\sum\limits_{i = 1}^{10} {{x_i} = 252,{\text{ }}\sigma &nbsp;= 5{\text{ and median}} = 27.} ">
  <munderover>
    <mo movablelimits="false">∑<!-- ∑ --></mo>
    <mrow>
      <mi>i</mi>
      <mo>=</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mn>10</mn>
    </mrow>
  </munderover>
  <mrow>
    <mrow>
      <msub>
        <mi>x</mi>
        <mi>i</mi>
      </msub>
    </mrow>
    <mo>=</mo>
    <mn>252</mn>
    <mo>,</mo>
    <mrow>
      <mtext>&nbsp;</mtext>
    </mrow>
    <mi>σ<!-- σ --></mi>
    <mo>=</mo>
    <mn>5</mn>
    <mrow>
      <mtext>&nbsp;and median</mtext>
    </mrow>
    <mo>=</mo>
    <mn>27.</mn>
  </mrow>
</math></span></p>
</div>

<div class="specification">
<p>During week 4, the survey was extended to all 200 students in the school. The results are shown in the cumulative frequency graph:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_16.35.16.png" alt="N16/5/MATME/SP2/ENG/TZ0/08.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours spent browsing the Internet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During week 2, the students worked on a major project and they each spent an additional five hours browsing the Internet. For week 2, write down</p>
<p>(i)     the mean;</p>
<p>(ii)     the standard deviation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During week 3 each student spent 5% less time browsing the Internet than during week 1. For week 3, find</p>
<p>(i)     the median;</p>
<p>(ii)     the variance.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find the number of students who spent between 25 and 30 hours browsing the Internet.</p>
<p>(ii)     Given that 10% of the students spent more than <em>k </em>hours browsing the Internet, find the maximum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to substitute into formula for mean     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Sigma x}}{{10}},{\text{ }}\frac{{252}}{n},{\text{ }}\frac{{252}}{{10}}"> <mfrac> <mrow> <mi mathvariant="normal">Σ</mi> <mi>x</mi> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>252</mn> </mrow> <mi>n</mi> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>252</mn> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> </math></span></p>
<p>mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 25.2{\text{ (hours)}}"> <mo>=</mo> <mn>25.2</mn> <mrow> <mtext> (hours)</mtext> </mrow> </math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 30.2{\text{ (hours)}}"> <mo>=</mo> <mn>30.2</mn> <mrow> <mtext> (hours)</mtext> </mrow> </math></span>     <strong><em>A1 N1</em></strong></p>
<p>(ii)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma  = 5{\text{ (hours)}}"> <mi>σ</mi> <mo>=</mo> <mn>5</mn> <mrow> <mtext> (hours)</mtext> </mrow> </math></span>     <strong><em>A1     N1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>95%, 5% of 27</p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.95 \times 27,{\text{ }}27 - (5\% {\text{ of }}27)"> <mn>0.95</mn> <mo>×</mo> <mn>27</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>27</mn> <mo>−</mo> <mo stretchy="false">(</mo> <mn>5</mn> <mi mathvariant="normal">%</mi> <mrow> <mtext> of </mtext> </mrow> <mn>27</mn> <mo stretchy="false">)</mo> </math></span></p>
<p>median <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 25.65{\text{ (exact), }}25.7{\text{ (hours)}}"> <mo>=</mo> <mn>25.65</mn> <mrow> <mtext> (exact), </mtext> </mrow> <mn>25.7</mn> <mrow> <mtext> (hours)</mtext> </mrow> </math></span>     <strong><em>A1     N2</em></strong></p>
<p>(ii)     <strong>METHOD 1</strong></p>
<p>variance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {({\text{standard deviation}})^2}"> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <mtext>standard deviation</mtext> </mrow> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> </math></span> (seen anywhere)     <strong><em>(A1)</em></strong></p>
<p>valid attempt to find new standard deviation     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma _{new}} = 0.95 \times 5,{\text{ }}4.75"> <mrow> <msub> <mi>σ</mi> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msub> </mrow> <mo>=</mo> <mn>0.95</mn> <mo>×</mo> <mn>5</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4.75</mn> </math></span></p>
<p>variance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 22.5625{\text{ }}({\text{exact}}),{\text{ }}22.6"> <mo>=</mo> <mn>22.5625</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>exact</mtext> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>22.6</mn> </math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>variance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {({\text{standard deviation}})^2}"> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <mtext>standard deviation</mtext> </mrow> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> </math></span> (seen anywhere)     <strong><em>(A1)</em></strong></p>
<p>valid attempt to find new variance     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{0.95^2}{\text{ }},{\text{ }}0.9025 \times {\sigma ^2}"> <mrow> <msup> <mn>0.95</mn> <mn>2</mn> </msup> </mrow> <mrow> <mtext> </mtext> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.9025</mn> <mo>×</mo> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>new variance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 22.5625{\text{ }}({\text{exact}}),{\text{ }}22.6"> <mo>=</mo> <mn>22.5625</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>exact</mtext> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>22.6</mn> </math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     both correct frequencies     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>80, 150</p>
<p>subtracting <strong>their </strong>frequencies in either order     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="150 - 80,{\text{ }}80 - 150"> <mn>150</mn> <mo>−</mo> <mn>80</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>80</mn> <mo>−</mo> <mn>150</mn> </math></span></p>
<p>70 (students)     <strong><em>A1     N2</em></strong></p>
<p>(ii)     evidence of a valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>10% of 200, 90%</p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.90 \times 200,{\text{ }}200 - 20"> <mn>0.90</mn> <mo>×</mo> <mn>200</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>200</mn> <mo>−</mo> <mn>20</mn> </math></span>, 180 students</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 35"> <mi>k</mi> <mo>=</mo> <mn>35</mn> </math></span>     <strong><em>A1     N3</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the mean weight, <em>y</em> kg , of children who are <em>x</em> years old.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between the variables is modelled by the regression line with equation&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
  <mi>y</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of<em> a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your equation to estimate the mean weight of a child that is 1.95 years old.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg</em> correct value for <em>a</em> or <em>b</em> (or for <em>r</em> seen in (ii))</p>
<p><em>a</em> = 1.91966&nbsp; <em>b</em> = 7.97717</p>
<p><em>a</em> = 1.92,&nbsp; <em>b</em> = 7.98&nbsp; &nbsp; &nbsp; <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.984674</p>
<p><em>r&nbsp;</em>= 0.985&nbsp; &nbsp; &nbsp; <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into their equation&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em><br><em>eg</em>&nbsp; 1.92&nbsp;× 1.95 + 7.98</p>
<p>11.7205</p>
<p>11.7 (kg)&nbsp; &nbsp; &nbsp; <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A healthy human body temperature is 37.0 °C. Eight people were medically examined and the difference in their body temperature (°C), from 37.0 °C, was recorded. Their heartbeat (beats per minute) was also recorded.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean temperature difference from 37 °C, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean number of heartbeats per minute, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point M(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>) on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the Pearson’s product–moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence describe the correlation between temperature difference from 37 °C and heartbeat.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>0.025 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{{40}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>40</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>74        <strong><em>(A1)</em></strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the point M labelled, correctly plotted on their diagram        <strong><em>(A1)(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for labelled M. Do not accept any other label. Award <strong><em>(A1)</em>(ft)</strong> for their point M correctly plotted. Follow through from part (b).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.807 (0.806797…)       <strong><em>(G2)</em></strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(moderately) strong, positive       <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for (moderately) strong, <em><strong>(A1)</strong></em> for positive. Follow through from part (d)(i). If there is no answer to part (d)(i), award at most <em><strong>(A0)</strong></em><em><strong>(A1)</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>their regression line correctly drawn on scatter diagram <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for a straight line, using a ruler, intercepting their mean point, and <strong><em>(A1)</em>(ft)</strong> for intercepting the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis at their 73.5 and the gradient of the line is positive. If graph paper is not used, award at most <strong><em>(A1)</em></strong><strong><em>(A0)</em></strong>. Follow through from part (e).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A teacher is concerned about the amount of lesson time lost by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> students through arriving&nbsp;late at school. Over a period of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> weeks he records the total number of minutes they are&nbsp;late. He also asks them how far they live from school. The results are shown in the table&nbsp;below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question">
<p>Which of the correlation coefficients would you recommend is used to assess whether or not there is an association between total number of minutes late and distance from school? Fully justify your answer.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>Spearman’s rank correlation should be used         <strong>A1</strong></p>
<p>Because the product moment correlation coefficient is distorted by an outlier.        <strong> R1</strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong>A1R0</strong></p>
<p>  </p>
<p><strong>[2 marks]</strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Adam is a beekeeper who collected data about monthly honey production in his bee hives. The data for six of his hives is shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.46.13.png" alt="N17/5/MATME/SP2/ENG/TZ0/08"></p>
<p>The relationship between the variables is modelled by the regression line with equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = aN + b">
  <mi>P</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>N</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>Adam has 200 hives in total. He collects data on the monthly honey production of all the hives. This data is shown in the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.49.33.png" alt="N17/5/MATME/SP2/ENG/TZ0/08.c.d.e"></p>
<p>Adam’s hives are labelled as low, regular or high production, as defined in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.51.25.png" alt="N17/5/MATME/SP2/ENG/TZ0/08.c.d.e_02"></p>
</div>

<div class="specification">
<p>Adam knows that 128 of his hives have a regular production.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this regression line to estimate the monthly honey production from a hive that has 270 bees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of low production hives.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of hives that have a high production.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Adam decides to increase the number of bees in each low production hive. Research suggests that there is a probability of 0.75 that a low production hive becomes a regular production hive. Calculate the probability that 30 low production hives become regular production hives.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of setup     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 6.96103,{\text{ }}b =  - 454.805">
  <mi>a</mi>
  <mo>=</mo>
  <mn>6.96103</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>b</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>454.805</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 6.96,{\text{ }}b =  - 455{\text{ (accept }}6.96x - 455)">
  <mi>a</mi>
  <mo>=</mo>
  <mn>6.96</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>b</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>455</mn>
  <mrow>
    <mtext> (accept </mtext>
  </mrow>
  <mn>6.96</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>455</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A1A1     N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = 270">
  <mi>N</mi>
  <mo>=</mo>
  <mn>270</mn>
</math></span> into <strong>their</strong> equation     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6.96(270) - 455">
  <mn>6.96</mn>
  <mo stretchy="false">(</mo>
  <mn>270</mn>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mn>455</mn>
</math></span></p>
<p>1424.67</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 1420{\text{ (g)}}">
  <mi>P</mi>
  <mo>=</mo>
  <mn>1420</mn>
  <mrow>
    <mtext> (g)</mtext>
  </mrow>
</math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>40 (hives)     <strong><em>A1     N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="128 + 40">
  <mn>128</mn>
  <mo>+</mo>
  <mn>40</mn>
</math></span></p>
<p>168 hives have a production less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 1640">
  <mi>k</mi>
  <mo>=</mo>
  <mn>1640</mn>
</math></span>     <strong><em>A1     N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="200 - 168">
  <mn>200</mn>
  <mo>−</mo>
  <mn>168</mn>
</math></span></p>
<p>32 (hives)     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize binomial distribution (seen anywhere)     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{B}}(n,{\text{ }}p),{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){p^r}{(1 - p)^{n - r}}">
  <mi>X</mi>
  <mo>∼</mo>
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>n</mi>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>n</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>r</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>p</mi>
      <mi>r</mi>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>1</mn>
    <mo>−</mo>
    <mi>p</mi>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mi>r</mi>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p>correct values     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 40">
  <mi>n</mi>
  <mo>=</mo>
  <mn>40</mn>
</math></span> (check <em><strong>FT</strong></em>) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0.75">
  <mi>p</mi>
  <mo>=</mo>
  <mn>0.75</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 30,{\text{ }}\left( {\begin{array}{*{20}{c}} {40} \\ {30} \end{array}} \right){0.75^{30}}{(1 - 0.75)^{10}}">
  <mi>r</mi>
  <mo>=</mo>
  <mn>30</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>40</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>30</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mn>0.75</mn>
      <mrow>
        <mn>30</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>1</mn>
    <mo>−</mo>
    <mn>0.75</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mn>10</mn>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p>0.144364</p>
<p>0.144     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The manager of a folder factory recorded the number of folders produced by the factory (in thousands) and the production costs (in thousand Euros), for six consecutive months.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.30.09.png" alt="M17/5/MATSD/SP2/ENG/TZ2/03"></p>
</div>

<div class="specification">
<p>Every month the factory sells all the folders produced. Each folder is sold for 2.99 Euros.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a scatter diagram for this data. Use a scale of 2 cm for 5000 folders on the horizontal axis and 2 cm for 10 000 Euros on the vertical axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean number of folders produced, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean production cost, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar C">
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{M}}(\bar x,{\text{ }}\bar C)">
  <mrow>
    <mtext>M</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span> on the scatter diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is appropriate to model the relationship between these variables.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the equation of the regression line to estimate the least number of folders that the factory needs to sell in a month to exceed its production cost for that month.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-08-17_om_06.54.04.png" alt="M17/5/MATSD/SP2/ENG/TZ2/03.a/M">     <strong><em>(A4)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>(A1) </em></strong>for correct scales and labels. Award <strong><em>(A0) </em></strong>if axes are reversed and follow through for their points.</p>
<p>Award <strong><em>(A3) </em></strong>for all six points correctly plotted, <strong><em>(A2) </em></strong>for four or five points correctly plotted, <strong><em>(A1) </em></strong>for two or three points correctly plotted.</p>
<p>If graph paper has not been used, award at most <strong><em>(A1)(A0)(A0)(A0)</em></strong>. If accuracy cannot be determined award <strong><em>(A0)(A0)(A0)(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x = ){\text{ }}21">
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>21</mn>
</math></span>     <strong><em>(A1)(G1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar C = ){\text{ }}55">
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>55</mn>
</math></span>     <strong><em>(A1)(G1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept (i) 21000 and (ii) 55000 seen.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>their mean point M labelled on diagram     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (b).</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>if their part (b) is correct and their attempt at plotting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(21,{\text{ }}55)">
  <mo stretchy="false">(</mo>
  <mn>21</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>55</mn>
  <mo stretchy="false">)</mo>
</math></span> in part (a) is labelled M.</p>
<p>If graph paper not used, award <strong><em>(A1) </em></strong>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(21,{\text{ }}55)">
  <mo stretchy="false">(</mo>
  <mn>21</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>55</mn>
  <mo stretchy="false">)</mo>
</math></span> is labelled. If their answer from part (b) is incorrect and accuracy cannot be determined, award <strong><em>(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the correlation coefficient/<em>r </em>is (very) close to 1     <strong><em>(R1)</em>(ft)</strong></p>
<p><strong>OR</strong></p>
<p>the correlation is (very) strong     <strong><em>(R1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from their answer to part (d).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>the position of the data points on the scatter graphs suggests that the tendency is linear     <strong><em>(R1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from their scatter graph in part (a).</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 1.94x + 14.2{\text{ }}(C = 1.94097 \ldots x + 14.2395 \ldots )">
  <mi>C</mi>
  <mo>=</mo>
  <mn>1.94</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>14.2</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>C</mi>
  <mo>=</mo>
  <mn>1.94097</mn>
  <mo>…</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>14.2395</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>(G1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.94x">
  <mn>1.94</mn>
  <mi>x</mi>
</math></span>, <strong><em>(G1) </em></strong>for 14.2.</p>
<p>Award a maximum of <strong><em>(G0)(G1) </em></strong>if the answer is not an equation.</p>
<p>Award <strong><em>(G0)(G1)</em>(ft) </strong>if gradient and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>-intercept are swapped in the equation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>straight line through their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{M}}(21,{\text{ }}55)">
  <mrow>
    <mtext>M</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>21</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>55</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>-intercept of the line (or extension of line) passing through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="14.2{\text{ }}( \pm 1)">
  <mn>14.2</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>±</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:</strong>     Follow through from part (f). In the event that the regression line is not straight (ruler not used), award <strong><em>(A0)(A1)</em>(ft) </strong>if line passes through both their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(21,{\text{ }}55)">
  <mo stretchy="false">(</mo>
  <mn>21</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>55</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}14.2)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>14.2</mn>
  <mo stretchy="false">)</mo>
</math></span>, otherwise award <strong><em>(A0)(A0)</em></strong>. The line must pass <em>through </em>the midpoint, not <em>near </em>this point. If it is not clear award <strong><em>(A0)</em></strong>.</p>
<p>If graph paper is not used, award at most (A1)(ft)(A0).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.99x = 1.94097 \ldots x + 14.2395 \ldots ">
  <mn>2.99</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mn>1.94097</mn>
  <mo>…</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>14.2395</mn>
  <mo>…</mo>
</math></span>     <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.99x">
  <mn>2.99</mn>
  <mi>x</mi>
</math></span> seen and <strong><em>(M1) </em></strong>for equating to their equation of the regression line. Accept an inequality sign.</p>
<p>Accept a correct graphical method involving their part (f) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.99x">
  <mn>2.99</mn>
  <mi>x</mi>
</math></span>.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 2.99x">
  <mi>C</mi>
  <mo>=</mo>
  <mn>2.99</mn>
  <mi>x</mi>
</math></span> drawn on their scatter graph.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 13.5739 \ldots ">
  <mi>x</mi>
  <mo>=</mo>
  <mn>13.5739</mn>
  <mo>…</mo>
</math></span> (this step may be implied by their final answer)     <strong><em>(A1)</em>(ft)(G2)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13\,600{\text{ }}(13\,574)">
  <mn>13</mn>
  <mspace width="thinmathspace"></mspace>
  <mn>600</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>13</mn>
  <mspace width="thinmathspace"></mspace>
  <mn>574</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from their answer to (f). Use of 3 sf gives an answer of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13\,524">
  <mn>13</mn>
  <mspace width="thinmathspace"></mspace>
  <mn>524</mn>
</math></span>.</p>
<p>Award <strong><em>(G2) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{13.5739}} \ldots ">
  <mrow>
    <mtext>13.5739</mtext>
  </mrow>
  <mo>…</mo>
</math></span> or 13.524 or a value which rounds to 13500 seen without workings.</p>
<p>Award the last <strong><em>(A1)</em>(ft) </strong>for correct multiplication by 1000 <strong>and </strong>an answer satisfying revenue &gt; <strong>their </strong>production cost.</p>
<p>Accept 13.6 thousand (folders).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>In a large university the probability that a student is left handed is 0.08. A sample of 150 students is randomly selected from the university. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> be the expected number of left-handed students in this sample.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> students are left handed;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that fewer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> students are left handed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of binomial distribution (may be seen in part (b))     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="np,{\text{ }}150 \times 0.08">
  <mi>n</mi>
  <mi>p</mi>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>150</mn>
  <mo>×</mo>
  <mn>0.08</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 12">
  <mi>k</mi>
  <mo>=</mo>
  <mn>12</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 12} \right) = \left( {\begin{array}{*{20}{c}}  {150} \\   {12}  \end{array}} \right){\left( {0.08} \right)^{12}}{\left( {0.92} \right)^{138}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>12</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>150</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>12</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.08</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mn>12</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.92</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mn>138</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>    <strong><em>(A1)</em></strong></p>
<p>0.119231</p>
<p>probability <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.119">
  <mo>=</mo>
  <mn>0.119</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \leqslant 11">
  <mi>X</mi>
  <mo>⩽</mo>
  <mn>11</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p>0.456800</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &lt; 12) = 0.457">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>12</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.457</mn>
</math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Contestants in a TV gameshow try to get through three walls by passing through doors without falling into a trap. Contestants choose doors at random.<br>If they avoid a trap they progress to the next wall.<br>If a contestant falls into a trap they exit the game before the next contestant plays.<br>Contestants are not allowed to watch each other attempt the game.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The first wall has four doors with a trap behind one door.</p>
<p style="text-align: left;">Ayako is a contestant.</p>
</div>

<div class="specification">
<p>Natsuko is the second contestant.</p>
</div>

<div class="specification">
<p>The second wall has five doors with a trap behind two of the doors.</p>
<p>The third wall has six doors with a trap behind three of the doors.</p>
<p>The following diagram shows the branches of a probability tree diagram for a contestant in the game.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that Ayako avoids the trap in this wall.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that only one of Ayako and Natsuko falls into a trap while attempting to pass through a door <strong>in the first wall</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy</strong> the probability tree diagram and write down the relevant probabilities along the branches.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A contestant is chosen at random. Find the probability that this contestant&nbsp;fell into a trap while attempting to pass through a door in the second wall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A contestant is chosen at random. Find the probability that this contestant fell into a trap.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>120 contestants attempted this game.</p>
<p>Find the expected number of contestants who fell into a trap while attempting to pass through a door in the third wall.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>&nbsp; (0.75, 75%)&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{3}{4}"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>&nbsp; <strong>OR&nbsp;&nbsp;</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times \frac{3}{4} \times \frac{1}{4}"> <mn>2</mn> <mo>×</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their product&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} \times \frac{3}{4}"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> seen, and <em><strong>(M1)</strong></em>&nbsp;for adding their two products or multiplying their product by 2.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{3}{8}\,\,\,\,\left( {\frac{6}{{16}},\,\,0.375,\,\,37.5{\text{% }}} \right)"> <mo>=</mo> <mfrac> <mn>3</mn> <mn>8</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>6</mn> <mrow> <mn>16</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0.375</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>37.5</mn> <mrow> <mtext>%&nbsp;</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a), but only if the sum of their two fractions is 1.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct pair of branches. Follow through from part (a).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{2}{5}"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>Note: Award <em><strong>(M1)</strong></em> for correct probabilities multiplied together.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{3}{{10}}\,\,\,\left( {0.3,\,\,30{\text{% }}} \right)"> <mo>=</mo> <mfrac> <mn>3</mn> <mrow> <mn>10</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>30</mn> <mrow> <mtext>%&nbsp;</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their tree diagram or part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{3}{4} \times \frac{2}{5} \times \frac{3}{6}"> <mn>1</mn> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>6</mn> </mfrac> </math></span>&nbsp; <strong>OR&nbsp;</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} + \frac{3}{4} \times \frac{2}{5} + \frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> <mo>+</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>6</mn> </mfrac> </math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>6</mn> </mfrac> </math></span>&nbsp;and <em><strong>(M1)</strong></em> for subtracting their correct probability from 1, or adding to their&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} + \frac{3}{4} \times \frac{2}{5}"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{93}}{{120}}\,\,\,\,\left( {\frac{{31}}{{40}},\,\,0.775,\,\,77.5{\text{% }}} \right)"> <mo>=</mo> <mfrac> <mrow> <mn>93</mn> </mrow> <mrow> <mn>120</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>31</mn> </mrow> <mrow> <mn>40</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0.775</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>77.5</mn> <mrow> <mtext>%&nbsp;</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their tree diagram.</p>
<p><em><strong>[3&nbsp;marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6} \times 120"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>6</mn> </mfrac> <mo>×</mo> <mn>120</mn> </math></span>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}\,\,\,\,\left( {\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}\,\,{\text{OR}}\,\,\frac{{27}}{{120}}\,\,{\text{OR}}\,\,\frac{9}{{40}}} \right)"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>6</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>6</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>OR</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>27</mn> </mrow> <mrow> <mn>120</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>OR</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>9</mn> <mrow> <mn>40</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp;and <em><strong>(M1)</strong></em> for multiplying by 120.</p>
<p>= 27&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from their tree diagram or their&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>6</mn> </mfrac> </math></span>&nbsp;from their calculation in part (d)(ii).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer produces 1500 boxes of breakfast cereal every day.</p>
<p>The weights of these boxes are normally distributed with a mean of 502 grams and a standard deviation of 2 grams.</p>
</div>

<div class="specification">
<p>All boxes of cereal with a weight between 497.5 grams and 505 grams are sold. The manufacturer’s income from the sale of each box of cereal is $2.00.</p>
</div>

<div class="specification">
<p>The manufacturer recycles any box of cereal with a weight <strong>not </strong>between 497.5 grams and 505 grams. The manufacturer’s recycling cost is $0.16 per box.</p>
</div>

<div class="specification">
<p>A <strong>different </strong>manufacturer produces boxes of cereal with weights that are normally distributed with a mean of 350 grams and a standard deviation of 1.8 grams.</p>
<p>This manufacturer sells all boxes of cereal that are above a minimum weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<p>They sell 97% of the cereal boxes produced.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a diagram that shows this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Find the probability that a box of cereal, chosen at random, is sold.</p>
<p>(ii) &nbsp; &nbsp; Calculate the manufacturer’s expected daily income from these sales.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the manufacturer’s expected daily recycling cost.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-08_om_11.51.39.png" alt="N16/5/MATSD/SP2/ENG/TZ0/04.a/M"></p>
<p><strong><em>(A1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Notes: &nbsp; &nbsp; </strong>Award <strong><em>(A1) </em></strong>for bell shape with mean of 502.</p>
<p>Award <strong><em>(A1) </em></strong>for an indication of standard deviation <em>eg </em>500 and 504.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.921{\text{ }}(0.920968 \ldots ,{\text{ }}92.0968 \ldots \% )">
  <mn>0.921</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.920968</mn>
  <mo>…</mo>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>92.0968</mn>
  <mo>…</mo>
  <mi mathvariant="normal">%</mi>
  <mo stretchy="false">)</mo>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>(G2)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>(M1) </em></strong>for a diagram showing the correct shaded region.</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1500 \times 2 \times 0.920968 \ldots ">
  <mn>1500</mn>
  <mo>×</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>0.920968</mn>
  <mo>…</mo>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ }}(\$ ){\text{ }}2760{\text{ }}(2762.90 \ldots )">
  <mo>=</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi mathvariant="normal">$</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>2760</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>2762.90</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Follow through from their answer to part (b)(i).</p>
<p>&nbsp;</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1500 \times 0.16 \times 0.079031 \ldots ">
  <mn>1500</mn>
  <mo>×</mo>
  <mn>0.16</mn>
  <mo>×</mo>
  <mn>0.079031</mn>
  <mo>…</mo>
</math></span> &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Notes: &nbsp; &nbsp; </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1500 \times 0.16 \times {\text{ their }}(1 - 0.920968 \ldots )">
  <mn>1500</mn>
  <mo>×</mo>
  <mn>0.16</mn>
  <mo>×</mo>
  <mrow>
    <mtext>&nbsp;their&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mn>0.920968</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1500 - 1381.45) \times 0.16">
  <mo stretchy="false">(</mo>
  <mn>1500</mn>
  <mo>−</mo>
  <mn>1381.45</mn>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mn>0.16</mn>
</math></span> &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Notes: &nbsp; &nbsp; </strong>Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1500 - {\text{their }}1381.45) \times 0.16">
  <mo stretchy="false">(</mo>
  <mn>1500</mn>
  <mo>−</mo>
  <mrow>
    <mtext>their&nbsp;</mtext>
  </mrow>
  <mn>1381.45</mn>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mn>0.16</mn>
</math></span>.</p>
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = (\$ )19.0{\text{ (}}18.9676 \ldots )">
  <mo>=</mo>
  <mo stretchy="false">(</mo>
  <mi mathvariant="normal">$</mi>
  <mo stretchy="false">)</mo>
  <mn>19.0</mn>
  <mrow>
    <mtext>&nbsp;(</mtext>
  </mrow>
  <mn>18.9676</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="347{\text{ }}({\text{grams}}){\text{ }}(346.614 \ldots )">
  <mn>347</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>grams</mtext>
  </mrow>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>346.614</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>(G3)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Notes: &nbsp; &nbsp; </strong>Award <strong><em>(G2) </em></strong>for an answer that rounds to 346.</p>
<p>Award <strong><em>(G1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="353.385 \ldots ">
  <mn>353.385</mn>
  <mo>…</mo>
</math></span> seen without working (for finding the top 3%).</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Jim writes a computer program to generate 500 values of a variable <em>Z</em>. He obtains the following table from his results.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>In this situation, state briefly what is meant by</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Use a chi-squared goodness of fit test to investigate whether or not, at the 5 % level of significance, the N(0, 1) distribution can be used to model these results.</p>
<div class="marks">[12]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">a Type I error.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">a Type II error.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(A1)(A1)(A1)(A1)(A1)(A1)</strong></em></p>
<p><span class="mjpage"><math alttext="{\chi ^2} = \frac{{{{\left( {16 - 11.35} \right)}^2}}}{{11.35}} +&nbsp; \ldots " xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>16</mn> <mo>−</mo> <mn>11.35</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>11.35</mn> </mrow> </mfrac> <mo>+</mo> <mo>…</mo> </math></span>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p>= 7.94&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>Degrees of freedom = 5&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>Critical value = 11.07&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>Or use of p-value</p>
<p>We conclude that the data fit the N(0, 1) distribution.&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1 </strong></em></p>
<p>at the 5% level of significance&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><em><strong>[12 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Type I error concluding that the data do not fit N(0, 1) when in fact they do. &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Type II error concluding that data fit N(0, 1) when in fact they do not. &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Casanova restaurant offers a set menu where a customer chooses <strong>one</strong> of the following meals: pasta, fish or shrimp.</p>
<p>The manager surveyed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn></math> customers and recorded the customer’s age and chosen meal. The data is shown in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> test was performed at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> significance level. The critical value for this test is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>605</mn></math>.</p>
</div>

<div class="specification">
<p>Write down</p>
</div>

<div class="specification">
<p>A customer is selected at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math>, the null hypothesis for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the expected number of children who chose shrimp is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>31</mn></math>, correct to two significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>χ</mi><mn>2</mn></msub></math> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for this test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that the customer is an adult.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that the customer is an adult or that the customer chose shrimp.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the customer is a child, calculate the probability that they chose pasta or fish.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mtext>H</mtext><mn>0</mn></msub><mtext> :</mtext></mrow></mfenced></math> choice of meal is independent of age (or equivalent)        <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept "not associated" or "not dependent" instead of independent. In lieu of "age", accept an equivalent alternative such as "being a child or adult".</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2        <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>69</mn><mn>150</mn></mfrac><mo>×</mo><mfrac><mn>67</mn><mn>150</mn></mfrac><mo>×</mo><mn>150</mn></math>  <strong>OR</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>69</mn><mo>×</mo><mn>67</mn></mrow><mn>150</mn></mfrac></math>  <strong><em><span style="background-color: #ffffff;">(M1)</span></em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into expected frequency formula.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo>.</mo><mn>82</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>30</mn><mo>.</mo><mn>8</mn></mrow></mfenced></math>        <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>31</mn></math>        <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> Both an unrounded answer that rounds to the given answer and rounded answer must be seen for the <em><strong>(A1)</strong></em> to be awarded.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msubsup><mi>χ</mi><mtext>calc</mtext><mn>2</mn></msubsup><mi mathvariant="normal">=</mi></mrow></mfenced><mo> </mo><mn>2</mn><mo>.</mo><mn>66</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>657537</mn><mo>…</mo></mrow></mfenced><mo> </mo></math>        <em><strong>(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math>)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>265</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>264803</mn><mo>…</mo></mrow></mfenced></math>      <em><strong>(G1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(G0)(G2)</strong></em> if the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> statistic is missing or incorrect and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value is correct.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>265</mn><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>10</mn></math>  <em><strong>OR</strong></em>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>66</mn><mo>&lt;</mo><mn>4</mn><mo>.</mo><mn>605</mn></math>        <strong><em>(R1)</em>(ft)</strong></p>
<p>the null hypothesis is not rejected        <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>OR</strong></p>
<p>the choice of meal is independent of age (or equivalent)        <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(R1)</em>(ft)</strong>) for a correct comparison of either their <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> statistic to the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> critical value or their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value to the significance level.<br>Condone “accept” in place of “not reject”.<br>Follow through from parts (a) and (d).</p>
<p>Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>81</mn><mn>150</mn></mfrac><mo> </mo><mfenced><mrow><mfrac><mn>27</mn><mn>50</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>54</mn><mo>,</mo><mo> </mo><mn>54</mn><mo>%</mo></mrow></mfenced></math>        <strong><em>(A1)</em><em>(A1)</em><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>116</mn><mn>150</mn></mfrac><mo> </mo><mfenced><mrow><mfrac><mn>58</mn><mn>75</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>773</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>773333</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>77</mn><mo>.</mo><mn>3</mn><mo>%</mo></mrow></mfenced></math>        <strong><em>(A1)</em><em>(A1)</em><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>34</mn><mn>69</mn></mfrac><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>493</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>492753</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>49</mn><mo>.</mo><mn>3</mn><mo>%</mo></mrow></mfenced></math>        <strong><em>(A1)</em><em>(A1)</em><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A nationwide study on reaction time is conducted on participants in two age groups. The participants in Group X are less than 40 years old. Their reaction times are normally distributed with mean 0.489 seconds and standard deviation 0.07 seconds.</p>
</div>

<div class="specification">
<p>The participants in Group Y are 40 years or older. Their reaction times are normally distributed with mean 0.592 seconds and standard deviation <em>σ</em> seconds.</p>
</div>

<div class="specification">
<p>In the study, 38 % of the participants are in Group X.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A randomly selected participant has a reaction time greater than 0.65 seconds. Find the probability that the participant is in Group X.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ten of the participants with reaction times greater than 0.65 are selected at random. Find the probability that at least two of them are in Group X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct work for P(group X and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> &gt; 0.65) or P(group Y and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> &gt; 0.65)  (may be seen anywhere)     <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{group X}}} \right) \times {\text{P}}\left( {t &gt; 0.65\left| {\text{X}} \right.} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>group X</mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
      <mrow>
        <mo>|</mo>
        <mrow>
          <mtext>X</mtext>
        </mrow>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{X}} \cap t &gt; 0.65} \right) = 0.0107 \times 0.38\left( { = 0.004075} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>X</mtext>
      </mrow>
      <mo>∩</mo>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.0107</mn>
  <mo>×</mo>
  <mn>0.38</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mn>0.004075</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{Y}} \cap t &gt; 0.65} \right) = 0.396 \times 0.62">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>Y</mtext>
      </mrow>
      <mo>∩</mo>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.396</mn>
  <mo>×</mo>
  <mn>0.62</mn>
</math></span></p>
<p>recognizing conditional probability (seen anywhere)      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. {\text{X}} \right|t &gt; 0.65} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
        <mrow>
          <mtext>X</mtext>
        </mrow>
        <mo>|</mo>
      </mrow>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. A \right|B} \right) = \frac{{{\text{P}}\left( {A \cap B} \right)}}{{{\text{P}}\left( B \right)}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
        <mi>A</mi>
        <mo>|</mo>
      </mrow>
      <mi>B</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>A</mi>
          <mo>∩</mo>
          <mi>B</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mi>B</mi>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {t &gt; 0.65} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <img src="">,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{X and }}t &gt; 0.65} \right) + {\text{P}}\left( {{\text{Y and }}t &gt; 0.65} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>X and </mtext>
      </mrow>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>Y and </mtext>
      </mrow>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>correct work for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {t &gt; 0.65} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>(A1)</strong></em></p>
<p><em>eg</em>   0.0107 × 0.38 + 0.396 × 0.62,  0.249595</p>
<p>correct substitution into conditional probability formula     <strong><em> A1</em></strong></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.0107 \times 0.38}}{{0.0107 \times 0.38 + 0.396 \times 0.62}}">
  <mfrac>
    <mrow>
      <mn>0.0107</mn>
      <mo>×</mo>
      <mn>0.38</mn>
    </mrow>
    <mrow>
      <mn>0.0107</mn>
      <mo>×</mo>
      <mn>0.38</mn>
      <mo>+</mo>
      <mn>0.396</mn>
      <mo>×</mo>
      <mn>0.62</mn>
    </mrow>
  </mfrac>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.004075}}{{0.249595}}">
  <mfrac>
    <mrow>
      <mn>0.004075</mn>
    </mrow>
    <mrow>
      <mn>0.249595</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.016327</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. {\text{X}} \right|t &gt; 0.65} \right) = 0.0163270">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
        <mrow>
          <mtext>X</mtext>
        </mrow>
        <mo>|</mo>
      </mrow>
      <mi>t</mi>
      <mo>&gt;</mo>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.0163270</mn>
</math></span>     <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing binomial probability      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim B\left( {n,\,\,p} \right)">
  <mi>X</mi>
  <mo>∼</mo>
  <mi>B</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>n</mi>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>p</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  n \\   r  \end{array}} \right){p^r}{q^{n - r}}">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>n</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>r</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>p</mi>
      <mi>r</mi>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mi>q</mi>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mi>r</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>,  (0.016327)<sup>2</sup>(0.983672)<sup>8</sup>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {10} \\   2  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X \geqslant 2} \right) = 1 - {\text{P}}\left( {X \leqslant 1} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>⩾</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>⩽</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\text{P}}\left( {X &lt; a} \right)">
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mi>a</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,  summing terms from 2 to 10 (accept binomcdf(10, 0.0163, 2, 10))</p>
<p>0.010994</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X \geqslant 2} \right) = 0.0110">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>⩾</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.0110</mn>
</math></span>     <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>At Penna Airport the probability, P(<em>A</em>), that all passengers arrive on time for a flight is 0.70. The probability, P(<em>D</em>), that a flight departs on time is 0.85. The probability that all passengers arrive on time for a flight and it departs on time is 0.65.</p>
</div>

<div class="specification">
<p>The number of hours that pilots fly per week is normally distributed with a mean of 25 hours and a standard deviation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ<!-- σ --></mi>
</math></span>. 90 % of pilots fly less than 28 hours in a week.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that event <em>A</em> and event <em>D</em> are <strong>not</strong> independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap D'} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩</mo>
      <msup>
        <mi>D</mi>
        <mo>′</mo>
      </msup>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> Given that all passengers for a flight arrive on time, find the probability that the flight does <strong>not</strong> depart on time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>All flights have two pilots. Find the percentage of flights where <strong>both</strong> pilots flew more than 30 hours last week.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>multiplication of P(<em>A</em>) and P(<em>D</em>)     <em><strong>(A1)</strong></em></p>
<p><em>eg</em>   0.70 × 0.85,  0.595</p>
<p>correct reasoning for their probabilities       <em><strong>R1</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.595 \ne 0.65">
  <mn>0.595</mn>
  <mo>≠</mo>
  <mn>0.65</mn>
</math></span>,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.70 \times 0.85 \ne {\text{P}}\left( {A \cap D} \right)">
  <mn>0.70</mn>
  <mo>×</mo>
  <mn>0.85</mn>
  <mo>≠</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩</mo>
      <mi>D</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><em>A</em> and <em>D</em> are not independent      <em><strong>AG N0</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>calculation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {D\left| A \right.} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>D</mi>
      <mrow>
        <mo>|</mo>
        <mi>A</mi>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>(A1)</strong></em></p>
<p><em>eg </em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{13}}{{14}}">
  <mfrac>
    <mrow>
      <mn>13</mn>
    </mrow>
    <mrow>
      <mn>14</mn>
    </mrow>
  </mfrac>
</math></span>,  0.928</p>
<p>correct reasoning for their probabilities       <em><strong>R1</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.928 \ne 0.85">
  <mn>0.928</mn>
  <mo>≠</mo>
  <mn>0.85</mn>
</math></span>,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.65}}{{0.7}}{\text{P}}\left( D \right)">
  <mfrac>
    <mrow>
      <mn>0.65</mn>
    </mrow>
    <mrow>
      <mn>0.7</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>D</mi>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><em>A</em> and <em>D</em> are not independent      <em><strong>AG N0</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct working       <em><strong>(A1)</strong></em></p>
<p><em>eg</em>   <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right) - {\text{P}}\left( {A \cap D} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>A</mi>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩</mo>
      <mi>D</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></span> ,  0.7 − 0.65 , correct shading and/or value on Venn diagram</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap D'} \right) = 0.05">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩</mo>
      <msup>
        <mi>D</mi>
        <mo>′</mo>
      </msup>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.05</mn>
</math></span>       <em><strong>A1  N2</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<p> </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">recognizing conditional probability (seen anywhere)       <strong><em><span style="font-family: 'Verdana',sans-serif;">(M1)</span></em></strong></span></p>
<p><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">eg</span></em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {D' \cap A} \right)}}{{{\text{P}}\left( A \right)}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <msup>
            <mi>D</mi>
            <mo>′</mo>
          </msup>
          <mo>∩</mo>
          <mi>A</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mi>A</mi>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A\left| B \right.} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mrow>
        <mo>|</mo>
        <mi>B</mi>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">correct working       <strong><em><span style="font-family: 'Verdana',sans-serif;">(A1)</span></em></strong></span></p>
<p><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">eg</span></em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.05}}{{0.7}}">
  <mfrac>
    <mrow>
      <mn>0.05</mn>
    </mrow>
    <mrow>
      <mn>0.7</mn>
    </mrow>
  </mfrac>
</math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">0.071428</span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {D'\left| A \right.} \right) = \frac{1}{{14}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msup>
        <mi>D</mi>
        <mo>′</mo>
      </msup>
      <mrow>
        <mo>|</mo>
        <mi>A</mi>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>14</mn>
    </mrow>
  </mfrac>
</math></span> , 0.0714     <strong><em><span style="font-family: 'Verdana',sans-serif;">A1  N2</span></em></strong></span></p>
<p><em><strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding standardized value for 28 hours (seen anywhere)       <em><strong>(A1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = 1.28155">
  <mi>z</mi>
  <mo>=</mo>
  <mn>1.28155</mn>
</math></span></p>
<p style="text-align: start;"><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">correct working to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span>       <em><strong>(A1)</strong></em><br></span></p>
<p style="text-align: start;"><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.28155 = \frac{{28 - 25}}{\sigma }">
  <mn>1.28155</mn>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>28</mn>
      <mo>−</mo>
      <mn>25</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{28 - 25}}{{1.28155}}">
  <mfrac>
    <mrow>
      <mn>28</mn>
      <mo>−</mo>
      <mn>25</mn>
    </mrow>
    <mrow>
      <mn>1.28155</mn>
    </mrow>
  </mfrac>
</math></span></span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.34091</span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma = 2.34">
  <mi>σ</mi>
  <mo>=</mo>
  <mn>2.34</mn>
</math></span>     <strong><em><span style="font-family: 'Verdana',sans-serif;">A1  N2</span></em></strong></span></p>
<p style="text-align: start;"><em><strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X &gt; 30} \right) = 0.0163429">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>&gt;</mo>
      <mn>30</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.0163429</mn>
</math></span>       <em><strong>(A1)</strong></em></p>
<p>valid approach (seen anywhere)        <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left[ {{\text{P}}\left( {X &gt; 30} \right)} \right]^2}">
  <mrow>
    <msup>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>P</mtext>
          </mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>X</mi>
              <mo>&gt;</mo>
              <mn>30</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> ,  (0.01634)<sup>2</sup> ,  B(2, 0.0163429) , 2.67E-4 , 2.66E-4</p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">0.0267090</span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">0.0267 %    <strong><em><span style="font-family: 'Verdana',sans-serif;">A2  N3</span></em></strong></span></p>
<p style="text-align: start;"><em><strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[4 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the average body weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, and the average weight of the brain, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>, of seven species of mammal. Both measured in kilograms (kg).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_10.57.27.png" alt="M17/5/MATSD/SP2/ENG/TZ1/01"></p>
</div>

<div class="specification">
<p>The average body weight of grey wolves is 36 kg.</p>
</div>

<div class="specification">
<p>In fact, the average weight of the brain of grey wolves is 0.120 kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of the average body weights for these seven species of mammal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, the Pearson’s product–moment correlation coefficient;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species describe the correlation between the average body weight and the average weight of the brain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression line to estimate the average weight of the brain of grey wolves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in your estimate in part (d).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="529 - 3">
  <mn>529</mn>
  <mo>−</mo>
  <mn>3</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 526{\text{ (kg)}}">
  <mo>=</mo>
  <mn>526</mn>
  <mrow>
    <mtext> (kg)</mtext>
  </mrow>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.922{\text{ }}(0.921857 \ldots )">
  <mn>0.922</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.921857</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(very) strong, positive     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0.000986x + 0.0923{\text{ }}(y = 0.000985837 \ldots x + 0.0923391…)">
  <mi>y</mi>
  <mo>=</mo>
  <mn>0.000986</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>0.0923</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>y</mi>
  <mo>=</mo>
  <mn>0.000985837</mn>
  <mo>…</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>0.0923391</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.000986x">
  <mn>0.000986</mn>
  <mi>x</mi>
</math></span>, <strong><em>(A1) </em></strong>for 0.0923.</p>
<p>Award a maximum of <strong><em>(A1)(A0) </em></strong>if the answer is not an equation in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.000985837 \ldots (36) + 0.0923391 \ldots ">
  <mn>0.000985837</mn>
  <mo>…</mo>
  <mo stretchy="false">(</mo>
  <mn>36</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>0.0923391</mn>
  <mo>…</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substituting 36 into their equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.128{\text{ (kg) }}\left( {0.127829 \ldots {\text{ (kg)}}} \right)">
  <mn>0.128</mn>
  <mrow>
    <mtext> (kg) </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.127829</mn>
      <mo>…</mo>
      <mrow>
        <mtext> (kg)</mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(</em></strong><strong><em>A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (c). The final <strong><em>(A1) </em></strong>is awarded only if their answer is positive.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{0.127829 \ldots  - 0.120}}{{0.120}}} \right| \times 100">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>0.127829</mn>
          <mo>…</mo>
          <mo>−</mo>
          <mn>0.120</mn>
        </mrow>
        <mrow>
          <mn>0.120</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>×</mo>
  <mn>100</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for their correct substitution into percentage error formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6.52{\text{ }}(\% ){\text{ }}\left( {6.52442...{\text{ }}(\% )} \right)">
  <mn>6.52</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi mathvariant="normal">%</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>6.52442...</mn>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi mathvariant="normal">%</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (d). Do not accept a negative answer.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A biased four-sided die is rolled. The following table gives the probability of each score.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of<em> k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected value of the score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The die is rolled 80 times. On how many rolls would you expect to obtain a three?</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of summing to 1      <em><strong>(M1)</strong></em></p>
<p><em>eg   </em>0.28 + <em>k</em> + 1.5 + 0.3 = 1,  0.73 + <em>k</em> = 1</p>
<p><em>k</em> = 0.27     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into formula for E (<em>X</em>)      <em><strong>(A1)</strong></em><br>eg  1 × 0.28 + 2 × <em>k</em> + 3 × 0.15 + 4 × 0.3</p>
<p>E (<em>X</em>) = 2.47  (exact)      <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg  np</em>, 80 × 0.15</p>
<p>12     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The Malvern Aquatic Center hosted a 3 metre spring board diving event. The judges, Stan and&nbsp;Minsun awarded 8 competitors a score out of 10. The raw data is collated in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The Commissioner for the event would like to find the Spearman’s rank correlation coefficient.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the Pearson’s product–moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, interpret the relationship between Stan’s score and Minsun’s score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression equation from part (b) to estimate Minsun’s score when Stan awards a perfect 10.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether this estimate is reliable. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy</strong> and complete the information in the following table.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the Spearman’s rank correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_s}">
  <mrow>
    <msub>
      <mi>r</mi>
      <mi>s</mi>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the result obtained for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_s}">
  <mrow>
    <msub>
      <mi>r</mi>
      <mi>s</mi>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Commissioner believes Minsun’s score for competitor G is too high and so decreases the score from 9.5 to 9.1.</p>
<p>Explain why the value of the Spearman’s rank correlation coefficient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_s}">
  <mrow>
    <msub>
      <mi>r</mi>
      <mi>s</mi>
    </msub>
  </mrow>
</math></span> does not change.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">0.909 (0.909181…)      <em><strong>A2</strong></em></p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">(very) strong and positive       <em><strong> A1A1</strong></em></p>
<p style="text-align: left;"><strong>Note</strong>: Award <em><strong>A1</strong></em> for (very) strong <em><strong>A1</strong> </em>for positive.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1.14x + 0.578\,\,\left( {y = 1.14033 \ldots x + 0.578183 \ldots } \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mn>1.14</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>0.578</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>y</mi>
      <mo>=</mo>
      <mn>1.14033</mn>
      <mo>…</mo>
      <mi>x</mi>
      <mo>+</mo>
      <mn>0.578183</mn>
      <mo>…</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong> A1A1</strong></em></p>
<p style="text-align: left;"><strong>Note</strong>: Award <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.14x">
  <mn>1.14</mn>
  <mi>x</mi>
</math></span>, <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.578">
  <mn>0.578</mn>
</math></span>. Award a maximum of <em><strong>A1A0</strong></em> if the answer is not an equation in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">1.14 × 10 + 0.578       <em><strong>M1</strong></em></p>
<p style="text-align: left;">12.0 (11.9814…)        <em><strong>A1</strong></em></p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">no the estimate is not reliable       <em><strong>A1</strong></em></p>
<p style="text-align: left;">outside the known data range         <em><strong>R1</strong></em><br><em><strong>OR</strong></em><br>a score greater than 10 is not possible               <em><strong>R1</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Do not award <em><strong>A1R0</strong></em>.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><img src="">      <em><strong>A1A1</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>A1</strong> </em>for correct ranks for Stan. Award <em><strong>A1</strong> </em>for correct ranks for Minsun.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">0.933  (0.932673…)      <em><strong>A2</strong></em></p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">Stan and Minsun strongly agree on the ranking of competitors.         <em><strong>A1A1</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>A1</strong> </em>for “strongly agree”, <em><strong>A1</strong> </em>for reference to a rank order.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">decreasing the score to 9.1, does not change the rank of competitor G       <em><strong>A1</strong></em></p>
<p style="text-align: left;"><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Lucy sells hot chocolate drinks at her snack bar and has noticed that she sells more&nbsp;hot chocolates on cooler days. On six different days, she records the maximum daily&nbsp;temperature, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, measured in degrees centigrade, and the number of hot chocolates sold, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>.&nbsp;The results are shown in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> can be modelled by the regression line with&nbsp;equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mi>a</mi><mi>T</mi><mo>+</mo><mi>b</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the regression equation, estimate the number of hot chocolates that Lucy will sell on a day when the maximum temperature is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>°</mo><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach       <em><strong>(M1)</strong></em></p>
<p>eg    correct value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> (or for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>962839</mn></math> seen in (ii))</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>9</mn><mo>.</mo><mn>84636</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>221</mn><mo>.</mo><mn>592</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>9</mn><mo>.</mo><mn>85</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>222</mn></math>        <em><strong>A1A1   N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>981244</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>981</mn></math>        <em><strong>A1  N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into their equation       <em><strong>(A1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>9</mn><mo>.</mo><mn>85</mn><mo>×</mo><mn>12</mn><mo>+</mo><mn>222</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>103</mn><mo>.</mo><mn>435</mn></math>  (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>103</mn><mo>.</mo><mn>8</mn></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo> </mo><mtext>sf</mtext></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>103</mn></math>  (hot chocolates)        <em><strong>A1  N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The aircraft for a particular flight has <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> seats. The airline&rsquo;s records show that historically for this flight only <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>%</mo></math> of the people who purchase a ticket arrive to board the flight. They assume this trend will continue and decide to sell extra tickets and hope that no more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> passengers will arrive.</p>
<p>The number of passengers that arrive to board this flight is assumed to follow a binomial distribution with a probability of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>9</mn></math>.</p>
</div>

<div class="specification">
<p>Each passenger pays <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>150</mn></math> for a ticket. If too many passengers arrive, then the airline will give <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>300</mn></math> in compensation to each passenger that cannot board.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The airline sells <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> tickets for this flight. Find the probability that more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> passengers arrive to board the flight.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the expected number of passengers who will arrive to board the flight if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> tickets are sold.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum number of tickets that could be sold if the expected number of passengers who arrive to board the flight must be less than or equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, to the nearest integer, the expected increase or decrease in the money made by the airline if they decide to sell <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> tickets rather than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> be the number of passengers who arrive)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>&gt;</mo><mn>72</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>≥</mo><mn>73</mn></mrow></mfenced></math>   <strong>OR   </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>≤</mo><mn>72</mn></mrow></mfenced></math>         <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>74</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></mfenced></math>   <strong>OR   </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>74</mn></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>00379</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>00379124</mn><mo>…</mo></mrow></mfenced></math>        <em><strong>A1</strong> </em></p>
<p><br><strong>Note:</strong> Using the distribution <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mfenced><mrow><mn>74</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></mfenced></math>, to work with the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> that do not arrive for the flight, here and throughout this question, is a valid approach.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>9</mn></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>64</mn><mo>.</mo><mn>8</mn></math>        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>9</mn><mo>=</mo><mn>72</mn></math>         <em><strong>(M1)</strong></em></p>
<p>80        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><strong>EITHER</strong></p>
<p>when selling <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> tickets</p>
<p><img src=""></p>
<p>top row        <em><strong>A1A1</strong></em></p>
<p>bottom row        <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1A1</strong> </em>for each row correct. Award <em><strong>A1</strong> </em>for one correct entry and <em><strong>A1</strong> </em>for the remaining entries correct.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>I</mi></mfenced><mo>=</mo><mn>11100</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>9962</mn><mo>…</mo><mo>+</mo><mn>10800</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>00338</mn><mo>…</mo><mo>+</mo><mn>10500</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>000411</mn><mo>≈</mo><mn>11099</mn></math>         <em><strong>(M1)A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>income is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn><mo>×</mo><mn>150</mn><mo>=</mo><mn>11100</mn></math>         <em><strong>(A1)</strong></em></p>
<p>expected compensation is</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>003380</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>×</mo><mn>300</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0004110</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>×</mo><mn>600</mn><mo> </mo><mo> </mo><mo>(</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>26070</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math>         <em><strong>(M1)A1A1</strong></em></p>
<p>expected income when selling <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> tickets is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11100</mn><mo>-</mo><mn>1</mn><mo>.</mo><mn>26070</mn><mo>…</mo></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>11098</mn><mo>.</mo><mn>73</mn><mo>…</mo><mo> </mo><mo> </mo><mo>(</mo><mo>=</mo><mo>$</mo><mn>11099</mn><mo>)</mo></math>        <em><strong>A1</strong> </em></p>
<p><br><strong>THEN</strong></p>
<p>income for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> tickets <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>72</mn><mo>×</mo><mn>150</mn><mo>=</mo><mn>10800</mn></math>         <em><strong>(A1)</strong></em></p>
<p>so expected gain <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≈</mo><mn>11099</mn><mo>-</mo><mn>10800</mn><mo>=</mo><mo>$</mo><mn>299</mn></math>        <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> tickets sold, let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> be the compensation paid out</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>=</mo><mn>73</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>00338014</mn><mo>…</mo><mo>,</mo><mo> </mo><mo> </mo><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>=</mo><mn>74</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>000411098</mn><mo>…</mo></math>        <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>C</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>003380</mn><mo>…</mo><mo>×</mo><mn>300</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0004110</mn><mo>…</mo><mo>×</mo><mn>600</mn><mo> </mo><mo> </mo><mo>(</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>26070</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math>         <em><strong>(M1)A1A1</strong></em></p>
<p>extra expected revenue <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>300</mn><mo>-</mo><mn>1</mn><mo>.</mo><mn>01404</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>246658</mn><mo>…</mo><mo> </mo><mo> </mo><mfenced><mrow><mn>300</mn><mo>-</mo><mn>1</mn><mo>.</mo><mn>26070</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>(A1)(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn></math> and <em><strong>M1</strong> </em>for the subtraction.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>$</mo><mn>299</mn></math>   (to the nearest dollar)        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math> be the change in income when selling <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> tickets.</p>
<p><img src="">         <em><strong>(A1)(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for one error, however award <em><strong>A1A1</strong> </em>if there is no explicit mention that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>73</mn></math> would result in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>=</mo><mn>0</mn></math> and the other two are correct.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>≤</mo><mn>73</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>9962</mn><mo>…</mo><mo>,</mo><mo> </mo><mo> </mo><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>=</mo><mn>74</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>000411098</mn><mo>…</mo></math>        <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>D</mi></mfenced><mo>=</mo><mn>300</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>9962</mn><mo>…</mo><mo>+</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>003380</mn><mo>…</mo><mo>-</mo><mn>300</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0004110</mn></math>         <em><strong>(M1)A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>$</mo><mn>299</mn></math>        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a) Stronger candidates were able to recognize that they needed to use the binomial to find the probability. Some candidates confused binomialpdf and binomialcdf functions. Some did not understand that “more than 72” means “73 or 74” and how their GDC uses the lower boundary parameter.</p>
<p>In part (b) many candidates could find the expected number of passengers and the maximum number of tickets. This part was well attempted.</p>
<p>Part (c) was expected to challenge the strongest candidates and had little scaffolding. However, this may have been too much for this cohort and resulted in few marks being awarded. A variety of methods were used but few progressed beyond finding values of income minus compensation. Only a few candidates took probabilities into consideration.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The mass <em>M</em> of apples in grams is normally distributed with mean <em>μ</em>. The following table shows probabilities for values of <em>M</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The apples are packed in bags of ten.</p>
<p>Any apples with a mass less than 95 g are classified as small.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>μ</em> = 106.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>P</em>(M &lt; 95) .</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a bag of apples selected at random contains at most one small apple.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of bags in this crate that contain at most one small apple.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least 48 bags in this crate contain at most one small apple.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {{p_i}}  = 1">
  <mo>∑</mo>
  <mrow>
    <mrow>
      <msub>
        <mi>p</mi>
        <mi>i</mi>
      </msub>
    </mrow>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><em>eg   k</em> + 0.98 + 0.01 = 1</p>
<p><em>k</em> = 0.01     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that 93 and 119 are symmetrical about <em>μ</em>       <em><strong>(M1)</strong></em></p>
<p><em>eg   μ</em> is midpoint of 93 and 119</p>
<p>correct working to find <em>μ</em>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{119 + 93}}{2}">
  <mfrac>
    <mrow>
      <mn>119</mn>
      <mo>+</mo>
      <mn>93</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p><em>μ</em> = 106     <em><strong>AG N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding standardized value for 93 or 119     <em><strong> (A1)</strong></em><br><em>eg</em>   <em>z</em> = −2.32634, <em>z</em> = 2.32634</p>
<p>correct substitution using <strong>their</strong> <em>z</em> value      <em><strong>(A1)</strong></em><br><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{93 - 106}}{\sigma } =  - 2.32634,\,\,\frac{{119 - 106}}{{2.32634}} = \sigma ">
  <mfrac>
    <mrow>
      <mn>93</mn>
      <mo>−</mo>
      <mn>106</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2.32634</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mrow>
      <mn>119</mn>
      <mo>−</mo>
      <mn>106</mn>
    </mrow>
    <mrow>
      <mn>2.32634</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mi>σ</mi>
</math></span></p>
<p>σ = 5.58815     <em><strong>(A1)</strong></em></p>
<p>0.024508</p>
<p>P(<em>X</em> &lt; 95) = 0.0245     <em><strong> A2 N3</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of recognizing binomial    <strong><em>(M1) </em></strong></p>
<p><em>eg </em>10, <em>anana</em><em>Cpqn</em>−=××and 0.024B(5,,)<em>pnp</em>= </p>
<p>valid approach    <strong><em>(M1) </em></strong></p>
<p><em>eg </em>P(1),P(0)P(1)<em>XXX</em>≤=+= </p>
<p>0.976285 </p>
<p>0.976     <strong><em>A1 N2 </em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <strong>new</strong> binomial probability      <em><strong>(M1)</strong></em><br><em>eg </em>    B(50, 0.976)</p>
<p>correct substitution      <em><strong>(A1)</strong></em><br><em>eg</em>     <em>E(X) = </em>50 (0.976285)</p>
<p>48.81425</p>
<p>48.8    <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   P(X ≥ 48), 1 − P(X ≤ 47)</p>
<p>0.884688</p>
<p>0.885       <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^2}{{\text{e}}^{3x}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>3</mn>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> has a horizontal tangent line at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>choosing product rule     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="uv' + vu'"> <mi>u</mi> <msup> <mi>v</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>u</mi> <mo>′</mo> </msup> </math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{x^2}} \right)^\prime }\left( {{{\text{e}}^{3x}}} \right) + {\left( {{{\text{e}}^{3x}}} \right)^\prime }{x^2}"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">′</mi> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">′</mi> </msup> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>correct derivatives (must be seen in the rule)      <em><strong>A1A1</strong></em></p>
<p>eg   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x"> <mn>2</mn> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{3}}{{\text{e}}^{3x}}"> <mrow> <mtext>3</mtext> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 2x{{\text{e}}^{3x}} + 3{x^2}{{\text{e}}^{3x}}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mn>3</mn> <mi>x</mi> </mrow> </msup> </mrow> </math></span>    <em><strong>A1 N4</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid method    <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>, <img src="">, <img src=""></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - 0.667\left( { =  - \frac{2}{3}} \right)"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>0.667</mn> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>  (accept  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - 0.667"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>0.667</mn> </math></span>)     <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
  <mi>W</mi>
</math></span>, of newborn babies in Australia are normally distributed with a mean 3.41 kg and standard deviation 0.57 kg. A newborn baby has a low birth weight if it weighs less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that 5.3% of newborn babies have a low birth weight, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A newborn baby has a low birth weight.</p>
<p>Find the probability that the baby weighs at least 2.15 kg.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z =  - 1.61643">
  <mi>z</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1.61643</mn>
</math></span>, <img src="images/Schermafbeelding_2017-03-06_om_06.21.13.png" alt="N16/5/MATME/SP2/ENG/TZ0/05.a/M"></p>
<p>2.48863</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 2.49{\text{ (kg)}}">
  <mi>w</mi>
  <mo>=</mo>
  <mn>2.49</mn>
  <mrow>
    <mtext> (kg)</mtext>
  </mrow>
</math></span>     <strong><em>A2     N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct value or expression (seen anywhere)</p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.053 - {\text{P}}(X \leqslant 2.15),{\text{ }}0.039465">
  <mn>0.053</mn>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>⩽</mo>
  <mn>2.15</mn>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.039465</mn>
</math></span>     <strong><em>(A1)</em></strong></p>
<p>evidence of conditional probability     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}(2.15 \leqslant X \leqslant w}}{{{\text{P}}(X \leqslant w)}},{\text{ }}\frac{{0.039465}}{{0.053}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>2.15</mn>
      <mo>⩽</mo>
      <mi>X</mi>
      <mo>⩽</mo>
      <mi>w</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>⩽</mo>
      <mi>w</mi>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mn>0.039465</mn>
    </mrow>
    <mrow>
      <mn>0.053</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>0.744631</p>
<p>0.745     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the following probability distribution.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> which gives the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of summing probabilities to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>       <em><strong>(M1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>+</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mi>p</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>-</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mo> </mo><mn>1</mn><mo>-</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mi>p</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>+</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>-</mo><mi>p</mi></math>        <em><strong>A1  N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math> formula       <em><strong>(A1)</strong></em></p>
<p>eg     <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mo>-</mo><mi>p</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo>×</mo><mi>p</mi><mo>+</mo><mn>3</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>7</mn><mo>-</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p>valid approach to find when <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math> is a maximum       <em><strong>(M1)</strong></em></p>
<p>eg     max on sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>p</mi><mo>+</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mn>8</mn><mi>p</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mrow><mn>2</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mn>8</mn></mrow></mfenced></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>125</mn></mrow></mfenced></math> (exact) (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>8</mn></mfrac></math>)        <em><strong>A1  N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>225</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>89</mn><mn>40</mn></mfrac></math> (exact), <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>23</mn></math>      <em><strong>A1  N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a\sin bx + c">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>b</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 12">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>12</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_16.53.31.png" alt="N16/5/MATME/SP2/ENG/TZ0/10"></p>
<p style="text-align: center;">The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> has a minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(3,{\text{ }}5)">
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span> and a maximum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(9,{\text{ }}17)">
  <mo stretchy="false">(</mo>
  <mn>9</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>17</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is obtained from the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> by a translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} k \\ 0 \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>. The maximum point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(11.5,{\text{ }}17)">
  <mo stretchy="false">(</mo>
  <mn>11.5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>17</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> changes from concave-up to concave-down when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = w">
  <mi>x</mi>
  <mo>=</mo>
  <mi>w</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>.</p>
<p>(ii)     Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{\pi }{6}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π</mi>
    <mn>6</mn>
  </mfrac>
</math></span>.</p>
<p>(iii)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<p>(ii)     Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<p>(ii)     Hence or otherwise, find the maximum positive rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(i)     valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5 + 17}}{2}">
  <mfrac>
    <mrow>
      <mn>5</mn>
      <mo>+</mo>
      <mn>17</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 11">
  <mi>c</mi>
  <mo>=</mo>
  <mn>11</mn>
</math></span>    <strong><em>A1     N2</em></strong></p>
<p>(ii)     valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>period is 12, per <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{2\pi }}{b},{\text{ }}9 - 3">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mi>b</mi>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>9</mn>
  <mo>−</mo>
  <mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{2\pi }}{{12}}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
</math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{\pi }{6}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π</mi>
    <mn>6</mn>
  </mfrac>
</math></span>     <strong><em>AG     N0</em></strong></p>
<p>(iii)     <strong>METHOD 1</strong></p>
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5 = a\sin \left( {\frac{\pi }{6} \times 3} \right) + 11">
  <mn>5</mn>
  <mo>=</mo>
  <mi>a</mi>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mo>×</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>11</mn>
</math></span>, substitution of points</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - 6">
  <mi>a</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
</math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{17 - 5}}{2}">
  <mfrac>
    <mrow>
      <mn>17</mn>
      <mo>−</mo>
      <mn>5</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>, amplitude is 6</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - 6">
  <mi>a</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
</math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 2.5">
  <mi>k</mi>
  <mo>=</mo>
  <mn>2.5</mn>
</math></span>     <strong><em>A1     N1</em></strong></p>
<p>(ii)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) =  - 6\sin \left( {\frac{\pi }{6}(x - 2.5)} \right) + 11">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2.5</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>11</mn>
</math></span>     <strong><em>A2     N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     <strong>METHOD 1 </strong>Using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span></p>
<p>recognizing that a point of inflexion is required     <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>sketch, recognizing change in concavity</p>
<p>evidence of valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g''(x) = 0">
  <msup>
    <mi>g</mi>
    <mo>″</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, sketch, coordinates of max/min on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g'}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mo>′</mo>
    </msup>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 8.5">
  <mi>w</mi>
  <mo>=</mo>
  <mn>8.5</mn>
</math></span> (exact)     <strong><em>A1     N2</em></strong></p>
<p><strong>METHOD 2 </strong>Using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span></p>
<p>recognizing that a point of inflexion is required     <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span>sketch, recognizing change in concavity</p>
<p>evidence of valid approach involving translation     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = w - k">
  <mi>x</mi>
  <mo>=</mo>
  <mi>w</mi>
  <mo>−</mo>
  <mi>k</mi>
</math></span>, sketch, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 + 2.5">
  <mn>6</mn>
  <mo>+</mo>
  <mn>2.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 8.5">
  <mi>w</mi>
  <mo>=</mo>
  <mn>8.5</mn>
</math></span> (exact)     <strong><em>A1     N2</em></strong></p>
<p>(ii)     valid approach involving the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> (seen anywhere)     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(w),{\text{ }} - \pi \cos \left( {\frac{\pi }{6}x} \right)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>w</mi>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <mi>π</mi>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, max on derivative, sketch of derivative</p>
<p>attempt to find max value on derivative     <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi \cos \left( {\frac{\pi }{6}(8.5 - 2.5)} \right),{\text{ }}f'(6)">
  <mo>−</mo>
  <mi>π</mi>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mo stretchy="false">(</mo>
      <mn>8.5</mn>
      <mo>−</mo>
      <mn>2.5</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span>, dot on max of sketch</p>
<p>3.14159</p>
<p>max rate of change <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \pi ">
  <mo>=</mo>
  <mi>π</mi>
</math></span> (exact), 3.14     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A jar contains 5 red discs, 10 blue discs and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> green discs. A disc is selected at random and replaced. This process is performed four times.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the first disc selected is red.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> be the number of red discs selected. Find the smallest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X{\text{ }}) &lt; 0.6">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>&lt;</mo>
  <mn>0.6</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P(red)}} = \frac{5}{{15 + m}}">
  <mrow>
    <mtext>P(red)</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>5</mn>
    <mrow>
      <mn>15</mn>
      <mo>+</mo>
      <mi>m</mi>
    </mrow>
  </mfrac>
</math></span>     <strong><em>A1     N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing binomial distribution     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim B(n,{\text{ }}p)">
  <mi>X</mi>
  <mo>∼</mo>
  <mi>B</mi>
  <mo stretchy="false">(</mo>
  <mi>n</mi>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>correct value for the complement of <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> (seen anywhere)     <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{5}{{15 + m}},{\text{ }}\frac{{10 + m}}{{15 + m}}">
  <mn>1</mn>
  <mo>−</mo>
  <mfrac>
    <mn>5</mn>
    <mrow>
      <mn>15</mn>
      <mo>+</mo>
      <mi>m</mi>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mn>10</mn>
      <mo>+</mo>
      <mi>m</mi>
    </mrow>
    <mrow>
      <mn>15</mn>
      <mo>+</mo>
      <mi>m</mi>
    </mrow>
  </mfrac>
</math></span></p>
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X) = np(1 - p)">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>n</mi>
  <mi>p</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\left( {\frac{5}{{15 + m}}} \right)\left( {\frac{{10 + m}}{{15 + m}}} \right),{\text{ }}\frac{{20(10 + m)}}{{{{(15 + m)}^2}}} &lt; 0.6">
  <mn>4</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>5</mn>
        <mrow>
          <mn>15</mn>
          <mo>+</mo>
          <mi>m</mi>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>10</mn>
          <mo>+</mo>
          <mi>m</mi>
        </mrow>
        <mrow>
          <mn>15</mn>
          <mo>+</mo>
          <mi>m</mi>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mn>20</mn>
      <mo stretchy="false">(</mo>
      <mn>10</mn>
      <mo>+</mo>
      <mi>m</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mn>15</mn>
            <mo>+</mo>
            <mi>m</mi>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>&lt;</mo>
  <mn>0.6</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m &gt; 12.2075">
  <mi>m</mi>
  <mo>&gt;</mo>
  <mn>12.2075</mn>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 13">
  <mi>m</mi>
  <mo>=</mo>
  <mn>13</mn>
</math></span>     <strong><em>A1     N3</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>