File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 4/markSceme-HL-paper2html
File size: 1012.6 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Charlotte decides to model the shape of a cupcake to calculate its volume.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>From rotating a photograph of her cupcake she estimates that its cross-section passes&nbsp;through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>4</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>7</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>, where all units are in&nbsp;centimetres. The cross-section is symmetrical in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, as shown below:</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>She models the section from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo></math> as a straight line.</p>
</div>

<div class="specification">
<p>Charlotte models the section of the cupcake that passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>4</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>7</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math> with a quadratic curve.</p>
</div>

<div class="specification">
<p>Charlotte thinks that a quadratic with a maximum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo></math> and that passes through&nbsp;the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math> would be a better fit.</p>
</div>

<div class="specification">
<p>Believing this to be a better model for her cupcake, Charlotte finds the volume of revolution&nbsp;about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis to estimate the volume of the cupcake.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line passing through these two points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares regression quadratic curve for these&nbsp;four points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the gradient of this curve when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>, explain why it may not be&nbsp;a good model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the new model.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for her estimate of the volume as a sum of two integrals.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of Charlotte’s estimate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>5</mn><mn>8</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>625</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>625</mn><mi>x</mi></math>, <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>5</mn></math>.<br>Award a maximum of <em><strong>A0A1</strong></em> if not part of an equation.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>975</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>9</mn><mo>.</mo><mn>56</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>.</mo><mn>7</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>974630</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>9</mn><mo>.</mo><mn>55919</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>.</mo><mn>6569</mn><mo>…</mo></mrow></mfenced></math></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient of curve is positive at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p><em><br></em><strong>Note:</strong> Accept a sensible rationale that refers to the gradient.</p>
<p><strong><br></strong><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math></p>
<p>differentiating or using&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math></p>
<p>substituting in the coordinates<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mi>a</mi><mo>+</mo><mn>7</mn><mo>.</mo><mn>5</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>4</mn><mn>2</mn></msup><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>solve to get<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>192</mn><mn>49</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>90</mn><mn>49</mn></mfrac></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>490</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mo>.</mo><mn>92</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>84</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Use of quadratic regression with points using the symmetry of the graph is a valid method.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>a</mi><msup><mfenced><mrow><mn>7</mn><mo>.</mo><mn>5</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>490</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mfenced><mrow><mfrac><mn>5</mn><mn>8</mn></mfrac><mi>x</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi><mo>+</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>4</mn><mrow><mn>7</mn><mo>.</mo><mn>5</mn></mrow></msubsup><msup><mfenced><mrow><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)(M1)&nbsp;(M1)A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)(M1)(M1)A0</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> is omitted but response is otherwise correct. Award <em><strong>(M1)</strong></em> for an integral that indicates volume,<em><strong> (M1)</strong></em> for their part (a) within their volume integral, <em><strong>(M1)</strong></em> for their part (b)(i) within their volume integral, <em><strong>A1</strong></em> for their correct two integrals with all correct limits.</p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>501</mn><mo>&nbsp;</mo><msup><mtext>cm</mtext><mn>3</mn></msup><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>501</mn><mo>.</mo><mn>189</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>It is known that the weights of male Persian cats are normally distributed with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>1</mn><mo> </mo><mtext>kg</mtext></math>&nbsp;and variance <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><msup><mtext>kg</mtext><mn>2</mn></msup></math>.</p>
</div>

<div class="specification">
<p>A group of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> male Persian cats are drawn from this population.</p>
</div>

<div class="specification">
<p>The male cats are now joined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> female Persian cats. The female cats are drawn&nbsp;from a population whose weights are normally distributed with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math> and standard&nbsp;deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>45</mn><mo> </mo><mtext>kg</mtext></math>.</p>
</div>

<div class="specification">
<p>Ten female cats are chosen at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a diagram showing the above information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the proportion of male Persian cats weighing between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the expected number of cats in this group that have a weight of less&nbsp;than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>3</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that exactly one of them weighs over&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>62</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> be the number of cats weighing over <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>62</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<p>Find the variance of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A cat is selected at random from all <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>160</mn></math> cats.</p>
<p>Find the probability that the cat was female, given that its weight was over <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>7</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for a normal curve with mean labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>1</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math>, <em><strong>A1</strong></em> for indication of SD <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>)</mo><mo>:</mo></math> marks on horizontal axis at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>6</mn></math> and/or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>6</mn></math>&nbsp;<strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> and/or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> on the correct side and approximately correct position.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>6</mn><mo>.</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>5</mn><mo>.</mo><mn>5</mn><mo>&lt;</mo><mi>X</mi><mo>&lt;</mo><mn>6</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong>labelled sketch of region&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>673</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>673074</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&lt;</mo><mn>5</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>0547992</mn><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0547992</mn><mo>…</mo><mo>×</mo><mn>80</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>38</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>38393</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><msup><mn>45</mn><mn>2</mn></msup></mrow></mfenced></math>,</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>&gt;</mo><mn>4</mn><mo>.</mo><mn>62</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>394862</mn><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></p>
<p>use of binomial seen or implied&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p>using&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mfenced><mrow><mn>10</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>394862</mn><mo>…</mo></mrow></mfenced></math> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0430</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0429664</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mi>p</mi></mrow></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>39</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>38946</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>F</mi><mo>∩</mo><mfenced><mrow><mi>W</mi><mo>&gt;</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>3284</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>1642</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p>attempt use of tree diagram <strong>OR</strong> use of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>F</mi><mo> </mo><menclose notation="left"><mi>W</mi><mo>&gt;</mo><mn>4</mn><mo>.</mo><mn>7</mn></menclose></mrow></mfenced><mo>=</mo><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mi>F</mi><mo>∩</mo><mfenced><mrow><mi>W</mi><mo>&gt;</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></mfenced></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>W</mi><mo>&gt;</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></mfenced></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>3284</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>9974</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>3284</mn></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>248</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>247669</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A city has two cable companies, X and Y. Each year 20 % of the customers using company X&nbsp;move to company Y and 10 % of the customers using company Y move to company X.&nbsp;All additional losses and gains of customers by the companies may be ignored.</p>
</div>

<div class="specification">
<p>Initially company X and company Y both have 1200 customers.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a transition matrix <strong><em>T</em></strong> representing the movements between the two companies in a particular year.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues and corresponding eigenvectors of <strong><em>T</em></strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down matrices <em><strong>P</strong></em> and <em><strong>D</strong></em> such that <em><strong>T</strong></em> = <em><strong>PDP</strong></em><sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the number of customers company X has after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> years, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in \mathbb{N}">
  <mi>n</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">N</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the number of customers that company X can expect to have in the long term.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {0.8}&amp;{0.1} \\   {0.2}&amp;{0.9}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>0.8</mn>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mn>0.1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>0.2</mn>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mn>0.9</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\begin{array}{*{20}{c}}  {0.8 - \lambda }&amp;{0.1} \\   {0.2}&amp;{0.9 - \lambda }  \end{array}} \right| = 0">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>0.8</mn>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mn>0.1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>0.2</mn>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mn>0.9</mn>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = 1">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span> and 0.7      <em><strong>A1</strong></em></p>
<p>eigenvectors <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   2  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   { - 1}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Accept any scalar multiple of the eigenvectors.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>EITHER</strong></em></p>
<p><em><strong>P</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1&amp;1 \\   2&amp;{ - 1}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>  <em><strong>D</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1&amp;0 \\   0&amp;{0.7}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
          <mtd>
            <mrow>
              <mn>0.7</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong> A1A1</strong></em></p>
<p><em><strong>OR</strong></em></p>
<p><em><strong>P</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1&amp;1 \\   { - 1}&amp;2  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>  <em><strong>D</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {0.7}&amp;0 \\   0&amp;1  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>0.7</mn>
            </mrow>
          </mtd>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>P</strong></em><sup>−1</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}\left( {\begin{array}{*{20}{c}}  1&amp;1 \\   2&amp;{ - 1}  \end{array}} \right)">
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}\left( {\begin{array}{*{20}{c}}  1&amp;1 \\   2&amp;{ - 1}  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  1&amp;0 \\   0&amp;{{{0.7}^n}}  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  1&amp;1 \\   2&amp;{ - 1}  \end{array}} \right)\left( {\begin{array}{*{20}{c}}  {1200} \\   {1200}  \end{array}} \right)">
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
          <mtd>
            <mrow>
              <mrow>
                <msup>
                  <mrow>
                    <mn>0.7</mn>
                  </mrow>
                  <mi>n</mi>
                </msup>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>1200</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>1200</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong> M1A1</strong></em></p>
<p>attempt to multiply matrices         <em><strong>M1</strong></em></p>
<p>so in company A, after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> years, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="400\left( {2 + {{0.7}^n}} \right)">
  <mn>400</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mo>+</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>0.7</mn>
          </mrow>
          <mi>n</mi>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>        <strong><em> A1</em></strong></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>400 × 2 = 800       <strong><em> A1</em></strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In a small village there are two doctors’ clinics, one owned by Doctor Black and the other&nbsp;owned by Doctor Green. It was noted after each year that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>5</mn><mo>%</mo></math> of Doctor Black’s patients&nbsp;moved to Doctor Green’s clinic and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> of Doctor Green’s patients moved to Doctor Black’s&nbsp;clinic. All additional losses and gains of patients by the clinics may be ignored.</p>
<p>At the start of a particular year, it was noted that Doctor Black had <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2100</mn></math> patients on&nbsp;their register, compared to Doctor Green’s <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3500</mn></math> patients.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a transition matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi></math> indicating the annual population movement&nbsp;between clinics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a prediction for the ratio of the number of patients Doctor Black will have,&nbsp;compared to Doctor Green, after two years.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math>, with integer elements, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi><mo>=</mo><mi mathvariant="bold-italic">P</mi><mi mathvariant="bold-italic">D</mi><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold-italic">P</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">D</mi></math> is a&nbsp;diagonal matrix.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that the long-term transition matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">T</mi><mo>∞</mo></msup></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">T</mi><mo>∞</mo></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>10</mn><mn>17</mn></mfrac></mtd><mtd><mfrac><mn>10</mn><mn>17</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>7</mn><mn>17</mn></mfrac></mtd><mtd><mfrac><mn>7</mn><mn>17</mn></mfrac></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, determine the expected ratio of the number of patients&nbsp;Doctor Black would have compared to Doctor Green in the long term.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>965</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>05</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>035</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>95</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1A1</strong></em> for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>95</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>035</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>05</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>965</mn></mtd></mtr></mtable></mfenced></math>.<br>Award the <em><strong>A1</strong></em> for a transposed <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi></math> if used correctly in part (b) i.e. preceded by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>×</mo><mn>2</mn></math>&nbsp;matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2100</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mn>3500</mn></mrow></mfenced></math> rather than followed by a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>1</mn></math> matrix.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>965</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>05</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>035</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>95</mn></mtd></mtr></mtable></mfenced><mn>2</mn></msup><mfenced><mtable><mtr><mtd><mn>2100</mn></mtd></mtr><mtr><mtd><mn>3500</mn></mtd></mtr></mtable></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mtable><mtr><mtd><mn>2294</mn></mtd></mtr><mtr><mtd><mn>3306</mn></mtd></mtr></mtable></mfenced></math></p>
<p>so ratio is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2294</mn><mo>:</mo><mn>3306</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mn>1147</mn><mo>:</mo><mn>1653</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>693889</mn><mo>…</mo></mrow></mfenced></math> &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">A</mi><mi>x</mi><mo>=</mo><mi>λ</mi><mi>x</mi><mo> </mo><mo>:</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>965</mn><mo>-</mo><mi>λ</mi></mtd><mtd><mn>0</mn><mo>.</mo><mn>05</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>035</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>95</mn><mo>-</mo><mi>λ</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>965</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mfenced><mrow><mn>0</mn><mo>.</mo><mn>95</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>-</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>035</mn><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>915</mn></math>&nbsp; <strong>OR</strong>&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>1</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>attempt to find eigenvectors for at least one eigenvalue&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>915</mn><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp;(or any real multiple)&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd></mtr></mtable></mfenced></math>&nbsp;(or any real multiple)&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>therefore&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced></math>&nbsp;(accept integer valued multiples of their eigenvectors and columns in either order)&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">P</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mn>17</mn></mfrac><mfenced><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> This mark is independent, and may be seen anywhere in part (d).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">D</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>915</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">T</mi><mi>n</mi></msup><mo>=</mo><mi mathvariant="bold-italic">P</mi><msup><mi mathvariant="bold-italic">D</mi><mi>n</mi></msup><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold-italic">P</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><msup><mn>915</mn><mi>n</mi></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msup><mn>1</mn><mi>n</mi></msup></mtd></mtr></mtable></mfenced><mfrac><mn>1</mn><mn>17</mn></mfrac><mfenced><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)A0</strong></em> for finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold-italic">P</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mi mathvariant="bold-italic">D</mi><mi>n</mi></msup><mi mathvariant="bold-italic">P</mi></math> correctly.</p>
<p><br>as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>→</mo><mo>∞</mo><mo>,</mo><mo>&nbsp;</mo><msup><mi mathvariant="bold-italic">D</mi><mi>n</mi></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><msup><mn>915</mn><mi>n</mi></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msup><mn>1</mn><mi>n</mi></msup></mtd></mtr></mtable></mfenced><mo>→</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">T</mi><mi>n</mi></msup><mo>→</mo><mfrac><mn>1</mn><mn>17</mn></mfrac><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>10</mn><mn>17</mn></mfrac></mtd><mtd><mfrac><mn>10</mn><mn>17</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>7</mn><mn>17</mn></mfrac></mtd><mtd><mfrac><mn>7</mn><mn>17</mn></mfrac></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>AG</strong></em> line must be seen for the final <em><strong>A1</strong></em> to be awarded.</p>
<p><br><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD ONE</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mn>10</mn><mn>17</mn></mfrac></mtd><mtd><mfrac><mn>10</mn><mn>17</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>7</mn><mn>17</mn></mfrac></mtd><mtd><mfrac><mn>7</mn><mn>17</mn></mfrac></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>2100</mn></mtd></mtr><mtr><mtd><mn>3500</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3294</mn></mtd></mtr><mtr><mtd><mn>2306</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>so ratio is&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3294</mn><mo>:</mo><mn>2306</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>1647</mn><mo>:</mo><mn>1153</mn><mo>,</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mn>1</mn><mo>.</mo><mn>42844</mn><mo>…</mo><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>700060</mn><mo>…</mo></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD&nbsp;TWO</strong></p>
<p>long term ratio is the eigenvector associated with the largest eigenvalue&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>:</mo><mn>7</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The masses in kilograms of melons produced by a farm can be modelled by a normal&nbsp;distribution with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>6</mn><mtext> kg</mtext></math> and a standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn><mtext> kg</mtext></math>.</p>
</div>

<div class="specification">
<p>Find the probability that two melons picked at random and independently of each&nbsp;other will</p>
</div>

<div class="specification">
<p>One year due to favourable weather conditions it is thought that the mean mass of the&nbsp;melons has increased.</p>
<p>The owner of the farm decides to take a random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> melons to test this hypothesis at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level, assuming the standard deviation of the masses of&nbsp;the melons has not changed.</p>
</div>

<div class="specification">
<p>Unknown to the farmer the favourable weather conditions have led to all the melons&nbsp;having <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> greater mass than the model described above.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a melon selected at random will have a mass greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>both have a mass greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>have a total mass greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null and alternative hypotheses for the test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the critical region for this test.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean and standard deviation of the mass of the melons for this year.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of a Type II error in the owner’s test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> represent the mass of a melon</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>3</mn><mo>.</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>212</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>2118</mn><mo>…</mo></mrow></mfenced></math>       <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2118</mn><mo>…</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>2118</mn><mo>…</mo></math>       <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0449</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>04488</mn><mo>…</mo></mrow></mfenced></math>         <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> represent the total mass</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>T</mi></mfenced><mo>=</mo><mn>5</mn><mo>.</mo><mn>2</mn></math>         <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Var</mtext><mfenced><mi>T</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>       <strong>(M1)A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>&gt;</mo><mn>6</mn><mo>.</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>129</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>1289</mn><mo>…</mo></mrow></mfenced></math>         <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> be the mean mass of the melons produced by the farm.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo>:</mo><mo> </mo><mi>μ</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>6</mn><mo> </mo><mtext>kg</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo>:</mo><mo> </mo><mi>μ</mi><mo>&gt;</mo><mn>2</mn><mo>.</mo><mn>6</mn><mo> </mo><mtext>kg</mtext></math> only         <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo>:</mo></math> The mean mass of melons produced by the farm is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>6</mn><mo> </mo><mtext>kg</mtext></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo>:</mo><mo> </mo></math>The mean mass of melons produced by the farm is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>6</mn><mo> </mo><mtext>kg</mtext></math></p>
<p><strong>Note:</strong> Award <strong>A0</strong> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>6</mn><mo> </mo><mtext>kg</mtext></math> does not appear in the hypothesis.</p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Under <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>X</mi><mo>¯</mo></mover><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>2</mn><mo>.</mo><mn>6</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></mrow><mn>16</mn></mfrac></mrow></mfenced></math>         <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mover><mi>X</mi><mo>¯</mo></mover><mo>&gt;</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>05</mn></math>          <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>81</mn><mo> </mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>805606</mn><mo>…</mo></mrow></mfenced></math>          <strong>(A1)</strong></p>
<p>Critical region is <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>X</mi><mo>¯</mo></mover><mo>&gt;</mo><mn>2</mn><mo>.</mo><mn>81</mn></math>         <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> represent the new mass of the melons</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>W</mi></mfenced><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>6</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>86</mn></math>         <strong>A1</strong></p>
<p>Standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>          <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>55</mn></math>         <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> award <strong>M1A0</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Var</mtext><mfenced><mi>W</mi></mfenced><mo>=</mo><mn>1</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>3025</mn></math></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">P</mi><mo>(</mo><mi>Type</mi><mo> </mo><mi>II</mi><mo> </mo><mi>error</mi><mo>)</mo><mo>=</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mover><mi>X</mi><mo>¯</mo></mover><mo>&lt;</mo><mn>2</mn><mo>.</mo><mn>81</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>μ</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>86</mn><mo>,</mo><mo> </mo><mi>σ</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>55</mn></mrow><mn>4</mn></mfrac></menclose></mrow></mfenced></math>          <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>346</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>346204</mn><mo>…</mo></mrow></mfenced></math>         <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>358</mn></math> from use of the three‐figure answer to part (d)</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variable <em>X</em> is thought to follow a binomial distribution B (4, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>). In order to investigate this belief, a random sample of 100 observations on <em>X</em> was taken with the following results.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>An automatic machine is used to fill bottles of water. The amount delivered, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
  <mi>Y</mi>
</math></span> ml, may be assumed to be normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span> ml and standard deviation 8 ml. Initially, the machine is adjusted so that the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span> is 500. In order to check that the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span> remains equal to 500, a random sample of 10 bottles is selected at regular intervals, and the mean amount of water, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯<!-- ¯ --></mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, in these bottles is calculated. The following hypotheses are set up.</p>
<p style="text-align: center;">H<sub>0</sub>: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span>&nbsp;= 500;&nbsp; H<sub>1</sub>: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span>&nbsp;≠&nbsp;500</p>
<p style="text-align: left;">The critical region is defined to be&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\bar y < 495} \right) \cup \left( {\bar y > 505} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mover>
          <mi>y</mi>
          <mo stretchy="false">¯<!-- ¯ --></mo>
        </mover>
      </mrow>
      <mo>&lt;</mo>
      <mn>495</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>∪<!-- ∪ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mover>
          <mi>y</mi>
          <mo stretchy="false">¯<!-- ¯ --></mo>
        </mover>
      </mrow>
      <mo>&gt;</mo>
      <mn>505</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent1" style="margin-top:12.0pt;">State suitable hypotheses for testing this belief.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Calculate the mean of these data and hence estimate the value of <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Calculate an appropriate value of <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> and state your conclusion, using a 1% significance level.</p>
<div class="marks">[13]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Find the significance level of this procedure.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Some time later, the actual value of <span class="mjpage"><math alttext="\mu " xmlns="http://www.w3.org/1998/Math/MathML"> <mi>μ</mi> </math></span><em> </em>is 503. Find the probability of a Type II error.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="indent1"><em>H</em><sub>0 </sub>: The data are B (4, <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span>); H<sub>1</sub> : The data are not B (4, <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span>)       <em><strong>A1</strong></em></p>
<p class="indent1"><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">Mean <span class="mjpage"><math alttext=" = \frac{{1 \times 32 +  \ldots  + 4 \times 14}}{{100}}" xmlns="http://www.w3.org/1998/Math/MathML"> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>×</mo> <mn>32</mn> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mn>14</mn> </mrow> <mrow> <mn>100</mn> </mrow> </mfrac> </math></span>       <em><strong>M1A1</strong></em></p>
<p class="indent1">= 1.8       <em><strong>A1</strong></em></p>
<p class="indent1"><span class="mjpage"><math alttext="4\widehat p = 1.8 \Rightarrow \widehat p = 0.45" xmlns="http://www.w3.org/1998/Math/MathML"> <mn>4</mn> <mrow> <mover> <mi>p</mi> <mo>^</mo> </mover> </mrow> <mo>=</mo> <mn>1.8</mn> <mo stretchy="false">⇒</mo> <mrow> <mover> <mi>p</mi> <mo>^</mo> </mover> </mrow> <mo>=</mo> <mn>0.45</mn> </math></span>       <em><strong>M1A1</strong></em></p>
<p class="indent1"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">The expected frequencies are</p>
<p class="indent1"><img src="">    <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p class="indent1">The last two classes must be combined because the expected frequency for <span class="mjpage"><math alttext="x" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> </math></span> = 4 is less than 5.       <em><strong>R1</strong></em></p>
<p class="indent1"><span class="mjpage"><math alttext="{\chi ^2} = \frac{{{{17}^2}}}{{9.15}} + \frac{{{{32}^2}}}{{29.95}} + \frac{{{{19}^2}}}{{36.75}} + \frac{{{{32}^2}}}{{24.15}} - 100" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>17</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>9.15</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>32</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>29.95</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>19</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>36.75</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>32</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>24.15</mn> </mrow> </mfrac> <mo>−</mo> <mn>100</mn> </math></span>       <em><strong>M2</strong></em></p>
<p class="indent1">= 18.0        <em><strong>A2</strong></em></p>
<p class="indent1">DF = 2        <em><strong>(A1)</strong></em></p>
<p class="indent1">Critical value = 9.21        <em><strong>A1          </strong></em></p>
<p class="indent1">We conclude, at the 1% significance level, that <em>X</em> does not fit a binomial model.           <em><strong>R1          </strong></em></p>
<p class="indent1"> </p>
<p class="indent1"><strong>Special case:</strong> award the following marks to candidates who do not combine classes.</p>
<p class="indent1"><span class="mjpage"><math alttext="{\chi ^2} = \frac{{{{17}^2}}}{{9.15}} + \frac{{{{32}^2}}}{{29.95}} + \frac{{{{19}^2}}}{{36.75}} + \frac{{{{18}^2}}}{{20.05}} + \frac{{{{14}^2}}}{{4.1}} - 100" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>17</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>9.15</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>32</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>29.95</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>19</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>36.75</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>18</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>20.05</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>14</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>4.1</mn> </mrow> </mfrac> <mo>−</mo> <mn>100</mn> </math></span>       <em><strong>M2</strong></em></p>
<p class="indent1">= 39.6        <em><strong>A0</strong></em></p>
<p class="indent1">DF = 3        <em><strong>(A1)</strong></em></p>
<p class="indent1">Critical value = 11.345        <em><strong>A1         </strong></em></p>
<p class="indent1">We conclude, at the 1% significance level, that <em>X</em> does not fit a binomial model.           <em><strong>R1</strong></em></p>
<p class="indent1"> </p>
<p class="indent1"><em><strong>[13 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">Under H<sub>0</sub>, the distribution of <span class="mjpage"><math alttext="{\bar y}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mrow> <mover> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </mrow> </math></span> is N (500, 6.4).      <em><strong>(A1)</strong></em></p>
<p class="indent1">Significance level = P <span class="mjpage"><math alttext="{\bar y}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mrow> <mover> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </mrow> </math></span> &lt; 495 or &gt; 505 | H<sub>0</sub>       <em><strong>M2</strong></em></p>
<p class="indent1">                             = 2 × 0.02405      <em><strong>(A1)</strong></em></p>
<p class="indent1">                             = 0.0481       <em><strong>A1 N5 </strong></em></p>
<p class="indent1"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">The distribution of <span class="mjpage"><math alttext="{\bar y}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mrow> <mover> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </mrow> </math></span> is now N (503, 6.4).      <em><strong>(A1)</strong></em></p>
<p class="indent1">P(Type ΙΙ error) = P(495 &lt; <span class="mjpage"><math alttext="{\bar y}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mrow> <mover> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </mrow> </math></span> &lt; 505)      <em><strong>(M1)</strong></em></p>
<p class="indent1">                       = 0.785       <em><strong>A1 N3</strong></em></p>
<p class="indent1"><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigating the relationship between chemical reactions and temperature finds&nbsp;the Arrhenius equation on the internet.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></mrow></msup></math></p>
<p>This equation links a variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> with the temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> are positive&nbsp;constants and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>The Arrhenius equation predicts that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>&#8202;</mo><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> is a straight line.</p>
</div>

<div class="specification">
<p>Write down</p>
</div>

<div class="specification">
<p>The following data are found for a particular reaction, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> is measured in Kelvin&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is measured in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cm</mtext><mn>3</mn></msup><mo>&#8202;</mo><msup><mtext>mol</mtext><mrow><mo>&#8722;</mo><mn>1</mn></mrow></msup><mo>&#8202;</mo><msup><mtext>s</mtext><mrow><mo>&#8722;</mo><mn>1</mn></mrow></msup></math>:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Find an estimate of</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>k</mi></mrow><mrow><mo>d</mo><mi>T</mi></mrow></mfrac></math> is always positive.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>→</mo><mo>∞</mo></mrow></munder><mi>k</mi><mo>=</mo><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>→</mo><mn>0</mn></mrow></munder><mi>k</mi><mo>=</mo><mn>0</mn></math>, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)   the gradient of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>;</p>
<p>(ii)  the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use chain rule, including the differentiation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>k</mi></mrow><mrow><mo>d</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mi>A</mi><mo>×</mo><mfrac><mi>c</mi><msup><mi>T</mi><mn>2</mn></msup></mfrac><mo>×</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></mrow></msup></math>          <em><strong>A1</strong></em></p>
<p>this is the product of positive quantities so must be positive          <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>R1</strong> </em>may be awarded for correct argument from <strong>their</strong> derivative. <em><strong>R1</strong> </em>is not possible if their derivative is not always positive.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">         <em><strong>A1A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for an increasing graph, entirely in first quadrant, becoming concave down for larger values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, <em><strong>A1</strong></em> for tending towards the origin and <em><strong>A1</strong> </em>for asymptote labelled at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mi>A</mi></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>taking <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi></math> of both sides   <strong>OR</strong>   substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mi>T</mi></mfrac></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>A</mi><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>ln</mi><mo> </mo><mi>A</mi></math>           <em><strong>(A1)</strong></em></p>
<p><br>(i)   so gradient is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>c</mi></math>         <em><strong>A1</strong></em></p>
<p><br>(ii)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>A</mi></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The implied <em><strong>(M1)</strong></em> and <em><strong>(A1)</strong></em> can only be awarded if <strong>both</strong> correct answers are seen. Award zero if only one value is correct <strong>and</strong> no working is seen.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an attempt to convert data to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math>           <em><strong>(M1)</strong></em></p>
<p>e.g. at least one correct row in the following table</p>
<p><img src=""></p>
<p>line is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi><mo>=</mo><mo>-</mo><mn>13400</mn><mo>×</mo><mfrac><mn>1</mn><mi>T</mi></mfrac><mo>+</mo><mn>15</mn><mo>.</mo><mn>0</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>13383</mn><mo>.</mo><mn>1</mn><mo>…</mo><mo>×</mo><mfrac><mn>1</mn><mi>T</mi></mfrac><mo>+</mo><mn>15</mn><mo>.</mo><mn>0107</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>13400</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>13383</mn><mo>.</mo><mn>1</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to rearrange or solve graphically <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>A</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>0107</mn><mo>…</mo></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>3</mn><mo> </mo><mn>300</mn><mo> </mo><mn>000</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>3</mn><mo> </mo><mn>304</mn><mo> </mo><mn>258</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> <strong>Note</strong>: Accept an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3269017</mn></math>… from use of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3</mn><mi>sf</mi></math> value.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question caused significant difficulties for many candidates and many did not even attempt the question. Very few candidates were able to differentiate the expression in part (a) resulting in difficulties for part (b). Responses to parts (c) to (e) illustrated a lack of understanding of linearizing a set of data. Those candidates that were able to do part (d) frequently lost a mark as their answer was given in <em>x</em> and <em>y</em>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Willow finds that she receives approximately 70 emails per working day.</p>
<p>She decides to model the number of emails received per working day using the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> follows a&nbsp;Poisson distribution with mean 70.</p>
</div>

<div class="specification">
<p>In order to test her model, Willow records the number of emails she receives per working day over a period of 6 months. The results are shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">From the table, calculate</p>
</div>

<div class="specification">
<p>Archie works for a different company and knows that he receives emails according to a Poisson distribution, with a mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> emails per day.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using this distribution model, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X &lt; 60} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mn>60</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using this distribution model, find the standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>an estimate for the mean number of emails received per working day.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>an estimate for the standard deviation of the number of emails received per working day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give one piece of evidence that suggests Willow’s Poisson distribution model is not a good fit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suppose that the probability of Archie receiving more than 10 emails in total on any one day is 0.99. Find the value of <em>λ</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Now suppose that Archie received exactly 20 emails in total in a consecutive two day period. Show that the probability that he received exactly 10 of them on the first day is independent of<em> λ</em>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X &lt; 60} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mn>60</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}\left( {X \leqslant 59} \right)">
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>⩽</mo>
      <mn>59</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong> (M1)</strong></em></p>
<p>= 0.102     <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>standard deviation = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {70} ">
  <msqrt>
    <mn>70</mn>
  </msqrt>
</math></span> (= 8.37)   <em><strong>   (M1)</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of midpoints (accept consistent use of 45, 55 etc.)  <em><strong>   (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{44.5 \times 2 + 54.5 \times 15 + 64.5 \times 40 + 74.5 \times 53 + 94.5 + 104.5 \times 3 + 114.5 \times 6}}{{2 + 15 + 40 + 53 + 0 + 1 + 3 + 6}}">
  <mfrac>
    <mrow>
      <mn>44.5</mn>
      <mo>×</mo>
      <mn>2</mn>
      <mo>+</mo>
      <mn>54.5</mn>
      <mo>×</mo>
      <mn>15</mn>
      <mo>+</mo>
      <mn>64.5</mn>
      <mo>×</mo>
      <mn>40</mn>
      <mo>+</mo>
      <mn>74.5</mn>
      <mo>×</mo>
      <mn>53</mn>
      <mo>+</mo>
      <mn>94.5</mn>
      <mo>+</mo>
      <mn>104.5</mn>
      <mo>×</mo>
      <mn>3</mn>
      <mo>+</mo>
      <mn>114.5</mn>
      <mo>×</mo>
      <mn>6</mn>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mo>+</mo>
      <mn>15</mn>
      <mo>+</mo>
      <mn>40</mn>
      <mo>+</mo>
      <mn>53</mn>
      <mo>+</mo>
      <mn>0</mn>
      <mo>+</mo>
      <mn>1</mn>
      <mo>+</mo>
      <mn>3</mn>
      <mo>+</mo>
      <mn>6</mn>
    </mrow>
  </mfrac>
</math></span>   <em><strong>   (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{8530}}{{120}}\left( { = 71.1} \right)">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>8530</mn>
    </mrow>
    <mrow>
      <mn>120</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mn>71.1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> If 45, 55, etc. are used consistently instead of midpoints (implied by the answer 71.58…) award <em><strong>M1M1A0</strong></em>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>13.9  <em><strong>   (M1)</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid reason given to include the examples below       <em><strong>R1</strong></em></p>
<p>variance is 192 which is not close to the mean (accept not equal to) standard deviation too high (using parts (a)(ii) and (b)(ii))</p>
<p>relative frequency of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> ≤ 59 is 0.142 which is too high (using part (a)(i))</p>
<p>Poisson would give a frequency of roughly 14 for 80 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> ≤ 89</p>
<p><strong>Note:</strong> Reasons which do not use values found in previous parts must be backed up with numerical evidence.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {Y &gt; 10} \right) = 0.99">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>Y</mi>
      <mo>&gt;</mo>
      <mn>10</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.99</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\text{P}}\left( {Y \leqslant 10} \right) = 0.99 \Rightarrow {\text{P}}\left( {Y \leqslant 10} \right) = 0.01">
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>Y</mi>
      <mo>⩽</mo>
      <mn>10</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.99</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>Y</mi>
      <mo>⩽</mo>
      <mn>10</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.01</mn>
</math></span>      <em><strong>(M1)</strong></em></p>
<p>attempt to solve a correct equation       <em><strong>(M1)</strong></em></p>
<p><em>λ </em>= 20.1       <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in 1 day, no of emails is <em>X</em> ~ Po(<em>λ</em>)</p>
<p>in 2 days, no of emails is <em>Y</em> ~ Po(2<em>λ</em>)       <em><strong>(A1)</strong></em></p>
<p>P(10 on first day | 20 in 2 days)        <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {X = 10} \right) \times {\text{P}}\left( {X = 10} \right)}}{{{\text{P}}\left( {Y = 20} \right)}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>X</mi>
          <mo>=</mo>
          <mn>10</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>×</mo>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>X</mi>
          <mo>=</mo>
          <mn>10</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>Y</mi>
          <mo>=</mo>
          <mn>20</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>        <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{{\left( {\frac{{{\lambda ^{10}}{e^{ - \lambda }}}}{{10{\text{!}}}}} \right)}^2}}}{{\frac{{{{\left( {2\lambda } \right)}^{20}}{e^{ - 2\lambda }}}}{{20{\text{!}}}}}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mfrac>
                  <mrow>
                    <mrow>
                      <msup>
                        <mi>λ</mi>
                        <mrow>
                          <mn>10</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <msup>
                        <mi>e</mi>
                        <mrow>
                          <mo>−</mo>
                          <mi>λ</mi>
                        </mrow>
                      </msup>
                    </mrow>
                  </mrow>
                  <mrow>
                    <mn>10</mn>
                    <mrow>
                      <mtext>!</mtext>
                    </mrow>
                  </mrow>
                </mfrac>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <msup>
              <mrow>
                <mrow>
                  <mo>(</mo>
                  <mrow>
                    <mn>2</mn>
                    <mi>λ</mi>
                  </mrow>
                  <mo>)</mo>
                </mrow>
              </mrow>
              <mrow>
                <mn>20</mn>
              </mrow>
            </msup>
          </mrow>
          <mrow>
            <msup>
              <mi>e</mi>
              <mrow>
                <mo>−</mo>
                <mn>2</mn>
                <mi>λ</mi>
              </mrow>
            </msup>
          </mrow>
        </mrow>
        <mrow>
          <mn>20</mn>
          <mrow>
            <mtext>!</mtext>
          </mrow>
        </mrow>
      </mfrac>
    </mrow>
  </mfrac>
</math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\lambda ^{20}}{e^{ - 2\lambda }}}}{{{2^{20}}{\lambda ^{20}}{e^{ - 2\lambda }}}} \times \frac{{20{\text{!}}}}{{{{\left( {10{\text{!}}} \right)}^2}}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>λ</mi>
          <mrow>
            <mn>20</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <msup>
          <mi>e</mi>
          <mrow>
            <mo>−</mo>
            <mn>2</mn>
            <mi>λ</mi>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mn>2</mn>
          <mrow>
            <mn>20</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <msup>
          <mi>λ</mi>
          <mrow>
            <mn>20</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <msup>
          <mi>e</mi>
          <mrow>
            <mo>−</mo>
            <mn>2</mn>
            <mi>λ</mi>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>20</mn>
      <mrow>
        <mtext>!</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>10</mn>
                <mrow>
                  <mtext>!</mtext>
                </mrow>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{20{\text{!}}}}{{{2^{20}}{{\left( {10{\text{!}}} \right)}^2}}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>20</mn>
      <mrow>
        <mtext>!</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mn>2</mn>
          <mrow>
            <mn>20</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>10</mn>
                <mrow>
                  <mtext>!</mtext>
                </mrow>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>which is independent of <em>λ</em>       <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Long term experience shows that if it is sunny on a particular day in Vokram, then the probability&nbsp;that it will be sunny the following day is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8</mn></math>. If it is not sunny, then the probability that it will be&nbsp;sunny the following day is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>3</mn></math>.</p>
<p>The transition matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi></math> is used to model this information, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>8</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>2</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>7</mn></mtd></mtr></mtable></mfenced></math>.</p>
</div>

<div class="specification">
<p>The matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi></math> can be written as a product of three matrices, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mi mathvariant="bold-italic">D</mi><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold-italic">P</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> , where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">D</mi></math> is a&nbsp;diagonal matrix.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is sunny today. Find the probability that it will be sunny in three days’ time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues and eigenvectors of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">T</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">D</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the long-term percentage of sunny days in Vokram.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>finding <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">T</mi><mn>3</mn></msup></math>&nbsp;&nbsp;<strong>OR&nbsp;</strong> use of tree diagram&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">T</mi><mn>3</mn></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>65</mn></mtd><mtd><mo>&nbsp;</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>525</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>35</mn></mtd><mtd><mo>&nbsp;</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>475</mn></mtd></mtr></mtable></mfenced></math></p>
<p>the probability of sunny in three days’ time is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>65</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find eigenvalues &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong><br>Note:</strong> Any indication that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>det</mtext><mfenced><mrow><mi mathvariant="bold-italic">T</mi><mo>-</mo><mi>λ</mi><mi mathvariant="bold-italic">I</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> has been used is sufficient for the <em><strong>(M1)</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>8</mn><mo>-</mo><mi>λ</mi></mtd><mtd><mo>&nbsp;</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>2</mn></mtd><mtd><mo>&nbsp;</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>-</mo><mi>λ</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>8</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mfenced><mrow><mn>0</mn><mo>.</mo><mn>7</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>λ</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>λ</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>attempt to find either eigenvector&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>y</mi><mo>=</mo><mi>x</mi><mo>⇒</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>&nbsp;so an eigenvector is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi><mo>⇒</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>&nbsp;so an eigenvector is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept multiples of the stated eigenvectors.</p>
<p>&nbsp;</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>&nbsp;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>&nbsp;</mo><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; <strong>OR&nbsp;</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>&nbsp;</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>&nbsp;</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Examiners should be aware that different, correct, matrices <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> may be seen.</p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">D</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>&nbsp; <strong>OR&nbsp;</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">D</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&nbsp;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">D</mi></math> must be consistent with each other.</p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><msup><mn>5</mn><mi>n</mi></msup><mo>→</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">D</mi><mi>n</mi></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>&nbsp; <strong>OR&nbsp;</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">D</mi><mi>n</mi></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&nbsp;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>only if their&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">D</mi><mi>n</mi></msup></math>&nbsp;corresponds to their&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><msup><mi mathvariant="bold-italic">D</mi><mi>n</mi></msup><msup><mi mathvariant="bold-italic">P</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>6</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>4</mn></mtd><mtd><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>4</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo>%</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A continuous random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> has probability density function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> given by</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \left\{ {\begin{array}{*{20}{l}} {\frac{{{x^2}}}{a} + b,}&amp;{0 \leqslant x \leqslant 4} \\ 0&amp;{{\text{otherwise}}} \end{array}} \right.{\text{where }}a{\text{ and }}b{\text{ are positive constants.}}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo>{</mo>
    <mrow>
      <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mfrac>
                <mrow>
                  <mrow>
                    <msup>
                      <mi>x</mi>
                      <mn>2</mn>
                    </msup>
                  </mrow>
                </mrow>
                <mi>a</mi>
              </mfrac>
              <mo>+</mo>
              <mi>b</mi>
              <mo>,</mo>
            </mrow>
          </mtd>
          <mtd>
            <mrow>
              <mn>0</mn>
              <mo>⩽<!-- ⩽ --></mo>
              <mi>x</mi>
              <mo>⩽<!-- ⩽ --></mo>
              <mn>4</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
          <mtd>
            <mrow>
              <mrow>
                <mtext>otherwise</mtext>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo fence="true" stretchy="true" symmetric="true"></mo>
  </mrow>
  <mrow>
    <mtext>where&nbsp;</mtext>
  </mrow>
  <mi>a</mi>
  <mrow>
    <mtext>&nbsp;and&nbsp;</mtext>
  </mrow>
  <mi>b</mi>
  <mrow>
    <mtext>&nbsp;are positive constants.</mtext>
  </mrow>
</math></span></p>
<p>It is given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X \geqslant 2) = 0.75">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.75</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>Eight independent observations of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> are now taken and the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
  <mi>Y</mi>
</math></span> is the number of observations such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \geqslant 2">
  <mi>X</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>2</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 32">
  <mi>a</mi>
  <mo>=</mo>
  <mn>32</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{1}{{12}}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X)">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X)">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(Y)">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y \geqslant 3)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>⩾</mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^4 {\left( {\frac{{{x^2}}}{a} + b} \right){\text{d}}x = 1 \Rightarrow \left[ {\frac{{{x^3}}}{{3a}} + bx} \right]_0^4 = 1 \Rightarrow \frac{{64}}{{3a}} + 4b = 1} ">
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mn>4</mn>
  </munderover>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mfrac>
          <mrow>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
          </mrow>
          <mi>a</mi>
        </mfrac>
        <mo>+</mo>
        <mi>b</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>=</mo>
    <mn>1</mn>
    <mo stretchy="false">⇒</mo>
    <msubsup>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mrow>
                <msup>
                  <mi>x</mi>
                  <mn>3</mn>
                </msup>
              </mrow>
            </mrow>
            <mrow>
              <mn>3</mn>
              <mi>a</mi>
            </mrow>
          </mfrac>
          <mo>+</mo>
          <mi>b</mi>
          <mi>x</mi>
        </mrow>
        <mo>]</mo>
      </mrow>
      <mn>0</mn>
      <mn>4</mn>
    </msubsup>
    <mo>=</mo>
    <mn>1</mn>
    <mo stretchy="false">⇒</mo>
    <mfrac>
      <mrow>
        <mn>64</mn>
      </mrow>
      <mrow>
        <mn>3</mn>
        <mi>a</mi>
      </mrow>
    </mfrac>
    <mo>+</mo>
    <mn>4</mn>
    <mi>b</mi>
    <mo>=</mo>
    <mn>1</mn>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp;<strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_2^4 {\left( {\frac{{{x^2}}}{a} + b} \right){\text{d}}x = 0.75 \Rightarrow \frac{{56}}{{3a}} + 2b = 0.75} ">
  <munderover>
    <mo>∫</mo>
    <mn>2</mn>
    <mn>4</mn>
  </munderover>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mfrac>
          <mrow>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
          </mrow>
          <mi>a</mi>
        </mfrac>
        <mo>+</mo>
        <mi>b</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>=</mo>
    <mn>0.75</mn>
    <mo stretchy="false">⇒</mo>
    <mfrac>
      <mrow>
        <mn>56</mn>
      </mrow>
      <mrow>
        <mn>3</mn>
        <mi>a</mi>
      </mrow>
    </mfrac>
    <mo>+</mo>
    <mn>2</mn>
    <mi>b</mi>
    <mo>=</mo>
    <mn>0.75</mn>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp;<strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp; &nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^2 {\left( {\frac{{{x^2}}}{a} + b} \right)} \,dx = 0.25 \Rightarrow \frac{8}{{3a}} + 2b = 0.25">
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mn>2</mn>
  </munderover>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mfrac>
          <mrow>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
          </mrow>
          <mi>a</mi>
        </mfrac>
        <mo>+</mo>
        <mi>b</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>d</mi>
  <mi>x</mi>
  <mo>=</mo>
  <mn>0.25</mn>
  <mo stretchy="false">⇒</mo>
  <mfrac>
    <mn>8</mn>
    <mrow>
      <mn>3</mn>
      <mi>a</mi>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>2</mn>
  <mi>b</mi>
  <mo>=</mo>
  <mn>0.25</mn>
</math></span> could be seen/used in place of either of the above equations.</p>
<p>&nbsp;</p>
<p>evidence of an attempt to solve simultaneously (or check given <em>a</em>,<em>b </em>values are consistent)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 32,{\text{ }}b = \frac{1}{{12}}">
  <mi>a</mi>
  <mo>=</mo>
  <mn>32</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right) = \int\limits_0^4 {x\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x} ">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>X</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mn>4</mn>
  </munderover>
  <mrow>
    <mi>x</mi>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mfrac>
          <mrow>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
          </mrow>
          <mrow>
            <mn>32</mn>
          </mrow>
        </mfrac>
        <mo>+</mo>
        <mfrac>
          <mn>1</mn>
          <mrow>
            <mn>12</mn>
          </mrow>
        </mfrac>
      </mrow>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = \frac{8}{3}\,\,\,( = 2.67)">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mn>8</mn>
    <mn>3</mn>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>2.67</mn>
  <mo stretchy="false">)</mo>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( {{X^2}} \right) = \int\limits_0^4 {{x^2}\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x} ">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mi>X</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mn>4</mn>
  </munderover>
  <mrow>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mfrac>
          <mrow>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
          </mrow>
          <mrow>
            <mn>32</mn>
          </mrow>
        </mfrac>
        <mo>+</mo>
        <mfrac>
          <mn>1</mn>
          <mrow>
            <mn>12</mn>
          </mrow>
        </mfrac>
      </mrow>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X) = {\text{E}}({X^2}) - {[{\text{E}}(X)]^2} = \frac{{16}}{{15}}\,\,\,( = 1.07)">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>X</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <mo stretchy="false">[</mo>
    <mrow>
      <mtext>E</mtext>
    </mrow>
    <mo stretchy="false">(</mo>
    <mi>X</mi>
    <mo stretchy="false">)</mo>
    <msup>
      <mo stretchy="false">]</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>16</mn>
    </mrow>
    <mrow>
      <mn>15</mn>
    </mrow>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>1.07</mn>
  <mo stretchy="false">)</mo>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^m {\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x = 0.5} ">
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mi>m</mi>
  </munderover>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mfrac>
          <mrow>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
          </mrow>
          <mrow>
            <mn>32</mn>
          </mrow>
        </mfrac>
        <mo>+</mo>
        <mfrac>
          <mn>1</mn>
          <mrow>
            <mn>12</mn>
          </mrow>
        </mfrac>
      </mrow>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>=</mo>
    <mn>0.5</mn>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{m^3}}}{{96}} + \frac{m}{{12}} = 0.5\,\,\,( \Rightarrow {m^3} + 8m - 48 = 0)">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>m</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>96</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mi>m</mi>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.5</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo stretchy="false">(</mo>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mi>m</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>8</mn>
  <mi>m</mi>
  <mo>−</mo>
  <mn>48</mn>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 2.91">
  <mi>m</mi>
  <mo>=</mo>
  <mn>2.91</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y \sim B(8,{\text{ }}0.75)">
  <mi>Y</mi>
  <mo>∼</mo>
  <mi>B</mi>
  <mo stretchy="false">(</mo>
  <mn>8</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0.75</mn>
  <mo stretchy="false">)</mo>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(Y) = 8 \times 0.75 = 6">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>8</mn>
  <mo>×</mo>
  <mn>0.75</mn>
  <mo>=</mo>
  <mn>6</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y \geqslant 3) = 0.996">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>⩾</mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.996</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Arianne plays a game of darts.</p>
<p style="text-align: center;"><img src=""></p>
<p>The distance that her darts land from the centre, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, of the board can be modelled by a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>&#8202;</mo><mtext>cm</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>&#8202;</mo><mtext>cm</mtext></math>.</p>
</div>

<div class="specification">
<p>Find the probability that</p>
</div>

<div class="specification">
<p>Each of Arianne&rsquo;s throws is independent of her previous throws.</p>
</div>

<div class="specification">
<p>In a competition a player has three darts to throw on each turn. A point is scored if a player throws <strong>all</strong> three darts to land within a central area around <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>. When Arianne throws a dart the probability that it lands within this area is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8143</mn></math>.</p>
</div>

<div class="specification">
<p>In the competition Arianne has ten turns, each with three darts.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a dart lands less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a dart lands more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne throws two consecutive darts that land more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne does <strong>not</strong> score a point on a turn of three darts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Arianne’s expected score in the competition.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points in the competition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points and less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points, find the probability that Arianne scores less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the random variable “distance from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>”.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>10</mn><mo>,</mo><mo> </mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&lt;</mo><mn>13</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>841</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>841344</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>15</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0478</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0477903</mn></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>15</mn></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>&gt;</mo><mn>15</mn></mrow></mfenced></math>            <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>00228</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>00228391</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>8143</mn></mrow></mfenced><mn>3</mn></msup></math>            <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>460</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>460050</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> be the random variable “number of points scored”</p>
<p>evidence of use of binomial distribution           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>10</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>539949</mn><mo>…</mo></mrow></mfenced></math>           <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>E</mtext><mfenced><mi>Y</mi></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>10</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>539949</mn><mo>…</mo></math>           <strong><em>(M1)</em></strong></p>
<p>           <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>5</mn><mo>.</mo><mn>40</mn></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>≥</mo><mn>5</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>717</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>716650</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>5</mn><mo>≤</mo><mi>Y</mi><mo>&lt;</mo><mn>8</mn></mrow></mfenced></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>628</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>627788</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for a correct probability statement or indication of correct lower and upper bounds, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math>.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mn>5</mn><mo>≤</mo><mi>Y</mi><mo>&lt;</mo><mn>8</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>≥</mo><mn>5</mn></mrow></mfenced></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>627788</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>716650</mn><mo>…</mo></mrow></mfrac></mrow></mfenced></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>876</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>876003</mn><mo>…</mo></mrow></mfenced></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates started this question well and applied the normal distribution correctly in part (a). The same goes for part (b) where the candidates were able to combine probabilities correctly. Part (c) was not very well done, and there were a surprising number of incorrect approaches on a seemingly straightforward problem. This suggests that candidates were not interpreting the problem correctly and there was a lack of careful reading to be sure of the scenario being described. In part (d) most candidates recognized the need to model the situation with the binomial distribution. However, many candidates did not choose a correct probability for the Bernoulli trial in this question and oversimplified the problem. This again seems to be a problem of “interpretation” rather than “conceptual understanding”.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates started this question well and applied the normal distribution correctly in part (a). The same goes for part (b) where the candidates were able to combine probabilities correctly. Part (c) was not very well done, and there were a surprising number of incorrect approaches on a seemingly straightforward problem. This suggests that candidates were not interpreting the problem correctly and there was a lack of careful reading to be sure of the scenario being described. In part (d) most candidates recognized the need to model the situation with the binomial distribution. However, many candidates did not choose a correct probability for the Bernoulli trial in this question and oversimplified the problem. This again seems to be a problem of “interpretation” rather than “conceptual understanding”.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates started this question well and applied the normal distribution correctly in part (a). The same goes for part (b) where the candidates were able to combine probabilities correctly. Part (c) was not very well done, and there were a surprising number of incorrect approaches on a seemingly straightforward problem. This suggests that candidates were not interpreting the problem correctly and there was a lack of careful reading to be sure of the scenario being described. In part (d) most candidates recognized the need to model the situation with the binomial distribution. However, many candidates did not choose a correct probability for the Bernoulli trial in this question and oversimplified the problem. This again seems to be a problem of “interpretation” rather than “conceptual understanding”.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates started this question well and applied the normal distribution correctly in part (a). The same goes for part (b) where the candidates were able to combine probabilities correctly. Part (c) was not very well done, and there were a surprising number of incorrect approaches on a seemingly straightforward problem. This suggests that candidates were not interpreting the problem correctly and there was a lack of careful reading to be sure of the scenario being described. In part (d) most candidates recognized the need to model the situation with the binomial distribution. However, many candidates did not choose a correct probability for the Bernoulli trial in this question and oversimplified the problem. This again seems to be a problem of “interpretation” rather than “conceptual understanding”.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates started this question well and applied the normal distribution correctly in part (a). The same goes for part (b) where the candidates were able to combine probabilities correctly. Part (c) was not very well done, and there were a surprising number of incorrect approaches on a seemingly straightforward problem. This suggests that candidates were not interpreting the problem correctly and there was a lack of careful reading to be sure of the scenario being described. In part (d) most candidates recognized the need to model the situation with the binomial distribution. However, many candidates did not choose a correct probability for the Bernoulli trial in this question and oversimplified the problem. This again seems to be a problem of “interpretation” rather than “conceptual understanding”.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates started this question well and applied the normal distribution correctly in part (a). The same goes for part (b) where the candidates were able to combine probabilities correctly. Part (c) was not very well done, and there were a surprising number of incorrect approaches on a seemingly straightforward problem. This suggests that candidates were not interpreting the problem correctly and there was a lack of careful reading to be sure of the scenario being described. In part (d) most candidates recognized the need to model the situation with the binomial distribution. However, many candidates did not choose a correct probability for the Bernoulli trial in this question and oversimplified the problem. This again seems to be a problem of “interpretation” rather than “conceptual understanding”.</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates started this question well and applied the normal distribution correctly in part (a). The same goes for part (b) where the candidates were able to combine probabilities correctly. Part (c) was not very well done, and there were a surprising number of incorrect approaches on a seemingly straightforward problem. This suggests that candidates were not interpreting the problem correctly and there was a lack of careful reading to be sure of the scenario being described. In part (d) most candidates recognized the need to model the situation with the binomial distribution. However, many candidates did not choose a correct probability for the Bernoulli trial in this question and oversimplified the problem. This again seems to be a problem of “interpretation” rather than “conceptual understanding”.</p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates started this question well and applied the normal distribution correctly in part (a). The same goes for part (b) where the candidates were able to combine probabilities correctly. Part (c) was not very well done, and there were a surprising number of incorrect approaches on a seemingly straightforward problem. This suggests that candidates were not interpreting the problem correctly and there was a lack of careful reading to be sure of the scenario being described. In part (d) most candidates recognized the need to model the situation with the binomial distribution. However, many candidates did not choose a correct probability for the Bernoulli trial in this question and oversimplified the problem. This again seems to be a problem of “interpretation” rather than “conceptual understanding”.</p>
<div class="question_part_label">d.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>A Chocolate Shop advertises free gifts to customers that collect three vouchers. The vouchers are placed at random into 10% of all chocolate bars sold at this shop. Kati buys some of these bars and she opens them one at a time to see if they contain a voucher. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = n)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>n</mi>
  <mo stretchy="false">)</mo>
</math></span> be the probability that Kati obtains her third voucher on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n{\text{th}}">
  <mi>n</mi>
  <mrow>
    <mtext>th</mtext>
  </mrow>
</math></span>&nbsp;bar opened.</p>
<p>(It is assumed that the probability that a chocolate bar contains a voucher stays at 10% throughout the question.)</p>
</div>

<div class="specification">
<p>It is given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = n) = \frac{{{n^2} + an + b}}{{2000}} \times {0.9^{n - 3}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>n</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>n</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mi>a</mi>
      <mi>n</mi>
      <mo>+</mo>
      <mi>b</mi>
    </mrow>
    <mrow>
      <mn>2000</mn>
    </mrow>
  </mfrac>
  <mo>×<!-- × --></mo>
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−<!-- − --></mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \geqslant 3,{\text{ }}n \in \mathbb{N}">
  <mi>n</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>n</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">N</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>Kati’s mother goes to the shop and buys <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;chocolate bars. She takes the bars home for Kati to open.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 3) = 0.001">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.001</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 4) = 0.0027">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.0027</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of the constants <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{0.9(n - 1)}}{{n - 3}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>n</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.9</mn>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n > 3">
  <mi>n</mi>
  <mo>&gt;</mo>
  <mn>3</mn>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> has two modes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_1}">
  <mrow>
    <msub>
      <mi>m</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_2}">
  <mrow>
    <msub>
      <mi>m</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>.</p>
<p>(ii) &nbsp; &nbsp; State the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_1}">
  <mrow>
    <msub>
      <mi>m</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_2}">
  <mrow>
    <msub>
      <mi>m</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> such that the probability Kati receives at least one free gift is greater than 0.5.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 3) = {(0.1)^3}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>0.1</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.001">
  <mo>=</mo>
  <mn>0.001</mn>
</math></span> &nbsp; &nbsp;<strong><em>AG</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 4) = {\text{P}}(VV\bar VV) + {\text{P}}(V\bar VVV) + {\text{P}}(\bar VVVV)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>V</mi>
  <mi>V</mi>
  <mrow>
    <mover>
      <mi>V</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mi>V</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>V</mi>
  <mrow>
    <mover>
      <mi>V</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mi>V</mi>
  <mi>V</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>V</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mi>V</mi>
  <mi>V</mi>
  <mi>V</mi>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3 \times {(0.1)^3} \times 0.9">
  <mo>=</mo>
  <mn>3</mn>
  <mo>×</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>0.1</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>×</mo>
  <mn>0.9</mn>
</math></span> (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.0027">
  <mo>=</mo>
  <mn>0.0027</mn>
</math></span> &nbsp; &nbsp;<strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempting to form equations in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{9 + 3a + b}}{{2000}} = \frac{1}{{1000}}{\text{ }}(3a + b = &nbsp;- 7)">
  <mfrac>
    <mrow>
      <mn>9</mn>
      <mo>+</mo>
      <mn>3</mn>
      <mi>a</mi>
      <mo>+</mo>
      <mi>b</mi>
    </mrow>
    <mrow>
      <mn>2000</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mi>a</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>7</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16 + 4a + b}}{{2000}} \times \frac{9}{{10}} = \frac{{27}}{{10\,000}}{\text{ }}(4a + b = &nbsp;- 10)">
  <mfrac>
    <mrow>
      <mn>16</mn>
      <mo>+</mo>
      <mn>4</mn>
      <mi>a</mi>
      <mo>+</mo>
      <mi>b</mi>
    </mrow>
    <mrow>
      <mn>2000</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>9</mn>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>27</mn>
    </mrow>
    <mrow>
      <mn>10</mn>
      <mspace width="thinmathspace"></mspace>
      <mn>000</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>4</mn>
  <mi>a</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>10</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>attempting to solve simultaneously &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = &nbsp;- 3,{\text{ }}b = 2">
  <mi>a</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>b</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = n) = \left( {\begin{array}{*{20}{c}} {n - 1} \\ 2 \end{array}} \right) \times {0.1^3} \times {0.9^{n - 3}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>n</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mi>n</mi>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.1</mn>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{(n - 1)(n - 2)}}{{2000}} \times {0.9^{n - 3}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>2000</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>(M1)A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{n^2} - 3n + 2}}{{2000}} \times {0.9^{n - 3}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>n</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>3</mn>
      <mi>n</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
    <mrow>
      <mn>2000</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = &nbsp;- 3,b = 2">
  <mi>a</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mi>b</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Condone the absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{0.9^{n - 3}}">
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> in the determination of the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<p>&nbsp;</p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = n) = \frac{{{n^2} - 3n + 2}}{{2000}} \times {0.9^{n - 3}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>n</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>n</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>3</mn>
      <mi>n</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
    <mrow>
      <mn>2000</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = n) = \left( {\begin{array}{*{20}{c}} {n - 1} \\ 2 \end{array}} \right) \times {0.1^3} \times {0.9^{n - 3}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>n</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mi>n</mi>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.1</mn>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{(n - 1)(n - 2)}}{{2000}} \times {0.9^{n - 3}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>2000</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = n - 1) = \frac{{(n - 2)(n - 3)}}{{2000}} \times {0.9^{n - 4}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>n</mi>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>2000</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>0.9</mn>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>4</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{(n - 1)(n - 2)}}{{(n - 2)(n - 3)}} \times 0.9">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>n</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>0.9</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.9(n - 1)}}{{n - 3}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.9</mn>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;<strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{\frac{{{n^2} - 3n + 2}}{{2000}} \times {{0.9}^{n - 3}}}}{{\frac{{{{(n - 1)}^2} - 3(n - 1) + 2}}{{2000}} \times {{0.9}^{n - 4}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>n</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <msup>
              <mi>n</mi>
              <mn>2</mn>
            </msup>
          </mrow>
          <mo>−</mo>
          <mn>3</mn>
          <mi>n</mi>
          <mo>+</mo>
          <mn>2</mn>
        </mrow>
        <mrow>
          <mn>2000</mn>
        </mrow>
      </mfrac>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>0.9</mn>
          </mrow>
          <mrow>
            <mi>n</mi>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <msup>
              <mrow>
                <mo stretchy="false">(</mo>
                <mi>n</mi>
                <mo>−</mo>
                <mn>1</mn>
                <mo stretchy="false">)</mo>
              </mrow>
              <mn>2</mn>
            </msup>
          </mrow>
          <mo>−</mo>
          <mn>3</mn>
          <mo stretchy="false">(</mo>
          <mi>n</mi>
          <mo>−</mo>
          <mn>1</mn>
          <mo stretchy="false">)</mo>
          <mo>+</mo>
          <mn>2</mn>
        </mrow>
        <mrow>
          <mn>2000</mn>
        </mrow>
      </mfrac>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>0.9</mn>
          </mrow>
          <mrow>
            <mi>n</mi>
            <mo>−</mo>
            <mn>4</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.9({n^2} - 3n + 2)}}{{({n^2} - 5n + 6)}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.9</mn>
      <mo stretchy="false">(</mo>
      <mrow>
        <msup>
          <mi>n</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>3</mn>
      <mi>n</mi>
      <mo>+</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mo stretchy="false">(</mo>
      <mrow>
        <msup>
          <mi>n</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>5</mn>
      <mi>n</mi>
      <mo>+</mo>
      <mn>6</mn>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;<strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for a correct numerator and <strong><em>A1 </em></strong>for a correct denominator.</p>
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.9(n - 1)(n - 2)}}{{(n - 2)(n - 3)}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.9</mn>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.9(n - 1)}}{{n - 3}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.9</mn>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;<strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; attempting to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.9(n - 1)}}{{n - 3}} = 1">
  <mfrac>
    <mrow>
      <mn>0.9</mn>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>1</mn>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 21">
  <mi>n</mi>
  <mo>=</mo>
  <mn>21</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.9(n - 1)}}{{n - 3}} < 1 \Rightarrow n > 21">
  <mfrac>
    <mrow>
      <mn>0.9</mn>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
  <mo>&lt;</mo>
  <mn>1</mn>
  <mo stretchy="false">⇒</mo>
  <mi>n</mi>
  <mo>&gt;</mo>
  <mn>21</mn>
</math></span> &nbsp; &nbsp;<strong><em>R1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.9(n - 1)}}{{n - 3}} > 1 \Rightarrow n < 21">
  <mfrac>
    <mrow>
      <mn>0.9</mn>
      <mo stretchy="false">(</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mi>n</mi>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
  <mo>&gt;</mo>
  <mn>1</mn>
  <mo stretchy="false">⇒</mo>
  <mi>n</mi>
  <mo>&lt;</mo>
  <mn>21</mn>
</math></span> &nbsp; &nbsp;<strong><em>R1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> has two modes &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>R1R1 </em></strong>for a clearly labelled graphical representation of the two inequalities (using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>n</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>n</mi>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
</math></span>).</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; the modes are 20 and 21 &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y \sim {\text{B}}(x,{\text{ }}0.1)">
  <mi>Y</mi>
  <mo>∼</mo>
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0.1</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em></strong></p>
<p>attempting to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y \geqslant 3) > 0.5">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>⩾</mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
  <mo>&gt;</mo>
  <mn>0.5</mn>
</math></span> (or equivalent <em>eg</em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\text{P}}(Y \leqslant 2) > 0.5">
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>⩽</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>&gt;</mo>
  <mn>0.5</mn>
</math></span>) for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for attempting to solve an equality (obtaining <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 26.4">
  <mi>x</mi>
  <mo>=</mo>
  <mn>26.4</mn>
</math></span>).</p>
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 27">
  <mi>x</mi>
  <mo>=</mo>
  <mn>27</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{n = 0}^x {{\text{P}}(X = n) > 0.5} ">
  <munderover>
    <mo movablelimits="false">∑</mo>
    <mrow>
      <mi>n</mi>
      <mo>=</mo>
      <mn>0</mn>
    </mrow>
    <mi>x</mi>
  </munderover>
  <mrow>
    <mrow>
      <mtext>P</mtext>
    </mrow>
    <mo stretchy="false">(</mo>
    <mi>X</mi>
    <mo>=</mo>
    <mi>n</mi>
    <mo stretchy="false">)</mo>
    <mo>&gt;</mo>
    <mn>0.5</mn>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em></strong></p>
<p>attempting to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 27">
  <mi>x</mi>
  <mo>=</mo>
  <mn>27</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, in grams, of individual packets of coffee can be modelled by a normal distribution,&nbsp;with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>102</mn><mo> </mo><mtext>g</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo> </mo><mtext>g</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected packet has a weight less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The probability that a randomly selected packet has a weight greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi></math> grams&nbsp;is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>444</mn></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A packet is randomly selected. Given that the packet has a weight greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>105</mn><mo> </mo><mtext>g</mtext></math>,&nbsp;find the probability that it has a weight greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>110</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From a random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn></math> packets, determine the number of packets that would be&nbsp;expected to have a weight lying within <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> standard deviations of the mean.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Packets are delivered to supermarkets in batches of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math>. Determine the probability that&nbsp;at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> packets from a randomly selected batch have a weight less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>95</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Χ</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>102</mn><mo>,</mo><mo>&nbsp;</mo><msup><mn>8</mn><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>&lt;</mo><mn>100</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>401</mn></math>&nbsp; &nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em><em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>&gt;</mo><mi>w</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>444</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>w</mi><mo>=</mo><mn>103</mn><mo>&nbsp;</mo><mfenced><mtext>g</mtext></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>&gt;</mo><mn>100</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>Χ</mi><mo>&gt;</mo><mn>105</mn></menclose></mrow></mfenced><mo>=</mo><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>&gt;</mo><mn>100</mn><mo>∩</mo><mi>Χ</mi><mo>&gt;</mo><mn>105</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>&gt;</mo><mn>105</mn></mrow></mfenced></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>&gt;</mo><mn>100</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>&gt;</mo><mn>105</mn></mrow></mfenced></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>15865</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>35383</mn><mo>…</mo></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>448</mn></math> &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>90</mn><mo>&lt;</mo><mi>Χ</mi><mo>&lt;</mo><mn>114</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>&lt;</mo><mi>Z</mi><mo>&lt;</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>866</mn><mo>…</mo><mo>×</mo><mn>500</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>433</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>&lt;</mo><mn>95</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>19078</mn><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>recognising&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>80</mn><mo>,</mo><mo>&nbsp;</mo><mi>p</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>now using&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>80</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>19078</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>≥</mo><mn>20</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>116</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Hank sets up a bird table in his garden to provide the local birds with some food. Hank notices&nbsp;that a specific bird, a large magpie, visits several times per month and he names him Bill. Hank&nbsp;models the number of times per month that Bill visits his garden as a Poisson distribution with&nbsp;mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>Over the course of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> consecutive months, find the probability that Bill visits the garden:</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using Hank’s model, find the probability that Bill visits the garden on exactly four&nbsp;occasions during one particular month.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>on exactly <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> occasions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>during the first and third month only.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that over a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math>-month period, there will be exactly <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> months when&nbsp;Bill does not visit the garden.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After the first year, a number of baby magpies start to visit Hank’s garden. It may be&nbsp;assumed that each of these baby magpies visits the garden randomly and independently,&nbsp;and that the number of times each baby magpie visits the garden per month is modelled by&nbsp;a Poisson distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>1</mn></math>.</p>
<p>Determine the least number of magpies required, including Bill, in order that the&nbsp;probability of Hank’s garden having at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> magpie visits per month is greater&nbsp;than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>X</mi><mn>1</mn></msub><mo>~</mo><mtext>Po</mtext><mfenced><mrow><mn>3</mn><mo>.</mo><mn>1</mn></mrow></mfenced></math></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>=</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>173</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>173349</mn><mo>…</mo></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>A1</em></strong></p>
<p><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>X</mi><mn>2</mn></msub><mo>~</mo><mtext>Po</mtext><mfenced><mrow><mn>3</mn><mo>×</mo><mn>3</mn><mo>.</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mtext>Po</mtext><mfenced><mrow><mn>9</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(M1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><msub><mi>X</mi><mn>2</mn></msub><mo>=</mo><mn>12</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0799</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0798950</mn><mo>…</mo></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>A1</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mtext>P</mtext><mfenced><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>&gt;</mo><mn>0</mn></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>×</mo><mtext>P</mtext><mfenced><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>=</mo><mn>0</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><msup><mn>95495</mn><mn>2</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>04505</mn></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(A1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0411</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0410817</mn><mo>…</mo></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>A1</em></strong></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>=</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>04505</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(A1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>X</mi><mn>1</mn></msub><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>12</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>04505</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(M1)(A1)</em></strong></p>
<p><strong><br>Note: </strong>Award <em><strong>M1</strong></em> for recognizing binomial probability, and <em><strong>A1</strong></em> for correct parameters.</p>
<p><strong><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0133</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>013283</mn><mo>…</mo></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>A1</em><br></strong></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD ONE</strong></p>
<p><img src=""><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(M1)(A1)(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for evidence of a cumulative Poisson with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>1</mn><mi>n</mi></math>, <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>136705</mn></math> and <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>253384</mn></math>.</p>
<p><br>so require <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> magpies (including Bill)<strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>METHOD&nbsp;TWO</strong></p>
<p>evidence of a cumulative Poisson with&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>1</mn><mi>n</mi></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(M1)</em></strong></p>
<p>sketch of curve and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(A1)</em></strong></p>
<p>(intersect at)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>.</mo><mn>5810</mn><mo>…</mo></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(A1)</em></strong></p>
<p>rounding up gives&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>11</mn></math></p>
<p>so require&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math>&nbsp;magpies (including Bill)<strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>It is given that one in five cups of coffee contain more than 120 mg of caffeine.<br>It is also known that three in five cups contain more than 110 mg of caffeine.</p>
<p>Assume that the caffeine content of coffee is modelled by a normal distribution.<br>Find the mean and standard deviation of the caffeine content of coffee.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> be the random variable “amount of caffeine content in coffee”</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 120) = 0.2,{\text{ P}}(X > 110) = 0.6">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>120</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>110</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.6</mn>
</math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( \Rightarrow {\text{P}}(X < 120) = 0.8,{\text{ P}}(X < 110) = 0.4)">
  <mo stretchy="false">(</mo>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>120</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.8</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>110</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.4</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for at least one correct probability statement.</p>
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{120 - \mu }}{\sigma } = 0.84162 \ldots ,{\text{ }}\frac{{110 - \mu }}{\sigma } =&nbsp; - 0.253347 \ldots ">
  <mfrac>
    <mrow>
      <mn>120</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <mn>0.84162</mn>
  <mo>…</mo>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mn>110</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.253347</mn>
  <mo>…</mo>
</math></span> &nbsp; &nbsp; <strong><em>(M1)(A1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for attempt to find at least one appropriate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span>-value.</p>
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="120 - \mu&nbsp; = 0.84162\sigma ,{\text{ }}110 - \mu&nbsp; =&nbsp; - 0.253347\sigma ">
  <mn>120</mn>
  <mo>−</mo>
  <mi>μ</mi>
  <mo>=</mo>
  <mn>0.84162</mn>
  <mi>σ</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>110</mn>
  <mo>−</mo>
  <mi>μ</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.253347</mn>
  <mi>σ</mi>
</math></span></p>
<p>attempt to solve simultaneous equations &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu&nbsp; = 112,{\text{ }}\sigma&nbsp; = 9.13">
  <mi>μ</mi>
  <mo>=</mo>
  <mn>112</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>σ</mi>
  <mo>=</mo>
  <mn>9.13</mn>
</math></span> &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>John likes to go sailing every day in July. To help him make a decision on whether it is safe to go sailing he classifies each day in July as windy or calm. Given that a day in July is calm, the probability that the next day is calm is 0.9. Given that a day in July is windy, the probability that the next day is calm is 0.3. The weather forecast for the 1st July predicts that the probability that it will be calm is 0.8.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a tree diagram to represent this information for the first three days of July.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the 3rd July is calm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the 1st July was calm given that the 3rd July is windy.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-08-09_om_18.23.32.png" alt="M17/5/MATHL/HP2/ENG/TZ2/05.a/M">     <strong><em>M1A2</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>M1 </em></strong>for 3 stage tree-diagram, <strong><em>A2 </em></strong>for 0.8, 0.9, 0.3 probabilities correctly placed.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 \times 0.7 \times 0.3 + 0.2 \times 0.3 \times 0.9 + 0.8 \times 0.1 \times 0.3 + 0.8 \times 0.9 \times 0.9 = 0.768">
  <mn>0.2</mn>
  <mo>×</mo>
  <mn>0.7</mn>
  <mo>×</mo>
  <mn>0.3</mn>
  <mo>+</mo>
  <mn>0.2</mn>
  <mo>×</mo>
  <mn>0.3</mn>
  <mo>×</mo>
  <mn>0.9</mn>
  <mo>+</mo>
  <mn>0.8</mn>
  <mo>×</mo>
  <mn>0.1</mn>
  <mo>×</mo>
  <mn>0.3</mn>
  <mo>+</mo>
  <mn>0.8</mn>
  <mo>×</mo>
  <mn>0.9</mn>
  <mo>×</mo>
  <mn>0.9</mn>
  <mo>=</mo>
  <mn>0.768</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}({\text{1st July is calm | 3rd July is windy)}} = \frac{{{\text{P}}({\text{1st July is calm and 3rd July is windy)}}}}{{{\text{P}}({\text{3rd July is windy)}}}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>1st July is calm | 3rd July is windy)</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mrow>
        <mtext>1st July is calm and 3rd July is windy)</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mrow>
        <mtext>3rd July is windy)</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.8 \times 0.1 \times 0.7 + 0.8 \times 0.9 \times 0.1}}{{1 - 0.768}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.8</mn>
      <mo>×</mo>
      <mn>0.1</mn>
      <mo>×</mo>
      <mn>0.7</mn>
      <mo>+</mo>
      <mn>0.8</mn>
      <mo>×</mo>
      <mn>0.9</mn>
      <mo>×</mo>
      <mn>0.1</mn>
    </mrow>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mn>0.768</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.8 \times 0.1 \times 0.7 + 0.8 \times 0.9 \times 0.1}}{{0.2 \times 0.7 \times 0.7 + 0.2 \times 0.3 \times 0.1 + 0.8 \times 0.1 \times 0.7 + 0.8 \times 0.9 \times 0.1}}">
  <mfrac>
    <mrow>
      <mn>0.8</mn>
      <mo>×</mo>
      <mn>0.1</mn>
      <mo>×</mo>
      <mn>0.7</mn>
      <mo>+</mo>
      <mn>0.8</mn>
      <mo>×</mo>
      <mn>0.9</mn>
      <mo>×</mo>
      <mn>0.1</mn>
    </mrow>
    <mrow>
      <mn>0.2</mn>
      <mo>×</mo>
      <mn>0.7</mn>
      <mo>×</mo>
      <mn>0.7</mn>
      <mo>+</mo>
      <mn>0.2</mn>
      <mo>×</mo>
      <mn>0.3</mn>
      <mo>×</mo>
      <mn>0.1</mn>
      <mo>+</mo>
      <mn>0.8</mn>
      <mo>×</mo>
      <mn>0.1</mn>
      <mo>×</mo>
      <mn>0.7</mn>
      <mo>+</mo>
      <mn>0.8</mn>
      <mo>×</mo>
      <mn>0.9</mn>
      <mo>×</mo>
      <mn>0.1</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.128}}{{0.232}}">
  <mfrac>
    <mrow>
      <mn>0.128</mn>
    </mrow>
    <mrow>
      <mn>0.232</mn>
    </mrow>
  </mfrac>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(</em></strong><strong><em>A1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>A1 </em></strong>for correct numerator, <strong><em>A1 </em></strong>for correct denominator.</p>
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.552">
  <mo>=</mo>
  <mn>0.552</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is shown in the graph, for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 10">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>10</mn>
</math></span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;passes through the following points.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>It is required to find the area bounded by the curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span><em>-</em>axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span><em>-</em>axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 10">
  <mi>x</mi>
  <mo>=</mo>
  <mn>10</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>One possible model for the curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is a cubic function.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule to find an estimate for the area.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use all the coordinates in the table to find the equation of the least squares cubic regression curve.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coefficient of determination.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for the area enclosed by the cubic regression curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 10">
  <mi>x</mi>
  <mo>=</mo>
  <mn>10</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{2}\left( {2 + 2\left( {4.5 + 4.2 + 3.3 + 4.5} \right) + 8} \right)">
  <mfrac>
    <mn>2</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mo>+</mo>
      <mn>2</mn>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>4.5</mn>
          <mo>+</mo>
          <mn>4.2</mn>
          <mo>+</mo>
          <mn>3.3</mn>
          <mo>+</mo>
          <mn>4.5</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mn>8</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>        <em><strong>M1A1</strong></em></p>
<p>Area = 43        <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0.0389{x^3} - 0.534{x^2} + 2.06x + 2.06">
  <mi>y</mi>
  <mo>=</mo>
  <mn>0.0389</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>0.534</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2.06</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2.06</mn>
</math></span>      <em><strong>M1A2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{R^2} = 0.991">
  <mrow>
    <msup>
      <mi>R</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>0.991</mn>
</math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{10} {y\,dx} ">
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mrow>
      <mn>10</mn>
    </mrow>
  </munderover>
  <mrow>
    <mi>y</mi>
    <mspace width="thinmathspace"></mspace>
    <mi>d</mi>
    <mi>x</mi>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>42.5     <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A café serves sandwiches and cakes. Each customer will choose one of the following three options; buy only a sandwich, buy only a cake or buy both a sandwich and a cake.</p>
<p>The probability that a customer buys a sandwich is 0.72 and the probability that a customer buys a cake is 0.45.</p>
</div>

<div class="specification">
<p>Find the probability that a customer chosen at random will buy</p>
</div>

<div class="specification">
<p>On a typical day 200 customers come to the café.</p>
</div>

<div class="specification">
<p>It is known that 46 % of the customers who come to the café are male, and that 80 % of these buy a sandwich.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>both a sandwich and a cake.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>only a sandwich.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of cakes sold on a typical day.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that more than 100 cakes will be sold on a typical day.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A customer is selected at random. Find the probability that the customer is male and buys a sandwich.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A female customer is selected at random. Find the probability that she buys a sandwich.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of formula or Venn diagram      <em><strong> (M1)</strong></em></p>
<p>0.72 + 0.45 − 1       <em><strong>(A1)</strong></em></p>
<p>= 0.17       <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.72 − 0.17 = 0.55      <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>200 × 0.45 = 90      <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <em>X</em> be the number of customers who order cake</p>
<p><em>X</em> ~ B(200,0.45)        <em><strong>(M1)</strong></em></p>
<p>P(<em>X</em> &gt; 100) = P(<em>X</em> ≥ 101)(= 1 − P(<em>X</em> ≤ 100))    <em><strong>(M1)</strong></em></p>
<p>= 0.0681      <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.46 × 0.8 = 0.368    <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.368 + 0.54 \times {\text{P}}\left( {S\left| F \right.} \right) = 0.72">
  <mn>0.368</mn>
  <mo>+</mo>
  <mn>0.54</mn>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>S</mi>
      <mrow>
        <mo>|</mo>
        <mi>F</mi>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.72</mn>
</math></span>       <em><strong>M1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for an appropriate tree diagram. Award <em><strong>M1</strong></em> for LHS, <em><strong>M1</strong></em> for RHS.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {S\left| F \right.} \right) = 0.652">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>S</mi>
      <mrow>
        <mo>|</mo>
        <mi>F</mi>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.652</mn>
</math></span>     <em><strong>A1</strong></em>  </p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {S\left| F \right.} \right) = \frac{{{\text{P}}\left( {S \cap F} \right)}}{{{\text{P}}\left( F \right)}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>S</mi>
      <mrow>
        <mo>|</mo>
        <mi>F</mi>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>S</mi>
          <mo>∩</mo>
          <mi>F</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mi>F</mi>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.72 - 0.368}}{{0.54}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.72</mn>
      <mo>−</mo>
      <mn>0.368</mn>
    </mrow>
    <mrow>
      <mn>0.54</mn>
    </mrow>
  </mfrac>
</math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for numerator, <em><strong>A1</strong> </em>for denominator.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {S\left| F \right.} \right) = 0.652">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>S</mi>
      <mrow>
        <mo>|</mo>
        <mi>F</mi>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.652</mn>
</math></span>     <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Dana has collected some data regarding the heights <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> (metres) of waves against a pier at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> randomly chosen times in a single day. This data is shown in the table below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>She wishes to perform a <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math>-test at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level to see if the height of waves&nbsp;could be modelled by a normal distribution. Her null hypothesis is</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo>:</mo></math> The data can be modelled by a normal distribution.</p>
<p>From the table she calculates the mean of the heights in her sample to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>828</mn><mo> </mo><mtext>m</mtext></math> and the&nbsp;standard deviation of the heights <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>s</mi><mi>n</mi></msub></math> to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>257</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>

<div class="specification">
<p>She calculates the expected values for each interval under this null hypothesis, and some&nbsp;of these values are shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the given value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>s</mi><mi>n</mi></msub></math> to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>s</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, giving your answers correct to one decimal place.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> test statistic <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><msubsup><mi>χ</mi><mrow><mi>c</mi><mi>a</mi><mi>l</mi><mi>c</mi></mrow><mn>2</mn></msubsup></mfenced></math> for this test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the degrees of freedom for Dana’s test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is given that the critical value for this test is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>.</mo><mn>49</mn></math>.</p>
<p>State the conclusion of the test in context. Use your answer to part (c) to justify your conclusion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>s</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>=</mo><msqrt><mfrac><mn>50</mn><mn>49</mn></mfrac></msqrt><mo>×</mo><mn>0</mn><mo>.</mo><mn>257</mn></math>        <strong>(M1)</strong></p>
<p> </p>
<p><strong>Note: M1</strong> is for the use of the correct formula</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>260</mn></math>        <strong>A</strong><strong>1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Using <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>¯</mo></mover><mo>=</mo><mn>0</mn><mo>.</mo><mn>828</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>s</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>260</mn></math>        <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>6</mn></math>        <strong>A</strong><strong>1A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mi>c</mi><mi>a</mi><mi>l</mi><mi>c</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>3</mn><mo>.</mo><mn>35</mn></math>        <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Combining columns with expected values less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> leaves <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> cells       <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>-</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>=</mo><mn>4</mn></math>        <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>35</mn><mo>&lt;</mo><mn>9</mn><mo>.</mo><mn>49</mn></math>       <strong>R1</strong></p>
<p>hence insufficient evidence to reject <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math> that the heights of the waves are normally distributed.       <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> The <strong>A1</strong> can be awarded independently of the <strong>R1</strong>.</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The times taken for male runners to complete a marathon can be modelled by a normal distribution with a mean 196 minutes and a standard deviation 24 minutes.</p>
</div>

<div class="specification">
<p>It is found that 5% of the male runners complete the marathon in less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_1}">
  <mrow>
    <msub>
      <mi>T</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> minutes.</p>
</div>

<div class="specification">
<p>The times taken for female runners to complete the marathon can be modelled by a normal distribution with a mean 210 minutes. It is found that 58% of female runners complete the marathon between 185 and 235 minutes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a runner selected at random will complete the marathon in less than 3 hours.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_1}">
  <mrow>
    <msub>
      <mi>T</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standard deviation of the times taken by female runners.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T \sim N(196,{\text{ }}{24^2})">
  <mi>T</mi>
  <mo>∼</mo>
  <mi>N</mi>
  <mo stretchy="false">(</mo>
  <mn>196</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mn>24</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(T < 180) = 0.252">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>T</mi>
  <mo>&lt;</mo>
  <mn>180</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.252</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(T < {T_1}) = 0.05">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>T</mi>
  <mo>&lt;</mo>
  <mrow>
    <msub>
      <mi>T</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.05</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_1} = 157">
  <mrow>
    <msub>
      <mi>T</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>157</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F \sim N(210,{\text{ }}{\sigma ^2})">
  <mi>F</mi>
  <mo>∼</mo>
  <mi>N</mi>
  <mo stretchy="false">(</mo>
  <mn>210</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mi>σ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(F < 235) = 0.79">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>F</mi>
  <mo>&lt;</mo>
  <mn>235</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.79</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{235 - 210}}{\sigma } = 0.806421">
  <mfrac>
    <mrow>
      <mn>235</mn>
      <mo>−</mo>
      <mn>210</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <mn>0.806421</mn>
</math></span> or equivalent&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma = 31.0">
  <mi>σ</mi>
  <mo>=</mo>
  <mn>31.0</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A Principal would like to compare the students in his school with a national standard.&nbsp;He decides to give a test to eight students made up of four boys and four girls. One of&nbsp;the teachers offers to find the volunteers from his class.</p>
</div>

<div class="specification">
<p>The marks out of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math>, for the students who took the test, are:</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mn>29</mn><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mn>38</mn><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mn>37</mn><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mn>12</mn><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mn>18</mn><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mn>27</mn><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mn>31</mn><mo>.</mo></math></p>
</div>

<div class="specification">
<p>For the eight students find</p>
</div>

<div class="specification">
<p>The national standard mark is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>.</mo><mn>2</mn></math> out of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math>.</p>
</div>

<div class="specification">
<p>Two additional students take the test at a later date and the mean mark for all ten students&nbsp;is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>28</mn><mo>.</mo><mn>1</mn></math> and the standard deviation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>4</mn></math>.</p>
<p>For further analysis, a standardized score out of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> for the ten students is obtained by&nbsp;multiplying the scores by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> and adding <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math>.</p>
</div>

<div class="specification">
<p>For the ten students, find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Name the type of sampling that best describes the method used by the Principal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the mean mark.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the standard deviation of the marks.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform an appropriate test at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level to see if the mean marks achieved by the students in the school are higher than the national standard. It can be assumed that the marks come from a normal population.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State one reason why the test might not be valid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>their mean standardized score.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the standard deviation of their standardized score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>quota      <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo>.</mo><mn>125</mn><mo>≈</mo><mn>27</mn><mo>.</mo><mn>1</mn></math>      <strong>    </strong><strong><em>(M1)A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>29815</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>30</mn></math>      <strong>     </strong><strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> be the national mean)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo>:</mo><mo> </mo><mi>μ</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo>:</mo><mo> </mo><mi>μ</mi><mo>&gt;</mo><mn>25</mn><mo>.</mo><mn>2</mn></math>      <strong>     </strong><strong><em>A1</em></strong></p>
<p><br><strong>Note:</strong> Accept hypotheses in words if they are clearly expressed and ‘<strong>population</strong> mean’ or ‘school mean’ is referred to. Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo>:</mo><mo> </mo><mi>μ</mi><mo>=</mo><msub><mi>μ</mi><mn>0</mn></msub></math> unless <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mn>0</mn></msub></math> is explicitly defined as “national standard mark” or given as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>.</mo><mn>2</mn></math>.</p>
<p><br>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>-test      <strong>       </strong><strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>279391</mn><mo>…</mo></math>      <strong>     </strong><strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>279391</mn><mo>…</mo><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>05</mn></math>      <strong>     </strong><strong><em>R1</em></strong></p>
<p><br><strong>Note:</strong> The <em><strong>R1</strong></em> mark is for the comparison of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>05</mn></math>.</p>
<p><br>insufficient evidence to reject the null hypothesis (that the mean for the school is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>.</mo><mn>2</mn></math>)      <strong>     </strong><strong><em>A1</em></strong></p>
<p><strong><br>Note:</strong> Award the final <em><strong>A1</strong> </em>only if the <strong>null</strong> hypothesis is also correct (e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mn>0</mn></msub><mo>=</mo><mn>25</mn><mo>.</mo><mn>2</mn></math> or (population) mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>25</mn><mo>.</mo><mn>2</mn></math>) and the conclusion is consistent with both the direction of the inequality and the alternative hypothesis.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>the sampling process is not random         <em><strong>R1</strong></em></p>
<p><em>For example:</em></p>
<p>the school asked for volunteers</p>
<p>the students were selected from a single class</p>
<p><br><strong>OR</strong></p>
<p>the quota might not be representative of the student population         <em><strong>R1</strong></em></p>
<p><em>For example:</em></p>
<p>the school may have only <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> boys and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>400</mn></math> girls.<br><br><br><strong>Note:</strong> Do not accept ‘the sample is too small’.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>28</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>20</mn><mo>=</mo><mo>)</mo><mo> </mo><mo> </mo><mn>76</mn><mo>.</mo><mn>2</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>2</mn></math>          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>16</mn><mo>.</mo><mn>8</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The most common answer to this question was ‘convenience sampling’. Though it is a convenience sample because four boys and four girls were required the most appropriate response was ‘quota sampling’.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates still try to calculate a mean and standard deviation by hand. This is not expected.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was surprisingly poorly answered given that statistical testing forms a large part of the course. Candidates need to give the null and alternative hypotheses, find a <em>p</em>-value, compare this to the significance level and write their conclusion, in context of the question; examination questions may ask for each element individually or the question may say “Perform the test” wherein it is expected that each individual element will be clearly stated (as the test is incomplete if any are omitted). Many candidates had the null hypothesis as an inequality. The easiest way to write the null hypothesis is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mtext>: μ=25.2</mtext></math>, but it could also be stated in words so long as it is clear that the population mean is being referred to rather than the sample mean. For example, H<sub>0</sub>: The mean score of the whole school is equal to 25.2.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The answer that the sample was self-selecting or unrepresentative was the expected response. The sample being small was also accepted if the additional reason of therefore ‘not able to assume a normal population’ was also given. In general, a small sample can be valid (though will probably not be reliable).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates missed the point of this question, that it was concerned with transformations of the mean and standard deviation, and instead tried to work out the actual values for the extra two candidates.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of marathons that Audrey runs in any given year can be modelled by a Poisson distribution with mean 1.3 .</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that Audrey will run at least two marathons in a particular year.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that she will run at least two marathons in exactly four out of the following five years.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{Po}}\left( {1.3} \right)"> <mi>X</mi> <mo>∼</mo> <mrow> <mtext>Po</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1.3</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X \geqslant 2} \right) = 0.373"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>⩾</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.373</mn> </math></span>       <em><strong>(M1)</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V \sim {\text{B}}\left( {5{\text{, }}0.373} \right)"> <mi>V</mi> <mo>∼</mo> <mrow> <mtext>B</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mrow> <mtext>, </mtext> </mrow> <mn>0.373</mn> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>(M1)</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for recognition of binomial or equivalent, <em><strong>A1</strong></em> for correct parameters.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {V = 4} \right) = 0.0608"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mo>=</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.0608</mn> </math></span>       <em><strong>(M1)</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Packets of biscuits are produced by a machine. The weights <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, in grams, of packets of biscuits can be modelled by a normal distribution where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{N}}(\mu ,{\text{ }}{\sigma ^2})">
  <mi>X</mi>
  <mo>∼<!-- ∼ --></mo>
  <mrow>
    <mtext>N</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>μ<!-- μ --></mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mi>σ<!-- σ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>. A packet of biscuits is considered to be underweight if it weighs less than 250 grams.</p>
</div>

<div class="specification">
<p>The manufacturer makes the decision that the probability that a packet is underweight should be 0.002. To do this <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span> is increased and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ<!-- σ --></mi>
</math></span> remains unchanged.</p>
</div>

<div class="specification">
<p>The manufacturer is happy with the decision that the probability that a packet is underweight should be 0.002, but is unhappy with the way in which this was achieved. The machine is now adjusted to reduce <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ<!-- σ --></mi>
</math></span> and return <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span> to 253.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu = 253">
  <mi>μ</mi>
  <mo>=</mo>
  <mn>253</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma = 1.5">
  <mi>σ</mi>
  <mo>=</mo>
  <mn>1.5</mn>
</math></span> find the probability that a randomly chosen packet of biscuits is underweight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the new value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span> giving your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the new value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < 250) = 0.0228">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>250</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.0228</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{250 - \mu }}{{1.5}} = - 2.878 \ldots ">
  <mfrac>
    <mrow>
      <mn>250</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mrow>
      <mn>1.5</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2.878</mn>
  <mo>…</mo>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \mu = 254.32">
  <mo stretchy="false">⇒</mo>
  <mi>μ</mi>
  <mo>=</mo>
  <mn>254.32</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Notes:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Only award <strong><em>A1 </em></strong>here if the correct 2dp answer is seen. Award <strong><em>M0 </em></strong>for use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{1.5^2}">
  <mrow>
    <msup>
      <mn>1.5</mn>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{250 - 253}}{\sigma } = - 2.878 \ldots ">
  <mfrac>
    <mrow>
      <mn>250</mn>
      <mo>−</mo>
      <mn>253</mn>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2.878</mn>
  <mo>…</mo>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \sigma = 1.04">
  <mo stretchy="false">⇒</mo>
  <mi>σ</mi>
  <mo>=</mo>
  <mn>1.04</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In a reforested area of pine trees, heights of trees planted in a specific year seem to follow a normal distribution. A sample of 100 such trees is selected to test the validity of this hypothesis. The results of measuring tree heights, to the nearest centimetre, are recorded in the first two columns of the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Describe what is meant by</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a goodness of fit test (a complete explanation required);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the level of significance of a hypothesis test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean and standard deviation of the sample data in the table above. Show how you arrived at your answers.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Most of the expected frequencies have been calculated in the third column. (Frequencies have been rounded to the nearest integer, and frequencies in the first and last classes have been extended to include the rest of the data beyond 15 and 225. Find the values of <span class="mjpage"><math alttext="a" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>a</mi> </math></span>, <span class="mjpage"><math alttext="b" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>b</mi> </math></span> and <span class="mjpage"><math alttext="c" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>c</mi> </math></span> and show how you arrived at your answers.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In order to test for the goodness of fit, the test statistic was calculated to be 1.0847. Show how this was done.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent1" style="margin-top:12.0pt;">State your hypotheses, critical number, decision rule and conclusion (using a 5% level of significance).</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>A goodness of fit test is a statistical test of the hypothesis that a set of observed counts of <span class="mjpage"><math alttext="k" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>k</mi> </math></span> cells of a certain large population is consistent with a set of theoretical counts.                <em><strong>(R1)</strong></em></p>
<p>The test statistic has a <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> distribution with <span class="mjpage"><math alttext="k - n" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>k</mi> <mo>−</mo> <mi>n</mi> </math></span> degrees of freedom. One degree of freedom is lost for every parameter that has to be estimated from the sample.            <em><strong>(R1)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The level of significance of a hypothesis test is the ma<em>x</em>imal probability that we reject a true null hypothesis.      <em><strong>(R1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">We use the class midpoints in the calculation of the mean and standard deviation.</p>
<p><span class="mjpage"><math alttext="\bar x = \frac{{\sum {{x_i}f\left( {{x_i}} \right)} }}{{\sum {f\left( {{x_i}} \right)} }} = \frac{{30 \times 6 + 60 \times 11 + 90 \times 15 +  \ldots }}{{100}} = \frac{{13350}}{{100}}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mover> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>∑</mo> <mrow> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> <mrow> <mo>∑</mo> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>30</mn> <mo>×</mo> <mn>6</mn> <mo>+</mo> <mn>60</mn> <mo>×</mo> <mn>11</mn> <mo>+</mo> <mn>90</mn> <mo>×</mo> <mn>15</mn> <mo>+</mo> <mo>…</mo> </mrow> <mrow> <mn>100</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>13350</mn> </mrow> <mrow> <mn>100</mn> </mrow> </mfrac> </math></span>                <em><strong>(M1)</strong></em></p>
<p>= 133.5                <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math alttext="{\text{s}} = \sqrt {\frac{{\sum {x_i^2f\left( {{x_i}} \right)} }}{{\sum {f\left( {{x_i}} \right)} }} - {{\left( {\bar x} \right)}^2}}  = \sqrt {\frac{{900 \times 6 + 3600 \times 11 +  \ldots }}{{100}} - {{133.5}^2}} " xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext>s</mtext> </mrow> <mo>=</mo> <msqrt> <mfrac> <mrow> <mo>∑</mo> <mrow> <msubsup> <mi>x</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> <mrow> <mo>∑</mo> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </mfrac> <mo>−</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mover> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <msqrt> <mfrac> <mrow> <mn>900</mn> <mo>×</mo> <mn>6</mn> <mo>+</mo> <mn>3600</mn> <mo>×</mo> <mn>11</mn> <mo>+</mo> <mo>…</mo> </mrow> <mrow> <mn>100</mn> </mrow> </mfrac> <mo>−</mo> <mrow> <msup> <mrow> <mn>133.5</mn> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>                <em><strong>(M1)</strong></em></p>
<p>= 56.345  (= 56.3 to 3 sf)                <em><strong>(A1)</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">Every frequency is the product of the number of observations and the probability of a number in each class. Since by hypothesis we have a normal distribution, the probabilities can be read from a normal table with mean 133.5 and standard deviation 56.345                 <em><strong>(M1)</strong></em></p>
<p class="indent1"><em>E</em><sub>1</sub> = 100 × <em>P</em>(45 ≤ <span class="mjpage"><math alttext="x" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> </math></span> ≤ 75) ≈ 9          so <span class="mjpage"><math alttext="a" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>a</mi> </math></span> = 9              <em><strong>(A1) </strong></em></p>
<p class="indent1"><em>E</em><sub>2</sub> = 100 × <em>P</em>(135 ≤ <span class="mjpage"><math alttext="x" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> </math></span> ≤ 165) ≈ 20    so <em><span class="mjpage">b</span></em> = 20              <em><strong>(A1) </strong></em></p>
<p class="indent1"><em>E</em><sub>3</sub> = 100 × <em>P</em>(195 ≤ <span class="mjpage"><math alttext="x" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> </math></span> ≤ 225) ≈ 9      so <span class="mjpage"><math alttext="c" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>c</mi> </math></span> = 9              <em><strong>(A1) </strong></em></p>
<p class="indent1"><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">The test statistic is a <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> variable. Hence                 <em><strong>(M1)</strong></em></p>
<p class="indent1"><span class="mjpage"><math alttext="{\chi ^2} = \sum {\frac{{{{\left( {{f_e} - {f_o}} \right)}^2}}}{{{f_e}}}}  = \frac{{{{\left( {6 - 6} \right)}^2}}}{6} + \frac{{{{\left( {9 - 11} \right)}^2}}}{9} +  \ldots \frac{{{{\left( {5 - 6} \right)}^2}}}{5}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mo>∑</mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>f</mi> <mi>e</mi> </msub> </mrow> <mo>−</mo> <mrow> <msub> <mi>f</mi> <mi>o</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <msub> <mi>f</mi> <mi>e</mi> </msub> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mn>6</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>9</mn> <mo>−</mo> <mn>11</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mn>9</mn> </mfrac> <mo>+</mo> <mo>…</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> </math></span>                 <em><strong>(M1)</strong></em></p>
<p class="indent1">= 1.0847              <em><strong>(A1)</strong></em></p>
<p class="indent1"><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1"><em>H</em><sub>0</sub>: The distribution of tree heights is normally distributed</p>
<p class="indent1"><em>H</em><sub>1</sub>: The distribution is not normal            <em><strong>(M1)</strong></em></p>
<p class="indent1">Since the mean and standard deviation were estimated from the sample, the number of degrees of freedom is 8 – 1 – 2 = 5            <em><strong>(A1)</strong></em></p>
<p class="indent1">The critical number is <span class="mjpage"><math alttext="\chi _{5{\text{,}}\,\,0.05}^2" xmlns="http://www.w3.org/1998/Math/MathML"> <msubsup> <mi>χ</mi> <mrow> <mn>5</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0.05</mn> </mrow> <mn>2</mn> </msubsup> </math></span> = 110705</p>
<p class="indent1">If <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> &gt; 11.0705 we reject <em>H</em><sub>0</sub>            <em><strong>(A1)</strong></em></p>
<p class="indent1">Since <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> = 1.0847 &lt; 11.0705, we fail to reject H<sub>0</sub>            <em><strong>(R1) </strong></em></p>
<p class="indent1">Conclusion: we do not have enough evidence to claim that the distribution of tree heights is not normal            <em><strong>(R1) </strong></em></p>
<p class="indent1"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variable <em>X</em> has a normal distribution with mean&nbsp;<em>μ</em> = 50&nbsp;and variance <em>σ </em><sup>2</sup> = 16 .</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the probability density function for<em> X</em>, and shade the region representing&nbsp;P(<em>μ</em> − 2σ &lt; <em>X</em> &lt; <em>μ</em> + σ).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of P(<em>μ</em> − 2σ &lt; <em>X</em> &lt; <em>μ</em> + σ).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>k</em> for which P(<em>μ</em> − <em>k</em>σ &lt; <em>X</em> &lt; <em>μ</em> + <em>k</em>σ) = 0.5.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""></p>
<p>normal curve centred on 50&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p>vertical lines at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> = 42 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> = 54, with shading in between&nbsp; &nbsp; &nbsp;<em><strong> &nbsp;A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(42<em>&nbsp;</em>&lt;&nbsp;<em>X</em>&nbsp;&lt;&nbsp;54) (= P(− 2<em>&nbsp;</em>&lt;&nbsp;<em>Z</em>&nbsp;&lt; 1))&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>= 0.819&nbsp; &nbsp; &nbsp;<em><strong> &nbsp;A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(<em>μ</em>&nbsp;−&nbsp;<em>k</em>σ &lt;&nbsp;<em>X</em>&nbsp;&lt;&nbsp;<em>μ</em>&nbsp;+&nbsp;<em>k</em>σ) = 0.5&nbsp;⇒ P(<em>X</em>&nbsp;&lt;&nbsp;<em>μ</em>&nbsp;+&nbsp;<em>k</em>σ) = 0.75&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>k</em>&nbsp;= 0.674&nbsp; &nbsp; &nbsp;<em><strong> &nbsp;A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0</strong></em> for <em>k</em> =&nbsp;−0.674<em>.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Loreto is a manager at the Da Vinci health centre. If the mean rate of patients arriving at the health centre exceeds <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> per minute then Loreto will employ extra staff. It is assumed that the number of patients arriving in any given time period follows a Poisson distribution.</p>
<p>Loreto performs a hypothesis test to determine whether she should employ extra staff. She finds that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>320</mn></math> patients arrived during a randomly selected <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>-hour clinic.</p>
</div>

<div class="specification">
<p>Loreto is also concerned about the average waiting time for patients to see a nurse. The health centre aims for at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>95</mn><mo>%</mo></math> of patients to see a nurse in under <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> minutes.</p>
<p>Loreto assumes that the waiting times for patients are independent of each other and decides to perform a hypothesis test at a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> significance level to determine whether the health centre is meeting its target.</p>
<p>Loreto surveys <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn></math> patients and finds that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn></math> of them waited more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> minutes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down null and alternative hypotheses for Loreto’s test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the data from Loreto’s sample, perform the hypothesis test at a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level to determine if Loreto should employ extra staff.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down null and alternative hypotheses for this test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform the test, clearly stating the conclusion in context.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the random variable “number of patients arriving in a minute”, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>Po</mtext><mfenced><mi>m</mi></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo> </mo><mo>:</mo><mo> </mo><mi>m</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>           <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo> </mo><mo>:</mo><mo> </mo><mi>m</mi><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>           <strong><em>A1</em></strong></p>
<p><strong>Note: </strong>Allow a value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>270</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>. Award at most <em><strong>A0A1</strong></em> if it is not clear that it is the population mean being referred to e.g<br>        <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo> </mo><mo>:</mo></math> <em>The number of patients is equal to 1.5 every minute</em><br>        <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo> </mo><mo>:</mo></math> <em>The number of patients exceeds 1.5 every minute.<br></em>Referring to the “expected” number of patients or the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math> is sufficient for<em><strong> A1A1</strong>.</em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>under <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math> let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> be the number of patients in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> hours</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>~</mo><mtext>Po</mtext><mfenced><mn>270</mn></mfenced></math>             <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>≥</mo><mn>320</mn></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>≤</mo><mn>319</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>00166</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>00165874</mn></mrow></mfenced></math>             <strong><em>(M1)A1</em></strong></p>
<p>since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>00166</mn><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>05</mn></math>             <strong><em>R1</em></strong></p>
<p>(reject <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math>)</p>
<p>Loreto should employ more staff             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math> : The probability of a patient waiting less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> minutes is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>95</mn></math>             <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub></math> : The probability of a patient waiting less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> minutes is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>95</mn></math>             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Under <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math> let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> be the number of patients waiting more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> minutes</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>150</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></mfenced></math>             <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>W</mi><mo>≥</mo><mn>11</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>132</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>132215</mn><mo>…</mo></mrow></mfenced></math>             <strong><em>(M1)A1</em></strong></p>
<p>since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>132</mn><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>1</mn></math>             <strong><em>R1</em></strong></p>
<p>(fail to reject <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math>)</p>
<p>insufficient evidence to suggest they are not meeting their target             <strong><em>A1</em></strong></p>
<p><br><strong>Note:</strong> Do not accept “they are meeting target” for the <em><strong>A1</strong></em>. Accept use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>150</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>95</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>W</mi><mo>≤</mo><mn>139</mn></mrow></mfenced></math> and any consistent use of a random variable, appropriate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value and significance level.<br><br></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a) there was a general lack of consistency in how candidates wrote down their null and alternative hypotheses. It was surprising how many candidates solved a Poisson <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PDF</mi></math> rather than <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CDF</mi></math> to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">p</mi></math>-value. This suggests a lack of understanding of the nature of distributions or more specifically the concepts of hypothesis testing. In part (b), which was challenging, there were issues for many candidates in interpreting the situation. This is understandable since it was difficult, but as previously mentioned interpretation is a general issue in the paper. When writing down the conclusion of the tests, there was often very loose use of the terms accept/reject and candidates seemed unclear of the significance and importance of the correct use of these terms.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (a) there was a general lack of consistency in how candidates wrote down their null and alternative hypotheses. It was surprising how many candidates solved a Poisson <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PDF</mi></math> rather than <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CDF</mi></math> to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">p</mi></math>-value. This suggests a lack of understanding of the nature of distributions or more specifically the concepts of hypothesis testing. In part (b), which was challenging, there were issues for many candidates in interpreting the situation. This is understandable since it was difficult, but as previously mentioned interpretation is a general issue in the paper. When writing down the conclusion of the tests, there was often very loose use of the terms accept/reject and candidates seemed unclear of the significance and importance of the correct use of these terms.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (a) there was a general lack of consistency in how candidates wrote down their null and alternative hypotheses. It was surprising how many candidates solved a Poisson <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PDF</mi></math> rather than <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CDF</mi></math> to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">p</mi></math>-value. This suggests a lack of understanding of the nature of distributions or more specifically the concepts of hypothesis testing. In part (b), which was challenging, there were issues for many candidates in interpreting the situation. This is understandable since it was difficult, but as previously mentioned interpretation is a general issue in the paper. When writing down the conclusion of the tests, there was often very loose use of the terms accept/reject and candidates seemed unclear of the significance and importance of the correct use of these terms.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (a) there was a general lack of consistency in how candidates wrote down their null and alternative hypotheses. It was surprising how many candidates solved a Poisson <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PDF</mi></math> rather than <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CDF</mi></math> to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">p</mi></math>-value. This suggests a lack of understanding of the nature of distributions or more specifically the concepts of hypothesis testing. In part (b), which was challenging, there were issues for many candidates in interpreting the situation. This is understandable since it was difficult, but as previously mentioned interpretation is a general issue in the paper. When writing down the conclusion of the tests, there was often very loose use of the terms accept/reject and candidates seemed unclear of the significance and importance of the correct use of these terms.</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The marks achieved by eight students in a class test are given in the following list.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The teacher increases all the marks by 2. Write down the new value for</p>
</div>

<div class="question">
<p>the standard deviation.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>2.22      <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span>&nbsp;and standard deviation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ<!-- σ --></mi>
</math></span>, such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < 30.31) = 0.1180">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>30.31</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.1180</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 42.52) = 0.3060">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>42.52</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.3060</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left| {X - \mu } \right| < 1.2\sigma } \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>|</mo>
        <mrow>
          <mi>X</mi>
          <mo>−</mo>
          <mi>μ</mi>
        </mrow>
        <mo>|</mo>
      </mrow>
      <mo>&lt;</mo>
      <mn>1.2</mn>
      <mi>σ</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < 42.52) = 0.6940">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>42.52</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.6940</mn>
</math></span> &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p>either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {Z < \frac{{30.31 - \mu }}{\sigma }} \right) = 0.1180{\text{ or P}}\left( {Z < \frac{{42.52 - \mu }}{\sigma }} \right) = 0.6940">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>Z</mi>
      <mo>&lt;</mo>
      <mfrac>
        <mrow>
          <mn>30.31</mn>
          <mo>−</mo>
          <mi>μ</mi>
        </mrow>
        <mi>σ</mi>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.1180</mn>
  <mrow>
    <mtext>&nbsp;or P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>Z</mi>
      <mo>&lt;</mo>
      <mfrac>
        <mrow>
          <mn>42.52</mn>
          <mo>−</mo>
          <mi>μ</mi>
        </mrow>
        <mi>σ</mi>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.6940</mn>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30.31 - \mu }}{\sigma } = \underbrace {{\Phi ^{ - 1}}(0.1180)}_{ - 1.1850 \ldots }">
  <mfrac>
    <mrow>
      <mn>30.31</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <munder>
    <mrow>
      <munder>
        <mrow>
          <mrow>
            <msup>
              <mi mathvariant="normal">Φ</mi>
              <mrow>
                <mo>−</mo>
                <mn>1</mn>
              </mrow>
            </msup>
          </mrow>
          <mo stretchy="false">(</mo>
          <mn>0.1180</mn>
          <mo stretchy="false">)</mo>
        </mrow>
        <mo>⏟</mo>
      </munder>
    </mrow>
    <mrow>
      <mo>−</mo>
      <mn>1.1850</mn>
      <mo>…</mo>
    </mrow>
  </munder>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{42.52 - \mu }}{\sigma } = \underbrace {{\Phi ^{ - 1}}(0.6940)}_{0.5072 \ldots }">
  <mfrac>
    <mrow>
      <mn>42.52</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <munder>
    <mrow>
      <munder>
        <mrow>
          <mrow>
            <msup>
              <mi mathvariant="normal">Φ</mi>
              <mrow>
                <mo>−</mo>
                <mn>1</mn>
              </mrow>
            </msup>
          </mrow>
          <mo stretchy="false">(</mo>
          <mn>0.6940</mn>
          <mo stretchy="false">)</mo>
        </mrow>
        <mo>⏟</mo>
      </munder>
    </mrow>
    <mrow>
      <mn>0.5072</mn>
      <mo>…</mo>
    </mrow>
  </munder>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em></strong></p>
<p>attempting to solve simultaneously &nbsp; &nbsp; <strong><em>(M1) </em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu &nbsp;= 38.9">
  <mi>μ</mi>
  <mo>=</mo>
  <mn>38.9</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma &nbsp;= 7.22">
  <mi>σ</mi>
  <mo>=</mo>
  <mn>7.22</mn>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(\mu &nbsp;- 1.2\sigma &nbsp;< X < \mu &nbsp;+ 1.2\sigma )">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>μ</mi>
  <mo>−</mo>
  <mn>1.2</mn>
  <mi>σ</mi>
  <mo>&lt;</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mi>μ</mi>
  <mo>+</mo>
  <mn>1.2</mn>
  <mi>σ</mi>
  <mo stretchy="false">)</mo>
</math></span> (or equivalent <em>eg</em>. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\text{P}}(\mu &nbsp;< X < \mu &nbsp;+ 1.2\sigma )">
  <mn>2</mn>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>μ</mi>
  <mo>&lt;</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mi>μ</mi>
  <mo>+</mo>
  <mn>1.2</mn>
  <mi>σ</mi>
  <mo stretchy="false">)</mo>
</math></span>) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.770">
  <mo>=</mo>
  <mn>0.770</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>(M1)A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}( - 1.2 < Z < 1.2) = 0.770">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>1.2</mn>
  <mo>&lt;</mo>
  <mi>Z</mi>
  <mo>&lt;</mo>
  <mn>1.2</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.770</mn>
</math></span>.</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A geneticist uses a Markov chain model to investigate changes in a specific gene in a cell as it divides. Every time the cell divides, the gene may mutate between its normal state and other states.</p>
<p>The model is of the form</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><msub><mi>X</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>Z</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="bold-italic">M</mi><mfenced><mtable><mtr><mtd><msub><mi>X</mi><mi>n</mi></msub></mtd></mtr><mtr><mtd><msub><mi>Z</mi><mi>n</mi></msub></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>X</mi><mi>n</mi></msub></math> is the probability of the gene being in its normal state after dividing for the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mtext>th</mtext></math> time, and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Z</mi><mi>n</mi></msub></math> is the probability of it being in another state after dividing for the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mtext>th</mtext></math> time, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8469;</mi></math>.</p>
<p>Matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math> is found to be&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>94</mn><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>06</mn><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>98</mn></mtd></mtr></mtable></mfenced></math>.</p>
</div>

<div class="specification">
<p>The gene is in its normal state when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>0</mn></math>. Calculate the probability of it being in its normal state</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>What does <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> represent in this context?</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvectors of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>5</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>in the long term.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>02</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the probability of mutating from ‘not normal state’ to ‘normal state’         <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>A1</strong> </em>can only be awarded if it is clear that transformation is <strong>from</strong> the mutated state.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>det</mtext><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>94</mn><mo>-</mo><mi>λ</mi><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>02</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>06</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>98</mn><mo>-</mo><mi>λ</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>         <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for an attempt to find eigenvalues. Any indication that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>det</mtext><mfenced><mrow><mi mathvariant="bold-italic">M</mi><mo>-</mo><mi>λ</mi><mi mathvariant="bold-italic">I</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> has been used is sufficient for the <em><strong>(M1)</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>94</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mfenced><mrow><mn>0</mn><mo>.</mo><mn>98</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>-</mo><mn>0</mn><mo>.</mo><mn>0012</mn><mo>=</mo><mn>0</mn></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>λ</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn><mo>.</mo><mn>92</mn><mi>λ</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>92</mn><mo>=</mo><mn>0</mn></math>         <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>92</mn><mo> </mo><mo> </mo><mfenced><mfrac><mn>23</mn><mn>25</mn></mfrac></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>94</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>02</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>06</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>98</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>94</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>02</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>06</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>98</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>92</mn><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math>         <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> can be awarded for attempting to find either eigenvector.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>02</mn><mi>y</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><mi>x</mi><mo>=</mo><mn>0</mn></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>02</mn><mi>y</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>02</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>         <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Accept any multiple of the given eigenvectors.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>94</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>02</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>06</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>98</mn></mtd></mtr></mtable></mfenced><mn>5</mn></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>744</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>0852</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>256</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>915</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>         <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Condone omission of the initial state vector for the <em><strong>M1</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>744</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>744311</mn><mo>…</mo></mrow></mfenced></math>            <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>25</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>75</mn></mtd></mtr></mtable></mfenced></math>         <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>25</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>75</mn></mtd></mtr></mtable></mfenced></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>25</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>25</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>75</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>75</mn></mtd></mtr></mtable></mfenced></math> seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>25</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There was some difficulty in interpreting the meaning of the values in the transition matrix, but most candidates did well with the rest of the question. In part (d) there was frequently evidence of a correct method, but a failure to identify the correct probabilities. It was surprising to see a significant number of candidates diagonalizing the matrix in part (d) and this often led to errors. Clearly this was not necessary.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Scientists have developed a type of corn whose protein quality may help chickens gain weight faster than the present type used. To test this new type, 20 one-day-old chicks were fed a ration that contained the new corn while another control group of 20 chicks was fed the ordinary corn. The data below gives the weight gains in grams, for each group after three weeks.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The scientists wish to investigate the claim that Group B gain weight faster than Group A. Test this claim at the 5% level of significance, noting which hypothesis test you are using. You may assume that the weight gain for each group is normally distributed, with the same variance, and independent from each other.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The data from the two samples above are combined to form a single set of data. The following frequency table gives the observed frequencies for the combined sample. The data has been divided into five intervals.</p>
<p style="text-align: center;"><img src=""></p>
<p>Test, at the 5% level, whether the combined data can be considered to be a sample from a normal population with a mean of 380.</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>This is a <em>t</em>-test of the difference of two means. Our assumptions are that the two populations are approximately normal, samples are random, and they are independent from each other.          <em><strong>(R1)</strong></em></p>
<p>H<sub>0</sub>: <em>μ</em><sub>1</sub> − <em>μ</em><sub>2</sub> = 0</p>
<p>H<sub>1</sub>: <em>μ</em><sub>1</sub> − <em>μ</em><sub>2</sub> &lt; 0          <em><strong>(A1)</strong></em> <em>                </em></p>
<p><em>t </em>= −2.460,          <em><strong>(A1)</strong></em></p>
<p>degrees of freedom = 38          <em><strong>(A1)</strong></em></p>
<p>Since the value of critical t = −1.686 we reject H<sub>0</sub>.          <em><strong>(A1) </strong></em></p>
<p>Hence group B grows faster.          <em><strong>(R1)</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is a <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> goodness-of-fit test.</p>
<p>To finish the table, the frequencies of the respective cells have to be calculated. Since the standard deviation is not given, it has to be estimated using the data itself. <em>s</em> = 49.59, <em>eg</em> the third expected frequency is 40 × 0.308 = 12.32, since P(350.5 &lt; <em>W</em> &lt; 390.5) = 0.3078...</p>
<p>The table of observed and expected frequencies is:</p>
<p><img src="">      <em><strong>(M1)(A2)</strong></em></p>
<p>Since the first expected frequency is 3.22, we combine the two cells, so that the first two rows become one row, that is,</p>
<p><img src="">      <em><strong>(M1)</strong></em></p>
<p>Number of degrees of freedom is 4 – 1 – 1 = 2          <em><strong> (C1)</strong></em>          </p>
<p>H<sub>0</sub>: The distribution is normal with mean 380</p>
<p>H<sub>1</sub>: The distribution is not normal with mean 380         <em><strong>(A1)</strong></em></p>
<p>The test statistic is</p>
<p><span class="mjpage"><math alttext="\chi _{calc}^2 = \sum {\frac{{{{\left( {{f_e} - {f_0}} \right)}^2}}}{{{f_e}}}}  = \frac{{{{\left( {11 - 11.04} \right)}^2}}}{{11.04}} + \frac{{{{\left( {8 - 12.32} \right)}^2}}}{{12.32}} + \frac{{{{\left( {15 - 10.48} \right)}^2}}}{{10.48}} + \frac{{{{\left( {6 - 6.17} \right)}^2}}}{{6.17}}" xmlns="http://www.w3.org/1998/Math/MathML"> <msubsup> <mi>χ</mi> <mrow> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>c</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mo>∑</mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>f</mi> <mi>e</mi> </msub> </mrow> <mo>−</mo> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <msub> <mi>f</mi> <mi>e</mi> </msub> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>11</mn> <mo>−</mo> <mn>11.04</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>11.04</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>8</mn> <mo>−</mo> <mn>12.32</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>12.32</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>15</mn> <mo>−</mo> <mn>10.48</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>10.48</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>−</mo> <mn>6.17</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>6.17</mn> </mrow> </mfrac> </math></span></p>
<p>= 3.469          <em><strong>(A1)</strong></em></p>
<p>With 2 degrees of freedom, the critical number is <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> = 5.99           <em><strong>(A2) </strong></em></p>
<p>So, we do not have enough evidence to reject the null hypothesis. Therefore, there is no evidence to say that the distribution is not normal with mean 380.           <em><strong>(R1)</strong></em></p>
<p><em><strong>[10 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variable<em> X</em> has a binomial distribution with parameters <em>n</em> and <em>p</em>.<br>It is given that E(<em>X</em>) = 3.5.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least possible value of <em>n</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is further given that P(<em>X</em> ≤ 1) = 0.09478 correct to 4 significant figures.</p>
<p>Determine the value of <em>n</em> and the value of <em>p</em>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em>np</em>&nbsp;= 3.5&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>p </em>≤ 1 ⇒ least <em>n</em>&nbsp;= 4&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(1&nbsp;− <em>p</em>)<em><sup>n</sup></em> + <em>np</em>(1&nbsp;−&nbsp;<em>p</em>)<sup><em>n</em>−1</sup> = 0.09478&nbsp; &nbsp; &nbsp;<em><strong>M1A1</strong></em></p>
<p>attempt to solve above equation with <em>np</em>&nbsp;= 3.5&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>n</em> = 12,&nbsp; <em>p</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{{24}}">
  <mfrac>
    <mn>7</mn>
    <mrow>
      <mn>24</mn>
    </mrow>
  </mfrac>
</math></span> (=0.292)&nbsp; &nbsp; &nbsp;<em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Do not accept <em>n</em> as a decimal.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey of British holidaymakers found that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mo>%</mo></math> of those surveyed took a holiday in the&nbsp;Lake District in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2019</mn></math>.</p>
</div>

<div class="specification">
<p>A random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> British holidaymakers was taken. The number of people&nbsp;in the sample who took a holiday in the Lake District in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2019</mn></math> can be modelled by&nbsp;a binomial distribution.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State two assumptions made in order for this model to be valid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least three people from the sample took a holiday in&nbsp;the Lake District in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2019</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From a random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> holidaymakers, the probability that at least one of them&nbsp;took a holiday in the Lake District in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2019</mn></math> is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>999</mn></math>.</p>
<p>Determine the least possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>people’s holidays are independent of each other&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p>the proportion is constant (at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>15</mn></math>)&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Χ</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>16</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>15</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>≥</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>439</mn></math>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>probability of at least one&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo></math>&nbsp;probability of none</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><msup><mn>85</mn><mi>n</mi></msup><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>999</mn></math>&nbsp; <strong>OR</strong>&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><msup><mn>85</mn><mi>n</mi></msup><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>001</mn></math>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p>attempt to solve inequality&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>≥</mo><mn>42</mn><mo>.</mo><mn>503</mn><mo>…</mo></math></p>
<p>so least possible&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>43</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> follows a Poisson distribution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Po}}(\mu )">
  <mrow>
    <mtext>Po</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>μ<!-- μ --></mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = x + 1) = \frac{\mu }{{x + 1}} \times {\text{P}}(X = x),{\text{ }}x \in \mathbb{N}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mi>μ</mi>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">N</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2) = 0.241667">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.241667</mn>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 3) = 0.112777">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.112777</mn>
</math></span>, use part (a) to find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = x + 1) = \frac{{{\mu ^{x + 1}}}}{{(x + 1)!}}{{\text{e}}^{ - \mu }}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>μ</mi>
          <mrow>
            <mi>x</mi>
            <mo>+</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
      <mo>!</mo>
    </mrow>
  </mfrac>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mi>μ</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\mu }{{x + 1}} \times \frac{{{\mu ^x}}}{{x!}}{{\text{e}}^{ - \mu }}">
  <mo>=</mo>
  <mfrac>
    <mi>μ</mi>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>μ</mi>
          <mi>x</mi>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo>!</mo>
    </mrow>
  </mfrac>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mi>μ</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\mu }{{x + 1}} \times {\text{P}}(X = x)">
  <mo>=</mo>
  <mfrac>
    <mi>μ</mi>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\mu }{{x + 1}} \times {\text{P}}(X = x) = \frac{\mu }{{x + 1}} \times \frac{{{\mu ^x}}}{{x!}}{{\text{e}}^{ - \mu }}">
  <mfrac>
    <mi>μ</mi>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mi>μ</mi>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>μ</mi>
          <mi>x</mi>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo>!</mo>
    </mrow>
  </mfrac>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mi>μ</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\mu ^{x + 1}}}}{{(x + 1)!}}{{\text{e}}^{ - \mu }}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>μ</mi>
          <mrow>
            <mi>x</mi>
            <mo>+</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
      <mo>!</mo>
    </mrow>
  </mfrac>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mi>μ</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}(X = x + 1)">
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>AG</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}(X = x + 1)}}{{{\text{P}}(X = x)}} = \frac{{\frac{{{\mu ^{x + 1}}}}{{(x + 1)!}}{{\text{e}}^{ - \mu }}}}{{\frac{{{\mu ^x}}}{{x!}}{{\text{e}}^{ - \mu }}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>=</mo>
      <mi>x</mi>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <msup>
              <mi>μ</mi>
              <mrow>
                <mi>x</mi>
                <mo>+</mo>
                <mn>1</mn>
              </mrow>
            </msup>
          </mrow>
        </mrow>
        <mrow>
          <mo stretchy="false">(</mo>
          <mi>x</mi>
          <mo>+</mo>
          <mn>1</mn>
          <mo stretchy="false">)</mo>
          <mo>!</mo>
        </mrow>
      </mfrac>
      <mrow>
        <msup>
          <mrow>
            <mtext>e</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mi>μ</mi>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <msup>
              <mi>μ</mi>
              <mi>x</mi>
            </msup>
          </mrow>
        </mrow>
        <mrow>
          <mi>x</mi>
          <mo>!</mo>
        </mrow>
      </mfrac>
      <mrow>
        <msup>
          <mrow>
            <mtext>e</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mi>μ</mi>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\mu ^{x + 1}}}}{{{\mu ^x}}} \times \frac{{x!}}{{(x + 1)!}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>μ</mi>
          <mrow>
            <mi>x</mi>
            <mo>+</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>μ</mi>
          <mi>x</mi>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mi>x</mi>
      <mo>!</mo>
    </mrow>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
      <mo>!</mo>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\mu }{{x + 1}}">
  <mo>=</mo>
  <mfrac>
    <mi>μ</mi>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>and so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = x + 1) = \frac{\mu }{{x + 1}} \times {\text{P}}(X = x)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mi>μ</mi>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 3) = \frac{\mu }{3} \bullet {\text{P}}(X = 2){\text{ }}\left( {0.112777 = \frac{\mu }{3} \bullet 0.241667} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mi>μ</mi>
    <mn>3</mn>
  </mfrac>
  <mo>∙</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.112777</mn>
      <mo>=</mo>
      <mfrac>
        <mi>μ</mi>
        <mn>3</mn>
      </mfrac>
      <mo>∙</mo>
      <mn>0.241667</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>attempting to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu &nbsp;= 1.40">
  <mi>μ</mi>
  <mo>=</mo>
  <mn>1.40</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Jenna is a keen book reader. The number of books she reads during one week can be modelled by a Poisson distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>6</mn></math>.</p>
<p>Determine the expected number of weeks in one year, of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>52</mn></math> weeks, during which Jenna reads at least four books.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Χ</mi></math> be the random variable “number of books Jenna reads per week.”</p>
<p>then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Χ</mi><mo>~</mo><mtext>Po </mtext><mfenced><mrow><mn>2</mn><mo>.</mo><mn>6</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>Χ</mi><mo>≥</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.264 </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>263998</mn><mo>…</mo></mrow></mfenced></math>       <em><strong>(M1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>263998</mn><mo>…</mo><mo>×</mo><mn>52</mn></math>       <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>13</mn><mo>.</mo><mn>7</mn></math>       <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> weeks.</p>
<p><em><strong><br>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>It is known that 56 % of Infiglow batteries have a life of less than 16 hours, and 94 % have a life less than 17 hours. It can be assumed that battery life is modelled by the normal distribution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{N}}\left( {\mu ,\,\,{\sigma ^2}} \right)">
  <mrow>
    <mtext>N</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>μ<!-- μ --></mi>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <msup>
          <mi>σ<!-- σ --></mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected Infiglow battery will have a life of at least 15 hours.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>use of inverse normal (implied by ±0.1509… or ±1.554…)       <em><strong>(M1)</strong></em></p>
<p>P(<em>X</em> &lt; 16) = 0.56</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{{16 - \mu }}{\sigma } = 0.1509 \ldots ">
  <mo stretchy="false">⇒</mo>
  <mfrac>
    <mrow>
      <mn>16</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <mn>0.1509</mn>
  <mo>…</mo>
</math></span>      <em><strong>(A1)</strong></em></p>
<p>P(<em>X</em> &lt; 17) = 0.94</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{{17 - \mu }}{\sigma } = 1.554 \ldots ">
  <mo stretchy="false">⇒</mo>
  <mfrac>
    <mrow>
      <mn>17</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mi>σ</mi>
  </mfrac>
  <mo>=</mo>
  <mn>1.554</mn>
  <mo>…</mo>
</math></span>      <em><strong>(A1)</strong></em></p>
<p>attempt to solve a pair of simultaneous equations       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span> = 15.9,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span> = 0.712      <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correctly shaded diagram or intent to find P(<em>X</em> ≥ 15)      <em><strong> (M1)</strong></em></p>
<p>= 0.895      <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Accept answers rounding to 0.89 or 0.90. Award <em><strong>M1A0</strong></em> for the answer 0.9.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The continuous random variable <em>X</em> has probability density function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> given by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}  {3ax}&amp;,&amp;{0 \leqslant x < 0.5} \\   {a\left( {2 - x} \right)}&amp;,&amp;{0.5 \leqslant x < 2} \\   0&amp;,&amp;{{\text{otherwise}}}  \end{array}} \right.">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>{</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>3</mn>
              <mi>a</mi>
              <mi>x</mi>
            </mrow>
          </mtd>
          <mtd>
            <mo>,</mo>
          </mtd>
          <mtd>
            <mrow>
              <mn>0</mn>
              <mo>⩽<!-- ⩽ --></mo>
              <mi>x</mi>
              <mo>&lt;</mo>
              <mn>0.5</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>a</mi>
              <mrow>
                <mo>(</mo>
                <mrow>
                  <mn>2</mn>
                  <mo>−<!-- − --></mo>
                  <mi>x</mi>
                </mrow>
                <mo>)</mo>
              </mrow>
            </mrow>
          </mtd>
          <mtd>
            <mo>,</mo>
          </mtd>
          <mtd>
            <mrow>
              <mn>0.5</mn>
              <mo>⩽<!-- ⩽ --></mo>
              <mi>x</mi>
              <mo>&lt;</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
          <mtd>
            <mo>,</mo>
          </mtd>
          <mtd>
            <mrow>
              <mrow>
                <mtext>otherwise</mtext>
              </mrow>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo fence="true" stretchy="true" symmetric="true"></mo>
  </mrow>
</math></span></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{2}{3}">
  <mi>a</mi>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < 1} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {s < X < 0.8} \right) = 2 \times {\text{P}}\left( {2s < X < 0.8} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>s</mi>
      <mo>&lt;</mo>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mn>0.8</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mi>s</mi>
      <mo>&lt;</mo>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mn>0.8</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;and that 0.25 &lt; <em>s</em> &lt; 0.4 , find the value of <em>s</em>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left[ {\int_0^{0.5} {3x\,{\text{d}}x}&nbsp; + \int_{0.5}^2 {\left( {2 - x} \right)} \,{\text{d}}x} \right] = 1">
  <mi>a</mi>
  <mrow>
    <mo>[</mo>
    <mrow>
      <msubsup>
        <mo>∫</mo>
        <mn>0</mn>
        <mrow>
          <mn>0.5</mn>
        </mrow>
      </msubsup>
      <mrow>
        <mn>3</mn>
        <mi>x</mi>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <mtext>d</mtext>
        </mrow>
        <mi>x</mi>
      </mrow>
      <mo>+</mo>
      <msubsup>
        <mo>∫</mo>
        <mrow>
          <mn>0.5</mn>
        </mrow>
        <mn>2</mn>
      </msubsup>
      <mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mn>2</mn>
            <mo>−</mo>
            <mi>x</mi>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>x</mi>
    </mrow>
    <mo>]</mo>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><strong>Note</strong>: Award the <em><strong>M1</strong></em> for the total integral equalling 1, or equivalent.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( {\frac{3}{2}} \right) = 1">
  <mi>a</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>3</mn>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{2}{3}">
  <mi>a</mi>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{0.5} {2x\,{\text{d}}x}&nbsp; + \frac{2}{3}\int_{0.5}^1 {\left( {2 - x} \right)} \,{\text{d}}x">
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mrow>
      <mn>0.5</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mn>2</mn>
    <mi>x</mi>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mn>0.5</mn>
    </mrow>
    <mn>1</mn>
  </msubsup>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mn>2</mn>
        <mo>−</mo>
        <mi>x</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span>&nbsp; &nbsp; <em><strong>&nbsp;(M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{2}{3}">
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}\int_1^2 {\left( {2 - x} \right)} \,{\text{d}}x = \frac{1}{3}">
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <msubsup>
    <mo>∫</mo>
    <mn>1</mn>
    <mn>2</mn>
  </msubsup>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mn>2</mn>
        <mo>−</mo>
        <mi>x</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>so&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < 1} \right) = \frac{2}{3}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {s < X < 0.8} \right) = \int_s^{0.5} {2x\,{\text{d}}x}&nbsp; + \frac{2}{3}\int_{0.5}^{0.8} {\left( {2 - x} \right)} \,{\text{d}}x">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>s</mi>
      <mo>&lt;</mo>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mn>0.8</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <msubsup>
    <mo>∫</mo>
    <mi>s</mi>
    <mrow>
      <mn>0.5</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mn>2</mn>
    <mi>x</mi>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mn>0.5</mn>
    </mrow>
    <mrow>
      <mn>0.8</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mn>2</mn>
        <mo>−</mo>
        <mi>x</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ {{x^2}} \right]_s^{0.5} + 0.27">
  <mo>=</mo>
  <msubsup>
    <mrow>
      <mo>[</mo>
      <mrow>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
      </mrow>
      <mo>]</mo>
    </mrow>
    <mi>s</mi>
    <mrow>
      <mn>0.5</mn>
    </mrow>
  </msubsup>
  <mo>+</mo>
  <mn>0.27</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.25 - {s^2} + 0.27">
  <mn>0.25</mn>
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>s</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>0.27</mn>
</math></span>&nbsp; &nbsp; <strong>&nbsp;<em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {2s < X < 0.8} \right) = \frac{2}{3}\int_{2s}^{0.8} {\left( {2 - x} \right)} \,{\text{d}}x">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mi>s</mi>
      <mo>&lt;</mo>
      <mi>X</mi>
      <mo>&lt;</mo>
      <mn>0.8</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mn>2</mn>
      <mi>s</mi>
    </mrow>
    <mrow>
      <mn>0.8</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mn>2</mn>
        <mo>−</mo>
        <mi>x</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>x</mi>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{2}{3}\left[ {2x - \frac{{{x^2}}}{2}} \right]_{2s}^{0.8}">
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <msubsup>
    <mrow>
      <mo>[</mo>
      <mrow>
        <mn>2</mn>
        <mi>x</mi>
        <mo>−</mo>
        <mfrac>
          <mrow>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
          </mrow>
          <mn>2</mn>
        </mfrac>
      </mrow>
      <mo>]</mo>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mi>s</mi>
    </mrow>
    <mrow>
      <mn>0.8</mn>
    </mrow>
  </msubsup>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}\left( {1.28 - \left( {4s - 2{s^2}} \right)} \right)">
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1.28</mn>
      <mo>−</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>4</mn>
          <mi>s</mi>
          <mo>−</mo>
          <mn>2</mn>
          <mrow>
            <msup>
              <mi>s</mi>
              <mn>2</mn>
            </msup>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>equating</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.25 - {s^2} + 0.27 = \frac{4}{3}\left( {1.28 - \left( {4s - 2{s^2}} \right)} \right)">
  <mn>0.25</mn>
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>s</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>0.27</mn>
  <mo>=</mo>
  <mfrac>
    <mn>4</mn>
    <mn>3</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1.28</mn>
      <mo>−</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>4</mn>
          <mi>s</mi>
          <mo>−</mo>
          <mn>2</mn>
          <mrow>
            <msup>
              <mi>s</mi>
              <mn>2</mn>
            </msup>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>attempt to solve for <em>s</em>&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>s</em>&nbsp;= 0.274&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Steffi the stray cat often visits Will’s house in search of food. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> be the discrete random&nbsp;variable “the number of times per day that Steffi visits Will’s house”.</p>
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> can be modelled by a Poisson distribution with mean 2.1.</p>
</div>

<div class="specification">
<p>Let<em> Y</em> be the discrete random variable “the number of times per day that Steffi is fed at Will’s&nbsp;house”. Steffi is only fed on the first four occasions that she visits each day.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that on a randomly selected day, Steffi does not visit Will’s house.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copy and complete the probability distribution table for <em>Y</em>.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the expected number of times per day that Steffi is fed at Will’s house.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In any given year of 365 days, the probability that Steffi does not visit Will for at most <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> days in total is 0.5 (to one decimal place). Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the expected number of occasions per year on which Steffi visits Will’s house and is not fed is at least 30.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{Po}}\left( {2.1} \right)">
  <mi>X</mi>
  <mo>∼</mo>
  <mrow>
    <mtext>Po</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2.1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 0} \right) = 0.122\left( { = {{\text{e}}^{ - 2.1}}} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.122</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mrow>
        <msup>
          <mrow>
            <mtext>e</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>2.1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong> (M1)A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">      <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct probability for <em>Y</em> = 1, 2, 3, 4. Accept 0.162 for P(<em>Y</em> = 4).</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( Y \right) = \sum {y{\text{P}}\left( {Y = y} \right)} ">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>Y</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mo>∑</mo>
  <mrow>
    <mi>y</mi>
    <mrow>
      <mtext>P</mtext>
    </mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mi>Y</mi>
        <mo>=</mo>
        <mi>y</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1 \times 0.257 \ldots  + 2 \times 0.270 \ldots  + 3 \times 0.189 + 4 \times 0.161 \ldots ">
  <mo>=</mo>
  <mn>1</mn>
  <mo>×</mo>
  <mn>0.257</mn>
  <mo>…</mo>
  <mo>+</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>0.270</mn>
  <mo>…</mo>
  <mo>+</mo>
  <mn>3</mn>
  <mo>×</mo>
  <mn>0.189</mn>
  <mo>+</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mn>0.161</mn>
  <mo>…</mo>
</math></span>      <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2.01">
  <mo>=</mo>
  <mn>2.01</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
  <mi>T</mi>
</math></span> be the no of days per year that Steffi does not visit</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T \sim B\left( {365{\text{,}}\,\,0.122 \ldots } \right)">
  <mi>T</mi>
  <mo>∼</mo>
  <mi>B</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>365</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>0.122</mn>
      <mo>…</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(M1)</strong></em></p>
<p>require <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.45 \leqslant {\text{P}}\left( {T \leqslant n} \right) &lt; 0.55">
  <mn>0.45</mn>
  <mo>⩽</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>T</mi>
      <mo>⩽</mo>
      <mi>n</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>&lt;</mo>
  <mn>0.55</mn>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {T \leqslant 44} \right) = 0.51">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>T</mi>
      <mo>⩽</mo>
      <mn>44</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.51</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 44">
  <mi>n</mi>
  <mo>=</mo>
  <mn>44</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V">
  <mi>V</mi>
</math></span> be the discrete random variable “number of times Steffi is not fed per day”</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( V \right) = 1 \times {\text{P}}\left( {X = 5} \right) + 2 \times {\text{P}}\left( {X = 6} \right) + 3 \times {\text{P}}\left( {X = 7} \right) +  \ldots ">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>V</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>5</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>6</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>7</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mo>…</mo>
</math></span>        <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1 \times 0.0416 \ldots  + 2 \times 0.0145 \ldots  + 3 \times 0.00437 \ldots  +  \ldots ">
  <mo>=</mo>
  <mn>1</mn>
  <mo>×</mo>
  <mn>0.0416</mn>
  <mo>…</mo>
  <mo>+</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>0.0145</mn>
  <mo>…</mo>
  <mo>+</mo>
  <mn>3</mn>
  <mo>×</mo>
  <mn>0.00437</mn>
  <mo>…</mo>
  <mo>+</mo>
  <mo>…</mo>
</math></span>      <em><strong>A1</strong></em></p>
<p>= 0.083979...      <em><strong>A1</strong></em></p>
<p>expected no of occasions per year &gt; 0.083979... × 365 = 30.7      <em><strong>A1</strong></em></p>
<p>hence Steffi can expect not to be fed on at least 30 occasions       <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Candidates may consider summing more than three terms in their calculation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( V \right)">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>V</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right) - {\text{E}}\left( Y \right) = 0.0903 \ldots ">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>X</mi>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>Y</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.0903</mn>
  <mo>…</mo>
</math></span>       <em><strong>M1A</strong></em><em><strong>1</strong></em></p>
<p>0.0903… × 365       <em><strong>M1</strong></em></p>
<p>= 33.0 &gt; 30      <em><strong> A1AG</strong></em></p>
<p>  </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Timmy owns a shop. His daily income from selling his goods can be modelled as a normal&nbsp;distribution, with a mean daily income of $820, and a standard deviation of $230. To make a&nbsp;profit, Timmy’s daily income needs to be greater than $1000.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that, on a randomly selected day, Timmy makes a profit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The shop is open for 24 days every month.</p>
<p>Calculate the probability that, in a randomly selected month, Timmy makes a profit on between 5 and 10 days (inclusive).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em>X</em> ~ N(820, 230<sup>2</sup>)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award<em><strong> M1</strong></em> for an attempt to use normal distribution. Accept labelled normal graph.</p>
<p>⇒P(<em>X</em> &gt; 1000) = 0.217       <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Y</em> ~ B(24,0.217...)      <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for recognition of binomial distribution with parameters.</p>
<p>P(<em>Y</em> ≤ 10) − P(<em>Y</em> ≤ 4)        <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for an attempt to find P(5 ≤ <em>Y</em> ≤ 10) or P(<em>Y</em> ≤ 10) − P(<em>Y</em> ≤ 4).</p>
<p>= 0.613       <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of bananas that Lucca eats during any particular day follows a Poisson distribution with mean 0.2.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Lucca eats at least one banana in a particular day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of weeks in the year in which Lucca eats no bananas.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> be the number of bananas eaten in one day</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{Po}}(0.2)">
  <mi>X</mi>
  <mo>∼</mo>
  <mrow>
    <mtext>Po</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.2</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X \geqslant 1) = 1 - {\text{P}}(X = 0)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>⩾</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.181{\text{ }}( = 1 - {{\text{e}}^{ - 0.2}})">
  <mo>=</mo>
  <mn>0.181</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>0.2</mn>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
  <mi>Y</mi>
</math></span> be the number of bananas eaten in one week</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Y}} \sim {\text{Po}}(1.4)">
  <mrow>
    <mtext>Y</mtext>
  </mrow>
  <mo>∼</mo>
  <mrow>
    <mtext>Po</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>1.4</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y = 0) = 0.246596 \ldots {\text{ }}( = {{\text{e}}^{ - 1.4}})">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.246596</mn>
  <mo>…</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1.4</mn>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Z">
  <mi>Z</mi>
</math></span> be the number of days in one week at least one banana is eaten</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Z \sim {\text{B}}(7,{\text{ }}0.181 \ldots )">
  <mi>Z</mi>
  <mo>∼</mo>
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>7</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.181</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Z = 0) = 0.246596 \ldots ">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Z</mi>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.246596</mn>
  <mo>…</mo>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="52 \times 0.246596 \ldots ">
  <mn>52</mn>
  <mo>×</mo>
  <mn>0.246596</mn>
  <mo>…</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 12.8{\text{ }}( = 52{{\text{e}}^{ - 1.4}})">
  <mo>=</mo>
  <mn>12.8</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>52</mn>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1.4</mn>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> are such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = 0.95,{\text{ P}}(A \cap B) = 0.6">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∪<!-- ∪ --></mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.95</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∩<!-- ∩ --></mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.6</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A|B) = 0.75">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.75</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A’">
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A|B) = \frac{{{\text{P}}(A \cap B)}}{{{\text{P}}(B)}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>A</mi>
      <mo>∩</mo>
      <mi>B</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>B</mi>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 0.75 = \frac{{0.6}}{{{\text{P}}(B)}}">
  <mo stretchy="false">⇒</mo>
  <mn>0.75</mn>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.6</mn>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>B</mi>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{P}}(B){\text{ }}\left( { = \frac{{0.6}}{{0.75}}} \right) = 0.8">
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>0.6</mn>
        </mrow>
        <mrow>
          <mn>0.75</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.8</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A \cap B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∪</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 0.95 = {\text{P}}(A) + 0.8 - 0.6">
  <mo stretchy="false">⇒</mo>
  <mn>0.95</mn>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>0.8</mn>
  <mo>−</mo>
  <mn>0.6</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{P}}(A) = 0.75">
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.75</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A'|B) = \frac{{{\text{P}}(A' \cap B)}}{{{\text{P}}(B)}} = \frac{{0.2}}{{0.8}} = 0.25">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <msup>
        <mi>A</mi>
        <mo>′</mo>
      </msup>
      <mo>∩</mo>
      <mi>B</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>B</mi>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.2</mn>
    </mrow>
    <mrow>
      <mn>0.8</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.25</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A'|B) = {\text{P}}(A’)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>R1</em></strong></p>
<p>hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A’">
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> are independent     <strong><em>AG</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     If there is evidence that the student has calculated <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A' \cap B) = 0.2">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.2</mn>
</math></span> by assuming independence in the first place, award <strong><em>A0R0</em></strong>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A) = {\text{P}}(A|B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A) \times {\text{P}}(B) = 0.75 \times 0.80 = 0.6 = {\text{P}}(A \cap B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.75</mn>
  <mo>×</mo>
  <mn>0.80</mn>
  <mo>=</mo>
  <mn>0.6</mn>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> are independent     <strong><em>R1</em></strong></p>
<p>hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A’">
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> are independent     <strong><em>AG</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A') \times {\text{P}}(B) = 0.25 \times 0.80 = 0.2">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.25</mn>
  <mo>×</mo>
  <mn>0.80</mn>
  <mo>=</mo>
  <mn>0.2</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A') \times {\text{P}}(B) = {\text{P}}(A' \cap B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>R1</em></strong></p>
<p>hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A’">
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> are independent     <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A horse breeder records the number of births for each of 100 horses during the past eight years. The results are summarized in the following table:</p>
<p style="text-align: center;"><img src=""></p>
<p class="indent1" style="margin-top:12.0pt;">Stating null and alternative hypotheses carry out an appropriate test at the 5% significance level to decide whether the results can be modelled by B (6, 0.5).</p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Without doing any further calculations, explain briefly how you would carry out a test, at the 5% significance level, to decide if the data can be modelled by B(6, <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span>), where <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span> is unspecified.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A different horse breeder collected data on the time and outcome of births. The data are summarized in the following table:</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Carry out an appropriate test at the 5% significance level to decide whether there is an association between time and outcome.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="indent1"><strong>METHOD 1</strong></p>
<p class="indent1">H<sub>0</sub>: distribution is B(6, 0.5); H<sub>1</sub>: distribution is not B(6, 0.5)      <em><strong>A1</strong></em></p>
<p class="indent1"><img src=""></p>
<p class="indent1"><span class="mjpage"><math alttext="\left( {{E_0} = 100{{\left( {0.5} \right)}^6} = \frac{{25}}{{16}} = 0.015625} \right)" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>E</mi> <mn>0</mn> </msub> </mrow> <mo>=</mo> <mn>100</mn> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>0.5</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>6</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>25</mn> </mrow> <mrow> <mn>16</mn> </mrow> </mfrac> <mo>=</mo> <mn>0.015625</mn> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A3</strong></em></p>
<p class="indent1">Combining the first two columns and the last two columns:       <em><strong>A1 </strong></em></p>
<p class="indent1"><span class="mjpage"><math alttext="{\chi ^2} = \sum {\frac{{{O^2}}}{E}}  - \sum E " xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mo>∑</mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi>O</mi> <mn>2</mn> </msup> </mrow> </mrow> <mi>E</mi> </mfrac> </mrow> <mo>−</mo> <mo>∑</mo> <mi>E</mi> </math></span></p>
<p class="indent1"><span class="mjpage"><math alttext=" = \frac{{{6^2}}}{{\left( {\frac{{175}}{{16}}} \right)}} + \frac{{{{26}^2}}}{{\left( {\frac{{375}}{{16}}} \right)}} + \frac{{{{37}^2}}}{{\left( {\frac{{500}}{{16}}} \right)}} + \frac{{{{18}^2}}}{{\left( {\frac{{375}}{{16}}} \right)}} + \frac{{{{13}^2}}}{{\left( {\frac{{175}}{{16}}} \right)}} - 100" xmlns="http://www.w3.org/1998/Math/MathML"> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mn>6</mn> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>175</mn> </mrow> <mrow> <mn>16</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>26</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>375</mn> </mrow> <mrow> <mn>16</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>37</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>500</mn> </mrow> <mrow> <mn>16</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>18</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>375</mn> </mrow> <mrow> <mn>16</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>13</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>175</mn> </mrow> <mrow> <mn>16</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>−</mo> <mn>100</mn> </math></span>        <em><strong>(M1)</strong></em></p>
<p class="indent1">= 5.22       <em><strong>A1</strong></em></p>
<p class="indent1"><span class="mjpage"><math alttext="v" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>v</mi> </math></span> = 4, so critical value of <span class="mjpage"><math alttext="\chi _{5{\text{% }}}^2 = 9.488" xmlns="http://www.w3.org/1998/Math/MathML"> <msubsup> <mi>χ</mi> <mrow> <mn>5</mn> <mrow> <mtext>% </mtext> </mrow> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>9.488</mn> </math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p class="indent1">Since 5.22 &lt; 9.488 the result is not significant and we accept H<sub>0</sub>       <em><strong>R1</strong></em></p>
<p class="indent2"> </p>
<p class="indent2"><strong>METHOD 2</strong></p>
<p class="indent1">H<sub>0</sub>: distribution is B(6, 0.5); H<sub>1</sub>: distribution is not B(6, 0.5)      <em><strong>A1</strong></em></p>
<p class="indent1">By GDC, <span class="mjpage"><math alttext="p = 0.266" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> <mo>=</mo> <mn>0.266</mn> </math></span>      <em><strong>A8</strong></em></p>
<p class="indent1">Since 0.266 &gt; 0.05 the result is not significant and we accept H<sub>0</sub>       <em><strong>R1</strong></em></p>
<p class="indent1"> </p>
<p class="indent1"><em><strong>[10 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">Estimate <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span> from the data which would entail the loss of one degree of freedom      <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p class="indent1"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="indent1">H<sub>0</sub>: there is no association H<sub>1</sub>: there is an association     <em><strong>  </strong></em><em><strong>A1</strong></em></p>
<p class="indent1"><img src="">     <em><strong>  </strong></em><em><strong>A2</strong></em></p>
<p class="indent1"><span class="mjpage"><math alttext="{\chi ^2} = \frac{{{{68}^2}}}{{64.8}} + \frac{{{{42}^2}}}{{45.2}} + \frac{{{{103}^2}}}{{94.3}} +  \ldots  + \frac{{{6^2}}}{{10.6}} + \frac{{{{12}^2}}}{{7.4}} - 314" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>68</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>64.8</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>42</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>45.2</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>103</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>94.3</mn> </mrow> </mfrac> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mn>6</mn> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>10.6</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>7.4</mn> </mrow> </mfrac> <mo>−</mo> <mn>314</mn> </math></span>     <em><strong>   </strong></em><em><strong>(M1)</strong></em></p>
<p class="indent1"><strong>     = </strong>15.7</p>
<p class="indent1"><span class="mjpage"><math alttext="v = 3{\text{,}}\,\,\chi _{5{\text{% }}}^2\left( 3 \right) = 7.815" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>v</mi> <mo>=</mo> <mn>3</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <msubsup> <mi>χ</mi> <mrow> <mn>5</mn> <mrow> <mtext>% </mtext> </mrow> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>7.815</mn> </math></span>     <em><strong>  </strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p class="indent1">Since 15.7 &gt; 7.815 we reject H<sub>0</sub>           <em><strong>R1</strong></em></p>
<p class="indent1"> </p>
<p class="indent1"><strong>METHOD 2</strong></p>
<p class="indent1">H<sub>0</sub>: there is no association H<sub>1</sub>: there is an association     <em><strong>  </strong></em><em><strong>A1</strong></em></p>
<p class="indent1">By GDC, <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span> = 0.00129         <em><strong>A6 </strong></em></p>
<p class="indent1">Since 0.00129 &lt; 0.05 we reject H<sub>0</sub>.           <em><strong>R1 </strong></em></p>
<p class="indent1"> </p>
<p class="indent1"><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Each of the 25 students in a class are asked how many pets they own. Two students own three pets and no students own more than three pets. The mean and standard deviation of the number of pets owned by students in the class are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{18}}{{25}}">
  <mfrac>
    <mrow>
      <mn>18</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{24}}{{25}}">
  <mfrac>
    <mrow>
      <mn>24</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
</math></span> respectively.</p>
<p>Find the number of students in the class who do not own a pet.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>let <em>p</em> have no pets, <em>q</em> have one pet and <em>r</em> have two pets     <em><strong> (M1)</strong></em></p>
<p><em>p</em> + <em>q</em> + <em>r</em> + 2 = 25      <em><strong>(A1)</strong></em></p>
<p>0<em>p</em> + 1<em>q</em> + 2<em>r</em> + 6 = 18      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept a statement that there are a total of 12 pets.</p>
<p>attempt to use variance equation, or evidence of trial and error       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0p + 1q + 4r + 18}}{{25}} - {\left( {\frac{{18}}{{25}}} \right)^2} = {\left( {\frac{{24}}{{25}}} \right)^2}">
  <mfrac>
    <mrow>
      <mn>0</mn>
      <mi>p</mi>
      <mo>+</mo>
      <mn>1</mn>
      <mi>q</mi>
      <mo>+</mo>
      <mn>4</mn>
      <mi>r</mi>
      <mo>+</mo>
      <mn>18</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mn>18</mn>
            </mrow>
            <mrow>
              <mn>25</mn>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mn>24</mn>
            </mrow>
            <mrow>
              <mn>25</mn>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>     <em><strong>(A1)</strong></em></p>
<p>attempt to solve a system of linear equations <em><strong>(M1)</strong></em></p>
<p><em>p</em> = 14      <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><img src="">     <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p + q + r + \frac{2}{{25}} = 1">
  <mi>p</mi>
  <mo>+</mo>
  <mi>q</mi>
  <mo>+</mo>
  <mi>r</mi>
  <mo>+</mo>
  <mfrac>
    <mn>2</mn>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q + 2r + \frac{6}{{25}} = \frac{{18}}{{25}}\left( { \Rightarrow q + 2r = \frac{{12}}{{25}}} \right)">
  <mi>q</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>r</mi>
  <mo>+</mo>
  <mfrac>
    <mn>6</mn>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>18</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo stretchy="false">⇒</mo>
      <mi>q</mi>
      <mo>+</mo>
      <mn>2</mn>
      <mi>r</mi>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>12</mn>
        </mrow>
        <mrow>
          <mn>25</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q + 4r + \frac{{18}}{{25}} - {\left( {\frac{{18}}{{25}}} \right)^2} = \frac{{576}}{{625}}\left( { \Rightarrow q + 4r = \frac{{18}}{{25}}} \right)">
  <mi>q</mi>
  <mo>+</mo>
  <mn>4</mn>
  <mi>r</mi>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>18</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mn>18</mn>
            </mrow>
            <mrow>
              <mn>25</mn>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>576</mn>
    </mrow>
    <mrow>
      <mn>625</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo stretchy="false">⇒</mo>
      <mi>q</mi>
      <mo>+</mo>
      <mn>4</mn>
      <mi>r</mi>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>18</mn>
        </mrow>
        <mrow>
          <mn>25</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = \frac{6}{{25}},\,\,r = \frac{3}{{25}}">
  <mi>q</mi>
  <mo>=</mo>
  <mfrac>
    <mn>6</mn>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>r</mi>
  <mo>=</mo>
  <mfrac>
    <mn>3</mn>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{14}}{{25}}">
  <mi>p</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>14</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
</math></span>       <em><strong>A1</strong></em></p>
<p>so 14 have no pets</p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Iqbal attempts three practice papers in mathematics. The probability that he passes the first&nbsp;paper is 0.6. Whenever he gains a pass in a paper, his confidence increases so that the&nbsp;probability of him passing the next paper increases by 0.1. Whenever he fails a paper the&nbsp;probability of him passing the next paper is 0.6.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the given probability tree diagram for Iqbal’s three attempts, labelling each branch with the correct probability.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that Iqbal passes at least two of the papers he attempts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Iqbal passes his third paper, given that he passed only one previous paper.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em><img src="">     <strong>A1A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct column of probabilities.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>probability (at least twice) =</p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0.6 \times 0.7 \times 0.8} \right) + \left( {0.6 \times 0.7 \times 0.2} \right) + \left( {0.6 \times 0.3 \times 0.6} \right) + \left( {0.4 \times 0.6 \times 0.7} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.6</mn>
      <mo>×</mo>
      <mn>0.7</mn>
      <mo>×</mo>
      <mn>0.8</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.6</mn>
      <mo>×</mo>
      <mn>0.7</mn>
      <mo>×</mo>
      <mn>0.2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.6</mn>
      <mo>×</mo>
      <mn>0.3</mn>
      <mo>×</mo>
      <mn>0.6</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.4</mn>
      <mo>×</mo>
      <mn>0.6</mn>
      <mo>×</mo>
      <mn>0.7</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0.6 \times 0.7} \right) + \left( {0.6 \times 0.3 \times 0.6} \right) + \left( {0.4 \times 0.6 \times 0.7} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.6</mn>
      <mo>×</mo>
      <mn>0.7</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.6</mn>
      <mo>×</mo>
      <mn>0.3</mn>
      <mo>×</mo>
      <mn>0.6</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.4</mn>
      <mo>×</mo>
      <mn>0.6</mn>
      <mo>×</mo>
      <mn>0.7</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award<em><strong> M1</strong></em> for summing all required probabilities.</p>
<p><strong>THEN</strong></p>
<p>= 0.696<em>     <strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(passes third paper given only one paper passed before)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{P}}\,\left( {{\text{passes third AND only one paper passed before}}} \right)}}{{{\text{P}}\,\left( {{\text{passes once in first two papers}}} \right)}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mtext>passes third AND only one paper passed before</mtext>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mtext>passes once in first two papers</mtext>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\left( {0.6 \times 0.3 \times 0.6} \right) + \left( {0.4 \times 0.6 \times 0.7} \right)}}{{\left( {0.6 \times 0.3} \right) + \left( {0.4 \times 0.6} \right)}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.6</mn>
          <mo>×</mo>
          <mn>0.3</mn>
          <mo>×</mo>
          <mn>0.6</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.4</mn>
          <mo>×</mo>
          <mn>0.6</mn>
          <mo>×</mo>
          <mn>0.7</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.6</mn>
          <mo>×</mo>
          <mn>0.3</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.4</mn>
          <mo>×</mo>
          <mn>0.6</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>      <em><strong>A1</strong></em></p>
<p>= 0.657<em>     <strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>There are 75 players in a golf club who take part in a golf tournament. The scores obtained on the 18th hole are as shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_16.43.55.png" alt="M17/5/MATHL/HP2/ENG/TZ2/01"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the players is chosen at random. Find the probability that this player’s score was 5 or more.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(5{\text{ or more}}) = \frac{{29}}{{75}}\,\,\,( = 0.387)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>5</mn>
  <mrow>
    <mtext> or more</mtext>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>29</mn>
    </mrow>
    <mrow>
      <mn>75</mn>
    </mrow>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>0.387</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{mean score}} = \frac{{2 \times 3 + 3 \times 15 + 4 \times 28 + 5 \times 17 + 6 \times 9 + 7 \times 3}}{{75}}">
  <mrow>
    <mtext>mean score</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mo>×</mo>
      <mn>3</mn>
      <mo>+</mo>
      <mn>3</mn>
      <mo>×</mo>
      <mn>15</mn>
      <mo>+</mo>
      <mn>4</mn>
      <mo>×</mo>
      <mn>28</mn>
      <mo>+</mo>
      <mn>5</mn>
      <mo>×</mo>
      <mn>17</mn>
      <mo>+</mo>
      <mn>6</mn>
      <mo>×</mo>
      <mn>9</mn>
      <mo>+</mo>
      <mn>7</mn>
      <mo>×</mo>
      <mn>3</mn>
    </mrow>
    <mrow>
      <mn>75</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{323}}{{75}}\,\,\,( = 4.31)">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>323</mn>
    </mrow>
    <mrow>
      <mn>75</mn>
    </mrow>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>4.31</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Jorge is carefully observing the rise in sales of a new app he has created.</p>
<p>The number of sales in the first four months is shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Jorge believes that the increase is exponential and proposes to model the number of sales&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> in month <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> with the equation</p>
<p style="text-align: left; padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mi>r</mi><mi>t</mi></mrow></msup><mo>,</mo><mo>&nbsp;</mo><mi>A</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math></p>
</div>

<div class="specification">
<p>Jorge plans to adapt Euler’s method to find an approximate value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<p>With a step length of one month the solution to the differential equation can be approximated using Euler’s method where</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≈</mo><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></math></p>
</div>

<div class="specification">
<p>Jorge decides to take the mean of these values as the approximation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> for his model. He&nbsp;also decides the graph of the model should pass through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>52</mn><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>The sum of the square residuals for these points for the least squares regression model is&nbsp;approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>555</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Jorge’s model satisfies the differential equation</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>r</mi><mi>N</mi></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow><mrow><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow></mfrac></math></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find three approximations for the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation for Jorge’s model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the sum of the square residuals for Jorge’s model using the values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment how well Jorge’s model fits the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give two possible sources of error in the construction of his model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>r</mi><mi>A</mi><msup><mtext>e</mtext><mrow><mi>r</mi><mi>t</mi></mrow></msup></math>        <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>Note: M1</strong> is for an attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>r</mi><mi>N</mi></math>        <strong>AG</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept solution of the differential equation by separating variables</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≈</mo><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>⇒</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>≈</mo><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></math>        <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>r</mi><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>≈</mo><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></math>        <strong>M1A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>r</mi><mo>≈</mo><mfrac><mrow><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow><mrow><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow></mfrac></math>        <strong>AG</strong></p>
<p> </p>
<p><strong>Note:</strong> Do not penalize the use of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math> sign.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Correct method         <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>52</mn><mo>-</mo><mn>40</mn></mrow><mn>40</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>70</mn><mo>-</mo><mn>52</mn></mrow><mn>52</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>346</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>98</mn><mo>-</mo><mn>70</mn></mrow><mn>70</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math>        <strong>A2</strong></p>
<p> </p>
<p><strong>Note: A1</strong> for a single error <strong>A0</strong> for two or more errors.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>349</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>34871</mn><mo>…</mo></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>68</mn><mn>195</mn></mfrac></math>        <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>52</mn><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>34871</mn><mo>…</mo><mo>×</mo><mn>2</mn></mrow></msup></math>        <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>8887</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>9</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>349</mn><mi>t</mi></mrow></msup></math>        <strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>36</mn><mo>.</mo><mn>6904</mn><mo>…</mo><mo>-</mo><mn>40</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>0</mn><mo>+</mo><msup><mfenced><mrow><mn>73</mn><mo>.</mo><mn>6951</mn><mo>…</mo><mo>-</mo><mn>70</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>104</mn><mo>.</mo><mn>4435</mn><mo>…</mo><mo>-</mo><mn>98</mn></mrow></mfenced><mn>2</mn></msup></math>        <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>66</mn><mo>.</mo><mn>1</mn><mo> </mo><mfenced><mrow><mn>66</mn><mo>.</mo><mn>126</mn><mo>…</mo></mrow></mfenced></math>        <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The sum of the square residuals is approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> times as large as the minimum possible, so Jorge’s model is unlikely to fit the data exactly     <strong>R1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For example</p>
<p>Selecting a single point for the curve to pass through</p>
<p>Approximating the gradient of the curve by the gradient of a chord       <strong>R1R1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> has a probability distribution given in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_17.11.47.png" alt="N16/5/MATHL/HP2/ENG/TZ0/01"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}({X^2})">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>X</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X)">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}({X^2}) = \Sigma {x^2} \bullet {\text{P}}(X = x) = 10.37{\text{ }}( = 10.4{\text{ 3 sf)}}">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>X</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi mathvariant="normal">Σ</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>∙</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>10.37</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>10.4</mn>
  <mrow>
    <mtext>&nbsp;3 sf)</mtext>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sd}}(X) = 1.44069 \ldots ">
  <mrow>
    <mtext>sd</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.44069</mn>
  <mo>…</mo>
</math></span> &nbsp; &nbsp;<strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X) = 2.08{\text{ }}( = 2.0756)">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2.08</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>2.0756</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 2.88{\text{ }}( = 0.06 + 0.27 + 0.5 + 0.98 + 0.63 + 0.44)">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2.88</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>0.06</mn>
  <mo>+</mo>
  <mn>0.27</mn>
  <mo>+</mo>
  <mn>0.5</mn>
  <mo>+</mo>
  <mn>0.98</mn>
  <mo>+</mo>
  <mn>0.63</mn>
  <mo>+</mo>
  <mn>0.44</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em></strong></p>
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X) = {\text{E}}({X^2}) - {\left( {{\text{E}}(X)} \right)^2}">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>X</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mtext>E</mtext>
          </mrow>
          <mo stretchy="false">(</mo>
          <mi>X</mi>
          <mo stretchy="false">)</mo>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>only if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{\text{E}}(X)} \right)^2}">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mtext>E</mtext>
          </mrow>
          <mo stretchy="false">(</mo>
          <mi>X</mi>
          <mo stretchy="false">)</mo>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> is used correctly.</p>
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{Var}}(X) = 10.37 - 8.29} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>Var</mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo stretchy="false">)</mo>
      <mo>=</mo>
      <mn>10.37</mn>
      <mo>−</mo>
      <mn>8.29</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X) = 2.08{\text{ }}( = 2.0756)">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2.08</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>2.0756</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Accept 2.11.</p>
<p>&nbsp;</p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 2.88{\text{ }}( = 0.06 + 0.27 + 0.5 + 0.98 + 0.63 + 0.44)">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2.88</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>0.06</mn>
  <mo>+</mo>
  <mn>0.27</mn>
  <mo>+</mo>
  <mn>0.5</mn>
  <mo>+</mo>
  <mn>0.98</mn>
  <mo>+</mo>
  <mn>0.63</mn>
  <mo>+</mo>
  <mn>0.44</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em></strong></p>
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X) = {\text{E}}\left( {{{\left( {X - {\text{E}}(X)} \right)}^2}} \right)">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mi>X</mi>
                <mo>−</mo>
                <mrow>
                  <mtext>E</mtext>
                </mrow>
                <mo stretchy="false">(</mo>
                <mi>X</mi>
                <mo stretchy="false">)</mo>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0.679728 + &nbsp;\ldots &nbsp;+ 0.549152)">
  <mo stretchy="false">(</mo>
  <mn>0.679728</mn>
  <mo>+</mo>
  <mo>…</mo>
  <mo>+</mo>
  <mn>0.549152</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(E) = 2.08{\text{ }}( = 2.0756)">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>E</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2.08</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>2.0756</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>When carpet is manufactured, small faults occur at random. The number of faults in Premium carpets can be modelled by a Poisson distribution with mean 0.5 faults per 20<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>m<sup>2</sup>. Mr Jones chooses Premium carpets to replace the carpets in his office building. The office building has 10 rooms, each with the area of 80<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>m<sup>2</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the carpet laid in the first room has fewer than three faults.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that exactly seven rooms will have fewer than three faults in the carpet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 4 \times 0.5"> <mi>λ</mi> <mo>=</mo> <mn>4</mn> <mo>×</mo> <mn>0.5</mn> </math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 2"> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X \leqslant 2) = 0.677"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>⩽</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.677</mn> </math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y \sim B(10,{\text{ }}0,677)"> <mi>Y</mi> <mo>∼</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>10</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> <mo>,</mo> <mn>677</mn> <mo stretchy="false">)</mo> </math></span>     <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y = 7) = 0.263"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>=</mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.263</mn> </math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>M1 </em></strong>for clear recognition of binomial distribution.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="question" style="tab-stops: 1.0cm 36.0pt 72.0pt 108.0pt 144.0pt 180.0pt 216.0pt 252.0pt 288.0pt 324.0pt 360.0pt 396.0pt 432.0pt 468.0pt;">The hens on a farm lay either white or brown eggs. The eggs are put into boxes of six. The farmer claims that the number of brown eggs in a box can be modelled by the binomial distribution, B(6, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>)<em>.</em> By inspecting the contents of 150 boxes of eggs she obtains the following data.</p>
<p class="question" style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that this data leads to an estimated value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0.4">
  <mi>p</mi>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent1">Stating null and alternative hypotheses, carry out an appropriate test at the 5 % level to decide whether the farmer’s claim can be justified.</p>
<div class="marks">[11]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>from the sample, the probability of a brown egg is</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0 \times 7 + 1 \times 32 +  \ldots }}{{6 \times 150}} = \frac{{360}}{{900}} = 0.4">
  <mfrac>
    <mrow>
      <mn>0</mn>
      <mo>×</mo>
      <mn>7</mn>
      <mo>+</mo>
      <mn>1</mn>
      <mo>×</mo>
      <mn>32</mn>
      <mo>+</mo>
      <mo>…</mo>
    </mrow>
    <mrow>
      <mn>6</mn>
      <mo>×</mo>
      <mn>150</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>360</mn>
    </mrow>
    <mrow>
      <mn>900</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0.4">
  <mi>p</mi>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span>       <em><strong>AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>if the data can be modelled by a binomial distribution with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0.4">
  <mi>p</mi>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span>, the expected frequencies of boxes are given in the table</p>
<p><img src="">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>A3</strong></em></p>
<p><strong>Notes: </strong>Deduct one mark for each error or omission.<br>Accept any rounding to at least one decimal place.</p>
<p>null hypothesis: the distribution is binomial&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 </strong></em></p>
<p>alternative hypothesis: the distribution is not binomial&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 </strong></em></p>
<p>for a chi-squared test the last two columns should be combined&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <em><strong>R1 </strong></em></p>
<p><img src=""></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\chi _{{\text{calc}}}^2 = \frac{{{{\left( {7 - 7} \right)}^2}}}{7} + \frac{{{{\left( {32 - 28} \right)}^2}}}{{28}} +&nbsp; \ldots&nbsp; = 6.05">
  <msubsup>
    <mi>χ</mi>
    <mrow>
      <mrow>
        <mtext>calc</mtext>
      </mrow>
    </mrow>
    <mn>2</mn>
  </msubsup>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>7</mn>
                <mo>−</mo>
                <mn>7</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mn>7</mn>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>32</mn>
                <mo>−</mo>
                <mn>28</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>28</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mo>…</mo>
  <mo>=</mo>
  <mn>6.05</mn>
</math></span>&nbsp; (Accept 6.06)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)A1</strong></em></p>
<p>degrees of freedom = 4&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1 </strong></em></p>
<p>critical value = 9.488&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <em><strong>A1 </strong></em></p>
<p>Or use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value</p>
<p>we conclude that the farmer’s claim can be justified&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><em><strong>[11 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of taxis arriving at Cardiff Central railway station can be modelled by a Poisson distribution. During busy periods of the day, taxis arrive at a mean rate of 5.3 taxis every&nbsp;10 minutes. Let T represent a random 10 minute busy period.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that exactly 4 taxis arrive during T.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the most likely number of taxis that would arrive during T.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that more than 5 taxis arrive during T, find the probability that exactly&nbsp;7 taxis arrive during T.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During quiet periods of the day, taxis arrive at a mean rate of 1.3 taxis every 10 minutes.</p>
<p>Find the probability that during a period of 15 minutes, of which the first 10 minutes is busy and the next 5 minutes is quiet, that exactly 2 taxis arrive.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{Po}}\left( {5.3} \right)">
  <mi>X</mi>
  <mo>∼</mo>
  <mrow>
    <mtext>Po</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>5.3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 4} \right) = {{\text{e}}^{ - 5.3}}\frac{{{{5.3}^4}}}{{4{\text{!}}}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>4</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>5.3</mn>
      </mrow>
    </msup>
  </mrow>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>5.3</mn>
          </mrow>
          <mn>4</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>4</mn>
      <mrow>
        <mtext>!</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>=&nbsp;0.164&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>listing probabilities (table or graph)&nbsp; &nbsp; &nbsp; <em><strong>M1</strong></em></p>
<p>mode <em>X</em>&nbsp;= 5 (with probability 0.174)&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M0A0</strong></em> for 5 (taxis) or mode&nbsp;= 5 with no justification.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>mode is the integer part of mean&nbsp; &nbsp; &nbsp; <em><strong>R1</strong></em></p>
<p>E(<em>X</em>)&nbsp;= 5.3 ⇒ mode&nbsp;= 5&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not allow <em><strong>R0A1</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt at conditional probability&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {X = 7} \right)}}{{{\text{P}}\left( {X \geqslant 6} \right)}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>X</mi>
          <mo>=</mo>
          <mn>7</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>X</mi>
          <mo>⩾</mo>
          <mn>6</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span> or equivalent&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{{0.1163 \ldots }}{{0.4365 \ldots }}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>0.1163</mn>
          <mo>…</mo>
        </mrow>
        <mrow>
          <mn>0.4365</mn>
          <mo>…</mo>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>= 0.267&nbsp; &nbsp; &nbsp; <em><strong>&nbsp;A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>METHOD 1</strong></em></p>
<p>the possible arrivals are (2,0), (1,1), (0,2)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y \sim {\text{Po}}\left( {0.65} \right)">
  <mi>Y</mi>
  <mo>∼</mo>
  <mrow>
    <mtext>Po</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.65</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>attempt to compute, using sum and product rule,&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p>0.070106… × 0.52204… + 0.026455…&nbsp;× 0.33932… + 0.0049916…&nbsp;× 0.11028…&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for one correct product and <em><strong>A1</strong> </em>for two other correct products.</p>
<p>= 0.0461&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>recognising a sum of 2 independent Poisson variables <em>eg Z</em>&nbsp;= <em>X</em> + <em>Y</em>&nbsp; &nbsp; &nbsp; <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda&nbsp; = 5.3 + \frac{{1.3}}{2}">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>5.3</mn>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>1.3</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p>P(<em>Z</em> = 2) = 0.0461&nbsp; &nbsp; &nbsp;<em><strong>(M1)A3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The age, <em>L</em>, in years, of a wolf can be modelled by the normal distribution <em>L</em> ~ N(8, 5).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a wolf selected at random is at least 5 years old.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Eight wolves are independently selected at random and their ages recorded.</p>
<p>Find the probability that more than six of these wolves are at least 5 years old.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>P(<em>L</em> ≥ 5)&nbsp;= 0.910&nbsp; &nbsp; &nbsp; <em><strong>(M1)A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>X</em> is the number of wolves found to be at least 5 years old&nbsp;recognising binomial distribution&nbsp; &nbsp; &nbsp; <em><strong>M1</strong></em></p>
<p><em>X</em> ~ B(8, 0.910…)</p>
<p>P(<em>X</em>&nbsp;&gt; 6)&nbsp;= 1 − P(<em>X</em> ≤ 6)&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p>=&nbsp;0.843&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0</strong></em> for finding P(<em>X</em> ≥ 6).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider two events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A) = k,{\text{ P}}(B) = 3k,{\text{ P}}(A \cap B) = {k^2}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>k</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>3</mn>
  <mi>k</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∩<!-- ∩ --></mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = 0.5">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∪<!-- ∪ --></mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.5</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A' \cap B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A \cap B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∪</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5 = k + 3k - {k^2}">
  <mn>0.5</mn>
  <mo>=</mo>
  <mi>k</mi>
  <mo>+</mo>
  <mn>3</mn>
  <mi>k</mi>
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - 4k + 0.5 = 0">
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mi>k</mi>
  <mo>+</mo>
  <mn>0.5</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 0.129">
  <mi>k</mi>
  <mo>=</mo>
  <mn>0.129</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Do not award the final <strong><em>A1 </em></strong>if two solutions are given.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A' \cap B) = {\text{P}}(B) - {\text{P}}(A \cap B)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
</math></span> or alternative     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A' \cap B) = 3k - {k^2}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo>∩</mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>3</mn>
  <mi>k</mi>
  <mo>−</mo>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.371">
  <mo>=</mo>
  <mn>0.371</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The mean number of squirrels in a certain area is known to be 3.2 squirrels per hectare of woodland. Within this area, there is a 56 hectare woodland nature reserve. It is known that there are currently at least 168 squirrels in this reserve.</p>
<p>Assuming the population of squirrels follow a Poisson distribution, calculate the probability that there are more than 190 squirrels in the reserve.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em>X</em> is number of squirrels in reserve<br><em>X</em> ∼ Po(179.2)&nbsp; &nbsp; &nbsp;<em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Award<em><strong> A1</strong></em> if 179.2 or 56 × 3.2 seen or implicit in future calculations.</p>
<p>recognising conditional probability&nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p>P(<em>X</em>&nbsp;&gt; 190 | <em>X</em> ≥ 168)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{P}}\left( {X > 190} \right)}}{{{\text{P}}\left( {X \geqslant 168} \right)}} = \left( {\frac{{0.19827 \ldots }}{{0.80817 \ldots }}} \right)">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>X</mi>
          <mo>&gt;</mo>
          <mn>190</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>X</mi>
          <mo>⩾</mo>
          <mn>168</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>0.19827</mn>
          <mo>…</mo>
        </mrow>
        <mrow>
          <mn>0.80817</mn>
          <mo>…</mo>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)(A1)</strong></em></p>
<p>=&nbsp;0.245&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>