File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 3/markSceme-SL-paper1html
File size: 1.44 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="question">
<p>A triangular field <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math> is such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>56</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mn>82</mn><mo> </mo><mtext>m</mtext></math>, each measured correct to the nearest metre, and the angle at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>105</mn><mo>°</mo></math>, measured correct to the nearest <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>°</mo></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Calculate the maximum possible area of the field.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to find any relevant maximum value<em> </em> <em><strong>(M1)</strong></em></p>
<p>largest sides are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>56</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>82</mn><mo>.</mo><mn>5</mn></math><em> </em> <em><strong>(A1)</strong></em></p>
<p>smallest possible angle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>102</mn><mo>.</mo><mn>5</mn></math><em> </em> <em><strong>(A1)</strong></em></p>
<p>attempt to substitute into area of a triangle formula<em> </em> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>56</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>82</mn><mo>.</mo><mn>5</mn><mo>×</mo><mi>sin</mi><mo> </mo><mfenced><mrow><mn>102</mn><mo>.</mo><mn>5</mn><mo>°</mo></mrow></mfenced></math></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2280</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>2</mn></msup></mfenced><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>2275</mn><mo>.</mo><mn>37</mn><mo>…</mo></mrow></mfenced></math> A1</strong></em></p>
<p><em><strong><br>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Iron in the asteroid <em>16 Psyche</em> is said to be valued at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8973</mn></math> quadrillion euros <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtext>EUR</mtext></mfenced></math>, where one quadrillion <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mn>10</mn><mn>15</mn></msup></math>.</p>
</div>
<div class="specification">
<p>James believes the asteroid is approximately spherical with radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>113</mn><mo> </mo><mtext>km</mtext></math>. He uses this information to estimate its volume.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the iron in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>×</mo><msup><mn>10</mn><mi>k</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>a</mi><mo><</mo><mn>10</mn><mo> </mo><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate James’s estimate of its volume, in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>km</mtext><mn>3</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The actual volume of the asteroid is found to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>074</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo> </mo><msup><mtext>km</mtext><mn>3</mn></msup></math>.</p>
<p>Find the percentage error in James’s estimate of the volume.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>97</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup><mo> </mo><mo> </mo><mfenced><mtext>EUR</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>8</mn><mo>.</mo><mn>973</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></mrow></mfenced></math> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>97</mn><mo> </mo><mo>(</mo><mn>8</mn><mo>.</mo><mn>973</mn><mo>)</mo></math>, <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></math>. Award <em><strong>(A1)(A0)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>97</mn><mtext>E</mtext><mn>18</mn></math>.<br>Award <em><strong>(A0)(A0)</strong></em> for answers of the type <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8973</mn><mo>×</mo><msup><mn>10</mn><mn>15</mn></msup></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>4</mn><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>113</mn><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in volume of sphere formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mn>040</mn><mo> </mo><mn>000</mn><mo> </mo><mfenced><msup><mtext>km</mtext><mn>3</mn></msup></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>6</mn><mo>.</mo><mn>04</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>,</mo><mo> </mo><mfrac><mrow><mn>5771588</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>6</mn><mo> </mo><mn>043</mn><mo> </mo><mn>992</mn><mo>.</mo><mn>82</mn></mrow></mfenced></math> <em><strong>(A1) (C2) </strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mfrac><mrow><mn>6</mn><mo> </mo><mn>043</mn><mo> </mo><mn>992</mn><mo>.</mo><mn>82</mn><mo>-</mo><mn>6</mn><mo>.</mo><mn>074</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>074</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></mfenced><mo>×</mo><mn>100</mn></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into the percentage error formula (accept a consistent absence of “<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math>” from all terms).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>494</mn><mo> </mo><mfenced><mo>%</mo></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>494026</mn><mo>…</mo><mfenced><mo>%</mo></mfenced></mrow></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2) </strong></em></p>
<p><strong><em><br></em></strong><strong>Note:</strong> Follow through from their answer to part (b). If the final answer is negative, award at most <em><strong>(M1)(A0)</strong></em>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Three towns, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> are represented as coordinates on a map, where the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes represent the distances east and north of an origin, respectively, measured in kilometres.</p>
<p>Town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is located at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>6</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>1</mn><mo>)</mo></math> and town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is located at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math>. A road runs along the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>. This information is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line that the road follows.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is due north of town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and the road passes through town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>midpoint <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>6</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mn>8</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>(M1)A1</strong></em></p>
<p><br><strong>Note:</strong> Accept equivalent gradient statements including using midpoint.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mo>⊥</mo></msub><mo>=</mo><mo>-</mo><mn>2</mn></math> <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for finding the negative reciprocal of their gradient.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>9</mn><mn>2</mn></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>-</mo><mn>9</mn><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>6</mn></math> into their equation from part (a) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mo>+</mo><mfrac><mn>9</mn><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>16</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>6</mn><mo>,</mo><mo> </mo><mn>16</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> as their final answer.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A large proportion of candidates seemed to be well drilled into finding the gradient of a line and the subsequent gradient of the normal. But without finding the coordinates of the midpoint of AB, no more marks were gained.</p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates worked out the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> correctly (or “correct” following the value they found in part (a)) but then incorrectly gave their answer as a coordinate pair.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram below shows a helicopter hovering at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>380</mn><mo> </mo><mtext>m</mtext></math> vertically above a lake. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is the point on the surface of the lake, directly below the helicopter.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Minta is swimming at a constant speed in the direction of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>. Minta observes the helicopter from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> as she looks upward at an angle of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>°</mo></math>. After <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> minutes, Minta is at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">B</mi></math> and she observes the same helicopter at an angle of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>°</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the size of the angle of depression from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Minta’s speed, in metres per hour.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mfrac><mn>380</mn><mrow><mi>tan</mi><mo> </mo><mn>25</mn><mo>°</mo></mrow></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><msqrt><msup><mfenced><mfrac><mn>380</mn><mrow><mi>sin</mi><mo> </mo><mn>25</mn><mo>°</mo></mrow></mfrac></mfenced><mn>2</mn></msup><mo>-</mo><msup><mn>380</mn><mn>2</mn></msup></msqrt></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>380</mn><mrow><mi>sin</mi><mo> </mo><mn>25</mn><mo>°</mo></mrow></mfrac><mo>=</mo><mfrac><mtext>AC</mtext><mrow><mi>sin</mi><mo> </mo><mn>65</mn><mo>°</mo></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mn>815</mn><mo> </mo><mtext>m</mtext><mo> </mo><mfenced><mrow><mn>814</mn><mo>.</mo><mn>912</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mfrac><mn>380</mn><mrow><mi>tan</mi><mo> </mo><mn>40</mn><mo>°</mo></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>453</mn><mo> </mo><mtext>m</mtext><mo> </mo><mfenced><mrow><mn>452</mn><mo>.</mo><mn>866</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mn>814</mn><mo>.</mo><mn>912</mn><mo>…</mo><mo>-</mo><mn>452</mn><mo>.</mo><mn>866</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>362</mn><mo> </mo><mtext>m</mtext><mo> </mo><mfenced><mrow><mn>362</mn><mo>.</mo><mn>046</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>HB</mtext></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>HB</mtext><mo>=</mo><mfrac><mn>380</mn><mrow><mi>sin</mi><mo> </mo><mn>40</mn><mo>°</mo></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>591</mn><mo> </mo><mtext>m</mtext><mo> </mo><mfenced><mrow><mo>=</mo><mn>591</mn><mo>.</mo><mn>175</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mfrac><mrow><mn>591</mn><mo>.</mo><mn>175</mn><mo>…</mo><mo>×</mo><mi>sin</mi><mo> </mo><mn>15</mn><mo>°</mo></mrow><mrow><mi>sin</mi><mo> </mo><mn>25</mn><mo>°</mo></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>362</mn><mo> </mo><mtext>m</mtext><mo> </mo><mfenced><mrow><mn>362</mn><mo>.</mo><mn>046</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>362</mn><mo>.</mo><mn>046</mn><mo>…</mo><mo>×</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1450</mn><mo> </mo><msup><mtext>m h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>1448</mn><mo>.</mo><mn>18</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em> </p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The Voronoi diagram below shows three identical cellular phone towers, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T</mtext><mn>1</mn><mo>,</mo><mo> </mo><mtext>T</mtext><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T</mtext><mn>3</mn></math>. A fourth identical cellular phone tower, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T</mtext><mn>4</mn></math> is located in the shaded region. The dashed lines in the diagram below represent the edges in the Voronoi diagram.</p>
<p>Horizontal scale: <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit represents <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>km</mtext></math>.<br>Vertical scale: <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit represents <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>km</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Tim stands inside the shaded region.</p>
</div>
<div class="specification">
<p>Tower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T2</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>9</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>)</mo></math> and the edge connecting vertices <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>3</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why Tim will receive the strongest signal from tower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T4</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of tower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T4</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Tower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T1</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>13</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>)</mo></math>.</p>
<p>Find the gradient of the edge of the Voronoi diagram between towers <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T1</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T2</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>every point in the shaded region is closer to tower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T4</mtext></math> <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> Specific reference must be made to the closeness of tower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T4</mtext></math>.</p>
<p> <em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>9</mn><mo>,</mo><mo> </mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct coordinate. Award at most <em><strong>A0A1</strong></em> if parentheses are missing.</p>
<p> <em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct use of gradient formula <em><strong>(M1)</strong></em></p>
<p><em>e.g.</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>m</mi><mo>=</mo></mrow></mfenced><mfrac><mrow><mn>5</mn><mo>-</mo><mn>3</mn></mrow><mrow><mo>-</mo><mn>9</mn><mo>-</mo><mo>-</mo><mn>13</mn></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p>taking negative reciprocal of <strong>their</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> (at any point) <em><strong>(M1)</strong></em></p>
<p>edge gradient <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p> <em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> have coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>9</mn><mo>,</mo><mo> </mo><mi>m</mi><mo>,</mo><mo> </mo><mo>-</mo><mn>6</mn></mrow></mfenced></math> respectively.</p>
</div>
<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>, which passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>19</mn></mtd></mtr><mtr><mtd><mn>24</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>s</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider a unit vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">u</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">u</mi><mo>=</mo><mi>p</mi><mi mathvariant="bold-italic">i</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi mathvariant="bold-italic">j</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="bold-italic">k</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>></mo><mn>0</mn></math>.</p>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>BC</mtext><mo>→</mo></mover><mo>=</mo><mn>9</mn><mi mathvariant="bold-italic">u</mi></math>.</p>
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>OB</mtext><mo>→</mo></mover><mo>-</mo><mover><mtext>OA</mtext><mo>→</mo></mover><mo> </mo><mo> </mo><mo>,</mo><mo> </mo><mo> </mo><mtext>A</mtext><mo>-</mo><mtext>B</mtext></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mi>m</mi><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>8</mn></mtd></mtr></mtable></mfenced></math> <em><strong> A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo> </mo><mo>,</mo><mo> </mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>19</mn></mtd></mtr><mtr><mtd><mn>24</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>s</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math></p>
<p>one correct equation <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mo>+</mo><mn>2</mn><mi>s</mi><mo>=</mo><mn>9</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>6</mn><mo>=</mo><mn>24</mn><mo>-</mo><mn>5</mn><mi>s</mi></math></p>
<p>correct value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> <em><strong>A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mn>6</mn></math></p>
<p>substituting <strong>their</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> value into their expression/equation to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> <em><strong>(M1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>19</mn><mo>+</mo><mn>6</mn><mo>×</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>5</mn></math> <em><strong> A1 N3</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>BC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>9</mn><mi>p</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mi>C</mi><mo>=</mo><mn>9</mn><mi mathvariant="bold-italic">u</mi><mo>+</mo><mi>B</mi><mo> </mo><mo>,</mo><mo> </mo><mover><mtext>BC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mi>x</mi><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mi>y</mi><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mi>z</mi><mo>+</mo><mn>6</mn></mtd></mtr></mtable></mfenced></math></p>
<p>correct working to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>OC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>9</mn><mi>p</mi><mo>+</mo><mn>9</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mtext>C</mtext><mo>=</mo><mn>9</mn><mfenced><mtable><mtr><mtd><mi>p</mi></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mo>-</mo><mn>3</mn></math></p>
<p>correct approach to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">u</mi></mfenced></math> (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo> </mo><mo>,</mo><mo> </mo><msqrt><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>4</mn><mn>9</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>9</mn></mfrac></msqrt></math></p>
<p>recognizing unit vector has magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">u</mi></mfenced><mo>=</mo><mn>1</mn><mo> </mo><mo>,</mo><mo> </mo><msqrt><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mn>2</mn></msup></msqrt><mo>=</mo><mn>1</mn><mo> </mo><mo>,</mo><mo> </mo><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>5</mn><mn>9</mn></mfrac><mo>=</mo><mn>1</mn></math></p>
<p>correct working <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>4</mn><mn>9</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mi>p</mi><mo>=</mo><mo>±</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>substituting <strong>their</strong> value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mi>y</mi><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mi>z</mi><mo>+</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mtext>C</mtext><mo>=</mo><mfenced><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mtext>C</mtext><mo>=</mo><mn>9</mn><mfenced><mtable><mtr><mtd><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>-</mo><mn>9</mn><mo>=</mo><mn>6</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mfenced><mrow><mn>15</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>3</mn></mrow></mfenced></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>15</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>) <em><strong> A1 N4</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The marks for finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> are independent of the first two marks.<br>For example, it is possible to award marks such as <em><strong>(M0)(A0)A1(M1)(A1)A1 (M0)A0</strong></em> or <em><strong>(M0)(A0)A1(M1)(A0)A0 (M1)A0</strong></em>.</p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A piece of candy is made in the shape of a solid hemisphere. The radius of the hemisphere is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mtext>mm</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total</strong> surface area of one piece of candy.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The total surface of the candy is coated in chocolate. It is known that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> gram of the chocolate covers an area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>240</mn><mo> </mo><msup><mtext>mm</mtext><mn>2</mn></msup></math>.</p>
<p>Calculate the weight of chocolate required to coat one piece of candy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>4</mn><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>6</mn><mn>2</mn></msup><mo>+</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>6</mn><mn>2</mn></msup></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>6</mn><mn>2</mn></msup></math> <em><strong>(M1)(A1)(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for use of surface area of a sphere formula (or curved surface area of a hemisphere), <em><strong>A1</strong></em> for substituting correct values into hemisphere formula, <em><strong>M1</strong></em> for adding the area of the circle.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>339</mn><mo> </mo><msup><mtext>mm</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>108</mn><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mn>339</mn><mo>.</mo><mn>292</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>339</mn><mo>.</mo><mn>292</mn><mo>…</mo></mrow><mn>240</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>41</mn><mo> </mo><mfenced><mtext>g</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mrow><mn>9</mn><mi mathvariant="normal">π</mi></mrow><mn>20</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>45</mn><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>41371</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, all lengths are in metres and time is in seconds.</strong></p>
<p>Consider two particles, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math>, which start to move at the same time.</p>
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> moves in a straight line such that its displacement from a fixed-point is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> also moves in a straight line. The position of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>.</p>
<p>The speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> is greater than the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mi>q</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing velocity is derivative of displacement <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mtext>d</mtext><mi>s</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mtext>d</mtext><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mfenced><mrow><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p>velocity<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>14</mn><mn>4</mn></mfrac><mi>t</mi><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></mfenced><mo> </mo><mo>,</mo><mo> </mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> , velocity<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p>correct speed <em><strong>(A1)</strong></em></p>
<p><em>eg </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>recognizing relationship between speed and velocity (may be seen in inequality/equation) <em><strong>R1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced></math> , speed = | velocity | , graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> speed , <img src=""> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi><mo> </mo><mo>,</mo><mo> </mo><msub><mi>P</mi><mn>2</mn></msub></math> velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>5</mn></math></p>
<p>correct inequality or equation that compares speed or velocity (accept any variable for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>) <em><strong>A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced><mo>></mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo><</mo><mo>-</mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo>></mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo>=</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math> (seconds) (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math> , do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math>) <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award the last two <em><strong>A1</strong></em> marks without the <em><strong>R1</strong></em>.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A farmer owns a triangular field <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math>. The length of side <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>85</mn><mo> </mo><mtext>m</mtext></math> and side <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AC</mtext><mo>]</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>110</mn><mo> </mo><mtext>m</mtext></math>. The angle between these two sides is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>55</mn><mo>°</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the field.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The farmer would like to divide the field into two equal parts by constructing a straight fence from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math>.</p>
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext></math>. Fully justify any assumptions you make.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>Area<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>110</mn><mo>×</mo><mn>85</mn><mo>×</mo><mi>sin</mi><mo> </mo><mn>55</mn><mo>°</mo></math> <strong>(M1)(A1)</strong></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3830</mn><mo> </mo><mfenced><mrow><mn>3829</mn><mo>.</mo><mn>53</mn><mo>…</mo></mrow></mfenced><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> units must be given for the final <strong>A1</strong> to be awarded.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>BC</mtext><mn>2</mn></msup><mo>=</mo><msup><mn>110</mn><mn>2</mn></msup><mo>+</mo><msup><mn>85</mn><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>×</mo><mn>110</mn><mo>×</mo><mn>85</mn><mo>×</mo><mi>cos</mi><mo> </mo><mn>55</mn><mo>°</mo></math> <strong>(M1)A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mn>92</mn><mo>.</mo><mn>7</mn><mo> </mo><mo>(</mo><mn>92</mn><mo>.</mo><mn>7314</mn><mo>…</mo><mo>)</mo><mo> </mo><mo>(</mo><mtext>m</mtext><mo>)</mo></math> <strong>A1</strong></p>
<p> </p>
<p><strong>METHOD 1</strong></p>
<p>Because the height and area of each triangle are equal they must have the same length base <strong>R1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> must be placed half-way along <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext><mo>=</mo><mfrac><mrow><mn>92</mn><mo>.</mo><mn>731</mn><mo>…</mo></mrow><mn>2</mn></mfrac><mo>≈</mo><mn>46</mn><mo>.</mo><mn>4</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> the final two marks are dependent on the <strong>R1</strong> being awarded.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mover><mtext>B</mtext><mo>^</mo></mover><mtext>A</mtext><mo>=</mo><mi>θ</mi><mo>°</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>sin</mi><mo> </mo><mi>θ</mi></mrow><mn>110</mn></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mi>sin</mi><mo> </mo><mn>55</mn><mo>°</mo></mstyle><mstyle displaystyle="true"><mn>92</mn><mo>.</mo><mn>731</mn><mo>…</mo></mstyle></mfrac></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>θ</mi><mo>=</mo><mn>76</mn><mo>.</mo><mn>3</mn><mo>°</mo><mo> </mo><mfenced><mrow><mn>76</mn><mo>.</mo><mn>3354</mn><mo>…</mo></mrow></mfenced></math></p>
<p>Use of area formula</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>85</mn><mo>×</mo><mtext>BD</mtext><mo>×</mo><mi>sin</mi><mfenced><mrow><mn>76</mn><mo>.</mo><mn>33</mn><mo>…</mo><mo>°</mo></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>3829</mn><mo>.</mo><mn>53</mn><mo>…</mo></mrow><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext><mo>=</mo><mn>46</mn><mo>.</mo><mn>4</mn><mo> </mo><mo>(</mo><mn>46</mn><mo>.</mo><mn>365</mn><mo>…</mo><mo>)</mo><mo> </mo><mo>(</mo><mtext>m</mtext><mo>)</mo></math> <strong>A1</strong> </p>
<p> </p>
<p><strong>[6 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mn>15</mn><mo> </mo><mtext>cm</mtext><mo>,</mo><mo> </mo><mtext>BC</mtext><mo>=</mo><mn>10</mn><mo> </mo><mtext>cm</mtext></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>B</mtext><mo>^</mo></mover><mtext>C</mtext><mo>=</mo><mi>θ</mi></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mtext>C</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>B</mtext><mo>^</mo></mover><mtext>C</mtext></math> is acute, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mfenced><mrow><mn>2</mn><mo>×</mo><mtext>C</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>B</mtext></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1 – (sine rule)</strong></p>
<p>evidence of choosing sine rule <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>sin</mi><mo> </mo><mover><mi>A</mi><mo>^</mo></mover></mrow><mi>a</mi></mfrac><mo>=</mo><mfrac><mrow><mi>sin</mi><mo> </mo><mover><mi>B</mi><mo>^</mo></mover></mrow><mi>b</mi></mfrac></math></p>
<p>correct substitution <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mfrac bevelled="true"><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mstyle><mn>10</mn></mfrac><mo>=</mo><mfrac><mrow><mi>sin</mi><mstyle displaystyle="true"><mo> </mo></mstyle><mstyle displaystyle="true"><mi>θ</mi></mstyle></mrow><mn>15</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>30</mn></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mi>sin</mi><mo> </mo><mi>θ</mi></mstyle><mn>15</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle><mstyle displaystyle="true"><mn>30</mn></mstyle></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mi>sin</mi><mo> </mo><mtext>B</mtext></mstyle><mn>15</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2 – (perpendicular from vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">C</mtext></math>)</strong></p>
<p>valid approach to find perpendicular length (may be seen on diagram) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <img src="">, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>h</mi><mn>15</mn></mfrac><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></math></p>
<p>correct perpendicular length <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>15</mn><msqrt><mn>3</mn></msqrt></mrow><mn>3</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mn>5</mn><msqrt><mn>3</mn></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award the final <em><strong>A</strong></em> mark if candidate goes on to state <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></math>, as this demonstrates a lack of understanding.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute into double-angle formula for cosine <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>2</mn><msup><mfenced><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>,</mo><mo> </mo><mo> </mo><mn>2</mn><msup><mfenced><mfrac><msqrt><mn>6</mn></msqrt><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo> </mo><msup><mfenced><mfrac><msqrt><mn>6</mn></msqrt><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>,</mo><mo> </mo><mo> </mo><mi>cos</mi><mo> </mo><mfenced><mrow><mn>2</mn><mi>θ</mi></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mn>2</mn><msup><mfenced><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mo>,</mo><mo> </mo><mo> </mo><mn>1</mn><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mfenced><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mfenced></math></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>2</mn><mo>×</mo><mfrac><mn>3</mn><mn>9</mn></mfrac><mo>,</mo><mo> </mo><mo> </mo><mn>2</mn><mo>×</mo><mfrac><mn>6</mn><mn>9</mn></mfrac><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo> </mo><mfrac><mn>6</mn><mn>9</mn></mfrac><mo>-</mo><mfrac><mn>3</mn><mn>9</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mn>2</mn><mo>×</mo><mtext>C</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>B</mtext></mrow></mfenced><mo>=</mo><mfrac><mn>3</mn><mn>9</mn></mfrac><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></mrow></mfenced></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A storage container consists of a box of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo> </mo><mtext>cm</mtext></math>, width <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>42</mn><mo> </mo><mtext>cm</mtext></math> and height <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>34</mn><mo> </mo><mtext>cm</mtext></math>, and a lid in the shape of a half-cylinder, as shown in the diagram. The lid fits the top of the box exactly. The total exterior surface of the storage container is to be painted.</p>
<p>Find the area to be painted.</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>90</mn><mo>×</mo><mn>34</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>6120</mn></mrow></mfenced></math> <strong>AND </strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>42</mn><mo>×</mo><mn>34</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2856</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>×</mo><mn>42</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>3780</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>21</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>21</mn><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>441</mn><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mn>1385</mn><mo>.</mo><mn>44</mn><mo>…</mo></mrow></mfenced></math> <em><strong> (M1)</strong></em></p>
<p>use of curved surface area formula <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>90</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>1890</mn><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mn>5937</mn><mo>.</mo><mn>61</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20100</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo>(</mo><mn>20079</mn><mo>.</mo><mn>0</mn><mo>…</mo><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Joey is making a party hat in the form of a cone. The hat is made from a sector, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math>, of a circular piece of paper with a radius of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>cm</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext><mo>=</mo><mi>θ</mi></math> as shown in the diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>To make the hat, sides <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[OA]</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[OB]</mtext></math> are joined together. The hat has a base radius of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>cm</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the perimeter of the base of the hat in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the surface area of the outside of the hat.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mi mathvariant="normal">π</mi><mo> </mo><mi>cm</mi></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Answer must be in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>.<br><br></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>θ</mi><mn>360</mn></mfrac><mo>×</mo><mn>2</mn><mi mathvariant="normal">π</mi><mfenced><mn>18</mn></mfenced><mo>=</mo><mn>13</mn><mi mathvariant="normal">π</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>θ</mi><mn>360</mn></mfrac><mo>×</mo><mn>2</mn><mi mathvariant="normal">π</mi><mfenced><mn>18</mn></mfenced><mo>=</mo><mn>40</mn><mo>.</mo><mn>8407</mn><mo>…</mo></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into length of an arc formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>θ</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>130</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>θ</mi><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>18</mn><mn>2</mn></msup><mo>=</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>18</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>θ</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>130</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>130</mn><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><msup><mfenced><mn>18</mn></mfenced><mn>2</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into area of a sector formula.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mfenced><mn>18</mn></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into curved area of a cone formula.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>(Area<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math>) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>368</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>367</mn><mo>.</mo><mn>566</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>117</mn><mi mathvariant="normal">π</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Allow <em><strong>FT</strong></em> from their part (a)(ii) even if their angle is not obtuse.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Although most candidates understood what to do in part (a), many of them wrote a decimal approximation instead and did not give their answer in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> as required in this part. Many candidates were able to use the length of arc formula in (a)(ii). Some candidates went wrong with this question by confusing between the two values: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cm</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>18</mn><mo> </mo><mi>cm</mi></math> for the radius. In part (b), although candidates were able to find the surface area of the outside of the hat, several added the surface area of the base to their calculation. A few candidates used the cosine rule to find chord <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>AB</mi></math> which was then used as the circumference of the base of the cone.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Although most candidates understood what to do in part (a), many of them wrote a decimal approximation instead and did not give their answer in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> as required in this part. Many candidates were able to use the length of arc formula in (a)(ii). Some candidates went wrong with this question by confusing between the two values: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cm</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>18</mn><mo> </mo><mi>cm</mi></math> for the radius. In part (b), although candidates were able to find the surface area of the outside of the hat, several added the surface area of the base to their calculation. A few candidates used the cosine rule to find chord <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>AB</mi></math> which was then used as the circumference of the base of the cone.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Although most candidates understood what to do in part (a), many of them wrote a decimal approximation instead and did not give their answer in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> as required in this part. Many candidates were able to use the length of arc formula in (a)(ii). Some candidates went wrong with this question by confusing between the two values: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cm</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>18</mn><mo> </mo><mi>cm</mi></math> for the radius. In part (b), although candidates were able to find the surface area of the outside of the hat, several added the surface area of the base to their calculation. A few candidates used the cosine rule to find chord <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>AB</mi></math> which was then used as the circumference of the base of the cone.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>There are four stations used by the fire wardens in a national forest.</p>
<p>On the following Voronoi diagram, the coordinates of the stations are <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mn>6</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo><mo>,</mo><mo> </mo><mtext>B</mtext><mo>(</mo><mn>14</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo><mo>,</mo><mo> </mo><mtext>C</mtext><mo>(</mo><mn>18</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mo>(</mo><mn>10</mn><mo>.</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>11</mn><mo>.</mo><mn>6</mn><mo>)</mo></math> where distances are measured in kilometres.</p>
<p>The dotted lines represent the boundaries of the regions patrolled by the fire warden at each station. The boundaries meet at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mn>10</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext><mo>(</mo><mn>13</mn><mo>,</mo><mo> </mo><mn>7</mn><mo>)</mo></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>To reduce the areas of the regions that the fire wardens patrol, a new station is to be built within the quadrilateral <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCD</mtext></math>. The new station will be located so that it is as far as possible from the nearest existing station.</p>
</div>
<div class="specification">
<p>The Voronoi diagram is to be updated to include the region around the new station at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>. The edges defined by the perpendicular bisectors of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AP]</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BP]</mtext></math> have been added to the following diagram.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the new station should be built at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[PC]</mtext></math>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence draw the missing boundaries of the region around <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> on the following diagram.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(the best placement is either point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> or point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>)<br>attempt at using the distance formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AP</mtext><mo>=</mo><msqrt><msup><mfenced><mrow><mn>10</mn><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>6</mn><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> <strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BP</mtext><mo>=</mo><msqrt><msup><mfenced><mrow><mn>10</mn><mo>-</mo><mn>14</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>6</mn><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> <strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DP</mtext><mo>=</mo><msqrt><msup><mfenced><mrow><mn>10</mn><mo>-</mo><mn>10</mn><mo>.</mo><mn>8</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>6</mn><mo>-</mo><mn>11</mn><mo>.</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> <strong>OR</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BQ</mtext><mo>=</mo><msqrt><msup><mfenced><mrow><mn>13</mn><mo>-</mo><mn>14</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>7</mn><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> OR</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CQ</mtext><mo>=</mo><msqrt><msup><mfenced><mrow><mn>13</mn><mo>-</mo><mn>18</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>7</mn><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> OR</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DQ</mtext><mo>=</mo><msqrt><msup><mfenced><mrow><mn>13</mn><mo>-</mo><mn>10</mn><mo>.</mo><mn>8</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>7</mn><mo>-</mo><mn>11</mn><mo>.</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> </strong></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AP</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BP</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DP</mtext></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math>) <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>32</mn></msqrt><mo>=</mo><mn>5</mn><mo>.</mo><mn>66</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>65685</mn><mo>…</mo></mrow></mfenced></math> <strong>AND</strong></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BQ</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CQ</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DQ</mtext></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math>) <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>26</mn></msqrt><mo>=</mo><mn>5</mn><mo>.</mo><mn>10</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>09901</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>32</mn></msqrt><mo>></mo><msqrt><mn>26</mn></msqrt></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AP</mtext></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BP</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DP</mtext></math>) is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BQ</mtext></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CQ</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DQ</mtext></math>) <em><strong>A1</strong></em></p>
<p>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is the furthest away <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Follow through from their values provided their <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AP</mtext></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BP</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DP</mtext></math>) is greater than their <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BQ</mtext></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CQ</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DQ</mtext></math>).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>14</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct straight line. Do not <em><strong>FT</strong></em> from their part (b)(i).<br><br></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a) many candidates realized that distances were required. Many candidates seemed to have an idea about Voronoi diagrams. However, several candidates did not realize that they had to consider point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">Q</mi></math> as well in their comparison. Hence, several candidates only calculated distances from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">P</mi></math>. The numerical comparison of the distance from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">P</mi><mo> </mo><mfenced><mrow><mi>AP</mi><mo>/</mo><mi>BP</mi><mo>/</mo><mi>DP</mi></mrow></mfenced></math> and from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">Q</mi><mo> </mo><mfenced><mrow><mi>BQ</mi><mo>/</mo><mi>CQ</mi><mo>/</mo><mi>DQ</mi></mrow></mfenced></math> need to be clearly shown. It was a pity to see that some candidates lost marks due to incorrect rounding of the values to three significant figures. The most common error being <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>09</mn></math>. In part (b)(i) not many candidates seemed to understand what was required. A significant number of candidates wrote down the equation of the line through <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>PC</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn></math>, rather than the required line. In part (b)(ii), it seemed that much time was lost as many candidates attempted to find the equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>DP</mi></math> to draw the boundaries.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (a) many candidates realized that distances were required. Many candidates seemed to have an idea about Voronoi diagrams. However, several candidates did not realize that they had to consider point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">Q</mi></math> as well in their comparison. Hence, several candidates only calculated distances from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">P</mi></math>. The numerical comparison of the distance from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">P</mi><mo> </mo><mfenced><mrow><mi>AP</mi><mo>/</mo><mi>BP</mi><mo>/</mo><mi>DP</mi></mrow></mfenced></math> and from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">Q</mi><mo> </mo><mfenced><mrow><mi>BQ</mi><mo>/</mo><mi>CQ</mi><mo>/</mo><mi>DQ</mi></mrow></mfenced></math> need to be clearly shown. It was a pity to see that some candidates lost marks due to incorrect rounding of the values to three significant figures. The most common error being <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>09</mn></math>. In part (b)(i) not many candidates seemed to understand what was required. A significant number of candidates wrote down the equation of the line through <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>PC</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn></math>, rather than the required line. In part (b)(ii), it seemed that much time was lost as many candidates attempted to find the equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>DP</mi></math> to draw the boundaries.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (a) many candidates realized that distances were required. Many candidates seemed to have an idea about Voronoi diagrams. However, several candidates did not realize that they had to consider point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">Q</mi></math> as well in their comparison. Hence, several candidates only calculated distances from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">P</mi></math>. The numerical comparison of the distance from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">P</mi><mo> </mo><mfenced><mrow><mi>AP</mi><mo>/</mo><mi>BP</mi><mo>/</mo><mi>DP</mi></mrow></mfenced></math> and from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">Q</mi><mo> </mo><mfenced><mrow><mi>BQ</mi><mo>/</mo><mi>CQ</mi><mo>/</mo><mi>DQ</mi></mrow></mfenced></math> need to be clearly shown. It was a pity to see that some candidates lost marks due to incorrect rounding of the values to three significant figures. The most common error being <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>09</mn></math>. In part (b)(i) not many candidates seemed to understand what was required. A significant number of candidates wrote down the equation of the line through <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>PC</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn></math>, rather than the required line. In part (b)(ii), it seemed that much time was lost as many candidates attempted to find the equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>DP</mi></math> to draw the boundaries.</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question">
<p>The front view of a doghouse is made up of a square with an isosceles triangle on top.</p>
<p>The doghouse is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>35</mn><mo> </mo><mtext>m</mtext></math> high and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>9</mn><mo> </mo><mtext>m</mtext></math> wide, and sits on a square base.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The top of the rectangular surfaces of the roof of the doghouse are to be painted.</p>
<p>Find the area to be painted.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>height of triangle at roof <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>35</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>9</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn></math> <em><strong>(</strong><strong>A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>45</mn></math> (height of triangle) seen on the diagram.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>slant height</mtext><mo>=</mo><msqrt><mn>0</mn><mo>.</mo><msup><mn>45</mn><mn>2</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><msup><mn>45</mn><mn>2</mn></msup></msqrt></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mn>45</mn><mo>°</mo></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn></mrow><mtext>slant height</mtext></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><mn>0</mn><mo>.</mo><mn>405</mn></msqrt><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>636396</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>45</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> If using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mn>45</mn><mo>°</mo></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn></mrow><mtext>slant height</mtext></mfrac></math> then <em><strong>(A1)</strong></em> for angle of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn><mo>°</mo></math>, <em><strong>(M1)</strong></em> for a correct trig statement.</p>
<p><br>area of one rectangle on roof <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><mn>0</mn><mo>.</mo><mn>405</mn></msqrt><mo>×</mo><mn>0</mn><mo>.</mo><mn>9</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>572756</mn><mo>…</mo></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p>area painted <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>2</mn><mo>×</mo><msqrt><mn>0</mn><mo>.</mo><mn>405</mn></msqrt><mo>×</mo><mn>0</mn><mo>.</mo><mn>9</mn><mo> </mo><mo>=</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>572756</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>15</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>14551</mn><mo>…</mo><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>81</mn><msqrt><mn>2</mn></msqrt><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Although the first question on the paper, with appropriate low-level mathematics, the interpretation required seems to have been quite high, and many candidates found this challenging. Many candidates scored only the one mark for the height of the triangle. The most common wrong method seen was calculation of the area of the triangle and adding their result to the calculation 2 × 0.9 × 0.9. Stronger candidates lost the final mark either through premature rounding or incorrect units; both are aspects that can and do occur throughout candidate responses and hence clearly require focus in the classroom.</p>
</div>
<br><hr><br><div class="specification">
<p>The owner of a convenience store installs two security cameras, represented by points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C1</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C2</mtext></math>. Both cameras point towards the centre of the store’s cash register, represented by the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math>.</p>
<p>The following diagram shows this information on a cross-section of the store.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The cameras are positioned at a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>1</mn><mo> </mo><mtext>m</mtext></math>, and the horizontal distance between the cameras is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>4</mn><mo> </mo><mtext>m</mtext></math>. The cash register is sitting on a counter so that its centre, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math>, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>m</mtext></math> above the floor.</p>
<p>The distance from Camera <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> to the centre of the cash register is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>8</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the angle of depression from Camera <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> to the centre of the cash register. Give your answer in degrees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the distance from Camera <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> to the centre of the cash register.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Without further calculation, determine which camera has the largest angle of depression to the centre of the cash register. Justify your response.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>8</mn></mrow></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>85202</mn><mo>…</mo></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>θ</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>48</mn><mo>.</mo><mn>6</mn><mo>°</mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>48</mn><mo>.</mo><mn>5903</mn><mo>…</mo><mo>°</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn><mo>.</mo><msup><mn>8</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup></msqrt></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>8</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mn>48</mn><mo>.</mo><mn>5903</mn><mo>…</mo></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>1</mn></mrow><mrow><mi>tan</mi><mfenced><mrow><mn>48</mn><mo>.</mo><mn>5903</mn><mo>…</mo></mrow></mfenced></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempt to use Pythagorean Theorem with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>1</mn></math> seen or for attempt to use cosine or tangent ratio.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>85</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>85202</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award the <em><strong>M1A1</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>85</mn></math> is seen in part (a).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>6</mn><mo>.</mo><mn>4</mn><mo>-</mo><mn>1</mn><mo>.</mo><mn>85202</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>55</mn><mo> </mo><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>54797</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>55</mn></math> or equivalent seen, either as a separate calculation or in Pythagorean Theorem.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mfenced><mrow><mn>4</mn><mo>.</mo><mn>54797</mn><mo>…</mo></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>01</mn><mo> </mo><mtext>m</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>00939</mn><mo>…</mo><mo> </mo><mtext>m</mtext></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to use cosine rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>=</mo></mrow></mfenced><mo> </mo><mn>2</mn><mo>.</mo><msup><mn>8</mn><mn>2</mn></msup><mo>+</mo><mn>6</mn><mo>.</mo><msup><mn>4</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mn>2</mn><mo>.</mo><mn>8</mn></mrow></mfenced><mfenced><mrow><mn>6</mn><mo>.</mo><mn>4</mn></mrow></mfenced><mo> </mo><mi>cos</mi><mo> </mo><mfenced><mrow><mn>48</mn><mo>.</mo><mn>5903</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>48</mn><mo>.</mo><mn>5903</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>°</mo></math> substituted into cosine rule formula, <em><strong>A1</strong> </em>for correct substitution.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>c</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>5</mn><mo>.</mo><mn>01</mn><mo> </mo><mtext>m</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>00939</mn><mo>…</mo><mo> </mo><mtext>m</mtext></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>camera <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> is closer to the cash register (than camera <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> and both cameras are at the same height on the wall) <em><strong>R1</strong></em></p>
<p>the larger angle of depression is from camera <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not award <em><strong>R0A1</strong></em>. Award <em><strong>R0A0</strong></em> if additional calculations are completed and used in their justification, as per the question. Accept “<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>85</mn><mo><</mo><mn>4</mn><mo>.</mo><mn>55</mn></math>” or “<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>8</mn><mo><</mo><mn>5</mn><mo>.</mo><mn>01</mn></math>” as evidence for the <em><strong>R1</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates calculated the angle from vertical rather than the angle of depression.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates could successfully use their vertical angle from (a) or other correct trigonometry, such as Pythagorean theorem or cosine rule, to find the distance from camera 2 to the cash register. This question is a good example of how premature rounding can affect a final answer, and some had an inaccurate final answer because they had rounded intermediate values.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many provided reasonable justification for their response, even though they often followed correct reasoning with an incorrect conclusion about the larger angle of depression.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An inclined railway travels along a straight track on a steep hill, as shown in the diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The locations of the stations on the railway can be described by coordinates in reference to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>-axes, where the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes are in the horizontal plane and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>-axis is vertical.</p>
<p>The ground level station <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>140</mn><mo>,</mo><mo> </mo><mn>15</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> and station <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, located near the top of the hill, has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>20</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>,</mo><mo> </mo><mn>250</mn><mo>)</mo></math>. All coordinates are given in metres.</p>
</div>
<div class="specification">
<p>Station <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> is to be built halfway between stations <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance between stations <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of station <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the height of station <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math>, in metres, above the ground.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt at substitution into 3D distance formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><msqrt><msup><mfenced><mrow><mn>140</mn><mo>-</mo><mn>20</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>15</mn><mo>-</mo><mn>5</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>250</mn><mn>2</mn></msup></msqrt><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>77</mn><mo> </mo><mn>000</mn></msqrt></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>277</mn><mo> </mo><mtext>m</mtext><mo> </mo><mo> </mo><mfenced><mrow><mn>10</mn><msqrt><mn>770</mn></msqrt><mo>,</mo><mo> </mo><mn>277</mn><mo>.</mo><mn>488</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt at substitution in the midpoint formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mn>140</mn><mo>+</mo><mn>20</mn></mrow><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>15</mn><mo>+</mo><mn>5</mn></mrow><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>+</mo><mn>250</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>80</mn><mo>,</mo><mo> </mo><mn>10</mn><mo>,</mo><mo> </mo><mn>125</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>125</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Points A(3, 1), B(3, 5), C(11, 7), D(9, 1) and E(7, 3) represent snow shelters in the Blackburn National Forest. These snow shelters are illustrated in the following coordinate axes.</p>
<p>Horizontal scale: 1 unit represents 1 km.</p>
<p>Vertical scale: 1 unit represents 1 km.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The Park Ranger draws three straight lines to form an incomplete Voronoi diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the gradient of the line segment AE.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line which would complete the Voronoi cell containing site E.</p>
<p>Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + d = 0">
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mi>y</mi>
<mo>+</mo>
<mi>d</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{Z}">
<mi>d</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the question, explain the significance of the Voronoi cell containing site E.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3 - 1}}{{7 - 3}}">
<mfrac>
<mrow>
<mn>3</mn>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>7</mn>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(</strong></em><em><strong>M1)</strong></em></p>
<p>= 0.5 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 2 = - 2\left( {x - 5} \right)">
<mi>y</mi>
<mo>−</mo>
<mn>2</mn>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em> <em><strong>(M1)</strong></em></p>
<p><strong>Note</strong>: Award <em><strong>(A1)</strong></em> for their −2 seen, award <em><strong>(M1)</strong></em> for the correct substitution of (5, 2) and their normal gradient in equation of a line.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x + y - 12 = 0">
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>−</mo>
<mn>12</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>every point in the cell is closer to E than any other snow shelter <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A garden includes a small lawn. The lawn is enclosed by an arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math> of a circle with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mtext>m</mtext></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext><mo>=</mo><mn>135</mn><mo>°</mo><mo> </mo></math>. The straight border of the lawn is defined by chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>.</p>
<p>The lawn is shown as the shaded region in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A footpath is to be laid around the curved side of the lawn. Find the length of the footpath.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the lawn.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>135</mn><mo>°</mo><mo>×</mo><mfrac><mrow><mn>12</mn><mi mathvariant="normal">π</mi></mrow><mrow><mn>360</mn><mo>°</mo></mrow></mfrac></math> <em><strong>(M1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn><mo>.</mo><mn>1</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>14</mn><mo>.</mo><mn>1371</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of splitting region into two areas <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>135</mn><mo>°</mo><mo>×</mo><mfrac><mrow><mi mathvariant="normal">π</mi><msup><mn>6</mn><mn>2</mn></msup></mrow><mrow><mn>360</mn><mo>°</mo></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>6</mn><mo>×</mo><mn>6</mn><mo>×</mo><mi>sin</mi><mo> </mo><mn>135</mn><mo>°</mo></mrow><mn>2</mn></mfrac></math> <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>M1</strong></em> for correctly substituting into area of sector formula, <em><strong>M1</strong></em> for evidence of substituting into area of triangle formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>42</mn><mo>.</mo><mn>4115</mn><mo>…</mo><mo>-</mo><mn>12</mn><mo>.</mo><mn>7279</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>29</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>29</mn><mo>.</mo><mn>6835</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Ollie has installed security lights on the side of his house that are activated by a sensor. The sensor is located at point C directly above point D. The area covered by the sensor is shown by the shaded region enclosed by triangle ABC. The distance from A to B is 4.5 m and the distance from B to C is 6 m. Angle AĈB is 15°.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find CÂB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point B on the ground is 5 m from point E at the entrance to Ollie’s house. He is 1.8 m tall and is standing at point D, below the sensor. He walks towards point B.</p>
<p>Find the distance Ollie is <strong>from the entrance to his house</strong> when he first activates the sensor.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{sin}}\,{\text{C}}\mathop {\text{A}}\limits^ \wedge {\text{B}}}}{6} = \frac{{{\text{sin}}\,15^\circ }}{{4.5}}">
<mfrac>
<mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>C</mtext>
</mrow>
<mover>
<mrow>
<mtext>A</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>B</mtext>
</mrow>
</mrow>
<mn>6</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<msup>
<mn>15</mn>
<mo>∘</mo>
</msup>
</mrow>
<mrow>
<mn>4.5</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)(A1)</strong></em></p>
<p>CÂB = 20.2º (20.187415…) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted sine rule formula and award <em><strong>(A1)</strong></em> for correct substitutions.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}\mathop {\text{B}}\limits^ \wedge {\text{D}} = 20.2 + 15 = 35.2^\circ ">
<mrow>
<mtext>C</mtext>
</mrow>
<mover>
<mrow>
<mtext>B</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>D</mtext>
</mrow>
<mo>=</mo>
<mn>20.2</mn>
<mo>+</mo>
<mn>15</mn>
<mo>=</mo>
<msup>
<mn>35.2</mn>
<mo>∘</mo>
</msup>
</math></span> <em><strong>A1</strong></em></p>
<p><em>(let X be the point on BD where Ollie activates the sensor)</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,35.18741 \ldots ^\circ = \frac{{1.8}}{{{\text{BX}}}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>35.18741</mn>
<msup>
<mo>…</mo>
<mo>∘</mo>
</msup>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1.8</mn>
</mrow>
<mrow>
<mrow>
<mtext>BX</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong><em>A1</em> </strong>for their correct angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}\mathop {\text{B}}\limits^ \wedge {\text{D}}">
<mrow>
<mtext>C</mtext>
</mrow>
<mover>
<mrow>
<mtext>B</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>D</mtext>
</mrow>
</math></span>. Award <em><strong>M1</strong> </em>for correctly substituted trigonometric formula.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BX}} = 2.55285 \ldots ">
<mrow>
<mtext>BX</mtext>
</mrow>
<mo>=</mo>
<mn>2.55285</mn>
<mo>…</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5 - 2.55285 \ldots ">
<mn>5</mn>
<mo>−</mo>
<mn>2.55285</mn>
<mo>…</mo>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 2.45 (m) (2.44714…) <em><strong>A1</strong></em> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The diagram below is part of a Voronoi diagram.</p>
<p style="text-align: center;"><img src=""><strong>Diagram not to scale</strong></p>
<p><em>A</em> and <em>B</em> are sites with <em>B</em> having the co-ordinates of (4, 6). <em>L</em> is an edge; the equation of this perpendicular bisector of the line segment from <em>A</em> to <em>B</em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 2x + 9">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>9</mn>
</math></span></p>
<p>Find the co-ordinates of the point <em>A</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>Line from <em>A</em> to <em>B</em> will have the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{2}x + c">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span><em><strong> M1A1</strong></em></p>
<p>Through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {4{\text{,}}\,\,6} \right) \Rightarrow c = 4">
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">⇒</mo>
<mi>c</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> so line is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{2}x + 4">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
</math></span><em><strong> M1A1</strong></em></p>
<p>Intersection of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 2x + 9">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>9</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{2}x + 4">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
</math></span> is (2, 5)<em><strong> M1A1</strong></em></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \left( {p{\text{,}}\,\,q} \right)">
<mi>A</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>p</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> then <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {2{\text{,}}\,\,5} \right) = \left( {\frac{{p + 4}}{2},\frac{{q + 6}}{2}} \right) \Rightarrow p = 0{\text{,}}\,\,q = 4">
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>p</mi>
<mo>+</mo>
<mn>4</mn>
</mrow>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mfrac>
<mrow>
<mi>q</mi>
<mo>+</mo>
<mn>6</mn>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">⇒</mo>
<mi>p</mi>
<mo>=</mo>
<mn>0</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
<mo>=</mo>
<mn>4</mn>
</math></span><em><strong> M1A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \left( {0,4} \right)">
<mi>A</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>,</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> </p>
<p style="text-align: left;"><em><strong>[9 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The Bermuda Triangle is a region of the Atlantic Ocean with Miami <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtext>M</mtext></mfenced></math>, Bermuda <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtext>B</mtext></mfenced></math>, and San Juan <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtext>S</mtext></mfenced></math> as vertices, as shown on the diagram.</p>
<p style="padding-left: 120px;"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The distances between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>S</mtext></math> are given in the following table, correct to three significant figures.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>, the measure of angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>MŜB</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the Bermuda Triangle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt at substituting the cosine rule formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mn>1660</mn><mn>2</mn></msup><mo>+</mo><msup><mn>1550</mn><mn>2</mn></msup><mo>-</mo><msup><mn>1670</mn><mn>2</mn></msup></mrow><mrow><mn>2</mn><mfenced><mn>1660</mn></mfenced><mfenced><mn>1550</mn></mfenced></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>θ</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>62</mn><mo>.</mo><mn>6</mn><mo>°</mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>62</mn><mo>.</mo><mn>5873</mn><mo>…</mo></mrow></mfenced></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>09</mn></math> rad <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>.</mo><mn>09235</mn><mo>…</mo></mrow></mfenced></math>) <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correctly substituted area of triangle formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mn>1660</mn></mfenced><mfenced><mn>1550</mn></mfenced><mi>sin</mi><mfenced><mrow><mn>62</mn><mo>.</mo><mn>5873</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>1140</mn><mo> </mo><mn>000</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>14</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>,</mo><mo> </mo><mn>1142</mn><mo> </mo><mn>043</mn><mo>.</mo><mn>327</mn><mo>…</mo></mrow></mfenced><mo> </mo><msup><mtext>km</mtext><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note: </strong>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1150</mn><mo> </mo><mn>000</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>15</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>,</mo><mo> </mo><mn>1146</mn><mo> </mo><mn>279</mn><mo>.</mo><mn>893</mn><mo>…</mo></mrow></mfenced><mo> </mo><msup><mtext>km</mtext><mn>2</mn></msup></math> from use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>63</mn><mo>°</mo></math>. Other angles and their corresponding sides may be used.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were successful at selecting the cosine rule formula in part (a). In most cases, the cosine rule formula was correctly substituted. Some candidates found it hard to choose the correct side to obtain the required angle. Most of the candidates scored one or two marks out of three in this part. In part (b) some candidates assumed the triangle was right angled and used <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>b</mi><mi>h</mi></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mi>b</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>C</mi></math>. In part (b) many candidates who answered part (a) incorrectly were able to recover. Many candidates managed to score full marks in this part despite an incorrect answer in part (a). Some found angle <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>BMS</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>SBM</mi></math> in part (a) but used the correct sides to obtain the correct area. Final answers given in calculator notations (such as <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1</mn><mo>.</mo><mn>14</mn><mi mathvariant="normal">E</mi><mn>10</mn></math>) scored at most one mark out of two. Calculator notation should generally be avoided; it is considered too informal to earn A marks, and although it can imply a method and earn M marks, we advise that candidates still provide the necessary commentary to support any GDC notation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were successful at selecting the cosine rule formula in part (a). In most cases, the cosine rule formula was correctly substituted. Some candidates found it hard to choose the correct side to obtain the required angle. Most of the candidates scored one or two marks out of three in this part. In part (b) some candidates assumed the triangle was right angled and used <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>b</mi><mi>h</mi></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mi>b</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>C</mi></math>. In part (b) many candidates who answered part (a) incorrectly were able to recover. Many candidates managed to score full marks in this part despite an incorrect answer in part (a). Some found angle <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>BMS</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>SBM</mi></math> in part (a) but used the correct sides to obtain the correct area. Final answers given in calculator notations (such as <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1</mn><mo>.</mo><mn>14</mn><mi mathvariant="normal">E</mi><mn>10</mn></math>) scored at most one mark out of two. Calculator notation should generally be avoided; it is considered too informal to earn A marks, and although it can imply a method and earn M marks, we advise that candidates still provide the necessary commentary to support any GDC notation.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OA}}}\limits^ \to = \left( \begin{gathered} 2 \hfill \\ 1 \hfill \\ 3 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>OA</mtext>
</mrow>
</mrow>
<mo stretchy="false">→<!-- → --></mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered} 1 \hfill \\ 3 \hfill \\ 1 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>AB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→<!-- → --></mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>, where O is the origin. <em>L</em><sub>1</sub> is the line that passes through A and B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <em>L</em><sub>1</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 2 \hfill \\ p \hfill \\ 0 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to ">
<mover>
<mrow>
<mrow>
<mtext>AB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</math></span>. Find the value of <em>p</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>any correct equation in the form <em><strong>r</strong> = <strong>a</strong> + t<strong>b</strong></em> (accept any parameter for <em>t</em>)</p>
<p>where <strong><em>a</em></strong> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 2 \hfill \\ 1 \hfill \\ 3 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>, and <strong><em>b</em></strong> is a scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 1 \hfill \\ 3 \hfill \\ 1 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A2 N2</strong></em></p>
<p>eg <em><strong>r</strong> = </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 2 \hfill \\ 1 \hfill \\ 3 \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} 1 \hfill \\ 3 \hfill \\ 1 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>, <em><strong>r</strong> = 2<strong>i</strong> + <strong>j</strong> + 3<strong>k</strong> + s</em>(<em><strong>i</strong> + 3<strong>j</strong> + <strong>k</strong></em>)</p>
<p><strong>Note:</strong> Award<em><strong> A1</strong></em> for the form<em> <strong>a</strong> + t<strong>b</strong>, <strong>A1 </strong></em>for the form<em> L = <strong>a</strong> + t<strong>b</strong></em>, A0 for the form <em><strong>r</strong> = <strong>b</strong> + t<strong>a</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>correct scalar product <em><strong>(A1)</strong></em></p>
<p><em>eg </em> (1 × 2) + (3 × <em>p</em>) + (1 × 0), 2 + 3<em>p</em></p>
<p>evidence of equating <strong>their</strong> scalar product to zero <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <em><strong>a•b</strong></em> = 0, 2 + 3p = 0, 3<em>p</em> = −2</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = - \frac{2}{3}">
<mi>p</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>valid attempt to find angle between vectors <em><strong>(M1)</strong></em></p>
<p>correct substitution into numerator and/or angle <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{{\left( {1 \times 2} \right) + \left( {3 \times p} \right) + \left( {1 \times 0} \right)}}{{\left| a \right|\left| b \right|}},\,\,{\text{cos}}\,\theta = 0">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>×</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mi>p</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>×</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mo>|</mo>
<mi>a</mi>
<mo>|</mo>
</mrow>
<mrow>
<mo>|</mo>
<mi>b</mi>
<mo>|</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = - \frac{2}{3}">
<mi>p</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The position vectors of points P and Q are <strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 2 <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−<!-- − --></mo>
</math></span> <strong><em>k </em></strong>and 7<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 3<strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−<!-- − --></mo>
</math></span> 4<strong><em>k </em></strong>respectively.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of the line that passes through P and Q.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line through P and Q is perpendicular to the vector 2<strong><em>i </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>n</em><strong><em>k</em></strong>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid attempt to find direction vector <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PQ}}} ,{\text{ }}\overrightarrow {{\text{QP}}} ">
<mover>
<mrow>
<mtext>PQ</mtext>
</mrow>
<mo>→</mo>
</mover>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mover>
<mrow>
<mtext>QP</mtext>
</mrow>
<mo>→</mo>
</mover>
</math></span></p>
<p>correct direction vector (or multiple of) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>6<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 3<strong><em>k</em></strong></p>
<p><strong>any </strong>correct equation in the form <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em><strong><em>b </em></strong>(any parameter for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>) <strong><em>A2 N3</em></strong></p>
<p>where <strong><em>a </em></strong>is <strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 2<strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> <strong><em>k</em></strong> or 7<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 3<strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 4<strong><em>k </em></strong>, and <strong><em>b </em></strong>is a scalar multiple of 6<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 3<strong><em>k</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> 7<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 3<strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 4<strong><em>k</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em>(6<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 3<strong><em>k</em></strong>), <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} {1 + 6s} \\ {2 + 1s} \\ { - 1 - 3s} \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} { - 6} \\ { - 1} \\ 3 \end{array}} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mn>6</mn>
<mi>s</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>2</mn>
<mo>+</mo>
<mn>1</mn>
<mi>s</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>s</mi>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>r</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>A1 </em></strong>for the form <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em><strong><em>b</em></strong>, <strong><em>A1 </em></strong>for the form <strong><em>L</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em><strong><em>b</em></strong>, <strong><em>A0 </em></strong>for the form <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em><strong><em>a</em></strong>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct expression for scalar product <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 \times 2 + 1 \times 0 + ( - 3) \times n,{\text{ }} - 3n + 12">
<mn>6</mn>
<mo>×</mo>
<mn>2</mn>
<mo>+</mo>
<mn>1</mn>
<mo>×</mo>
<mn>0</mn>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mi>n</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>n</mi>
<mo>+</mo>
<mn>12</mn>
</math></span></p>
<p>setting scalar product equal to zero (seen anywhere) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong><em>u</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
<mo>∙</mo>
</math></span> <strong><em>v</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0,{\text{ }} - 3n + 12 = 0">
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>n</mi>
<mo>+</mo>
<mn>12</mn>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 4">
<mi>n</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Money boxes are coin containers used by children and come in a variety of shapes. The money box shown is in the shape of a cylinder. It has a radius of 4.43 cm and a height of 12.2 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the money box.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second money box is in the shape of a sphere and has the same volume as the cylindrical money box.</p>
<p style="text-align: center;"><img src=""></p>
<p>Find the diameter of the second money box.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(<em>V</em> =) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {\left( {4.43} \right)^2} \times 12.2">
<mi>π</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>4.43</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>12.2</mn>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for substitution into volume of a cylinder formula, <strong><em>(A1)</em></strong> for correct substitution.</p>
<p>752 cm<sup>3</sup> (752.171…cm<sup>3</sup>) <strong><em>(A1)</em></strong><strong><em>(C3)</em></strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="752.171 \ldots = \frac{4}{3}\pi {\left( r \right)^3}">
<mn>752.171</mn>
<mo>…</mo>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mi>r</mi>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for equating their volume to the volume of a sphere formula.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {r = } \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>r</mi>
<mo>=</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> 5.64169…cm <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {d = } \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>d</mi>
<mo>=</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> 11.3 cm (11.2833…cm) <strong><em>(A1)</em>(ft)<em> </em></strong><strong><em>(C3)</em></strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A solid right circular cone has a base radius of 21 cm and a slant height of 35 cm.<br>A smaller right circular cone has a height of 12 cm and a slant height of 15 cm, and is removed from the top of the larger cone, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question">
<p>Calculate the radius of the base of the cone which has been removed.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{15}^2} - {{12}^2}} ">
<msqrt>
<mrow>
<msup>
<mrow>
<mn>15</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mn>12</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span> <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into Pythagoras theorem.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{radius}}}}{{21}} = \frac{{15}}{{35}}">
<mfrac>
<mrow>
<mrow>
<mtext>radius</mtext>
</mrow>
</mrow>
<mrow>
<mn>21</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>35</mn>
</mrow>
</mfrac>
</math></span> <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for a correct equation.</p>
<p>= 9 (cm) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Emily’s kite ABCD is hanging in a tree. The plane ABCDE is vertical.</p>
<p>Emily stands at point E at some distance from the tree, such that EAD is a straight line and angle BED = 7°. Emily knows BD = 1.2 metres and angle BDA = 53°, as shown in the diagram</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_18.18.28.png" alt="N17/5/MATSD/SP1/ENG/TZ0/10"></p>
</div>
<div class="specification">
<p>T is a point at the base of the tree. ET is a horizontal line. The angle of elevation of A from E is 41°.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of EB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the angle of elevation of B from E.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vertical height of B above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>Units are required in parts (a) and (c).</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{EB}}}}{{\sin 53{\rm{^\circ }}}} = \frac{{1.2}}{{\sin 7{\rm{^\circ }}}}"> <mfrac> <mrow> <mrow> <mtext>EB</mtext> </mrow> </mrow> <mrow> <mi>sin</mi> <mo></mo> <mn>53</mn> <mrow> <mrow> <msup> <mi></mi> <mo>∘</mo> </msup> </mrow> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> </mrow> <mrow> <mi>sin</mi> <mo></mo> <mn>7</mn> <mrow> <mrow> <msup> <mi></mi> <mo>∘</mo> </msup> </mrow> </mrow> </mrow> </mfrac> </math></span> <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution into sine formula, <strong><em>(A1) </em></strong>for correct substitution.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({\text{EB}} = ){\text{ }}7.86{\text{ m}}"> <mo stretchy="false">(</mo> <mrow> <mtext>EB</mtext> </mrow> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>7.86</mn> <mrow> <mtext> m</mtext> </mrow> </math></span><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><strong>OR</strong><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="786{\text{ cm }}(7.86385 \ldots {\text{ m}}"> <mn>786</mn> <mrow> <mtext> cm </mtext> </mrow> <mo stretchy="false">(</mo> <mn>7.86385</mn> <mo>…</mo> <mrow> <mtext> m</mtext> </mrow> </math></span><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><strong>OR</strong><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="786.385 \ldots {\text{ cm}})"> <mn>786.385</mn> <mo>…</mo> <mrow> <mtext> cm</mtext> </mrow> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1) (C3)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>34° <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Units are required in parts (a) and (c).</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 34^\circ = \frac{{{\text{height}}}}{{7.86385 \ldots }}">
<mi>sin</mi>
<mo></mo>
<msup>
<mn>34</mn>
<mo>∘</mo>
</msup>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>height</mtext>
</mrow>
</mrow>
<mrow>
<mn>7.86385</mn>
<mo>…</mo>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into a trigonometric ratio.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({\text{height}} = ){\text{ }}4.40{\text{ m}}">
<mo stretchy="false">(</mo>
<mrow>
<mtext>height</mtext>
</mrow>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>4.40</mn>
<mrow>
<mtext> m</mtext>
</mrow>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="440{\text{ cm }}(4.39741 \ldots {\text{ m}}">
<mn>440</mn>
<mrow>
<mtext> cm </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>4.39741</mn>
<mo>…</mo>
<mrow>
<mtext> m</mtext>
</mrow>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="439.741 \ldots {\text{ cm}})">
<mn>439.741</mn>
<mo>…</mo>
<mrow>
<mtext> cm</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept “BT” used for height. Follow through from parts (a) and (b). Use of 7.86 gives an answer of 4.39525….</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A vertical pole stands on horizontal ground. The bottom of the pole is taken as the origin, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, of a coordinate system in which the top, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>, of the pole has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>.</mo><mn>8</mn><mo>)</mo></math>. All units are in metres.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p><br>The pole is held in place by ropes attached at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<p>One of the ropes is attached to the ground at a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> with coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>. The rope forms a straight line from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the rope connecting <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FÂO</mtext></math>, the angle the rope makes with the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn><mo>.</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>+</mo><mn>5</mn><mo>.</mo><msup><mn>8</mn><mn>2</mn></msup></msqrt></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>01</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>8</mn><mo>.</mo><mn>00812</mn><mo>…</mo></mrow></mfenced><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FÂO</mtext><mo>=</mo><msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mrow><mn>5</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>8</mn><mo>.</mo><mn>00812</mn><mo>…</mo></mrow></mfrac></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cos</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mrow><mn>5</mn><mo>.</mo><mn>52177</mn><mo>…</mo></mrow><mrow><mn>8</mn><mo>.</mo><mn>00812</mn><mo>…</mo></mrow></mfrac></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>tan</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mrow><mn>5</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>5</mn><mo>.</mo><mn>52177</mn><mo>…</mo></mrow></mfrac></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>46</mn><mo>.</mo><mn>4</mn><mo>°</mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>46</mn><mo>.</mo><mn>4077</mn><mo>…</mo><mo>°</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was the first of its type to be tested and the problem was reduced (erroneously) to 2D trigonometry. Whilst a minority of candidates did tackle this part correctly, many simply arrived at an incorrect length with <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mrow><mo>(</mo><mn>5</mn><mo>.</mo><mn>8</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><mn>4</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>=</mo><mn>7</mn><mo>.</mo><mn>34</mn></math> metres.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The incorrect interpretation of the diagram as being 2D, meant that there was an assumption that OA was of length 3.2 metres and so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>tan</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mrow><mn>5</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>3</mn><mo>.</mo><mn>2</mn></mrow></mfrac></mfenced><mo>=</mo><mn>61</mn><mo>.</mo><mn>1</mn></math>° was seen on many scripts. If, using their incorrect answer for part (a), the candidate had used <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mrow><mn>5</mn><mo>.</mo><mn>8</mn></mrow><mtext>their part (a)</mtext></mfrac></mfenced></math> it was possible to award “follow through” marks.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The straight metal arm of a windscreen wiper on a car rotates in a circular motion from a pivot point, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, through an angle of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>140</mn><mo>°</mo></math>. The windscreen is cleared by a rubber blade of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>46</mn><mo> </mo><mtext>cm</mtext></math> that is attached to the metal arm between points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>. The total length of the metal arm, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OB</mtext></math>, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>56</mn><mo> </mo><mtext>cm</mtext></math>.</p>
<p>The part of the windscreen cleared by the rubber blade is shown unshaded in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of the arc made by <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, the end of the rubber blade.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the windscreen that is cleared by the rubber blade.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute into length of arc formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>140</mn><mo>°</mo></mrow><mrow><mn>360</mn><mo>°</mo></mrow></mfrac><mo>×</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>×</mo><mn>56</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>137</mn><mo> </mo><mtext>cm</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>136</mn><mo>.</mo><mn>833</mn><mo>…</mo><mo>,</mo><mo> </mo><mfrac><mrow><mn>392</mn><mi mathvariant="normal">π</mi></mrow><mn>9</mn></mfrac><mo> </mo><mtext>cm</mtext></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>subtracting two substituted area of sectors formulae <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mn>140</mn><mo>°</mo></mrow><mrow><mn>360</mn><mo>°</mo></mrow></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>56</mn><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>140</mn><mo>°</mo></mrow><mrow><mn>360</mn><mo>°</mo></mrow></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>10</mn><mn>2</mn></msup></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>140</mn><mo>°</mo></mrow><mrow><mn>360</mn><mo>°</mo></mrow></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mfenced><mrow><msup><mn>56</mn><mn>2</mn></msup><mo>-</mo><msup><mn>10</mn><mn>2</mn></msup></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3710</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>3709</mn><mo>.</mo><mn>17</mn><mo>…</mo><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There was some difficulty determining the correct radius to substitute, with several candidates substituting a radius of 46.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It was common to see candidates subtracting the radii before substituting into the area formula, rather than subtracting the sector areas after calculating each. Using the π key on the calculator rather than an approximated value was prevalent and pleasing to see.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylinder with radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> and height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The sum of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> for this cylinder is 12 cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation for the area, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, of the <strong>curved</strong> surface in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>A</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> when the area of the curved surface is maximized.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2\pi r\left( {12 - r} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 24\pi r - 2\pi {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>24</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(A1)(M1) (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r + h = 12">
<mi>r</mi>
<mo>+</mo>
<mi>h</mi>
<mo>=</mo>
<mn>12</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 12 - r">
<mi>h</mi>
<mo>=</mo>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</math></span> seen. Award <em><strong>(M1)</strong></em> for correctly substituting into curved surface area of a cylinder. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2\pi r\left( {12 - r} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 24\pi r - 2\pi {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>24</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi - 4\pi r">
<mn>24</mn>
<mi>π</mi>
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)<em>(A1)</em>(ft)</strong><em><strong> (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi">
<mn>24</mn>
<mi>π</mi>
</math></span> and <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4\pi r">
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
</math></span> . Follow through from part (a). Award at most <em><strong>(A1)</strong></em><strong>(ft)<em>(A0)</em></strong> if additional terms are seen.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi - 4\pi r = 0">
<mn>24</mn>
<mi>π</mi>
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting <em>their</em> part (b) equal to zero.</p>
<p style="text-align: left;">6 (cm) <strong><em>(A1)</em>(ft)</strong><em><strong> (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Follow through from part (b).</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A balloon in the shape of a sphere is filled with helium until the radius is 6 cm.</p>
</div>
<div class="specification">
<p>The volume of the balloon is increased by 40%.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the balloon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of the balloon following this increase.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>Units are required in parts (a) and (b).</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}\pi \times {6^3}">
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>6</mn>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into volume of sphere formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 905{\text{ c}}{{\text{m}}^3}{\text{ }}(288\pi {\text{ c}}{{\text{m}}^3},{\text{ }}904.778 \ldots {\text{ c}}{{\text{m}}^3})">
<mo>=</mo>
<mn>905</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>288</mn>
<mi>π</mi>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>904.778</mn>
<mo>…</mo>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Answers derived from the use of approximations of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> (3.14; 22/7) are awarded <strong><em>(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Units are required in parts (a) and (b).</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{140}}{{100}} \times 904.778 \ldots = \frac{4}{3}\pi {r^3}">
<mfrac>
<mrow>
<mn>140</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>904.778</mn>
<mo>…</mo>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{140}}{{100}} \times 288\pi = \frac{4}{3}\pi {r^3}">
<mfrac>
<mrow>
<mn>140</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>288</mn>
<mi>π</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1266.69 \ldots = \frac{4}{3}\pi {r^3}">
<mn>1266.69</mn>
<mo>…</mo>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying their part (a) by 1.4 or equivalent, <strong><em>(M1) </em></strong>for equating to the volume of a sphere formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = \frac{{3 \times 1266.69 \ldots }}{{4\pi }}">
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mn>1266.69</mn>
<mo>…</mo>
</mrow>
<mrow>
<mn>4</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{\frac{{3 \times 1266.69 \ldots }}{{4\pi }}}}">
<mi>r</mi>
<mo>=</mo>
<mroot>
<mrow>
<mfrac>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mn>1266.69</mn>
<mo>…</mo>
</mrow>
<mrow>
<mn>4</mn>
<mi>π</mi>
</mrow>
</mfrac>
</mrow>
<mn>3</mn>
</mroot>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{(1.4) \times {6^3}}}">
<mi>r</mi>
<mo>=</mo>
<mroot>
<mrow>
<mo stretchy="false">(</mo>
<mn>1.4</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mrow>
<msup>
<mn>6</mn>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mroot>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = 302.4">
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>302.4</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for isolating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(r = ){\text{ }}6.71{\text{ cm }}(6.71213 \ldots )">
<mo stretchy="false">(</mo>
<mi>r</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6.71</mn>
<mrow>
<mtext> cm </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>6.71213</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C4)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> be an <strong>obtuse</strong> angle such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = \frac{3}{5}">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ<!-- θ --></mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^x}\,{\text{sin}}\,x - \frac{{3x}}{4}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>x</mi>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mfrac>
<mrow>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span> passes through the origin and has a gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>. Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 3. Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is a tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at point P.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>, find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> sketch of triangle with sides 3 and 5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{s}}^2}\,\theta = 1 - {\text{si}}{{\text{n}}^2}\,\theta "> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> missing side is 4 (may be seen in sketch), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = - \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = - \frac{3}{4}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <em><strong>A2 N4</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution of either gradient <strong>or</strong> origin into equation of line <em><strong>(A1)</strong></em></p>
<p>(do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + b"> <mi>y</mi> <mo>=</mo> <mi>m</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </math></span>)</p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x\,{\text{tan}}\,\theta "> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = m\left( {x - 0} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx"> <mi>y</mi> <mo>=</mo> <mi>m</mi> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \frac{3}{4}x"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mi>x</mi> </math></span> <em><strong>A2 N4</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = - \frac{3}{4}x"> <mi>L</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mi>x</mi> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{{ - 3x}}{4}} \right) = - \frac{3}{4}"> <mfrac> <mrow> <mtext>d</mtext> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mo>−</mo> <mn>3</mn> <mi>x</mi> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> (seen anywhere, including answer) <em><strong>A1</strong></em></p>
<p>choosing product rule <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="uv' + vu'"> <mi>u</mi> <msup> <mi>v</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>u</mi> <mo>′</mo> </msup> </math></span></p>
<p>correct derivatives (must be seen in a correct product rule) <em><strong>A1A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = {{\text{e}}^x}\,{\text{cos}}\,x + {{\text{e}}^x}\,{\text{sin}}\,x - \frac{3}{4}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = {{\text{e}}^x}\,\left( {{\text{cos}}\,x + {\text{sin}}\,x} \right) - \frac{3}{4}} \right)"> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1 N5</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to equate <strong>their</strong> gradients <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = {\text{tan}}\,\theta "> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = - \frac{3}{4}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,{\text{cos}}\,x + {{\text{e}}^x}\,{\text{sin}}\,x - \frac{3}{4} = - \frac{3}{4}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,\left( {{\text{cos}}\,x + {\text{sin}}\,x} \right) - \frac{3}{4} = - \frac{3}{4}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span></p>
<p>correct equation without <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x = - {\text{cos}}\,x"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x + {\text{sin}}\,x = 0"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - {\text{sin}}\,x}}{{{\text{cos}}\,x}} = 1"> <mfrac> <mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = - 1"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 135^\circ "> <mi>x</mi> <mo>=</mo> <msup> <mn>135</mn> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span> (do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="135^\circ "> <msup> <mn>135</mn> <mo>∘</mo> </msup> </math></span>) <em><strong>A1 N1</strong></em></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if additional answers are given.</p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Two schools are represented by points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>20</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>14</mn><mo>,</mo><mo> </mo><mn>24</mn><mo>)</mo></math> on the graph below. A road, represented by the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>4</mn></math>, passes near the schools. An architect is asked to determine the location of a new bus stop on the road such that it is the same distance from the two schools.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math> . Give your equation in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>c</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the coordinates of the point on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> where the bus stop should be located.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>gradient <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mfrac><mn>4</mn><mn>12</mn></mfrac><mo> </mo><mo> </mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced></math> <em><strong>(A1)</strong></em> </p>
<p>midpoint <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>:</mo><mo> </mo><mfenced><mrow><mn>8</mn><mo>,</mo><mo> </mo><mn>22</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em> </p>
<p>gradient of bisector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mtext>gradient AB</mtext></mfrac><mo>=</mo><mo>-</mo><mn>3</mn></math> <em><strong>(M1)</strong></em> </p>
<p>perpendicular bisector: <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn><mo>=</mo><mo>-</mo><mn>3</mn><mo>×</mo><mn>8</mn><mo>+</mo><mi>b</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>-</mo><mn>22</mn></mrow></mfenced><mo>=</mo><mo>-</mo><mn>3</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>8</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em> </p>
<p>perpendicular bisector: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>46</mn></math> <em><strong>A1</strong></em> </p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve simultaneous equations <em><strong>(M1)</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mn>4</mn><mo>=</mo><mo>-</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>46</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>10</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>14</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> <em><strong>A1</strong></em> </p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>, has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}} { - 3} \\ 9 \\ {10} \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)">
<mi>r</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>9</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>. Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {15{\text{,}}\,\,9{\text{,}}\,\,c} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>15</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>9</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>, is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and passes through (1, 2, 3).</p>
<p>Write down a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>correct equation <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + 6s = 15"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <mn>6</mn> <mi>s</mi> <mo>=</mo> <mn>15</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6s = 18"> <mn>6</mn> <mi>s</mi> <mo>=</mo> <mn>18</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = 3"> <mi>s</mi> <mo>=</mo> <mn>3</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p>substitute their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s"> <mi>s</mi> </math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z"> <mi>z</mi> </math></span> component <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 + 3\left( 2 \right)"> <mn>10</mn> <mo>+</mo> <mn>3</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 + 6"> <mn>10</mn> <mo>+</mo> <mn>6</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 16"> <mi>c</mi> <mo>=</mo> <mn>16</mn> </math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)"> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> (=(<em><strong>i</strong></em> + 2<em><strong>j</strong></em> + 3<em><strong>k</strong></em>) + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>(6<em><strong>i</strong></em> + 2<em><strong>k</strong></em>)) <em><strong>A2 N2</strong></em></p>
<p><strong>Note:</strong> Accept any scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> for the direction vector.</p>
<p>Award <strong>A1</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2} = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, <em><strong>A0</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right)"> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Point A has coordinates (−4, −12, 1) and point B has coordinates (2, −4, −4).</p>
</div>
<div class="specification">
<p>The line <em>L</em> passes through A and B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)"> <mover> <mrow> <mrow> <mtext>AB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <em>L</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point <em>C</em> (<em>k</em> , 12 , −<em>k</em>) is on <em>L</em>. Show that <em>k</em> = 14.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to "> <mover> <mrow> <mrow> <mtext>OB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mspace width="thinmathspace"></mspace> <mo>∙</mo> <mover> <mrow> <mrow> <mtext>AB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of angle OBA.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point D is also on <em>L</em> and has coordinates (8, 4, −9).</p>
<p>Find the area of triangle OCD.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>correct approach <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AO}}}\limits^ \to \,\, + \,\,\mathop {{\text{OB}}}\limits^ \to ,\,\,\,{\text{B}} - {\text{A}}\,{\text{, }}\,\left( \begin{gathered} \,\,2 \hfill \\ - 4 \hfill \\ - 4 \hfill \\ \end{gathered} \right) - \left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right)"> <mover> <mrow> <mrow> <mtext>AO</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>+</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mover> <mrow> <mrow> <mtext>OB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>B</mtext> </mrow> <mo>−</mo> <mrow> <mtext>A</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>4</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)"> <mover> <mrow> <mrow> <mtext>AB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> <em><strong>AG N0</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any correct equation in the form <em><strong>r</strong></em> = <em><strong>a</strong></em> + <em>t<strong>b</strong></em> (any parameter for <em>t</em>) <em><strong>A2 N2</strong></em></p>
<p>where <strong><em>a</em></strong> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,\,2 \hfill \\ - 4 \hfill \\ - 4 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>4</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> and <em><strong>b</strong></em> is a scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<p><em>eg</em> <em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right),\,\,\left( {x,\,\,y,\,\,z} \right) = \left( {2,\,\, - 4,\,\, - 4} \right) + t\left( {6,\,\,8,\,\, - 5} \right),"> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>4</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>8</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>5</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </math></span> <em><strong>r </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \, - 4 + 6t \hfill \\ - 12 + 8t \hfill \\ \,\,\,1 - 5t \hfill \\ \end{gathered} \right)"> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>4</mn> <mo>+</mo> <mn>6</mn> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>12</mn> <mo>+</mo> <mn>8</mn> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>1</mn> <mo>−</mo> <mn>5</mn> <mi>t</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for the form <em><strong>a</strong></em> + <em>t<strong>b</strong></em>, <em><strong>A1</strong></em> for the form <em><strong>L</strong></em> = <em><strong>a</strong></em> + <em>t<strong>b</strong></em>, <em><strong>A0</strong></em> for the form <em><strong>r</strong></em> = <em><strong>b</strong></em> + <em>t<strong>a</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong> (solving for <em>t</em>)</p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,k \hfill \\ 12 \hfill \\ - k \hfill \\ \end{gathered} \right) = \left( \begin{gathered} \,\,2 \hfill \\ - 4 \hfill \\ - 4 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right),\,\,\left( \begin{gathered} \,k \hfill \\ 12 \hfill \\ - k \hfill \\ \end{gathered} \right) = \left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mi>k</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>4</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mi>k</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<p>one correct equation <em><strong>A1</strong></em></p>
<p>eg −4 + 8<em>t</em> = 12, −12 + 8<em>t</em> = 12</p>
<p>correct value for <em>t <strong>(A1)</strong></em></p>
<p><em>eg t</em> = 2 or 3</p>
<p>correct substitution <em><strong>A1</strong></em></p>
<p><em>eg </em> 2 + 6(2), −4 + 6(3), −[1 + 3(−5)]</p>
<p><em>k</em> = 14 <em><strong>AG N0</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (solving simultaneously)</p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,k \hfill \\ 12 \hfill \\ - k \hfill \\ \end{gathered} \right) = \left( \begin{gathered} \,\,2 \hfill \\ - 4 \hfill \\ - 4 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right),\,\,\left( \begin{gathered} \,k \hfill \\ 12 \hfill \\ - k \hfill \\ \end{gathered} \right) = \left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mi>k</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>4</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mi>k</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<p>two correct equations in <em><strong>A1</strong></em></p>
<p><em>eg k</em> = −4 + 6<em>t,</em> −<em>k</em> = 1 −5<em>t</em></p>
<p><strong>EITHER</strong> (eliminating <em>k</em>)</p>
<p>correct value for <em>t</em> <em><strong>(A1)</strong></em></p>
<p><em>eg t</em> = 2 or 3</p>
<p>correct substitution <em><strong>A1</strong></em></p>
<p><em>eg </em> 2 + 6(2), −4 + 6(3)</p>
<p><strong>OR</strong> (eliminating <em>t</em>)</p>
<p>correct equation(s) <em><strong>(A1)</strong></em></p>
<p><em>eg </em> 5<em>k</em> + 20 = 30<em>t</em> <strong>and </strong>−6<em>k</em> − 6 = 30<em>t</em>, −<em>k</em> = 1 − 5<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{k + 4}}{6}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>k</mi> <mo>+</mo> <mn>4</mn> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct working clearly leading to <em>k</em> = 14 <em><strong>A1</strong></em></p>
<p><em>eg </em>−<em>k</em> + 14 = 0, −6<em>k</em> = 6 −5<em>k</em> − 20, 5<em>k</em> = −20 + 6(1 + <em>k</em>)</p>
<p><strong>THEN </strong></p>
<p><em>k</em> = 14 <em><strong>AG N0</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into scalar product <em><strong>A1</strong></em></p>
<p><em>eg </em>(2)(6) − (4)(8) − (4)(−5), 12 − 32 + 20</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to "> <mover> <mrow> <mrow> <mtext>OB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mspace width="thinmathspace"></mspace> <mo>∙</mo> <mover> <mrow> <mrow> <mtext>AB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </math></span> = 0 <em><strong>A1 N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}\mathop {\text{B}}\limits^ \wedge {\text{A}} = \frac{\pi }{2},\,\,90^\circ \,\,\,\,\,\left( {{\text{accept}}\,\frac{{3\pi }}{2},\,\,270^\circ } \right)\,"> <mrow> <mtext>O</mtext> </mrow> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>A</mtext> </mrow> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <msup> <mn>90</mn> <mo>∘</mo> </msup> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>accept</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <msup> <mn>270</mn> <mo>∘</mo> </msup> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> </math></span> <strong><em>A1 N1</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span> × height × CD)</p>
<p>recognizing that OB is altitude of triangle with base CD (seen anywhere) <em><strong> M1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \left| {\mathop {{\text{OB}}}\limits^ \to } \right| \times \left| {\mathop {{\text{CD}}}\limits^ \to } \right|,\,\,{\text{OB}} \bot {\text{CD}},"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>OB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>×</mo> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>CD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>OB</mtext> </mrow> <mi mathvariant="normal">⊥</mi> <mrow> <mtext>CD</mtext> </mrow> <mo>,</mo> </math></span> sketch showing right angle at B</p>
<p><img src=""></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{CD}}}\limits^ \to = \left( \begin{gathered} - 6 \hfill \\ - 8 \hfill \\ \,5 \hfill \\ \end{gathered} \right)"> <mover> <mrow> <mrow> <mtext>CD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mo>−</mo> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{DC}}}\limits^ \to = \left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)"> <mover> <mrow> <mrow> <mtext>DC</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>correct magnitudes (seen anywhere) <em><strong>(A1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{OB}}}\limits^ \to } \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 4} \right)}^2}} = \left( {\sqrt {36} } \right)"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>OB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>36</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{CD}}}\limits^ \to } \right| = \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 8} \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right)"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>CD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>8</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>125</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}bh"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>b</mi> <mi>h</mi> </math></span> <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times \sqrt {125} "> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> <mo>×</mo> <msqrt> <mn>125</mn> </msqrt> </math></span> </p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\sqrt {125} ,\,\,15\sqrt 5 "> <mo>=</mo> <mn>3</mn> <msqrt> <mn>125</mn> </msqrt> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>15</mn> <msqrt> <mn>5</mn> </msqrt> </math></span> <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (subtracting triangles)</p>
<p>recognizing that OB is altitude of either ΔOBD or ΔOBC(seen anywhere) <em><strong>M1</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \left| {\mathop {{\text{OB}}}\limits^ \to } \right| \times \left| {\mathop {{\text{BD}}}\limits^ \to } \right|,\,\,{\text{OB}} \bot {\text{BC}},"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>OB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>×</mo> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>BD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>OB</mtext> </mrow> <mi mathvariant="normal">⊥</mi> <mrow> <mtext>BC</mtext> </mrow> <mo>,</mo> </math></span> sketch of triangle showing right angle at B</p>
<p><img src=""></p>
<p>one correct vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{BD}}}\limits^ \to "> <mover> <mrow> <mrow> <mtext>BD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{DB}}}\limits^ \to "> <mover> <mrow> <mrow> <mtext>DB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{BC}}}\limits^ \to "> <mover> <mrow> <mrow> <mtext>BC</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{CB}}}\limits^ \to "> <mover> <mrow> <mrow> <mtext>CB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{BD}}}\limits^ \to = \left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)"> <mover> <mrow> <mrow> <mtext>BD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{CB}}}\limits^ \to = \left( \begin{gathered} - 12 \hfill \\ - 16 \hfill \\ \,10 \hfill \\ \end{gathered} \right)"> <mover> <mrow> <mrow> <mtext>CB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mo>−</mo> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>16</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>10</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{OB}}}\limits^ \to } \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 4} \right)}^2}} = \left( {\sqrt {36} } \right)"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>OB</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>36</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>one correct magnitude of a base (seen anywhere)<em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{BD}}}\limits^ \to } \right| = \sqrt {{{\left( 6 \right)}^2} + {{\left( 8 \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right),\,\,\left| {\mathop {{\text{BC}}}\limits^ \to } \right| = \sqrt {144 + 256 + 100} = \left( {\sqrt {500} } \right)"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>BD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>125</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>BC</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mn>144</mn> <mo>+</mo> <mn>256</mn> <mo>+</mo> <mn>100</mn> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>500</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct working <strong><em>A1</em></strong></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times \sqrt {500} - \frac{1}{2} \times 6 \times 5\sqrt 5 ,\,\,\frac{1}{2} \times 6 \times \sqrt {500} \times {\text{sin}}90 - \frac{1}{2} \times 6 \times 5\sqrt 5 \times {\text{sin}}90"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> <mo>×</mo> <msqrt> <mn>500</mn> </msqrt> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> <mo>×</mo> <mn>5</mn> <msqrt> <mn>5</mn> </msqrt> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> <mo>×</mo> <msqrt> <mn>500</mn> </msqrt> <mo>×</mo> <mrow> <mtext>sin</mtext> </mrow> <mn>90</mn> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> <mo>×</mo> <mn>5</mn> <msqrt> <mn>5</mn> </msqrt> <mo>×</mo> <mrow> <mtext>sin</mtext> </mrow> <mn>90</mn> </math></span></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\sqrt {125} ,\,\,15\sqrt 5 "> <mo>=</mo> <mn>3</mn> <msqrt> <mn>125</mn> </msqrt> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>15</mn> <msqrt> <mn>5</mn> </msqrt> </math></span> <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong> (using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span><em>ab</em> sin <em>C</em> with ΔOCD)</p>
<p>two correct side lengths (seen anywhere) <em><strong>(A1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{OD}}}\limits^ \to } \right| = \sqrt {{{\left( 8 \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { - 9} \right)}^2}} = \left( {\sqrt {161} } \right),\,\,\left| {\mathop {{\text{CD}}}\limits^ \to } \right| = \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 8} \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right),\,"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>OD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>9</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>161</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>CD</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>8</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>125</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> </math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{OC}}}\limits^ \to } \right| = \sqrt {{{\left( {14} \right)}^2} + {{\left( {12} \right)}^2} + {{\left( { - 14} \right)}^2}} = \left( {\sqrt {536} } \right)"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>OC</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>14</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>12</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>14</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>536</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>attempt to find cosine ratio (seen anywhere) <em><strong>M1</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{536 - 286}}{{ - 2\sqrt {161} \sqrt {125} }},\,\,\frac{{{\text{OD}} \bullet {\text{DC}}}}{{\left| {OD} \right|\left| {DC} \right|}}"> <mfrac> <mrow> <mn>536</mn> <mo>−</mo> <mn>286</mn> </mrow> <mrow> <mo>−</mo> <mn>2</mn> <msqrt> <mn>161</mn> </msqrt> <msqrt> <mn>125</mn> </msqrt> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mrow> <mtext>OD</mtext> </mrow> <mo>∙</mo> <mrow> <mtext>DC</mtext> </mrow> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mi>O</mi> <mi>D</mi> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mi>D</mi> <mi>C</mi> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </math></span></p>
<p>correct working for sine ratio <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left( {125} \right)}^2}}}{{161 \times 125}} + {\text{si}}{{\text{n}}^2}\,D = 1"> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>125</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>161</mn> <mo>×</mo> <mn>125</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>D</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}ab\,\,{\text{sin}}\,C"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>C</mi> </math></span> <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5 \times \sqrt {161} \times \sqrt {125} \times \frac{6}{{\sqrt {161} }}"> <mn>0.5</mn> <mo>×</mo> <msqrt> <mn>161</mn> </msqrt> <mo>×</mo> <msqrt> <mn>125</mn> </msqrt> <mo>×</mo> <mfrac> <mn>6</mn> <mrow> <msqrt> <mn>161</mn> </msqrt> </mrow> </mfrac> </math></span></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\sqrt {125} ,\,\,15\sqrt 5 "> <mo>=</mo> <mn>3</mn> <msqrt> <mn>125</mn> </msqrt> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>15</mn> <msqrt> <mn>5</mn> </msqrt> </math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A solid glass paperweight consists of a hemisphere of diameter 6 cm on top of a cuboid with a square base of length 6 cm, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The height of the cuboid, <em>x </em>cm, is equal to the height of the hemisphere.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the paperweight.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>1 cm<sup>3</sup> of glass has a mass of 2.56 grams.</p>
<p>Calculate the mass, in grams, of the paperweight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>3 (cm) <em><strong>(A1) (C1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>units are required in part (a)(ii)</strong></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \frac{{4\pi \times {{\left( 3 \right)}^3}}}{3} + 3 \times {\left( 6 \right)^2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <strong>their</strong> correct substitution in volume of sphere formula divided by 2, <em><strong>(M1)</strong></em> for adding <strong>their</strong> correctly substituted volume of the cuboid.</p>
<p> </p>
<p>= 165 cm<sup>3 </sup>(164.548…) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><strong>Note:</strong> The answer is 165 cm<sup>3</sup>; the units are required. Follow through from part (a)(i).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>their 164.548… × 2.56 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying their part (a)(ii) by 2.56.</p>
<p> </p>
<p>= 421 (g) (421.244…(g)) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a)(ii).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.<br>This is shown in the following diagram.</p>
<p><img src=""></p>
<p>The vectors <em><strong>p</strong></em> , <em><strong>q</strong></em> and <em><strong>r</strong></em> are shown on the diagram.</p>
<p>Find <em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1 </strong>(using |<em><strong>p</strong></em>| |2<em><strong>q</strong></em>| cos<em>θ</em>)</p>
<p>finding <em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r (A1)</strong></em></p>
<p><em>eg </em> 2<em><strong>q</strong></em>, <img src=""></p>
<p>| <em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r </strong></em>| = 2 × 3 (= 6) (seen anywhere) <em><strong>A1</strong></em></p>
<p>correct angle between <em><strong>p</strong></em> and <em><strong>q</strong></em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{3}"> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span> (accept 60°)</p>
<p>substitution of <strong>their</strong> values <em><strong>(M1)</strong></em></p>
<p><em>eg</em> 3 × 6 × cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{\pi }{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct value for cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{\pi }{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2},\,\,\,3 \times 6 \times \frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>×</mo> <mn>6</mn> <mo>×</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span></p>
<p><em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>) = 9 <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (scalar product using distributive law)</p>
<p>correct expression for scalar distribution <em><strong>(A1)</strong></em></p>
<p>eg <em><strong>p</strong></em>• <em><strong>p</strong></em> + <em><strong>p</strong></em>•<em><strong>q</strong></em> + <em><strong>p</strong></em>•<em><strong>r</strong></em></p>
<p>three correct angles between the vector pairs (seen anywhere) <em><strong>(A2)</strong></em></p>
<p><em>eg </em> 0° between <em><strong>p</strong></em> and <em><strong>p</strong></em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{3}"> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span> between <em><strong>p</strong></em> and <em><strong>q</strong></em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{3}"> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span> between <em><strong>p</strong></em> and <em><strong>r</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for only two correct angles.</p>
<p>substitution of <strong>their</strong> values <em><strong>(M1)</strong></em></p>
<p><em>eg </em> 3.3.cos0 +3.3.cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{3}"> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span> + 3.3.cos120</p>
<p>one correct value for cos0, cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{\pi }{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> or cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{2\pi }{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2},\,\,\,3 \times 6 \times \frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>×</mo> <mn>6</mn> <mo>×</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span></p>
<p><em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>) = 9 <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong> (scalar product using relative position vectors)</p>
<p>valid attempt to find one component of <em><strong>p</strong></em> or <em><strong>r</strong></em> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> sin 60 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{3}"> <mfrac> <mi>x</mi> <mn>3</mn> </mfrac> </math></span>, cos 60 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{3}"> <mfrac> <mi>x</mi> <mn>3</mn> </mfrac> </math></span>, one correct value <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2},\,\,\frac{{3\sqrt 3 }}{2},\,\,\frac{{ - 3\sqrt 3 }}{2}"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mo>−</mo> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p>one correct vector (two or three dimensions) (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \left( \begin{gathered} \,\,\,\frac{3}{2} \hfill \\ \frac{{3\sqrt 3 }}{2} \hfill \\ \end{gathered} \right),\,\,q = \left( \begin{gathered} 3 \hfill \\ 0 \hfill \\ \end{gathered} \right),\,\,r = \left( \begin{gathered} \,\,\,\,\frac{3}{2} \hfill \\ - \frac{{3\sqrt 3 }}{2} \hfill \\ \,\,\,\,0 \hfill \\ \end{gathered} \right)"> <mi>p</mi> <mo>=</mo> <mrow> <mo>(</mo> <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>q</mi> <mo>=</mo> <mrow> <mo>(</mo> <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<p>three correct vectors <em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r </strong></em>= 2<em><strong>q</strong></em> <em><strong>(A1)</strong></em></p>
<p><em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r </strong></em>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 6 \hfill \\ 0 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 6 \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> (seen anywhere, including scalar product) <em><strong>(A1)</strong></em></p>
<p>correct working <em><strong>(A1)</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{3}{2} \times 6} \right) + \left( {\frac{{3\sqrt 3 }}{2} \times 0} \right),\,\,9 + 0 + 0"> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>×</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>9</mn> <mo>+</mo> <mn>0</mn> <mo>+</mo> <mn>0</mn> </math></span></p>
<p><em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>) = 9 <em><strong> A1 N3</strong></em></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> passes through points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}( - 3,{\text{ }}4,{\text{ }}2)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}( - 1,{\text{ }}3,{\text{ }}3)">
<mrow>
<mtext>B</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> also passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}(3,{\text{ }}1,{\text{ }}p)">
<mrow>
<mtext>C</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>p</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The point D has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({q^2},{\text{ }}0,{\text{ }}q)"> <mo stretchy="false">(</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>q</mi> <mo stretchy="false">)</mo> </math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>, find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct approach <strong><em>A1</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 3 \\ { - 4} \\ { - 2} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>AG N0</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any correct equation in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = a + tb"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>t</mi> <mi>b</mi> </math></span> (any parameter for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>)</p>
<p> </p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> is a scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A2 N2</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right),{\text{ }}(x,{\text{ }}y,{\text{ }}z) = ( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { - 3 + 2t} \\ {4 - t} \\ {2 + t} \end{array}} \right)"> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>y</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>4</mn> <mo>−</mo> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mo>+</mo> <mi>t</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + tb"> <mi>a</mi> <mo>+</mo> <mi>t</mi> <mi>b</mi> </math></span>, <strong>A1</strong> for the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = a + tb"> <mi>L</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>t</mi> <mi>b</mi> </math></span>, <strong>A0</strong> for the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = b + ta"> <mi>r</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>t</mi> <mi>a</mi> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 – finding value of parameter</strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1) = (3,{\text{ }}1,{\text{ }}p)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </math></span></p>
<p> </p>
<p>one correct equation (not involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + 2t = 3,{\text{ }} - 1 - 2s = 3,{\text{ }}4 - t = 1,{\text{ }}3 + s = 1"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>t</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mi>s</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mo>−</mo> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>+</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct parameter from their equation (may be seen in substitution) <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 3,{\text{ }}s = - 2"> <mi>t</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>s</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> </math></span></p>
<p>correct substitution <strong><em>(A1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + 3\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}3 - ( - 2)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>−</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mo stretchy="false">)</mo> </math></span></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 5\,\,\,\,\,\left( {{\text{accept }}\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right)} \right)"> <mi>p</mi> <mo>=</mo> <mn>5</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>accept </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1 N2</em></strong></p>
<p> </p>
<p><strong>METHOD 2 – eliminating parameter</strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1) = (3,{\text{ }}1,{\text{ }}p)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </math></span></p>
<p> </p>
<p>one correct equation (not involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + 2t = 3,{\text{ }} - 1 - 2s = 3,{\text{ }}4 - t = 1,{\text{ }}3 + s = 1"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>t</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mi>s</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mo>−</mo> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>+</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct equation (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>) <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + t = p,{\text{ }}3 - s = p"> <mn>2</mn> <mo>+</mo> <mi>t</mi> <mo>=</mo> <mi>p</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>−</mo> <mi>s</mi> <mo>=</mo> <mi>p</mi> </math></span></p>
<p>correct working to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7 = 2p - 3,{\text{ }}6 = 1 + p"> <mn>7</mn> <mo>=</mo> <mn>2</mn> <mi>p</mi> <mo>−</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6</mn> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>p</mi> </math></span></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 5\,\,\,\,\,\left( {{\text{accept }}\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right)} \right)"> <mi>p</mi> <mo>=</mo> <mn>5</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>accept </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1 N2</em></strong></p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}} "> <mover> <mrow> <mtext>CD</mtext> </mrow> <mo>→</mo> </mover> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p>correct vector for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}} "> <mover> <mrow> <mtext>CD</mtext> </mrow> <mo>→</mo> </mover> </math></span> (may be seen in scalar product) <strong><em>A1</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {5 - q} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2} - 3} \\ { - 1} \\ {q - 5} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {p - q} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>−</mo> <mi>q</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>q</mi> <mo>−</mo> <mn>5</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mo>−</mo> <mi>q</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p>recognizing scalar product of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}} "> <mover> <mrow> <mtext>CD</mtext> </mrow> <mo>→</mo> </mover> </math></span> with direction vector of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span> is zero (seen anywhere) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {p - q} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = 0,{\text{ }}\overrightarrow {{\text{DC}}} \bullet \overrightarrow {{\text{AC}}} = 0,{\text{ }}\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {5 - q} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = 0"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mo>−</mo> <mi>q</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>∙</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>−</mo> <mi>q</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>∙</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p> </p>
<p>correct scalar product in terms of only <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - 2{q^2} - 1 + 5 - q,{\text{ }}2{q^2} + q - 10 = 0,{\text{ }}2(3 - {q^2}) - 1 + 5 - q"> <mn>6</mn> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> <mo>+</mo> <mn>5</mn> <mo>−</mo> <mi>q</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>−</mo> <mn>10</mn> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>−</mo> <mn>1</mn> <mo>+</mo> <mn>5</mn> <mo>−</mo> <mi>q</mi> </math></span></p>
<p>correct working to solve quadratic <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2q + 5)(q - 2),{\text{ }}\frac{{ - 1 \pm \sqrt {1 - 4(2)( - 10)} }}{{2(2)}}"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>q</mi> <mo>+</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>q</mi> <mo>−</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mn>4</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>10</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = - \frac{5}{2},{\text{ }}2"> <mi>q</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> </math></span> <strong><em>A1A1 N3</em></strong></p>
<p> </p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the vectors <em><strong>a</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 0 \\ 3 \\ p \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 0 \\ 6 \\ {18} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>18</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> for which <em><strong>a</strong></em> and <em><strong>b</strong></em> are</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>parallel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>perpendicular.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg <strong>b</strong></em> = 2<em><strong>a</strong></em>, a = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span><em><strong>b</strong></em>, cos <em>θ </em>= 1, <em><strong>a</strong></em>•<em><strong>b</strong></em> = −|<em><strong>a</strong></em>||<em><strong>b</strong></em>|, 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> = 18</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> = 9 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of scalar product<em> <strong>(M1)</strong></em></p>
<p><em>eg </em><em><strong>a</strong></em>•<em><strong>b</strong></em>, (0)(0) + (3)(6) + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>(18)</p>
<p>recognizing <em><strong>a</strong></em>•<em><strong>b</strong></em> = 0 (seen anywhere) <em><strong>(M1)</strong></em></p>
<p>correct working<strong> (A1)</strong></p>
<p><em>eg</em> 18 + 18<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> = 0, 18<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> = −18 <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> = −1 <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Yao drains the oil from his motorbike into two identical cuboids with rectangular bases of width <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10">
<mn>10</mn>
</math></span> cm and length <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="40">
<mn>40</mn>
</math></span> cm. The height of each cuboid is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5">
<mn>5</mn>
</math></span> cm.</p>
<p>The oil from the motorbike fills the first cuboid completely and the second cuboid to a height of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2">
<mn>2</mn>
</math></span> cm. The information is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of oil drained from Yao’s motorbike.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Yao then pours all the oil from the cuboids into an empty cylindrical container. The height of the oil in the container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="30"> <mn>30</mn> </math></span> cm.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Find the internal radius, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>, of the container.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>units are required in both parts</strong></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {V = } \right)\,\,5 \times 10 \times 40 + 2 \times 10 \times 40"> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mo>=</mo> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>5</mn> <mo>×</mo> <mn>10</mn> <mo>×</mo> <mn>40</mn> <mo>+</mo> <mn>2</mn> <mo>×</mo> <mn>10</mn> <mo>×</mo> <mn>40</mn> </math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitutions in volume formula for both cuboids. Award <em><strong>(M1)</strong></em> for adding the volumes of both cuboids.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2800"> <mn>2800</mn> </math></span> cm<sup>3</sup> <em><strong>(A1)</strong></em><em><strong> (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>units are required in both parts</strong></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2800 = \pi \times {r^2} \times 30"> <mn>2800</mn> <mo>=</mo> <mi>π</mi> <mo>×</mo> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>×</mo> <mn>30</mn> </math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in volume of cylinder formula. Award <em><strong>(M1)</strong></em> for equating <em>their</em> expression (must include <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>) to <em>their</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2800"> <mn>2800</mn> </math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {r = } \right)"> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>=</mo> </mrow> <mo>)</mo> </mrow> </math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5.45"> <mn>5.45</mn> </math></span> cm (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5.45058"> <mn>5.45058</mn> </math></span>… cm) <em><strong>(A1)</strong></em><strong>(</strong><em><strong>ft)</strong></em><em><strong> (C3)</strong></em></p>
<p><strong>Note:</strong> Follow through from <em>their</em> part (a).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows triangle ABC, with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 3{\text{ cm}}">
<mrow>
<mtext>AB</mtext>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = 8{\text{ cm}}">
<mrow>
<mtext>BC</mtext>
</mrow>
<mo>=</mo>
<mn>8</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat BC = }}\frac{\pi }{3}">
<mrow>
<mrow>
<mi mathvariant="normal">A</mi>
<mrow>
<mover>
<mi mathvariant="normal">B</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">C</mi>
<mo>=</mo>
</mrow>
</mrow>
<mfrac>
<mi>π<!-- π --></mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.17.57.png" alt="N17/5/MATME/SP1/ENG/TZ0/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = 7{\text{ cm}}"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mn>7</mn> <mrow> <mtext> cm</mtext> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The shape in the following diagram is formed by adding a semicircle with diameter [AC] to the triangle.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_10.50.00.png" alt="N17/5/MATME/SP1/ENG/TZ0/04.b"></p>
<p>Find the exact perimeter of this shape.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of choosing the cosine rule <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{c^2} = {a^2} + {b^2} - ab\cos C"> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>a</mi> <mi>b</mi> <mi>cos</mi> <mo></mo> <mi>C</mi> </math></span></p>
<p>correct substitution into RHS of cosine rule <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{3^2} + {8^2} - 2 \times 3 \times 8 \times \cos \frac{\pi }{3}"> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>8</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mo>×</mo> <mn>3</mn> <mo>×</mo> <mn>8</mn> <mo>×</mo> <mi>cos</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span></p>
<p>evidence of correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \frac{\pi }{3}"> <mi>cos</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span> (may be seen anywhere, including in cosine rule) <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \frac{\pi }{3} = \frac{1}{2},{\text{ A}}{{\text{C}}^2} = 9 + 64 - \left( {48 \times \frac{1}{2}} \right),{\text{ }}9 + 64 - 24"> <mi>cos</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mrow> <mtext> A</mtext> </mrow> <mrow> <msup> <mrow> <mtext>C</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>9</mn> <mo>+</mo> <mn>64</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>48</mn> <mo>×</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>9</mn> <mo>+</mo> <mn>64</mn> <mo>−</mo> <mn>24</mn> </math></span></p>
<p>correct working clearly leading to answer <strong><em>A1</em></strong></p>
<p>e<em>g</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}{{\text{C}}^2} = 49,{\text{ }}b = \sqrt {49} "> <mrow> <mtext>A</mtext> </mrow> <mrow> <msup> <mrow> <mtext>C</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>49</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>b</mi> <mo>=</mo> <msqrt> <mn>49</mn> </msqrt> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = 7{\text{ (cm)}}"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mn>7</mn> <mrow> <mtext> (cm)</mtext> </mrow> </math></span> <strong><em>AG N0</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award no marks if the only working seen is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}{{\text{C}}^2} = 49"> <mrow> <mtext>A</mtext> </mrow> <mrow> <msup> <mrow> <mtext>C</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>49</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = \sqrt {49} "> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <msqrt> <mn>49</mn> </msqrt> </math></span> (or similar).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution for semicircle <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{semicircle}} = \frac{1}{2}(2\pi \times 3.5),{\text{ }}\frac{1}{2} \times \pi \times 7,{\text{ }}3.5\pi "> <mrow> <mtext>semicircle</mtext> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>3.5</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mi>π</mi> <mo>×</mo> <mn>7</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3.5</mn> <mi>π</mi> </math></span></p>
<p>valid approach (seen anywhere) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{perimeter}} = {\text{AB}} + {\text{BC}} + {\text{semicircle, }}3 + 8 + \left( {\frac{1}{2} \times 2 \times \pi \times \frac{7}{2}} \right),{\text{ }}8 + 3 + 3.5\pi "> <mrow> <mtext>perimeter</mtext> </mrow> <mo>=</mo> <mrow> <mtext>AB</mtext> </mrow> <mo>+</mo> <mrow> <mtext>BC</mtext> </mrow> <mo>+</mo> <mrow> <mtext>semicircle, </mtext> </mrow> <mn>3</mn> <mo>+</mo> <mn>8</mn> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>2</mn> <mo>×</mo> <mi>π</mi> <mo>×</mo> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>8</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mn>3.5</mn> <mi>π</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11 + \frac{7}{2}\pi {\text{ }}( = 3.5\pi + 11){\text{ (cm)}}"> <mn>11</mn> <mo>+</mo> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> <mi>π</mi> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>3.5</mn> <mi>π</mi> <mo>+</mo> <mn>11</mn> <mo stretchy="false">)</mo> <mrow> <mtext> (cm)</mtext> </mrow> </math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A buoy is floating in the sea and can be seen from the top of a vertical cliff. A boat is travelling from the base of the cliff directly towards the buoy.</p>
<p>The top of the cliff is 142 m above sea level. Currently the boat is 100 metres from the buoy and the angle of depression from the top of the cliff to the boat is 64°.</p>
<p><img src=""></p>
</div>
<div class="question">
<p>Draw and label the angle of depression on the diagram.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""> <strong><em>(A1)</em><em> </em></strong><strong><em>(C1)</em></strong></p>
<p><strong>Note:</strong> The horizontal line must be shown and the angle of depression must be labelled. Accept a numerical or descriptive label.</p>
<p><em><strong>[1 mark]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Helen is building a cabin using cylindrical logs of length 2.4 m and radius 8.4 cm. A wedge is cut from one log and the cross-section of this log is illustrated in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>Find the volume of this log.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 240\left( {\pi \times {{8.4}^2} - \frac{1}{2} \times {{8.4}^2} \times 0.872664 \ldots } \right)"> <mo>=</mo> <mn>240</mn> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <mo>×</mo> <mrow> <msup> <mrow> <mn>8.4</mn> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mrow> <msup> <mrow> <mn>8.4</mn> </mrow> <mn>2</mn> </msup> </mrow> <mo>×</mo> <mn>0.872664</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>M1M1M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>240 × area, award <em><strong>M1</strong> </em>for correctly substituting area sector formula, award <em><strong>M1</strong></em> for subtraction of their area of the sector from area of circle.</p>
<p>= 45800 (= 45811.96071) <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The magnitudes of two vectors, <em><strong>u</strong></em> and <em><strong>v</strong></em>, are 4 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 3 "> <msqrt> <mn>3</mn> </msqrt> </math></span> respectively. The angle between <em><strong>u</strong></em> and <em><strong>v</strong></em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{6}"> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span>.</p>
<p>Let <em><strong>w</strong></em> = <em><strong>u</strong></em> − <em><strong>v</strong></em>. Find the magnitude of <em><strong>w</strong></em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1 (cosine rule)</strong></p>
<p>diagram including <em><strong>u</strong></em>, <em><strong>v</strong></em> and included angle of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{6}"> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <img src=""></p>
<p>sketch of triangle with <em><strong>w</strong> </em>(does not need to be to scale) <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <img src=""></p>
<p>choosing cosine rule <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a^2} + {b^2} - 2ab\,{\text{cos}}\,C"> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>C</mi> </math></span></p>
<p>correct substitution <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{4^2} + {\left( {\sqrt 3 } \right)^2} - 2\left( 4 \right)\left( {\sqrt 3 } \right){\text{cos}}\frac{\pi }{6}"> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{\pi }{6} = \frac{{\sqrt 3 }}{2}"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em> 16 + 3 − 12</p>
<p>| <em><strong>w </strong></em>| = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 7 "> <msqrt> <mn>7</mn> </msqrt> </math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2 (scalar product)</strong></p>
<p>valid approach, in terms of u and v (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg </em> | <em><strong>w </strong></em>|<sup>2</sup> = (<em><strong>u</strong></em> − <em><strong>v</strong></em>)•(<em><strong>u</strong></em> − <em><strong>v</strong></em>), | <em><strong>w </strong></em>|<sup>2</sup> = <em><strong>u</strong></em>•<em><strong>u </strong></em>− 2<em><strong>u</strong></em>•<strong><em>v </em></strong>+ <strong><em>v</em></strong>•<em><strong>v</strong></em>, | <em><strong>w </strong></em>|<sup>2 </sup>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{u_1} - {v_1}} \right)^2} + {\left( {{u_2}\; - \;{v_2}} \right)^2}"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mo>−</mo> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mspace width="thickmathspace"></mspace> <mo>−</mo> <mspace width="thickmathspace"></mspace> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math></span>,</p>
<p>| <em><strong>w </strong></em>| = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{\left( {{u_1} - {v_1}} \right)}^2} + {{\left( {{u_2}\; - \;{v_2}} \right)}^2} + {{\left( {{u_3}\; - \;{v_3}} \right)}^2}} "> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mo>−</mo> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mspace width="thickmathspace"></mspace> <mo>−</mo> <mspace width="thickmathspace"></mspace> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>3</mn> </msub> </mrow> <mspace width="thickmathspace"></mspace> <mo>−</mo> <mspace width="thickmathspace"></mspace> <mrow> <msub> <mi>v</mi> <mn>3</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </math></span></p>
<p>correct value for <em><strong>u</strong></em>•<em><strong>u</strong></em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> | <em><strong>u</strong><strong> </strong></em>|<sup>2</sup> = 16, <em><strong>u</strong></em>•<em><strong>u</strong></em> = 16, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1}^2 + {u_2}^2 = 16"> <msup> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>16</mn> </math></span></p>
<p>correct value for <strong><em>v</em></strong>•<em><strong>v</strong></em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> | <em><strong>v</strong><strong> </strong></em>|<sup>2</sup> = 16, <strong><em>v</em></strong>•<em><strong>v</strong></em> = 3, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_1}^2 + {v_2}^2 + {v_3}^2 = 3"> <msup> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>v</mi> <mn>3</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>3</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {\frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}"> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em><strong>u</strong></em>•<strong><em>v</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4 \times \sqrt 3 \times \frac{{\sqrt 3 }}{2}"> <mo>=</mo> <mn>4</mn> <mo>×</mo> <msqrt> <mn>3</mn> </msqrt> <mo>×</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span> (= 6) (seen anywhere) <em><strong>A1</strong></em></p>
<p>correct substitution into <em><strong>u</strong></em>•<em><strong>u </strong></em>− 2<em><strong>u</strong></em>•<strong><em>v </em></strong>+ <strong><em>v</em></strong>•<em><strong>v</strong></em> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1}^2 + {u_2}^2 + {v_1}^2 + {v_2}^2 - 2\left( {{u_1}{v_1} + {u_2}{v_2}} \right)"> <msup> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> (2 or 3 dimensions) <em><strong>(A1)</strong></em></p>
<p><em>eg </em>16 − 2(6) + 3 (= 7)</p>
<p>| <em><strong>w </strong></em>| = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 7 "> <msqrt> <mn>7</mn> </msqrt> </math></span> <em><strong>A1 N2</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Two fixed points, A and B, are 40 m apart on horizontal ground. Two straight ropes, AP and BP, are attached to the same point, P, on the base of a hot air balloon which is vertically above the line AB. The length of BP is 30 m and angle BAP is 48°.</p>
<p><img src=""></p>
</div>
<div class="question">
<p>On the diagram, draw and label with an <em>x</em> the angle of depression of B from P.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""><em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>