File "markSceme-HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 3/markSceme-HL-paper3html
File size: 737.01 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> is a simple, connected, planar graph with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> vertices and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math> edges.</p>
</div>
<div class="specification">
<p>The complement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> has <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>'</mo></math> edges.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>'</mo></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the complement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> is also planar and connected, find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> is a simple graph with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> vertices and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math> edges.</p>
<p>Given that both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> and its complement are planar and connected, find the maximum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>9</mn></math> into either <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>=</mo><mn>3</mn><mi>v</mi><mo>-</mo><mn>6</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>≤</mo><mn>3</mn><mi>v</mi><mo>-</mo><mn>6</mn></math> <em><strong> (M1)</strong></em></p>
<p>the maximum number of edges is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>e</mi><mo>≤</mo><mn>21</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>κ</mi><mn>9</mn></msub></math> has <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>36</mn><mo> </mo><mtext>edges</mtext></math> <em><strong> (A1)</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>'</mo><mo>=</mo><mn>36</mn><mo>-</mo><mi>e</mi><mo> </mo><mfenced><mrow><mo>=</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mi>e</mi></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>'</mo><mo>≤</mo><mn>21</mn><mo>⇒</mo><mn>36</mn><mo>-</mo><mi>e</mi><mo>≤</mo><mn>21</mn></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>≤</mo><mi>e</mi><mo>≤</mo><mn>21</mn></math> (the possible values are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>,</mo><mo> </mo><mn>16</mn><mo>,</mo><mo> </mo><mn>17</mn><mo>,</mo><mo> </mo><mn>18</mn><mo>,</mo><mo> </mo><mn>19</mn><mo>,</mo><mo> </mo><mn>20</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn></math>) <em><strong> A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>+</mo><mi>e</mi><mo>'</mo><mo>=</mo><mfrac><mrow><mi>v</mi><mfenced><mrow><mi>v</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> (or equivalent) <em><strong> (A1)</strong></em></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>≤</mo><mn>3</mn><mi>v</mi><mo>-</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>'</mo><mo>≤</mo><mn>3</mn><mi>v</mi><mo>-</mo><mn>6</mn></math> <em><strong> M1</strong></em></p>
<p>to form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>v</mi><mfenced><mrow><mi>v</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>-</mo><mfenced><mrow><mn>3</mn><mi>v</mi><mo>-</mo><mn>6</mn></mrow></mfenced><mo>≤</mo><mn>3</mn><mi>v</mi><mo>-</mo><mn>6</mn></math> <em><strong> A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>v</mi><mfenced><mrow><mi>v</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>-</mo><mfenced><mrow><mn>3</mn><mi>v</mi><mo>-</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mn>3</mn><mi>v</mi><mo>-</mo><mn>6</mn></math>.</p>
<p><br>attempts to solve their quadratic inequality (equality) <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>v</mi><mn>2</mn></msup><mo>-</mo><mn>13</mn><mi>v</mi><mo>+</mo><mn>24</mn><mo>≤</mo><mn>0</mn><mo>⇒</mo><mn>2</mn><mo>.</mo><mn>228</mn><mo>…</mo><mo>≤</mo><mi>v</mi><mo>≤</mo><mn>10</mn><mo>.</mo><mn>77</mn><mo>…</mo></math></p>
<p>the maximum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>v</mi><mo>≤</mo><mn>10</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Christine and her friends live in Winnipeg, Canada. The weighted graph shows the location of their houses and the time, in minutes, to travel between each house.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Christine’s house is located at vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Dijkstra’s algorithm to find the shortest time to travel from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>, clearly showing how the algorithm has been applied.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the shortest path from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A new road is constructed that allows Christine to travel from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> minutes. If Christine starts from home and uses this new road her minimum travel time to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is reduced, but her minimum travel time to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> remains the same.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempts to construct a graph or table to represent Dijkstra’s algorithm <em><strong>M1</strong></em></p>
<p><strong>EITHER</strong></p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p><strong>OR</strong></p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>a clear attempt at Step 1 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C, D, H</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> considered) <em><strong>M1</strong></em></p>
<p>Steps 2 and 3 correctly completed <em><strong>A1</strong></em></p>
<p>Step 4 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A </mtext><mo>:</mo><mo> </mo><mn>44</mn><mo>→</mo><mn>36</mn></math>) correctly completed <em><strong>A1</strong></em></p>
<p>Steps 5 and 6 (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E </mtext><mo>:</mo><mo> </mo><mn>41</mn><mo>→</mo><mn>40</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F </mtext><mo>:</mo><mo> </mo><mn>58</mn><mo>→</mo><mn>57</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>57</mn><mo>→</mo><mn>55</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn><mo>→</mo><mn>55</mn></math>) correctly completed <em><strong>A1</strong></em></p>
<p>shortest time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>55</mn></math> (mins) <em><strong>A1</strong></em></p>
<p><em><strong><br>[6 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CHGEF</mtext></math> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> only if it is clear that Dijkstra’s algorithm has been attempted in part (a) (i). This <em><strong>A1</strong></em> can be awarded if the candidate attempts to use Dijkstra’s algorithm but neglects to state <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>55</mn></math> (mins).</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>minimum travel time from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is reduced</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CHA</mtext></math> is now <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>+</mo><mi>t</mi></math> (mins) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CBA</mtext></math> is still <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>+</mo><mn>11</mn></math> (mins)</p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>+</mo><mi>t</mi><mo><</mo><mn>36</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>t</mi><mo><</mo><mn>24</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Condone <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≤</mo><mn>24</mn></math>.</p>
<p><br>travel time from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> remains the same (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>55</mn></math> mins)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CHAF</mtext></math> is now <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>+</mo><mi>t</mi><mo>+</mo><mn>21</mn></math> (mins) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>+</mo><mi>t</mi><mo>+</mo><mn>21</mn><mo>≥</mo><mn>55</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>t</mi><mo>≥</mo><mn>22</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn><mo>≤</mo><mi>t</mi><mo><</mo><mn>24</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>22</mn><mo>,</mo><mo> </mo><mn>23</mn></math>.</p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question explores how graph algorithms can be applied to a graph with an unknown edge weight.</strong></p>
<p><br>Graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> is shown in the following diagram. The vertices of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> represent tourist attractions in a city. The weight of each edge represents the travel time, to the nearest minute, between two attractions. The route between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> is currently being resurfaced and this has led to a variable travel time. For this reason, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext></math> has an unknown travel time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> minutes, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Daniel plans to visit all the attractions, starting and finishing at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>. He wants to minimize his travel time.</p>
<p>To find a lower bound for Daniel’s travel time, vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and its adjacent edges are first deleted.</p>
</div>
<div class="specification">
<p>Daniel makes a table to show the minimum travel time between each pair of attractions.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>Write down the value of</p>
</div>
<div class="specification">
<p>To find an upper bound for Daniel’s travel time, the nearest neighbour algorithm is used, starting at vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
</div>
<div class="specification">
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>.</p>
</div>
<div class="specification">
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>3</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a Hamiltonian cycle in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Prim’s algorithm, starting at vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, to find the weight of the minimum spanning tree of the remaining graph. You should indicate clearly the order in which the algorithm selects each edge.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, for the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>9</mn></math>, find a lower bound for Daniel’s travel time, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the nearest neighbour algorithm to find two possible cycles.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the best upper bound for Daniel’s travel time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which the edge <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext></math> will definitely not be used by Daniel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state the value of the upper bound for Daniel’s travel time for the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> found in part (e)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The tourist office in the city has received complaints about the lack of cleanliness of some routes between the attractions. Corinne, the office manager, decides to inspect all the routes between all the attractions, starting and finishing at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext></math>. The sum of the weights of all the edges in graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>92</mn><mo>+</mo><mi>x</mi><mo>)</mo></math>.</p>
<p>Corinne inspects all the routes as quickly as possible and takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> hours.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> during Corinne’s inspection.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCDEGHFA</mtext></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept any other correct answers starting at any vertex.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> vertices, so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> edges required for MST <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> To award <em><strong>(M1)</strong></em>, their <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> edges should not form a cycle.</p>
<p style="padding-left:90px;"><br><img src=""> <em><strong>M1A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for the first three edges in correct order, <strong><em>A1</em></strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BH</mtext></math> in correct order and <em><strong>A1</strong></em> for all of the edges correct.</p>
<p><br>weight of MST <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>33</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The final <em><strong>A1</strong></em> can be awarded independently of previous marks.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lower bound <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>33</mn><mo>+</mo><mn>3</mn><mo>+</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>36</mn><mo>+</mo><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>13</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>17</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>14</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use nearest neighbour algorithm <em><strong>(M1)</strong></em></p>
<p>any two correct cycles from<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCDEGHFA, AFGHBCDE(F)A, AB(A)FGHCDE(F)A</mtext></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Bracketed vertices may be omitted in candidate’s answer. <br>Award <em><strong>M1A0A1</strong></em> for candidates who list two correct sequences of vertices, but omit the final vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCDEGHFA</mtext></math> <strong>OR</strong> their shortest cycle from (d)(i) <em><strong>(M1)</strong></em></p>
<p>upper bound <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>43</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>cycle starts: <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCDEGHF</mtext></math></p>
<p>return to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has two options, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FA</mtext><mo>=</mo><mn>18</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p>hence least value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>19</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>upper bound <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn></math> <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that edges will be repeated / there are odd vertices <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BH</mtext><mo>+</mo><mtext>DG</mtext><mo>=</mo><mn>21</mn><mo>,</mo><mo> </mo><mo> </mo><mtext>BD</mtext><mo>+</mo><mtext>GH</mtext><mo>=</mo><mn>15</mn><mo>,</mo><mo> </mo><mo> </mo><mtext>BG</mtext><mo>+</mo><mtext>DH</mtext><mo>=</mo><mn>21</mn></math> <strong>OR </strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo>+</mo><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>GH</mtext></math> is lowest weight and is repeated <em><strong>(M1)</strong></em></p>
<p>solution to CPP <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>107</mn><mo>+</mo><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>13</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1A0M0A1A1</strong></em> if only pairing <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>GH</mtext></math> is considered, leading to a correct answer.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Mostly well done, although some candidates wrote down a path instead of a cycle and some candidates wrote a cycle that did not include all the vertices.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates could apply the algorithm correctly to find the weight of the minimum spanning tree. A common misconception was selecting the shortest edge adjacent to the previous vertex, instead of selecting the shortest edge adjacent to the existing tree. This approach will not necessarily find the minimum spanning tree. A small number of candidates found the correct minimum spanning tree, but did not show evidence of using Prim’s algorithm, which only received partial credit; where a method/algorithm is explicit in the question, working must be seen to demonstrate that approach. Part (b)(ii) was also answered reasonably well, however several candidates did not read the instruction to give their answer in terms of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">x</mi></math>, instead choosing a specific value.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates could apply the algorithm correctly to find the weight of the minimum spanning tree. A common misconception was selecting the shortest edge adjacent to the previous vertex, instead of selecting the shortest edge adjacent to the existing tree. This approach will not necessarily find the minimum spanning tree. A small number of candidates found the correct minimum spanning tree, but did not show evidence of using Prim’s algorithm, which only received partial credit; where a method/algorithm is explicit in the question, working must be seen to demonstrate that approach. Part (b)(ii) was also answered reasonably well, however several candidates did not read the instruction to give their answer in terms of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">x</mi></math>, instead choosing a specific value.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mostly well-answered.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mostly well-answered.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mostly well-answered.</p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates could successfully apply the nearest neighbour algorithm to find a correct cycle, but some made errors finding a second one. Part (ii) was done reasonably well, with many candidates either giving the correct answer or gaining follow-through marks for selecting their shortest cycle from part (d)(i). A small number of candidates incorrectly chose their longest cycle.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates could successfully apply the nearest neighbour algorithm to find a correct cycle, but some made errors finding a second one. Part (ii) was done reasonably well, with many candidates either giving the correct answer or gaining follow-through marks for selecting their shortest cycle from part (d)(i). A small number of candidates incorrectly chose their longest cycle.</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question had a mixed response. Some candidates used the table or the graph to realize that the two choices to get from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">A</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">F</mi></math> are either <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">x</mi></math>. Some incorrectly stated <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">x</mi><mo>=</mo><mn>18</mn></math>. These candidates often achieved success in part (e)(ii), making the connection to their previous answer in part (d).</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question had a mixed response. Some candidates used the table or the graph to realize that the two choices to get from <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">A</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">F</mi></math> are either <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">x</mi></math>. Some incorrectly stated <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">x</mi><mo>=</mo><mn>18</mn></math>. These candidates often achieved success in part (e)(ii), making the connection to their previous answer in part (d).</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A surprising number of candidates did not seem to realize this was an application of the Chinese Postman Problem and simply equated the given total weight to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>120</mn></math> minutes. Not only does this show a lack of understanding of the problem, but it also showed a lack of appreciation of the amount of work required to answer a 5 mark question. Out of the many candidates who recognized the need to repeat edges connecting the odd vertices, some did not show complete working to explain why they chose to connect <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>BD</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>GH</mi></math>, only gaining partial credit.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A graphic designer, Ben, wants to create an animation in which a sequence of squares is created by a composition of successive enlargements and translations and then rotated about the origin and reduced in size.</p>
<p>Ben outlines his plan with the following storyboards.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The first four frames of the animation are shown below in greater detail.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The sides of each successive square are one half the size of the adjacent larger square. Let the sequence of squares be <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mi>U</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>U</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><mo>…</mo></math></p>
<p>The first square, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mn>0</mn></msub></math>, has sides of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mtext>cm</mtext></math>.</p>
</div>
<div class="specification">
<p>Ben decides the animation will continue as long as the width of the square is greater than the width of one pixel.</p>
</div>
<div class="specification">
<p>Ben decides to generate the squares using the transformation</p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><msub><mi>x</mi><mi>n</mi></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mi>n</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><msub><mi mathvariant="bold-italic">A</mi><mi>n</mi></msub><mfenced><mtable><mtr><mtd><msub><mi>x</mi><mn>0</mn></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mn>0</mn></msub></mtd></mtr></mtable></mfenced><mo>+</mo><msub><mi mathvariant="bold-italic">b</mi><mi>n</mi></msub></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">A</mi><mi>n</mi></msub></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>2</mn></math> matrix that represents an enlargement, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">b</mi><mi>n</mi></msub></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>1</mn></math> column vector that represents a translation, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mn>0</mn></msub></mrow></mfenced></math> is a point in <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">U</mi><mn>0</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mi>n</mi></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mi>n</mi></msub></mrow></mfenced></math> is its image in <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">U</mi><mi>n</mi></msub></math>.</p>
</div>
<div class="specification">
<p>By considering the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mn>0</mn></msub></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>,</p>
</div>
<div class="specification">
<p>Once the image of squares has been produced, Ben wants to continue the animation by rotating the image counter clockwise about the origin and having it reduce in size during the rotation.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>θ</mi></msub></math> be the enlargement matrix used when the original sequence of squares has been rotated through <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> degrees.</p>
<p>Ben decides the enlargement scale factor, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math>, should be a linear function of the angle, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>, and after a rotation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>°</mo></math> the sequence of squares should be half of its original length.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the width of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mi>n</mi></msub></math> in centimetres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given the width of a pixel is approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>025</mn><mo> </mo><mtext>cm</mtext></math>, find the number of squares in the final image.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">A</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">A</mi><mi>n</mi></msub></math>, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>state the coordinates, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mn>1</mn></msub></mrow></mfenced></math>, of its image in <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>hence find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">b</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">b</mi><mi>n</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mn>2</mn><mrow><mo>-</mo><mi>n</mi></mrow></msup></mrow></mfenced></mtd></mtr><mtr><mtd><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mn>2</mn><mrow><mo>-</mo><mi>n</mi></mrow></msup></mrow></mfenced></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the coordinates of the top left-hand corner in <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mn>7</mn></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math>, in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo><mi>m</mi><mi>θ</mi><mo>+</mo><mi>c</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>θ</mi></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math> after it is rotated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>135</mn><mo>°</mo></math> and enlarged.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> at which the enlargement scale factor equals zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After the enlargement scale factor equals zero, Ben continues to rotate the image for another two revolutions.</p>
<p>Describe the animation for these two revolutions, stating the final position of the sequence of squares.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mfenced><mfrac><mn>1</mn><msup><mn>2</mn><mi>n</mi></msup></mfrac></mfenced></math> <strong><em>M</em></strong><em><strong>1A</strong></em><em><strong>1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><msup><mn>2</mn><mi>n</mi></msup></mfrac><mo>></mo><mn>0</mn><mo>.</mo><mn>025</mn></math> <em><strong>(A</strong></em><em><strong>1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mi>n</mi></msup><mo><</mo><mn>160</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>≤</mo><mn>7</mn></math> <em><strong>(A</strong></em><em><strong>1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept equations in place of inequalities. </p>
<p> </p>
<p>Hence there are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> squares <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mi>n</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><msup><mn>2</mn><mi>n</mi></msup></mfrac></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mfrac><mn>1</mn><msup><mn>2</mn><mi>n</mi></msup></mfrac></mtd></mtr></mtable></mfenced></math> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>4</mn></mrow></mfenced></math> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">A</mi><mn>1</mn></msub><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><msub><mi mathvariant="bold-italic">b</mi><mn>1</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(M</strong></em><em><strong>1)</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">b</mi><mn>1</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></math> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Recognise the geometric series <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">b</mi><mi>n</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>4</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>+</mo><mo>…</mo></mtd></mtr><mtr><mtd><mn>4</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>+</mo><mo>…</mo></mtd></mtr></mtable></mfenced></math> <em><strong>M</strong></em><em><strong>1</strong></em></p>
<p>Each component is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>4</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>1</mn><msup><mn>2</mn><mi>n</mi></msup></mfrac></mstyle></mrow></mfenced></mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mstyle displaystyle="true"><mn>1</mn></mstyle><mstyle displaystyle="true"><msup><mn>2</mn><mi>n</mi></msup></mstyle></mfrac></mrow></mfenced></mrow></mfenced></math> <em><strong>M</strong></em><em><strong>1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><msup><mn>2</mn><mi>n</mi></msup></mfrac></mrow></mfenced></mtd></mtr><mtr><mtd><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><msup><mn>2</mn><mi>n</mi></msup></mfrac></mrow></mfenced></mtd></mtr></mtable></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><msup><mn>2</mn><mn>7</mn></msup></mfrac></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mfrac><mn>1</mn><msup><mn>2</mn><mn>7</mn></msup></mfrac></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><msup><mn>2</mn><mn>7</mn></msup></mfrac></mrow></mfenced></mtd></mtr><mtr><mtd><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><msup><mn>2</mn><mn>7</mn></msup></mfrac></mrow></mfenced></mtd></mtr></mtable></mfenced></math> <em><strong>M</strong></em><em><strong>1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>7</mn><mo>.</mo><mn>9375</mn><mo>,</mo><mo> </mo><mn>7</mn><mo>.</mo><mn>96875</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo><mi>m</mi><mi>θ</mi><mo>+</mo><mi>c</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>c</mi><mo>=</mo><mn>1</mn></math> <em><strong>M</strong></em><em><strong>1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mn>360</mn></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mn>360</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>⇒</mo><mi>m</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>720</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mi>θ</mi><mn>720</mn></mfrac><mo>+</mo><mn>1</mn></math></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>θ</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mfrac><mi>θ</mi><mn>720</mn></mfrac><mo>+</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mfrac><mi>θ</mi><mn>720</mn></mfrac><mo>+</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mfrac><mn>135</mn><mn>720</mn></mfrac><mo>+</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mfrac><mn>135</mn><mn>720</mn></mfrac><mo>+</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mi>cos</mi><mo> </mo><mn>135</mn><mo>°</mo></mtd><mtd><mo>-</mo><mi>sin</mi><mo> </mo><mn>135</mn><mo>°</mo></mtd></mtr><mtr><mtd><mi>sin</mi><mo> </mo><mn>135</mn><mo>°</mo></mtd><mtd><mi>cos</mi><mo> </mo><mn>135</mn><mo>°</mo></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <em><strong>M1A1A1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>15</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>720</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The image will expand from zero (accept equivalent answers)</p>
<p>It will rotate counter clockwise</p>
<p>The design will (re)appear in the opposite (third) quadrant <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept any two of the above</p>
<p> </p>
<p>Its final position will be in the opposite (third) quadrant or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>˚</mo></math> from its original position or equivalent statement. <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question is about a metropolitan area council planning a new town and the location of a new toxic waste dump.</strong></p>
<p><br>A metropolitan area in a country is modelled as a square. The area has four towns, located at the corners of the square. All units are in kilometres with the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate representing the distance east and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate representing the distance north from the origin at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<ul>
<li>Edison is modelled as being positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>40</mn><mo>)</mo></math>.</li>
<li>Fermitown is modelled as being positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext><mo>(</mo><mn>40</mn><mo>,</mo><mo> </mo><mn>40</mn><mo>)</mo></math>.</li>
<li>Gaussville is modelled as being positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>G</mtext><mo>(</mo><mn>40</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</li>
<li>Hamilton is modelled as being positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</li>
</ul>
</div>
<div class="specification">
<p>The metropolitan area council decides to build a new town called Isaacopolis located at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext><mo>(</mo><mn>30</mn><mo>,</mo><mo> </mo><mn>20</mn><mo>)</mo></math>.</p>
<p>A new Voronoi diagram is to be created to include Isaacopolis. The equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>IE</mtext></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math>.</p>
</div>
<div class="specification">
<p>The metropolitan area is divided into districts based on the Voronoi regions found in part (c).</p>
</div>
<div class="specification">
<p>A toxic waste dump needs to be located within the metropolitan area. The council wants to locate it as far as possible from the nearest town.</p>
</div>
<div class="specification">
<p>The toxic waste dump, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T</mtext></math>, is connected to the towns via a system of sewers.</p>
<p>The connections are represented in the following matrix, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math>, where the order of rows and columns is (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E, F, G, H, I, T</mtext></math>).</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
<p>A leak occurs from the toxic waste dump and travels through the sewers. The pollution takes one day to travel between locations that are directly connected.</p>
<p>The digit <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math> represents a direct connection. The values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> in the leading diagonal of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math> mean that once a location is polluted it will stay polluted.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The model assumes that each town is positioned at a single point. Describe possible circumstances in which this modelling assumption is reasonable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a Voronoi diagram showing the regions within the metropolitan area that are closest to each town.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>IF</mtext></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the coordinates of one vertex of the new Voronoi diagram are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>20</mn><mo>,</mo><mo> </mo><mn>37</mn><mo>.</mo><mn>5</mn><mo>)</mo></math>, find the coordinates of the other two vertices within the metropolitan area.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch this new Voronoi diagram showing the regions within the metropolitan area which are closest to each town.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A car departs from a point due north of Hamilton. It travels due east at constant speed to a destination point due North of Gaussville. It passes through the Edison, Isaacopolis and Fermitown districts. The car spends <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo>%</mo></math> of the travel time in the Isaacopolis district.</p>
<p>Find the distance between Gaussville and the car’s destination point.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the location of the toxic waste dump, given that this location is not on the edge of the metropolitan area.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Make one possible criticism of the council’s choice of location.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find which town is last to be polluted. Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of days it takes for the pollution to reach the last town.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A sewer inspector needs to plan the shortest possible route through each of the connections between different locations. Determine an appropriate start point and an appropriate end point of the inspection route.</p>
<p><strong>Note</strong> that the fact that each location is connected to itself does not correspond to a sewer that needs to be inspected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the size of each town is small (in comparison with the distance between the towns)<br><strong>OR</strong><br>if towns have an identifiable centre<br><strong>OR</strong><br>the centre of the town is at that point <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Accept a geographical landmark in place of “centre”, e.g. “town hall” or “capitol”.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:30px;"><img src=""> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> There is no need for a scale / coordinates here. Condone boundaries extending beyond the metropolitan area.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IF</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>40</mn><mo>-</mo><mn>20</mn></mrow><mrow><mn>40</mn><mo>-</mo><mn>30</mn></mrow></mfrac><mo>=</mo><mn>2</mn></math> <em><strong>(A1)</strong></em></p>
<p>negative reciprocal of any gradient <em><strong>(M1)</strong></em></p>
<p>gradient of perpendicular bisector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p><strong><br>Note:</strong> Seeing <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> (for example) used clearly as a gradient anywhere is evidence of the “negative reciprocal” method despite being applied to an inappropriate gradient.</p>
<p> </p>
<p>midpoint is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mn>40</mn><mo>+</mo><mn>30</mn></mrow><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>40</mn><mo>+</mo><mn>20</mn></mrow><mn>2</mn></mfrac></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>35</mn><mo>,</mo><mo> </mo><mn>30</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>equation of perpendicular bisector is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>30</mn><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>35</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept equivalent forms <em>e.g.</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mn>95</mn><mn>2</mn></mfrac></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>+</mo><mi>x</mi><mo>-</mo><mn>95</mn><mo>=</mo><mn>0</mn></math>.<br>Allow <em><strong>FT</strong> </em>for the final <em><strong>A1</strong> </em>from their midpoint and gradient of perpendicular bisector, as long as the <em><strong>M1</strong> </em>has been awarded</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EH</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>20</mn></math> <em><strong>(A1)</strong></em></p>
<p><strong><br>Note:</strong> Award this <em><strong>A1</strong> </em>if seen in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of any final answer or if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> is used as the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-value in the equation of any other perpendicular bisector.</p>
<p><br>attempt to use symmetry <strong>OR</strong> intersecting two perpendicular bisectors <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>25</mn><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>20</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>20</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:30px;"><img src=""> <em><strong>M1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for exactly four perpendicular bisectors around <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IE</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IF</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IG</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IH</mtext></math>) seen, even if not in exactly the right place.</p>
<p>Award <em><strong>A1</strong> </em>for a completely correct diagram. Scale / coordinates are NOT necessary. Vertices should be in approximately the correct positions but only penalized if clearly wrong (condone northern and southern vertices appearing to be very close to the boundary).</p>
<p>Condone the Voronoi diagram extending outside of the square.</p>
<p>Do not award follow-though marks in this part.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo>%</mo></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> <em><strong>(A1)</strong></em></p>
<p>recognizing line intersects bisectors at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>c</mi></math> (or equivalent) but different <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-values <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mfrac><mn>95</mn><mn>2</mn></mfrac></math></p>
<p>finding an expression for the distance in Isaacopolis in terms of one variable <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub><mo>=</mo><mfenced><mrow><mn>95</mn><mo>-</mo><mn>2</mn><mi>c</mi></mrow></mfenced><mo>-</mo><mfrac><mrow><mn>2</mn><mi>c</mi><mo>-</mo><mn>15</mn></mrow><mn>3</mn></mfrac><mo>=</mo><mn>100</mn><mo>-</mo><mfrac><mrow><mn>8</mn><mi>c</mi></mrow><mn>3</mn></mfrac></math></p>
<p>equating their expression to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>-</mo><mfrac><mrow><mn>8</mn><mi>c</mi></mrow><mn>3</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>40</mn><mo>=</mo><mn>12</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>33</mn></math></p>
<p>distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>33</mn><mo> </mo><mfenced><mtext>km</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>must be a vertex (award if vertex given as a final answer) <em><strong>(R1)</strong></em></p>
<p>attempt to calculate the distance of at least one town from a vertex <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> This must be seen as a calculation or a value.</p>
<p><br>correct calculation of distances <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>65</mn><mn>3</mn></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn><mo>.</mo><mn>7</mn></math> <strong>AND </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>406</mn><mo>.</mo><mn>25</mn></msqrt></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo>.</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>25</mn><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>20</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>R1M0A0A0</strong></em> for a vertex written with no other supporting calculations.<br>Award <em><strong>R1M0A0A1</strong></em> for correct vertex with no other supporting calculations. <br>The final <em><strong>A1</strong></em> is not dependent on the previous <em><strong>A1</strong></em>. There is no follow-through for the final <em><strong>A1</strong></em>.</p>
<p>Do not accept an answer based on “uniqueness” in the question.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>For example, any one of the following:</em></p>
<p>decision does not take into account the different population densities</p>
<p>closer to a city will reduce travel time/help employees</p>
<p>it is closer to some cites than others <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept any correct reason that engages with the scenario.<br>Do not accept any answer to do with ethical issues about whether toxic waste should ever be dumped, or dumped in a metropolitan area.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempting <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">M</mi><mn>3</mn></msup></math> <em><strong>M1</strong></em></p>
<p>attempting <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">M</mi><mn>4</mn></msup></math> <em><strong>M1</strong></em></p>
<p>e.g.</p>
<p>last row/column of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">M</mi><mn>3</mn></msup><mo>=</mo><mfenced><mrow><mn>3</mn><mo> </mo><mo> </mo><mo> </mo><mn>5</mn><mo> </mo><mo> </mo><mo> </mo><mn>1</mn><mo> </mo><mo> </mo><mo> </mo><mn>6</mn><mo> </mo><mo> </mo><mo> </mo><mn>0</mn><mo> </mo><mo> </mo><mo> </mo><mn>7</mn></mrow></mfenced></math></p>
<p>last row/column of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">M</mi><mn>4</mn></msup><mo>=</mo><mfenced><mrow><mn>10</mn><mo> </mo><mo> </mo><mn>12</mn><mo> </mo><mo> </mo><mo> </mo><mn>4</mn><mo> </mo><mo> </mo><mo> </mo><mn>16</mn><mo> </mo><mo> </mo><mo> </mo><mn>1</mn><mo> </mo><mo> </mo><mo> </mo><mn>18</mn></mrow></mfenced></math></p>
<p>hence Isaacopolis is the last city to be polluted <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Do not award the <em><strong>A1</strong></em> unless both <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">M</mi><mn>3</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">M</mi><mn>4</mn></msup></math> are considered. <br>Award <em><strong>M1M0A0</strong></em> for a claim that the shortest distance is from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> and that it is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>, without any support.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempting to translate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math> to a graph or a list of cities polluted on each day <em><strong> (M1)</strong></em></p>
<p>correct graph or list <em><strong>A1</strong></em></p>
<p><em><strong><img style="display:block;margin-left:auto;margin-right:auto;" src=""></strong></em></p>
<p>hence Isaacopolis is the last city to be polluted <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>M1A1A1</strong></em> for a clear description of the graph in words leading to the correct answer.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>it takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> days <em><strong>A1</strong></em></p>
<p><strong> </strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>the orders of the different vertices are:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E 2</mtext></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F 1</mtext></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>G 2</mtext></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H 2</mtext></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I 1</mtext></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T 2</mtext></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Accept a list where each order is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> greater than listed above.</p>
<p><br><strong>OR</strong></p>
<p>a correct diagram/graph showing the connections between the locations <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Accept a diagram with loops at each vertex.<br>This mark should be awarded if candidate is clearly using their correct diagram from the previous part.</p>
<p><br><strong>THEN</strong></p>
<p><em>“Start at F and end at I” </em> <strong>OR </strong> <em>“Start at I and end at F” <strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1A0</strong></em> for “<em>it could start at either F or I”</em>.<br>Award <em><strong>A1A1</strong></em> for <em>“IGEHTF”</em> <strong>OR</strong> <em>“FTHEGI”</em>.<br>Award <em><strong>A1A1</strong></em> for <em>“F and I”</em> <strong>OR</strong> <em>“I and F”</em>.</p>
<p><strong> </strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 2 was based on Voronoi diagrams, but a substantial number of candidates appeared to have not met this topic.</p>
<p>2(a) was generally well answered, although a strangely common answer was to claim that the towns must be 1km by 1km! Perhaps this came from thinking of coordinates as representing pixels rather than points.</p>
<p>2(b) was done well by most candidates who knew what a Voronoi diagram was.</p>
<p>2(c)(i) showed some poor planning skills by many candidates who found a line perpendicular to the given Voronoi edge rather than finding the gradient of IF.</p>
<p>In 2(c)(ii) candidates would have benefited from taking a step back and thinking about the symmetry of the situation before unthinkingly intersecting a lot of lines.</p>
<p>2(c)(iii) was done well by some, but many did not seem to have any intuition for the effect of adding a point to a Voronoi diagram.</p>
<p>2(d) was probably the worst answered question. Candidates did not seem to have the problem-solving tools to deal with this slightly unfamiliar situation.</p>
<p>In 2(e) many candidates clearly did not know that the solution to the toxic waste problem (as described in the syllabus) occurs at a vertex of the Voronoi diagram.</p>
<p>A pleasing number of candidates were able to approach 2(f) even if they were unable to do earlier parts of the question, and in these very long questions candidates should be advised that sometimes later parts are not necessarily harder or impossible to access. Very few who attempted the matrix power approach could interpret what zeroes meant in the matrices produced, but a good number successfully turned the matrix into a graph and proceeded well from there.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question compares possible designs for a new computer network between multiple school buildings, and whether they meet specific requirements.</strong></p>
<p><br>A school’s administration team decides to install new fibre-optic internet cables underground. The school has eight buildings that need to be connected by these cables. A map of the school is shown below, with the internet access point of each building labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A–H</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Jonas is planning where to install the underground cables. He begins by determining the distances, in metres, between the underground access points in each of the buildings.</p>
<p>He finds <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AD</mtext><mo>=</mo><mn>89</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DF</mtext><mo>=</mo><mn>104</mn><mo>.</mo><mn>9</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>D</mtext><mo>^</mo></mover><mtext>F</mtext><mo>=</mo><mn>83</mn><mo>°</mo></math>.</p>
</div>
<div class="specification">
<p>The cost for installing the cable directly between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>21</mn><mo> </mo><mn>310</mn></math>.</p>
</div>
<div class="specification">
<p>Jonas estimates that it will cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>110</mn></math> per metre to install the cables between all the other buildings.</p>
</div>
<div class="specification">
<p>Jonas creates the following graph, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, using the cost of installing the cables between two buildings as the weight of each edge.</p>
<p style="text-align: center;"><img src=""></p>
<p>The computer network could be designed such that each building is directly connected to at least one other building and hence all buildings are indirectly connected.</p>
</div>
<div class="specification">
<p>The computer network fails if any part of it becomes unreachable from any other part. To help protect the network from failing, every building could be connected to at least two other buildings. In this way if one connection breaks, the building is still part of the computer network. Jonas can achieve this by finding a Hamiltonian cycle within the graph.</p>
</div>
<div class="specification">
<p>After more research, Jonas decides to install the cables as shown in the diagram below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Each individual cable is installed such that each end of the cable is connected to a building’s access point. The connection between each end of a cable and an access point has a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>4</mn><mo>%</mo></math> probability of failing after a power surge.</p>
<p>For the network to be successful, each building in the network must be able to communicate with every other building in the network. In other words, there must be a path that connects any two buildings in the network. Jonas would like the network to have less than a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> probability of failing to operate after a power surge.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost per metre of installing this cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why the cost for installing the cable between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> would be higher than between the other buildings.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using Kruskal’s algorithm, find the minimum spanning tree for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, showing clearly the order in which edges are added.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the minimum installation cost for the cables that would allow all the buildings to be part of the computer network.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why a path that forms a Hamiltonian cycle does not always form an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, use the nearest neighbour algorithm to find the upper bound for the installation cost of a computer network in the form of a Hamiltonian cycle.</p>
<p><strong>Note:</strong> Although the graph is not complete, in this instance it is not necessary to form a table of least distances.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By deleting <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, use the deleted vertex algorithm to find the lower bound for the installation cost of the cycle.</p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Jonas’s network satisfies the requirement of there being less than a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> probability of the network failing after a power surge.</p>
<div class="marks">[5]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>AF</mtext><mn>2</mn></msup><mo>=</mo><mn>89</mn><mo>.</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><mn>104</mn><mo>.</mo><msup><mn>9</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mn>89</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>104</mn><mo>.</mo><mn>9</mn></mrow></mfenced><mi>cos</mi><mo> </mo><mn>83</mn></math> <em><strong>(M1)(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the cosine rule and <em><strong>(A1)</strong></em> for correct substitution.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext><mo>=</mo><mn>129</mn><mo> </mo><mo> </mo><mtext>m</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>129</mn><mo>.</mo><mn>150</mn><mo>…</mo></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21310</mn><mo>÷</mo><mn>129</mn><mo>.</mo><mn>150</mn><mo>…</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>165</mn></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any reasonable statement referring to the lake <em><strong>R1</strong></em></p>
<p>(eg. there is a lake between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>, the cables would need to be installed under/over/around the lake, special waterproof cables are needed for lake, etc.)</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>edges (or weights) are chosen in the order</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CE</mtext><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8239</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DG</mtext><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8668</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD </mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8778</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8811</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DE </mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8833</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EH</mtext><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>9251</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DF</mtext><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>11</mn><mo> </mo><mn>539</mn></mrow></mfenced></math> <em><strong>A1A1A1</strong></em></p>
<p style="text-align:center;"><img src=""></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for the first two edges chosen in the correct order. Award <em><strong>A1A1 </strong></em>for the first six edges chosen in the correct order. Award <em><strong>A1A1A1</strong> </em>for all seven edges chosen in the correct order. Accept a diagram as an answer, provided the order of edges is communicated.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Finding the sum of the weights of their edges <em><strong>(M1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8239</mn><mo>+</mo><mn>8668</mn><mo>+</mo><mn>8778</mn><mo>+</mo><mn>8811</mn><mo>+</mo><mn>8833</mn><mo>+</mo><mn>9251</mn><mo>+</mo><mn>11539</mn></math></p>
<p>total cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>$</mo><mn>64119</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a Hamiltonian cycle is not always an Eulerian circuit as it does not have to include all edges of the graph (only all vertices) <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>edges (or weights) are chosen in the order</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DG</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8668</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>GH</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>9603</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>HE</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>9251</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EC</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8239</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CB</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>13</mn><mo> </mo><mn>156</mn></mrow></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BA</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8811</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>21</mn><mo> </mo><mn>310</mn></mrow></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FD</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>11</mn><mo> </mo><mn>539</mn></mrow></mfenced></math> <em><strong>A1A1A1</strong></em></p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for the first two edges chosen in the correct order. Award <em><strong>A1A1</strong> </em>for the first five edges chosen in the correct order. Award <em><strong>A1A1A1</strong> </em>for all eight edges chosen in the correct order. Accept a diagram as an answer, provided the order of edges is communicated.</p>
<p> </p>
<p>finding the sum of the weights of their edges <em><strong>(M1)</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8668</mn><mo>+</mo><mn>9603</mn><mo>+</mo><mn>9251</mn><mo>+</mo><mn>8239</mn><mo>+</mo><mn>13156</mn><mo>+</mo><mn>8811</mn><mo>+</mo><mn>21310</mn><mo>+</mo><mn>11539</mn></math></p>
<p>upper bound <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>$</mo><mn>90</mn><mo> </mo><mn>577</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find MST after deleting vertex D <em><strong>(M1)</strong></em><br>these edges (or weights) (in any order)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CE</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8239</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8811</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EH</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>9251</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>GH</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>9603</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BE</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>10</mn><mo> </mo><mn>153</mn></mrow></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FG</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>12</mn><mo> </mo><mn>606</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>Note:</strong> Prim’s or Kruskal’s algorithm could be used at this stage.</p>
<p style="text-align:left;"><br>reconnect <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> to MST with two different edges <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DG</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8668</mn></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext><mo> </mo><mo> </mo><mo> </mo><mfenced><mn>8778</mn></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>Note:</strong> This <strong><em>A1</em> </strong>is independent of the first <em><strong>A</strong></em> mark and can be awarded if both <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DG</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext></math> are chosen to reconnect <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> to the MST, even if the MST is incorrect.<br><br></p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p><strong><br></strong>finding the sum of the weights of their edges <em><strong>(M1)</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8239</mn><mo>+</mo><mn>8811</mn><mo>+</mo><mn>9251</mn><mo>+</mo><mn>9603</mn><mo>+</mo><mn>10153</mn><mo>+</mo><mn>12606</mn><mo>+</mo><mn>8668</mn><mo>+</mo><mn>8778</mn></math></p>
<p><br><strong>Note:</strong> For candidates with an incorrect MST or no MST, the weights of at least seven of the edges being summed (two of which must connect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>) must be shown to award this <em><strong>(M1)</strong></em>.</p>
<p><br>lower bound <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>$</mo><mn>76</mn><mo> </mo><mn>109</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>recognition of a binomial distribution <em><strong>(M1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>014</mn></mrow></mfenced></math></p>
<p>finding the probability that a cable fails (at least one of its connections fails)<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>></mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>027804</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>027804</mn></math> <em><strong>A1</strong></em></p>
<p>recognition that <strong>two</strong> cables must fail for the network to go offline <em><strong>M1</strong></em></p>
<p>recognition of binomial distribution for network, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>8</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>027804</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo>≥</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0194</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0193602</mn><mo>…</mo></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>Y</mi><mo><</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0194</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0193602</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>therefore, the diagram satisfies the requirement since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>94</mn><mo>%</mo><mo><</mo><mn>2</mn><mo>%</mo></math> <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Evidence of binomial distribution may be seen as combinations.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>recognition of a binomial distribution <em><strong>(M1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>16</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>014</mn></mrow></mfenced></math></p>
<p>finding the probability that at least <strong>two</strong> connections fail<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0206473</mn><mo>…</mo></math> <strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo><</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0206473</mn><mo>…</mo></math></strong> <em><strong>A1</strong></em></p>
<p>recognition that the previous answer is an overestimate <em><strong>M1</strong></em></p>
<p>finding probability of two ends of the same cable failing, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>014</mn></mrow></mfenced></math>,<br>and the ends of the other <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> cables not failing, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>14</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>014</mn></mrow></mfenced></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>F</mi><mo>=</mo><mn>2</mn></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0000160891</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0000160891</mn><mo>…</mo><mo>×</mo><mn>8</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>00128713</mn><mo>.</mo><mo>.</mo><mo>.</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0206473</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>00128713</mn><mo>…</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>0194</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0193602</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>therefore, the diagram satisfies the requirement since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>94</mn><mo>%</mo><mo><</mo><mn>2</mn><mo>%</mo></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>recognition of a binomial distribution <em><strong>M1<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>16</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>014</mn></mrow></mfenced></math></p>
<p>finding the probability that the network remains secure if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> connections fail or if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> connections fail provided that the second failed connection occurs at the other end of the cable with the first failure <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>(remains secure) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≤</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mn>1</mn><mn>15</mn></mfrac><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>9806397625</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>(network fails) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>9806397625</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>0194</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0193602</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>therefore, the diagram satisfies the requirement since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>94</mn><mo>%</mo><mo><</mo><mn>2</mn><mo>%</mo></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 4</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>(network failing)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mn>0</mn><mo> </mo><mtext>connections failing</mtext></mrow></mfenced><mo>-</mo><mtext>P</mtext><mfenced><mrow><mn>1</mn><mo> </mo><mtext>connection failing</mtext></mrow></mfenced><mo>-</mo><mtext>P</mtext><mfenced><mrow><mn>2</mn><mo> </mo><mtext>connections on the same cable failing</mtext></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><msup><mn>986</mn><mn>16</mn></msup><mo>-</mo><mmultiscripts><mi>C</mi><mn>1</mn><mprescripts></mprescripts><mn>16</mn></mmultiscripts><mo>×</mo><mn>0</mn><mo>.</mo><mn>014</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>986</mn><mn>15</mn></msup><mo>-</mo><mmultiscripts><mi>C</mi><mn>1</mn><mprescripts></mprescripts><mn>8</mn></mmultiscripts><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>014</mn><mn>2</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>986</mn><mn>14</mn></msup></math> <em><strong>A1A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for each of 2<sup>nd</sup>, 3<sup>rd</sup> and last terms.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0194</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0193602</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>therefore, the diagram satisfies the requirement since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>94</mn><mo>%</mo><mo><</mo><mn>2</mn><mo>%</mo></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question part was intended to be an easy introduction to help candidates begin working with the larger story and most candidates handled it well. However, it was surprisingly common for a candidate to correctly choose the cosine rule and to make the correct substitutions into the formula but then arrive at an incorrect answer. The frequency of this mistake suggests that candidates were either making simple entry mistakes into their GDC or forgetting to ensure that their GDC was set to degrees rather than radians.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(b) and (c) Most candidates were able to gain the three marks available.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(d), (f) and (g) These three question parts required candidates to demonstrate their ability to carry out graph theory algorithms. Kruskal’s algorithm was split into two different question parts to guide candidates to show their work. As a result, many were able to score well in part (d)(ii) either from having the correct MST or from “follow through” marks from an incorrect MST. However, without this guidance in 2(f) and 2(g), many candidates did a poor job of showing the process they were using to apply the algorithms. The candidates that scored well were detailed in showing the order of how edges were selected and how they were being summed to arrive at the final answers. Although “follow through” within the problem was not available for the final answer in parts 2(f) and 2(g), many candidates missed the opportunity to gain the final method mark in both parts by not fully showing the process they used.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to state the definitions of Hamiltonian cycles and Eulerian circuits. However, the question was not asking for definitions but rather a distinct conclusion of why a Hamiltonian cycle is not always an Eulerian circuit. Disappointingly, many incorrect answers contained five or more lines or writing that may have used up exam time that could have been devoted to other question parts. Another common mistake seen here was candidates incorrectly trying to state a reason based on the number of odd vertices.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was very challenging for almost all the candidates. Although there were several different methods that candidates could have used to answer this question, most candidates were only able to gain one or two marks here. Many candidates did recognize that something binomial was needed, but few knew how to setup the correct parameters for the distribution.</p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights of the edges in the complete graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> are given in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-10_om_09.18.27.png" alt="M17/5/MATHL/HP3/ENG/TZ0/DM/02"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at A , use the nearest neighbour algorithm to find an upper bound for the travelling salesman problem for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By first deleting vertex A , use the deleted vertex algorithm together with Kruskal’s algorithm to find a lower bound for the travelling salesman problem for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>the edges are traversed in the following order</p>
<p>AB <strong><em>A1</em></strong></p>
<p>BC</p>
<p>CF <strong><em>A1</em></strong></p>
<p>FE</p>
<p>ED <strong><em>A1</em></strong></p>
<p>DA <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{upper bound}} = {\text{weight of this cycle}} = 4 + 1 + 2 + 7 + 11 + 8 = 33">
<mrow>
<mtext>upper bound</mtext>
</mrow>
<mo>=</mo>
<mrow>
<mtext>weight of this cycle</mtext>
</mrow>
<mo>=</mo>
<mn>4</mn>
<mo>+</mo>
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mo>+</mo>
<mn>7</mn>
<mo>+</mo>
<mn>11</mn>
<mo>+</mo>
<mn>8</mn>
<mo>=</mo>
<mn>33</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>having deleted A, the order in which the edges are added is</p>
<p>BC <strong><em>A1</em></strong></p>
<p>CF <strong><em>A1</em></strong></p>
<p>CD <strong><em>A1</em></strong></p>
<p>EF <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept indication of the correct order on a diagram.</p>
<p> </p>
<p>to find the lower bound, we now reconnect A using the two edges with the lowest weights, that is AB and AF <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lower bound}} = 1 + 2 + 5 + 7 + 4 + 6 = 25">
<mrow>
<mtext>lower bound</mtext>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mo>+</mo>
<mn>5</mn>
<mo>+</mo>
<mn>7</mn>
<mo>+</mo>
<mn>4</mn>
<mo>+</mo>
<mn>6</mn>
<mo>=</mo>
<mn>25</mn>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1)(A1)A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{LB}} = 15 + 4 + 6 = 25">
<mrow>
<mtext>LB</mtext>
</mrow>
<mo>=</mo>
<mn>15</mn>
<mo>+</mo>
<mn>4</mn>
<mo>+</mo>
<mn>6</mn>
<mo>=</mo>
<mn>25</mn>
</math></span> obtained either from an incorrect order of correct edges or where order is not indicated.</p>
<p> </p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graph <em>G</em> represented in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The graph <em>G</em> is a plan of a holiday resort where each vertex represents a villa and the edges represent the roads between villas. The weights of the edges are the times, in minutes, Mr José, the security guard, takes to walk along each of the roads. Mr José is based at villa A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, whether or not <em>G</em> has an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Kruskal’s algorithm to find a minimum spanning tree for <em>G</em>, stating its total weight. Indicate clearly the order in which the edges are added.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use a suitable algorithm to show that the minimum time in which Mr José can get from A to E is 13 minutes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum time it takes Mr José to patrol the resort if he has to walk along every road at least once, starting and ending at A. State clearly which roads need to be repeated.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>no because the graph has vertices (A, B, D, F) of odd degree <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the edges are added in the order</p>
<p>BI 5 </p>
<p>DH 5 <em><strong>A1</strong></em></p>
<p>AB 6 </p>
<p>AF 6 </p>
<p>CI 6 <em><strong>A1</strong></em></p>
<p>CD 7 </p>
<p>EF 7 <em><strong>A1</strong></em></p>
<p>total weight = 42 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> The orders of the edges with the same weight are interchangeable.<br>Accept indication of correct edge order on a diagram.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>clear indication of using Dijkstra for example <em><strong>M1</strong></em></p>
<p><img src=""></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there are 4 vertices of odd degree (A, F, B and D) <em><strong>(A1)</strong></em></p>
<p>attempting to list at least 2 possible pairings of odd vertices <em><strong> M1</strong></em></p>
<p>A → F and B → D has minimum weight 6 + 17 = 23</p>
<p>A → B and F → D has minimum weight 6 + 18 = 24</p>
<p>A → D and F → B has minimum weight 20 + 12 = 32 <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> for 2 pairs.</p>
<p> </p>
<p>minimum time is (116 + 23 =) 139 (mins) <em><strong>(M1)A1</strong></em></p>
<p>roads repeated are AF, BC and CD <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of graph theory, explain briefly what is meant by a circuit;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of graph theory, explain briefly what is meant by an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> has six vertices and an Eulerian circuit. Determine whether or not its complement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G'">
<msup>
<mi>G</mi>
<mo>′</mo>
</msup>
</math></span> can have an Eulerian circuit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an example of a graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span>, with five vertices, such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span> and its complement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H'">
<msup>
<mi>H</mi>
<mo>′</mo>
</msup>
</math></span> both have an Eulerian trail but neither has an Eulerian circuit. Draw <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H'">
<msup>
<mi>H</mi>
<mo>′</mo>
</msup>
</math></span> as your solution.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a circuit is a walk that begins and ends at the same vertex and has no repeated edges <strong><em>A1</em></strong></p>
<p><strong><em> [1 mark] </em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an Eulerian circuit is a circuit that contains every edge of a graph <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> has an Eulerian circuit all vertices are even (are of degree 2 or 4) <strong><em>A1</em></strong></p>
<p>hence, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G'">
<msup>
<mi>G</mi>
<mo>′</mo>
</msup>
</math></span> must have all vertices odd (of degree 1 or 3) <strong><em>R1</em></strong></p>
<p>hence, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G'">
<msup>
<mi>G</mi>
<mo>′</mo>
</msup>
</math></span> cannot have an Eulerian circuit <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>to candidates who begin by considering a specific <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G'">
<msup>
<mi>G</mi>
<mo>′</mo>
</msup>
</math></span> (diagram). Award <strong><em>R1R1 </em></strong>to candidates who then consider a general <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G'">
<msup>
<mi>G</mi>
<mo>′</mo>
</msup>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for example</p>
<p><img src="images/Schermafbeelding_2017-08-10_om_10.15.08.png" alt="M17/5/MATHL/HP3/ENG/TZ0/DM/M/03.c"></p>
<p><strong><em>A2</em></strong></p>
<p><strong><em>A2</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Each graph must have 3 vertices of order 2 and 2 odd vertices. Award <strong><em>A2</em></strong> if one of the graphs satisfies that and the final <strong><em>A2 </em></strong>if the other graph is its complement.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following weighted graph <em>G</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what feature of <em>G</em> ensures that <em>G</em> has an Eulerian trail.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what feature of <em>G</em> ensures that <em>G</em> does not have an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an Eulerian trail in <em>G</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting and finishing at B, find a solution to the Chinese postman problem for<em> G</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total weight of the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>G</em> has an Eulerian trail because it has (exactly) two vertices (B and F) of odd degree <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>G</em> does not have an Eulerian circuit because not all vertices are of even degree <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for example BAEBCEFCDF <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for start/finish at B/F, <em><strong>A1</strong> </em>for the middle vertices.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>we require the Eulerian trail in (b), (weight = 65) <em><strong>(M1)</strong></em></p>
<p>and the minimum walk FEB (15) <em><strong>A1</strong></em></p>
<p>for example BAEBCEFCDFEB <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept EB added to the end or FE added to the start of their answer in (b) in particular for follow through.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total weight is (65 + 15=)80 <em><strong> A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Mathilde delivers books to five libraries, A, B, C, D and E. She starts her deliveries at library D and travels to each of the other libraries once, before returning to library D. Mathilde wishes to keep her travelling distance to a minimum.</p>
<p>The weighted graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span>, representing the distances, measured in kilometres, between the five libraries, has the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-09_om_05.58.38.png" alt="N17/5/MATHL/HP3/ENG/TZ0/DM/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the weighted graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at library D use the nearest-neighbour algorithm, to find an upper bound for Mathilde’s minimum travelling distance. Indicate clearly the order in which the edges are selected.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By first removing library C, use the deleted vertex algorithm, to find a lower bound for Mathilde’s minimum travelling distance.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2018-02-09_om_06.16.03.png" alt="N17/5/MATHL/HP3/ENG/TZ0/DM/M/01.a"></p>
<p>complete graph on 5 vertices <strong><em>A1</em></strong></p>
<p>weights correctly marked on graph <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>clear indication that the nearest-neighbour algorithm has been applied <strong><em>M1</em></strong></p>
<p>DA (or 16) <strong><em>A1</em></strong></p>
<p>AB (or 18) then BC (or 15) <strong><em>A1</em></strong></p>
<p>CE (or 17) then ED (or 19) <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{UB}} = 85">
<mrow>
<mtext>UB</mtext>
</mrow>
<mo>=</mo>
<mn>85</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an attempt to find the minimum spanning tree <strong><em>(M1)</em></strong></p>
<p>DA (16) then BE (17) then AB (18) (total 51) <strong><em>A1</em></strong></p>
<p>reconnect C with the two edges of least weight, namely CB (15) and CE (17) <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{LB}} = 83">
<mrow>
<mtext>LB</mtext>
</mrow>
<mo>=</mo>
<mn>83</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The simple, complete graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _n}(n > 2)">
<mrow>
<msub>
<mi>κ<!-- κ --></mi>
<mi>n</mi>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span> has vertices <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1},{\text{ }}{{\text{A}}_2},{\text{ }}{{\text{A}}_3},{\text{ }} \ldots ,{\text{ }}{{\text{A}}_n}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>…<!-- … --></mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>n</mi>
</msub>
</mrow>
</math></span>. The weight of the edge from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_i}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>i</mi>
</msub>
</mrow>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_j}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>j</mi>
</msub>
</mrow>
</math></span> is given by the number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i + j">
<mi>i</mi>
<mo>+</mo>
<mi>j</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the general graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _n}">
<mrow>
<msub>
<mi>κ<!-- κ --></mi>
<mi>n</mi>
</msub>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw the graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _4}">
<mrow>
<msub>
<mi>κ</mi>
<mn>4</mn>
</msub>
</mrow>
</math></span> including the weights of all the edges.</p>
<p>(ii) Use the nearest-neighbour algorithm, starting at vertex <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span>, to find a Hamiltonian cycle.</p>
<p>(iii) Hence, find an upper bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _5}">
<mrow>
<msub>
<mi>κ</mi>
<mn>5</mn>
</msub>
</mrow>
</math></span>. Use the deleted vertex algorithm, with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_5}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>5</mn>
</msub>
</mrow>
</math></span> as the deleted vertex, to find a lower bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Use the nearest-neighbour algorithm, starting at vertex <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span>, to find a Hamiltonian cycle.</p>
<p>(ii) Hence find and simplify an expression in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, for an upper bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By splitting the weight of the edge <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_i}{{\text{A}}_j}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>i</mi>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>j</mi>
</msub>
</mrow>
</math></span> into two parts or otherwise, show that all Hamiltonian cycles of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _n}">
<mrow>
<msub>
<mi>κ</mi>
<mi>n</mi>
</msub>
</mrow>
</math></span> have the same total weight, equal to the answer found in (c)(ii).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(i) <img src="images/Schermafbeelding_2017-03-02_om_08.49.36.png" alt="N16/5/MATHL/HP3/ENG/TZ/DM/M/04.a"> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: <em>A1 </em></strong>for the graph, <strong><em>A1 </em></strong>for the weights.</p>
<p> </p>
<p>(ii) cycle is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}{{\text{A}}_2}{{\text{A}}_3}{{\text{A}}_4}{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p>(iii) upper bound is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 + 5 + 7 + 5 = 20">
<mn>3</mn>
<mo>+</mo>
<mn>5</mn>
<mo>+</mo>
<mn>7</mn>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>20</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_5}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>5</mn>
</msub>
</mrow>
</math></span> deleted, (applying Kruskal’s Algorithm) the minimum spanning tree will consist of the edges <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}{{\text{A}}_2},{\text{ }}{{\text{A}}_1}{{\text{A}}_3}{\text{, }}{{\text{A}}_1}{{\text{A}}_4}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<mtext>, </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>4</mn>
</msub>
</mrow>
</math></span>, of weights 3, 4, 5 <strong><em>(M1)A1</em></strong></p>
<p>the two edges of smallest weight from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_5}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>5</mn>
</msub>
</mrow>
</math></span> are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_5}{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>5</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_5}{{\text{A}}_2}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>5</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
</math></span> of weights 6 and 7 <strong><em>(M1)A1</em></strong></p>
<p>so lower bound is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 + 4 + 5 + 6 + 7 = 25">
<mn>3</mn>
<mo>+</mo>
<mn>4</mn>
<mo>+</mo>
<mn>5</mn>
<mo>+</mo>
<mn>6</mn>
<mo>+</mo>
<mn>7</mn>
<mo>=</mo>
<mn>25</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) starting at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span> we go <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_2},{\text{ }}{{\text{A}}_3}{\text{ }} \ldots {\text{ }}{{\text{A}}_n}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mo>…</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>n</mi>
</msub>
</mrow>
</math></span></p>
<p>we now have to take <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_n}{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>n</mi>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span></p>
<p>thus the cycle is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}{{\text{A}}_2}{{\text{A}}_3} \ldots {{\text{A}}_{n - 1}}{{\text{A}}_n}{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mo>…</mo>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>n</mi>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Final <strong><em>A1 </em></strong>is for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_n}{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>n</mi>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
<p>(ii) smallest edge from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}{{\text{A}}_2}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
</math></span> of weight 3, smallest edge from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_2}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
</math></span> (to a new vertex) is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_2}{{\text{A}}_3}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
</math></span> of weight 5, smallest edge from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_{n - 1}}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
</math></span> (to a new vertex) is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_{n - 1}}{{\text{A}}_n}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>n</mi>
</msub>
</mrow>
</math></span> of weight <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2n - 1">
<mn>2</mn>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p>weight of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_n}{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>n</mi>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n + 1">
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</math></span></p>
<p>weight is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 + 5 + 7 + \ldots + (2n - 1) + (n + 1)">
<mn>3</mn>
<mo>+</mo>
<mn>5</mn>
<mo>+</mo>
<mn>7</mn>
<mo>+</mo>
<mo>…</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{(n - 1)}}{2}(2n + 2) + (n + 1)">
<mo>=</mo>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>n</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = n(n + 1)">
<mo>=</mo>
<mi>n</mi>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> (which is an upper bound) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through is not applicable.</p>
<p> </p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>put a marker on each edge <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_i}{{\text{A}}_j}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>i</mi>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>j</mi>
</msub>
</mrow>
</math></span> so that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
<mi>i</mi>
</math></span> of the weight belongs to vertex <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_i}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>i</mi>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="j">
<mi>j</mi>
</math></span> of the weight belongs to vertex <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_j}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>j</mi>
</msub>
</mrow>
</math></span> <strong><em>M1</em></strong></p>
<p>the Hamiltonian cycle visits each vertex once and only once and for vertex <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_i}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>i</mi>
</msub>
</mrow>
</math></span> there will be weight <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
<mi>i</mi>
</math></span> (belonging to vertex <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_i}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>i</mi>
</msub>
</mrow>
</math></span>) both going in and coming out <strong><em>R1</em></strong></p>
<p>so the total weight will be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{i = 1}^n {2i = 2\frac{n}{2}(n + 1) = n(n + 1)} ">
<munderover>
<mo movablelimits="false">∑</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>n</mi>
</munderover>
<mrow>
<mn>2</mn>
<mi>i</mi>
<mo>=</mo>
<mn>2</mn>
<mfrac>
<mi>n</mi>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>n</mi>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</math></span> <strong><em>A1AG</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept other methods for example induction.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> is a simple, connected graph with eight vertices.</p>
</div>
<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span> is a connected, planar graph, with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> vertices, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="e">
<mi>e</mi>
</math></span> edges and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> faces. Every face in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span> is bounded by exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> edges.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum number of edges in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G"> <mi>G</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum number of edges in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G"> <mi>G</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum number of edges in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G"> <mi>G</mi> </math></span>, given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G"> <mi>G</mi> </math></span> contains an Eulerian circuit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2e = kf"> <mn>2</mn> <mi>e</mi> <mo>=</mo> <mi>k</mi> <mi>f</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 9"> <mi>v</mi> <mo>=</mo> <mn>9</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3"> <mi>k</mi> <mo>=</mo> <mn>3</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 13"> <mi>v</mi> <mo>=</mo> <mn>13</mn> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>7 (a tree) <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{8 \times 7}}{2}\left( {7 + 6 + 5 + 4 + 3 + 2 + 1} \right)"> <mfrac> <mrow> <mn>8</mn> <mo>×</mo> <mn>7</mn> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>7</mn> <mo>+</mo> <mn>6</mn> <mo>+</mo> <mn>5</mn> <mo>+</mo> <mn>4</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span> (a complete graph) <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 28"> <mo>=</mo> <mn>28</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{8 \times 6}}{2}"> <mfrac> <mrow> <mn>8</mn> <mo>×</mo> <mn>6</mn> </mrow> <mn>2</mn> </mfrac> </math></span> (since every vertex must be of degree 6) <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 24"> <mo>=</mo> <mn>24</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>counting the edges around every face gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="kf"> <mi>k</mi> <mi>f</mi> </math></span> edges <em><strong>A1</strong></em></p>
<p>but as every edge is counted in 2 faces <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow kf = 2e"> <mo stretchy="false">⇒</mo> <mi>k</mi> <mi>f</mi> <mo>=</mo> <mn>2</mn> <mi>e</mi> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v - e + f = 2"> <mi>v</mi> <mo>−</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mo>=</mo> <mn>2</mn> </math></span> with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 9"> <mi>v</mi> <mo>=</mo> <mn>9</mn> </math></span> <em><strong>M1</strong></em></p>
<p><strong>EITHER</strong></p>
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2e = 3f"> <mn>2</mn> <mi>e</mi> <mo>=</mo> <mn>3</mn> <mi>f</mi> </math></span> into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\left( 9 \right) - 2e + 2f = 4"> <mn>2</mn> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> <mo>−</mo> <mn>2</mn> <mi>e</mi> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo>=</mo> <mn>4</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="e = \frac{{3f}}{2}"> <mi>e</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>f</mi> </mrow> <mn>2</mn> </mfrac> </math></span> into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9 - e + f = 2"> <mn>9</mn> <mo>−</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mo>=</mo> <mn>2</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18 - f = 4"> <mn>18</mn> <mo>−</mo> <mi>f</mi> <mo>=</mo> <mn>4</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f = 14"> <mi>f</mi> <mo>=</mo> <mn>14</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2v - kf + 2f = 4"> <mn>2</mn> <mi>v</mi> <mo>−</mo> <mi>k</mi> <mi>f</mi> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo>=</mo> <mn>4</mn> </math></span> (or equivalent) <em><strong>M1</strong></em></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 13"> <mi>v</mi> <mo>=</mo> <mn>13</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k - 2} \right)f = 22"> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mi>f</mi> <mo>=</mo> <mn>22</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {2 - k} \right)f = - 22"> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>−</mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mi>f</mi> <mo>=</mo> <mo>−</mo> <mn>22</mn> </math></span> <em><strong>A1</strong></em></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k - 2} \right)f = 1 \times 2 \times 11"> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> <mo>×</mo> <mn>2</mn> <mo>×</mo> <mn>11</mn> </math></span> <em><strong>M1</strong></em></p>
<p><strong>OR</strong></p>
<p>substituting at least two of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 13{\text{, }}4{\text{, }}3"> <mi>k</mi> <mo>=</mo> <mn>13</mn> <mrow> <mtext>, </mtext> </mrow> <mn>4</mn> <mrow> <mtext>, </mtext> </mrow> <mn>3</mn> </math></span> into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f = \frac{{22}}{{k - 2}}"> <mi>f</mi> <mo>=</mo> <mfrac> <mrow> <mn>22</mn> </mrow> <mrow> <mi>k</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </math></span> (or equivalent) <em><strong>M1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f = 2{\text{, }}11{\text{, 22}}"> <mi>f</mi> <mo>=</mo> <mn>2</mn> <mrow> <mtext>, </mtext> </mrow> <mn>11</mn> <mrow> <mtext>, 22</mtext> </mrow> </math></span> (since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f > 1"> <mi>f</mi> <mo>></mo> <mn>1</mn> </math></span>) <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A driver needs to make deliveries to five shops <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E">
<mi>E</mi>
</math></span>. The driver starts and finishes his journey at the warehouse <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span>. The driver wants to find the shortest route to visit all the shops and return to the warehouse. The distances, in kilometres, between the locations are given in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By deleting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W"> <mi>W</mi> </math></span>, use the deleted vertex algorithm to find a lower bound for the length of a route that visits every shop, starting and finishing at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W"> <mi>W</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W"> <mi>W</mi> </math></span>, use the nearest-neighbour algorithm to find a route which gives an upper bound for this problem and calculate its length.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>deleting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{W}}"> <mrow> <mtext>W</mtext> </mrow> </math></span> and its adjacent edges, the minimal spanning tree is</p>
<p style="padding-left:60px;"><img src=""> <em><strong>A1A1A1A1</strong></em></p>
<p><strong>Note:</strong> Award the <em><strong>A1’s</strong></em> for either the edges or their weights.</p>
<p>the minimum spanning tree has weight = 54</p>
<p><strong>Note:</strong> Accept a correct drawing of the minimal spanning tree.</p>
<p>adding in the weights of 2 deleted edges of least weight <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{WB}}"> <mrow> <mtext>WB</mtext> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{WC}}"> <mrow> <mtext>WC</mtext> </mrow> </math></span> <em><strong>(M1)</strong></em><br>lower bound = 54 + 36 + 39</p>
<p>= 129 <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt at the nearest-neighbour algorithm <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{WB}}"> <mrow> <mtext>WB</mtext> </mrow> </math></span><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BA}}"> <mrow> <mtext>BA</mtext> </mrow> </math></span><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AD}}"> <mrow> <mtext>AD</mtext> </mrow> </math></span><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{DE}}"> <mrow> <mtext>DE</mtext> </mrow> </math></span><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{EC}}"> <mrow> <mtext>EC</mtext> </mrow> </math></span><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{CW}}"> <mrow> <mtext>CW</mtext> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for a route that begins with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{WB}}"> <mrow> <mtext>WB</mtext> </mrow> </math></span> and then <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BA}}"> <mrow> <mtext>BA</mtext> </mrow> </math></span>.</p>
<p>upper bound = 36 + 11 + 15 + 12 + 22 + 39 = 135 <em><strong>(M1)A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>