File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 3/markSceme-HL-paper2html
File size: 683.83 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>An ice-skater is skating such that her position vector when viewed from above at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds can be modelled by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi></mtd></mtr><mtr><mtd><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
<p>with respect to a rectangular coordinate system from a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, where the non-zero constants <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> can be determined. All distances are in metres.</p>
</div>
<div class="specification">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, the displacement of the ice-skater is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math> and the velocity of the ice‑skater is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn><mo>.</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the velocity vector at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the velocity of the ice-skater at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is given by</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the magnitude of the velocity of the ice-skater when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, the ice-skater is skating parallel to the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis for the first time.</p>
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OP</mtext></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of product rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mover><mi>x</mi><mo>˙</mo></mover></mtd></mtr><mtr><mtd><mover><mi>y</mi><mo>˙</mo></mover></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi><mo>-</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi></mtd></mtr><mtr><mtd><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi><mo>+</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">v</mi></mfenced><mn>2</mn></msup><mo>=</mo><msup><mover><mi>x</mi><mo>˙</mo></mover><mn>2</mn></msup><mo>+</mo><msup><mover><mi>y</mi><mo>˙</mo></mover><mn>2</mn></msup><mo>=</mo><msup><mfenced open="[" close="]"><mrow><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi><mo>-</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced open="[" close="]"><mrow><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mi>t</mi><mo>+</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mtext> </mtext><mi>cos</mi><mo> </mo><mi>t</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>M1</strong></em></p>
<p><strong><br>Note:</strong> It is more likely that an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">v</mi></mfenced></math> is seen.<br> <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mover><mi>x</mi><mo>˙</mo></mover><mn>2</mn></msup><mo>+</mo><msup><mover><mi>y</mi><mo>˙</mo></mover><mn>2</mn></msup></msqrt></math> is not sufficient to award the <em><strong>M1</strong></em>, their part (a) must be substituted.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced open="[" close="]"><mrow><msup><mi>a</mi><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>-</mo><mn>2</mn><msup><mi>a</mi><mn>2</mn></msup><mi>b</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>+</mo><mn>2</mn><msup><mi>a</mi><mn>2</mn></msup><mi>b</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>t</mi></mrow></mfenced><msup><mtext>e</mtext><mrow><mn>2</mn><mi>b</mi><mi>t</mi></mrow></msup></math> <em><strong>A1</strong></em></p>
<p>use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>t</mi><mo>=</mo><mn>1</mn></math> within a factorized expression that leads to the final answer <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mfenced><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><msup><mtext>e</mtext><mrow><mn>2</mn><mi>b</mi><mi>t</mi></mrow></msup></math> <em><strong>A1</strong></em></p>
<p>magnitude of velocity is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mo> </mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>=</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>b</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>-</mo><mi>a</mi><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mi>t</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>.</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math> result from part (b) is an alternative approach.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>2</mn></mrow></msup><msqrt><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfenced></msqrt></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>51</mn><mo> </mo><mo> </mo><mo>(</mo><mn>1</mn><mo>.</mo><mn>50504</mn><mo>…</mo><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msup><mtext>e</mtext><mrow><mi>b</mi><mi>t</mi></mrow></msup><mfenced><mrow><mi>b</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>t</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>t</mi><mo>=</mo><mi>b</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>53</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>53086</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>correct substitution of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <em><strong>(M1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>697</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>696591</mn><mo>…</mo></mrow></mfenced></math> <strong>and </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>488</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>487614</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>use of Pythagoras / distance formula <em><strong>(M1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OP</mtext><mo>=</mo><mn>0</mn><mo>.</mo><mn>850</mn><mo> </mo><mtext>m</mtext><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>850297</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[6 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A flying drone is programmed to complete a series of movements in a horizontal plane relative to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and a set of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axes.</p>
<p>In each case, the drone moves to a new position represented by the following transformations:</p>
<ul>
<li>a rotation anticlockwise of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> radians about <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math></li>
<li>a reflection in the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><msqrt><mn>3</mn></msqrt></mfrac></math></li>
<li>a rotation clockwise of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></math> radians about <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</li>
</ul>
<p>All the movements are performed in the listed order.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down each of the transformations in matrix form, clearly stating which matrix represents each transformation.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a single matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> that defines a transformation that represents the overall change in position.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">P</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state what the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">P</mi><mn>2</mn></msup></math> indicates for the possible movement of the drone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Three drones are initially positioned at the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>. After performing the movements listed above, the drones are positioned at points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>′</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>′</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mo>′</mo></math> respectively.</p>
<p>Show that the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math> is equal to the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>′</mo><mtext>B</mtext><mo>′</mo><mtext>C</mtext><mo>′</mo></math> .</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a single transformation that is equivalent to the three transformations represented by matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> For clarity, exact answers are used throughout this markscheme. However it is perfectly acceptable for candidates to write decimal values <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>e.g.</mtext><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn></mrow></mfenced></math>.</p>
<p> </p>
<p>rotation anticlockwise <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>866</mn></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>866</mn></mtd></mtr></mtable></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong><em>(M1)A1</em></strong></p>
<p>reflection in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><msqrt><mn>3</mn></msqrt></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mn>2</mn><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></math> <strong><em>(A1)</em></strong></p>
<p>matrix is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>866</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>866</mn></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong><em>A1</em></strong></p>
<p>rotation clockwise <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>866</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>866</mn></mtd><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> For clarity, exact answers are used throughout this markscheme. However it is perfectly acceptable for candidates to write decimal values <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>e.g.</mtext><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn></mrow></mfenced></math>.</p>
<p> </p>
<p>an attempt to multiply three matrices <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>866</mn></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>866</mn></mtd></mtr></mtable></mfenced></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> For clarity, exact answers are used throughout this markscheme. However it is perfectly acceptable for candidates to write decimal values <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>e.g.</mtext><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn></mrow></mfenced></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi mathvariant="bold-italic">P</mi><mn>2</mn></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <strong><em>A1</em></strong></p>
<p><br><strong>Note:</strong> Do not award <em><strong>A1</strong></em> if final answer not resolved into the identity matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> For clarity, exact answers are used throughout this markscheme. However it is perfectly acceptable for candidates to write decimal values <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>e.g.</mtext><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn></mrow></mfenced></math>.</p>
<p> </p>
<p>if the overall movement of the drone is repeated <strong><em>A1</em></strong></p>
<p>the drone would return to its original position <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> For clarity, exact answers are used throughout this markscheme. However it is perfectly acceptable for candidates to write decimal values <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>e.g.</mtext><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn></mrow></mfenced></math>.</p>
<p> </p>
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mtext>det</mtext><mo> </mo><mi mathvariant="bold-italic">P</mi></mrow></mfenced><mo>=</mo><mfenced open="|" close="|"><mrow><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></mrow></mfenced><mo>-</mo><mfenced><mfrac><mn>1</mn><mn>4</mn></mfrac></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <strong><em>A1</em></strong></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext><mo>=</mo></math> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>′</mo><mtext>B</mtext><mo>′</mo><mtext>C</mtext><mo>′</mo></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>×</mo><mfenced open="|" close="|"><mrow><mtext>det</mtext><mo> </mo><mi mathvariant="bold-italic">P</mi></mrow></mfenced></math> <strong><em>R1</em></strong></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext><mo>=</mo></math> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>′</mo><mtext>B</mtext><mo>′</mo><mtext>C</mtext><mo>′</mo></math> <strong><em>AG</em></strong></p>
<p><br><strong>Note:</strong> Award at most <em><strong>A1R0</strong></em> for responses that omit modulus sign.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>statement of fact that rotation leaves area unchanged <strong><em>R1</em></strong></p>
<p>statement of fact that reflection leaves area unchanged <strong><em>R1</em></strong></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext><mo>=</mo></math> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>′</mo><mtext>B</mtext><mo>′</mo><mtext>C</mtext><mo>′</mo></math> <strong><em>AG</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> For clarity, exact answers are used throughout this markscheme. However it is perfectly acceptable for candidates to write decimal values <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>e.g.</mtext><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn></mrow></mfenced></math>.</p>
<p> </p>
<p>attempt to find angles associated with values of elements in matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mi>cos</mi><mfenced><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mrow></mfenced></mtd><mtd><mi>sin</mi><mfenced><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mrow></mfenced></mtd></mtr><mtr><mtd><mi>sin</mi><mfenced><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mrow></mfenced></mtd><mtd><mo>-</mo><mi>cos</mi><mfenced><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mrow></mfenced></mtd></mtr></mtable></mfenced></math></p>
<p>reflection (in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>tan</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mi>x</mi></math>) <strong><em>(M1)</em></strong></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> <strong><em>A1</em></strong></p>
<p>reflection in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>tan</mi><mfenced><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>12</mn></mfrac></mrow></mfenced><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>268</mn><mi>x</mi></mrow></mfenced></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem. In most cases these good attempts were undermined by a key lack of understanding. Whilst candidates were able to find the correct matrices in part (a)(i), they then invariably went onto multiply the matrices in the wrong order in part (a)(ii). Whilst follow through marks were readily available after this, the incorrect matrix for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> then caused issues in part (c). If these candidates had multiplied correctly, it seems that many of them could have gained close to full marks on this question. At the same time there was a lack of precision in the description of the transformation in part (c). As a general point, it would also help candidates if they resolved the trig ratios in the matrices; writing <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></math> rather than, for example <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mfenced></math>. Finally, there were many attempts in part (c) that suggested candidates had a good knowledge and understanding of the concepts of matrices and affine transformations.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem. In most cases these good attempts were undermined by a key lack of understanding. Whilst candidates were able to find the correct matrices in part (a)(i), they then invariably went onto multiply the matrices in the wrong order in part (a)(ii). Whilst follow through marks were readily available after this, the incorrect matrix for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> then caused issues in part (c). If these candidates had multiplied correctly, it seems that many of them could have gained close to full marks on this question. At the same time there was a lack of precision in the description of the transformation in part (c). As a general point, it would also help candidates if they resolved the trig ratios in the matrices; writing <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></math> rather than, for example <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mfenced></math>. Finally, there were many attempts in part (c) that suggested candidates had a good knowledge and understanding of the concepts of matrices and affine transformations.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem. In most cases these good attempts were undermined by a key lack of understanding. Whilst candidates were able to find the correct matrices in part (a)(i), they then invariably went onto multiply the matrices in the wrong order in part (a)(ii). Whilst follow through marks were readily available after this, the incorrect matrix for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> then caused issues in part (c). If these candidates had multiplied correctly, it seems that many of them could have gained close to full marks on this question. At the same time there was a lack of precision in the description of the transformation in part (c). As a general point, it would also help candidates if they resolved the trig ratios in the matrices; writing <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></math> rather than, for example <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mfenced></math>. Finally, there were many attempts in part (c) that suggested candidates had a good knowledge and understanding of the concepts of matrices and affine transformations.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem. In most cases these good attempts were undermined by a key lack of understanding. Whilst candidates were able to find the correct matrices in part (a)(i), they then invariably went onto multiply the matrices in the wrong order in part (a)(ii). Whilst follow through marks were readily available after this, the incorrect matrix for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> then caused issues in part (c). If these candidates had multiplied correctly, it seems that many of them could have gained close to full marks on this question. At the same time there was a lack of precision in the description of the transformation in part (c). As a general point, it would also help candidates if they resolved the trig ratios in the matrices; writing <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></math> rather than, for example <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mfenced></math>. Finally, there were many attempts in part (c) that suggested candidates had a good knowledge and understanding of the concepts of matrices and affine transformations.</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem. In most cases these good attempts were undermined by a key lack of understanding. Whilst candidates were able to find the correct matrices in part (a)(i), they then invariably went onto multiply the matrices in the wrong order in part (a)(ii). Whilst follow through marks were readily available after this, the incorrect matrix for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> then caused issues in part (c). If these candidates had multiplied correctly, it seems that many of them could have gained close to full marks on this question. At the same time there was a lack of precision in the description of the transformation in part (c). As a general point, it would also help candidates if they resolved the trig ratios in the matrices; writing <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></math> rather than, for example <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mfenced></math>. Finally, there were many attempts in part (c) that suggested candidates had a good knowledge and understanding of the concepts of matrices and affine transformations.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good attempts at this problem. In most cases these good attempts were undermined by a key lack of understanding. Whilst candidates were able to find the correct matrices in part (a)(i), they then invariably went onto multiply the matrices in the wrong order in part (a)(ii). Whilst follow through marks were readily available after this, the incorrect matrix for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> then caused issues in part (c). If these candidates had multiplied correctly, it seems that many of them could have gained close to full marks on this question. At the same time there was a lack of precision in the description of the transformation in part (c). As a general point, it would also help candidates if they resolved the trig ratios in the matrices; writing <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></math> rather than, for example <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mfenced></math>. Finally, there were many attempts in part (c) that suggested candidates had a good knowledge and understanding of the concepts of matrices and affine transformations.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A ball is attached to the end of a string and spun horizontally. Its position relative to a given point, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>, is given by the equation</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math> where all displacements are in metres.</p>
</div>
<div class="specification">
<p>The string breaks when the magnitude of the ball’s acceleration exceeds <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the ball is moving in a circle with its centre at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and state the radius of the circle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of the ball at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the velocity of the ball is always perpendicular to the position vector of the ball.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the acceleration of the ball at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at the instant the string breaks.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>How many complete revolutions has the ball completed from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> to the instant at which the string breaks?</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">r</mi></mfenced><mo>=</mo><msqrt><mn>1</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced></msqrt></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mn>1</mn></math> <strong>R1</strong></p>
<p> </p>
<p><strong>Note:</strong> use of the identity needs to be explicitly stated.</p>
<p> </p>
<p>Hence moves in a circle as displacement from a fixed point is constant. <strong>R1</strong></p>
<p>Radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">v</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math> <strong>M1A</strong><strong>1</strong></p>
<p> </p>
<p><strong>Note:</strong> <strong>M1</strong> is for an attempt to differentiate each term</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">v</mi><mo mathvariant="bold">∙</mo><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced><mo>∙</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math> <strong>M1</strong></p>
<p> </p>
<p><strong>Note:</strong> <strong>M1</strong> is for an attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">v</mi><mo mathvariant="bold">∙</mo><mi mathvariant="bold-italic">r</mi></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>×</mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>=</mo><mn>0</mn></math> <strong>A</strong><strong>1</strong></p>
<p>Hence velocity and position vector are perpendicular. <strong>AG</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mtd></mtr></mtable></mfenced></math> <strong>M1A1A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>06</mn><msup><mi>t</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>t</mi><mn>2</mn></msup><mo>)</mo></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>400</mn></math> <strong>(M1)(A1)</strong></p>
<p> </p>
<p><strong>Note:</strong> <strong>M1</strong> is for an attempt to equate the magnitude of the acceleration to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>18</mn><mo>.</mo><mn>3</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>18</mn><mo>.</mo><mn>256</mn><mo>…</mo></mrow></mfenced><mo> </mo><mfenced><mtext>s</mtext></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Angle turned through is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>18</mn><mo>.</mo><msup><mn>256</mn><mn>2</mn></msup><mo>=</mo></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>33</mn><mo>.</mo><mn>329</mn><mo>…</mo></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>33</mn><mo>.</mo><mn>329</mn></mrow><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow></mfrac></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>33</mn><mo>.</mo><mn>329</mn></mrow><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow></mfrac><mo>=</mo><mn>5</mn><mo>.</mo><mn>30</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> complete revolutions <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A transformation, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, of a plane is represented by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>′</mo><mo>=</mo><mi mathvariant="bold-italic">P</mi><mi mathvariant="bold-italic">r</mi><mo>+</mo><mi mathvariant="bold-italic">q</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mo>×</mo><mo> </mo><mn>2</mn></math> matrix, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mo>×</mo><mo> </mo><mn>1</mn></math> vector, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi></math> is the position vector of a point in the plane and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>′</mo></math> the position vector of its image under <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>The triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OAB</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>. Under T, these points are transformed to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mn>3</mn><mn>4</mn></mfrac></mrow></mfenced></math> respectively.</p>
</div>
<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mo>=</mo><mi mathvariant="bold-italic">R</mi><mi mathvariant="bold-italic">S</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">S</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi></math> are matrices.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">S</mi></math> represents an enlargement with scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math>, centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi></math> represents a rotation about <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>The transformation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> can also be described by an enlargement scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>, centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>)</mo></math>, followed by a rotation about the same centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>)</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math>, show that</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac><mo> </mo></mtd><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo> </mo></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">S</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mo>=</mo><mi mathvariant="bold-italic">R</mi><mi mathvariant="bold-italic">S</mi></math> to find the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the angle and direction of the rotation represented by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation satisfied by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi mathvariant="bold-italic">q</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>3</mn><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong><em>M1</em></strong></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong><em>M1</em></strong></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi><mo> </mo></mtd><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mi>c</mi><mo> </mo></mtd><mtd><mi>d</mi></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>3</mn><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong><em>M1</em></strong></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi><mo> </mo></mtd><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mi>c</mi><mo> </mo></mtd><mtd><mi>d</mi></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>c</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi><mo> </mo></mtd><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mi>c</mi><mo> </mo></mtd><mtd><mi>d</mi></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong><em>M1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi><mo> </mo></mtd><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mi>c</mi><mo> </mo></mtd><mtd><mi>d</mi></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mi>d</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi mathvariant="bold-italic">P</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac><mo> </mo></mtd><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo> </mo></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="bold-italic">S</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfenced><mtable><mtr><mtd><mn>2</mn><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi><mo>=</mo><mi mathvariant="bold-italic">P</mi><msup><mi mathvariant="bold-italic">S</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong> </em>is for an attempt at rearranging the matrix equation. Award even if the order of the product is reversed.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac><mo> </mo></mtd><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo> </mo></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mn>2</mn><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac><mo> </mo></mtd><mtd><mfrac><mn>1</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo> </mo></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="bold-italic">R</mi><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>5</mn><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mi>a</mi><mo> </mo></mtd><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mi>c</mi><mo> </mo></mtd><mtd><mi>d</mi></mtd></mtr></mtable></mfenced></math></p>
<p>attempt to solve a system of equations <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>a</mi><mo>,</mo><mo> </mo><mo> </mo><mo> </mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>b</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>c</mi><mo>,</mo><mo> </mo><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>4</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>d</mi></math> <em><strong>A2</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for two correct equations, <em><strong>A2</strong></em> for all four equations correct.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mo> </mo></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>866</mn><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>866</mn></mtd></mtr></mtable></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>866025</mn><mo>…</mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>866025</mn><mo>…</mo></mtd></mtr></mtable></mfenced></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The correct answer can be obtained from reversing the matrices, so do not award if incorrect product seen. If the given answer is obtained from the product <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">R</mi><mo>=</mo><msup><mi mathvariant="bold-italic">S</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="bold-italic">P</mi></math>, award <em><strong>(A1)(M1)(A0)A0</strong></em>.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>clockwise <em><strong>A1</strong></em></p>
<p>arccosine or arcsine of value in matrix seen <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Both <em><strong>A1</strong></em> marks are dependent on the answer to part (c)(i) and should only be awarded for a valid rotation matrix.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mi mathvariant="bold-italic">q</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi><mo>'</mo></mtd></mtr><mtr><mtd><mi>y</mi><mo>'</mo></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mi>x</mi><mo>-</mo><mi>a</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>-</mo><mi>b</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note</strong>: Accept substitution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>'</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>'</mo></math>) with particular points given in the question.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>solving <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mi mathvariant="bold-italic">q</mi></math> using simultaneous equations or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo>=</mo><msup><mfenced><mrow><mi mathvariant="bold-italic">I</mi><mo>-</mo><mi mathvariant="bold-italic">P</mi></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="bold-italic">q</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>651</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>651084</mn><mo>…</mo></mrow></mfenced><mo>,</mo><mo> </mo><mo> </mo><mi>b</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>48</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>47662</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo><mfrac><mrow><mn>5</mn><mo>+</mo><mn>2</mn><msqrt><mn>3</mn></msqrt></mrow><mn>13</mn></mfrac><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mfrac><mrow><mn>14</mn><mo>+</mo><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow><mn>13</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="bold-italic">P</mi><mfenced><mtable><mtr><mtd><mn>0</mn><mo>-</mo><mi>a</mi></mtd></mtr><mtr><mtd><mn>0</mn><mo>-</mo><mi>b</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced></math> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> This line, with any of the points substituted, may be seen in part (d)(i) and if so the <em><strong>M1</strong></em> can be awarded there.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mrow><mi mathvariant="bold-italic">I</mi><mo>-</mo><mi mathvariant="bold-italic">P</mi></mrow></mfenced><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>651084</mn><mo>…</mo><mo>,</mo><mo> </mo><mo> </mo><mi>b</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>47662</mn><mo>…</mo><mo> </mo></math> <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo><mfrac><mrow><mn>5</mn><mo>+</mo><mn>2</mn><msqrt><mn>3</mn></msqrt></mrow><mn>13</mn></mfrac><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mfrac><mrow><mn>14</mn><mo>+</mo><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow><mn>13</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (i) proved to be straightforward for most candidates. A common error in part (ii) was for candidates to begin with the matrix <strong><em>P</em></strong> and to show it successfully transformed the points to their images. This received no marks. For a ‘show that’ question it is expected that the work moves to rather than <em>from</em> the given answer.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(b), (c) These two parts dealt generally with more familiar aspects of matrix transformations and were well done.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(b), (c) These two parts dealt generally with more familiar aspects of matrix transformations and were well done.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The trick of recognizing that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math> was invariant was generally not seen and as such the question could not be successfully answered.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A sector of a circle, centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>, is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A square field with side <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo> </mo><mtext>m</mtext></math> has a goat tied to a post in the centre by a rope such that the goat can reach all parts of the field up to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> from the post.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;"><sup>[Source: mynamepong, n.d. Goat [image online] Available at: <a href="https://thenounproject.com/term/goat/1761571/">https://thenounproject.com/term/goat/1761571/</a></sup><br><sup>This file is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)</sup><br><sup><a href="https://creativecommons.org/licenses/by-sa/3.0/deed.en">https://creativecommons.org/licenses/by-sa/3.0/deed.en</a> [Accessed 22 April 2010] Source adapted.]</sup></p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> be the volume of grass eaten by the goat, in cubic metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> be the length of time, in hours, that the goat has been in the field.</p>
<p>The goat eats grass at the rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>t</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded segment.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the field that can be reached by the goat.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which the goat is eating grass at the greatest rate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The goat is tied in the field for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> hours.</p>
<p>Find the total volume of grass eaten by the goat during this time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mtext>AÔB</mtext><mo>=</mo></mrow></mfenced><mo> </mo><mtext>arccos</mtext><mfenced><mfrac><mn>4</mn><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfrac></mfenced><mo>=</mo><mn>27</mn><mo>.</mo><mn>266</mn><mo>…</mo></math> <em><strong>(M1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext><mo>=</mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo><mo>≈</mo><mn>54</mn><mo>.</mo><mn>5</mn><mo>°</mo></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>951764</mn><mo>…</mo><mo>≈</mo><mn>0</mn><mo>.</mo><mn>952</mn></math> radians) <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Other methods may be seen; award <em><strong>(M1)(A1)</strong></em> for use of a correct trigonometric method to find an appropriate angle and then <em><strong>A1</strong> </em>for the correct answer.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding area of triangle</p>
<p><strong>EITHER</strong></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>×</mo><mi>sin</mi><mfenced><mrow><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for correct substitution into formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>25</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>2</mn><mo>×</mo><msqrt><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>-</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><mo>=</mo><mn>4</mn><mo>.</mo><mn>1231</mn><mo>…</mo></math> <em><strong>(M1)</strong></em></p>
<p>area triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>1231</mn><mo>…</mo><mo>×</mo><mn>4</mn></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>25</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p>finding area of sector</p>
<p><strong>EITHER</strong></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>≈</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>9517641</mn><mo>…</mo><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>≈</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>area of segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>-</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>39</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>39040</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p style="padding-left:60px;"><img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>63</mn><mo>.</mo><mn>6172</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>39040</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo> </mo><mo> </mo><mo> </mo><mo>(</mo><mn>5</mn><mo>.</mo><mn>56160</mn><mo>)</mo></math> <em><strong>(A1)</strong></em></p>
<p>subtraction of four segments from area of circle <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>58</mn><mo>.</mo><mn>055</mn><mo>…</mo><mo> </mo></mrow></mfenced></math> <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>angle of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>90</mn><mo>-</mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>-</mo><mn>0</mn><mo>.</mo><mn>951764</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>90</mn><mo>-</mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>6</mn><mo>.</mo><mn>26771</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>area is made up of four triangles and four sectors <em><strong>(M1)</strong></em></p>
<p>total area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>4</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>2462</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>4</mn><mo>×</mo><mn>6</mn><mo>.</mo><mn>26771</mn><mo>…</mo></mrow></mfenced></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>58</mn><mo>.</mo><mn>055</mn><mo>…</mo><mo> </mo></mrow></mfenced></math> <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>110363</mn><mo>…</mo></math> <strong>OR </strong>attempt to find where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>V</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math> hour <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>d</mo><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>8</mn></msubsup><mn>0</mn><mo>.</mo><mn>3</mn><mi>t</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>d</mo><mi>t</mi></math> <em><strong>(A1)</strong></em></p>
<p>volume eaten is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>299</mn><mo>…</mo><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>299094</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Generally, this question was answered well but provided a good example of final marks being lost due to premature rounding. Some candidates gave a correct three significant figure intermediate answer of 27.3˚ for the angle in the right-angles triangle and then doubled it to get 54.6˚ as a final answer. This did not receive the final answer mark as the correct answer is 54.5˚ to three significant figures. Premature rounding needs to be avoided in all questions.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Unfortunately, many candidates failed to see the connection to part (a). Indeed, the most common answer was to assume the goat could eat all the grass in a circle of radius 4.5m.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates completed this question successfully by graphing the function. A few tried to differentiate the function again and, in some cases, also managed to obtain the correct answer.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a question that was pleasingly answered correctly by many candidates who recognized that integration was needed to find the answer. As in part (c) a few tried to do the integration ‘by hand’, and were largely unsuccessful.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><mi>x</mi></msqrt></math>.</p>
</div>
<div class="specification">
<p>The shape of a piece of metal can be modelled by the region bounded by the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>, as shown in the following diagram. The units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes are measured in metres.</p>
<p style="text-align: center;"><img src=""></p>
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><msqrt><mi>x</mi></msqrt><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>16</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>16</mn><mo><</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></math></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is obtained from the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> by:</p>
<ul>
<li>a stretch scale factor of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> direction,</li>
<li>followed by a stretch scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> direction,</li>
<li>followed by a translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> units to the right.</li>
</ul>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>825</mn><mo>)</mo></math>. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> under the given transformations and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><mi>h</mi><mfenced><mi>x</mi></mfenced><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>a</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mi>b</mi><mo> </mo><mo> </mo></mtd><mtd><mi>a</mi><mo><</mo><mi>x</mi><mo>≤</mo><mi>p</mi></mtd></mtr></mtable></math></p>
</div>
<div class="specification">
<p>The area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0627292</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> correct to six significant figures.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the equation of the tangent to the curve at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region on the diagram.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>16</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mfrac><mn>1</mn><msqrt><mn>0</mn><mo>.</mo><mn>16</mn></msqrt></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>16</mn></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow></mfenced><mo>+</mo><mi>b</mi></math> <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not allow working backwards from the given answer.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>,</mo><mo> </mo><mo> </mo><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4125</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>413</mn></math>) (accept " <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4125</mn><mo>)</mo></math> ") <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msqrt><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></msqrt></math> <em><strong>A2</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>if only two correct transformations are seen. </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>28</mn></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>Correct substitution of their part (b) (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>28</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math>) into the given expression <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>.</mo><mn>25</mn><mo>×</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for transforming the equivalent expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> correctly.</p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>b</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>15</mn></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing need to add two integrals <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow></msubsup><msqrt><mi>x</mi></msqrt><mo>d</mo><mi>x</mi><mo>+</mo><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>d</mo><mi>x</mi></math> <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> The second integral could be replaced by the formula for the area of a trapezoid <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>34</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>825</mn></mrow></mfenced></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>251</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>250916</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>area of a trapezoid <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4125</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>825</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math> <strong><em>(M1)(A1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>45</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>8</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math> <strong><em>(M1)(A1)</em></strong></p>
<p><strong><br>Note:</strong> If the rounded answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>413</mn></math> from part (b) is used, the integral is <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>45</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>8</mn><mo>.</mo><mn>24</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>.</mo><mn>295</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>03095</mn></math> which would be awarded <strong><em>(M1)(A1)</em></strong>.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>shaded area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>250916</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>0627292</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for the subtraction of both <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0627292</mn><mo>…</mo></math> and their area for the trapezoid from their answer to (a)(i).</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>157</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>15725</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The differentiation using the power rule was well done. In part (ii) some candidates felt it was sufficient to refer to the equation being the same as the one generated by their calculator. Generally, for ‘show that’ questions an algebraic derivation is expected.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The candidates were successful at applying transformations to points but very few were able to apply these transformations to derive the correct function <em>h</em>. In most cases it was due to not appreciating the effect the horizontal transformations have on <em>x</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The candidates were successful at applying transformations to points but very few were able to apply these transformations to derive the correct function <em>h</em>. In most cases it was due to not appreciating the effect the horizontal transformations have on <em>x</em>.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (i) was frequently done well using the inbuilt functionality of the GDC. Part (ii) was less structured, and candidates needed to create a clear diagram so they could easily see which areas needed to be subtracted. Most of those who were successful used the formula for the trapezoid for the area they needed to find, though others were also successful through finding the equation of the line AB.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The cost adjacency matrix for the complete graph <em>K</em><sub>6</sub> is given below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">It represents the distances in kilometres along dusty tracks connecting villages on an island. Find the minimum spanning tree for this graph; in all 3 cases state the order in which the edges are added.</p>
</div>
<div class="specification">
<p>It is desired to tarmac some of these tracks so that it is possible to walk from any village to any other village walking entirely on tarmac.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Briefly explain the two differences in the application of Prim’s and Kruskal’s algorithms for finding a minimum spanning tree in a weighted connected graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using Kruskal’s algorithm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using Prim’s algorithm starting at vertex A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using Prim’s algorithm starting at vertex F.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the total minimum length of the tracks that have to be tarmacked.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the tracks that are to be tarmacked.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>In Prim’s algorithm you start at a particular (given) vertex, whereas in Kruskal’s you start with the smallest edge. <em><strong>A1 </strong></em></p>
<p>In Prim’s as smallest edges are added (never creating a circuit) the created graph always remains connected, whereas in Kruskal’s this requirement to always be connected is not necessary. <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Edges added in the order</p>
<p>AB EF AC AD AE <em><strong>A1A1</strong></em></p>
<p>[<strong>note</strong> <em><strong>A1</strong> </em>for the first 2 edges <em><strong>A1</strong> </em>for other 3]</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Edges added in the order</p>
<p>AB AC AD AE EF <em><strong>A1A1</strong></em></p>
<p>[<strong>note</strong> <em><strong>A1</strong> </em>for the first 2 edges <em><strong>A1</strong> </em>for other 3]</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Edges added in the order</p>
<p>FE AE AB AC AD <em><strong>A1A1</strong></em></p>
<p>[<strong>note</strong> <em><strong>A1</strong> </em>for the first 2 edges <em><strong>A1</strong> </em>for other 3]</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + 2 + 3 + 4 + 5 = 15">
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mo>+</mo>
<mn>3</mn>
<mo>+</mo>
<mn>4</mn>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>15</mn>
</math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>At an archery tournament, a particular competition sees a ball launched into the air while an archer attempts to hit it with an arrow.</p>
<p>The path of the ball is modelled by the equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><msub><mi>u</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>u</mi><mi>y</mi></msub><mo>-</mo><mn>5</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is the horizontal displacement from the archer and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the vertical displacement from the ground, both measured in metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, in seconds, since the ball was launched.</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub></math> is the horizontal component of the initial velocity</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub></math> is the vertical component of the initial velocity.</li>
</ul>
<p>In this question both the ball and the arrow are modelled as single points. The ball is launched with an initial velocity such that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub><mo>=</mo><mn>8</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub><mo>=</mo><mn>10</mn></math>.</p>
</div>
<div class="specification">
<p>An archer releases an arrow from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math>. The arrow is modelled as travelling in a straight line, in the same plane as the ball, with speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> and an angle of elevation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>°</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the initial speed of the ball.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle of elevation of the ball as it is launched.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum height reached by the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the ground is horizontal and the ball is not hit by the arrow, find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinate of the point where the ball lands.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the path of the ball, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the two positions where the path of the arrow intersects the path of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time when the arrow should be released to hit the ball before the ball reaches its maximum height.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mn>10</mn><mn>2</mn></msup><mo>+</mo><msup><mn>8</mn><mn>2</mn></msup></msqrt></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>12</mn><mo>.</mo><mn>8</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>12</mn><mo>.</mo><mn>8062</mn><mo>…</mo><mo>,</mo><mo> </mo><msqrt><mn>164</mn></msqrt></mrow></mfenced><mo> </mo><mfenced><mrow><mtext>m</mtext><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>tan</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mn>10</mn><mn>8</mn></mfrac></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>896</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>3</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>896055</mn><mo>…</mo></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>3401</mn><mo>…</mo><mo>°</mo></math>) <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>897</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>4</mn></math> from use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arcsin</mtext><mfenced><mfrac><mn>10</mn><mrow><mn>12</mn><mo>.</mo><mn>8</mn></mrow></mfrac></mfenced></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>t</mi><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mi>t</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong> </em>might be implied by a correct graph or use of the correct equation.</p>
<p> </p>
<p><strong>METHOD 1 – graphical Method</strong></p>
<p>sketch graph <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong> </em>might be implied by correct graph or correct maximum (eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math>).</p>
<p><br>max occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em><br><br></p>
<p><strong>METHOD 2 – calculus</strong><br><br>differentiating and equating to zero <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>10</mn><mo>-</mo><mn>10</mn><mi>t</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mfenced><mrow><mo>=</mo><mn>1</mn><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3 – symmetry</strong></p>
<p>line of symmetry is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mfenced><mrow><mo>=</mo><mn>1</mn><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>5</mn><mo>+</mo><mn>8</mn><mo>×</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mo> </mo><mn>21</mn><mo> </mo><mtext>m</mtext></math> <em><strong>A1</strong></em><br><br></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong> </em>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> is also seen.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></mfenced><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mo>×</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>k</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>21</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>13</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>5</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>5</mn><mrow><mfenced><mrow><mn>13</mn><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mn>13</mn><mo>-</mo><mn>21</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>21</mn></mrow></mfenced></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>25</mn><mi>a</mi><mo>+</mo><mn>5</mn><mi>b</mi><mo>+</mo><mi>c</mi></math><br> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>169</mn><mi>a</mi><mo>+</mo><mn>13</mn><mi>b</mi><mo>+</mo><mi>c</mi></math><br> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>441</mn><mi>a</mi><mo>+</mo><mn>21</mn><mi>b</mi><mo>+</mo><mi>c</mi></math> <em><strong>M1A1</strong></em></p>
<p>solving simultaneously, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mo>,</mo><mo> </mo><mi>c</mi><mo>=</mo><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math>)</p>
<p> </p>
<p><strong>METHOD 4</strong><br><br>use quadratic regression on <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>13</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>21</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Question asks for expression; condone omission of "<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo></math>".</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>trajectory of arrow is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>10</mn><mo>+</mo><mn>2</mn></math> <em><strong>(A1)</strong></em></p>
<p>intersecting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>10</mn><mo>+</mo><mn>2</mn></math> and their answer to (d) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>8</mn><mo>.</mo><mn>66</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>53</mn></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mfenced><mrow><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>52647</mn><mo>…</mo></mrow></mfenced></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>15</mn><mo>.</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>66</mn></mrow></mfenced><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mfenced><mrow><mn>15</mn><mo>.</mo><mn>0859</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>66006</mn><mo>…</mo></mrow></mfenced></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mtext>target</mtext></msub><mo>=</mo><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>,</mo><mo> </mo><mo> </mo><msub><mi>t</mi><mtext>target</mtext></msub><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>457132</mn><mo>…</mo><mo> </mo><mtext>s</mtext></math> <em><strong>(A1)</strong></em></p>
<p>attempt to find the distance from point of release to intersection <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>8</mn><mo>.</mo><mn>65705</mn><msup><mo>…</mo><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>3</mn><mo>.</mo><mn>52647</mn><mo>…</mo><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>8</mn><mo>.</mo><mn>79060</mn><mo>…</mo><mo> </mo><mtext>m</mtext></mrow></mfenced></math></p>
<p>time for arrow to get there is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>79060</mn><mo>…</mo></mrow><mn>60</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>146510</mn><mo>…</mo><mtext>s</mtext></math> <em><strong>(A1)</strong></em></p>
<p>so the arrow should be released when</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>311</mn><mo> </mo><mfenced><mtext>s</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>310622</mn><mo>…</mo><mo> </mo><mfenced><mtext>s</mtext></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was found to be the most difficult on the paper. There were a good number of good solutions to parts (a) and part (b), frequently with answers just written down with no working. Part (c) caused some difficulties with confusing variables. The most significant difficulties started with part (d) and became greater to the end of the question. Few candidates were able to work through the final two parts.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The matrices A and B are defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \left( {\begin{array}{*{20}{c}} 3&{ - 2} \\ 2&4 \end{array}} \right)">
<mi>A</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = \left( {\begin{array}{*{20}{c}} { - 1}&0 \\ 0&1 \end{array}} \right)">
<mi>B</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Triangle X is mapped onto triangle Y by the transformation represented by AB. The coordinates of triangle Y are (0, 0), (−30, −20) and (−16, 32).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe fully the geometrical transformation represented by B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of triangle X.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle X.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the area of triangle Y.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Matrix A represents a combination of transformations: </p>
<p style="padding-left:90px;">A stretch, with scale factor 3 and y-axis invariant;<br>Followed by a stretch, with scale factor 4 and x-axis invariant;<br>Followed by a transformation represented by matrix C.</p>
<p>Find matrix C.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>reflection in the y-axis <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = {\left( {AB} \right)^{ - 1}}Y">
<mi>X</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mi>Y</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="AB = \left( {\begin{array}{*{20}{c}} { - 3}&{ - 2} \\ { - 2}&4 \end{array}} \right)">
<mi>A</mi>
<mi>B</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mtd>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {AB} \right)^{ - 1}} = \left( {\begin{array}{*{20}{c}} { - \frac{1}{4}}&{ - \frac{1}{8}} \\ { - \frac{1}{8}}&{\frac{3}{{16}}} \end{array}} \right)">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</mrow>
</mtd>
<mtd>
<mrow>
<mfrac>
<mn>3</mn>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = {B^{ - 1}}{A^{ - 1}}Y">
<mi>X</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>B</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<msup>
<mi>A</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mi>Y</mi>
</math></span> <em><strong>M1A1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = \left( {\begin{array}{*{20}{c}} 0&{10}&0 \\ 0&0&8 \end{array}} \right)">
<mi>X</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mrow>
<mn>10</mn>
</mrow>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>8</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p>So the coordinates are (0, 0), (10, 0) and (0, 8). <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{10 \times 8}}{2} = 40">
<mfrac>
<mrow>
<mn>10</mn>
<mo>×</mo>
<mn>8</mn>
</mrow>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mn>40</mn>
</math></span> units<sup>2</sup> <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\det \left( {AB} \right) = - 16">
<mo movablelimits="true" form="prefix">det</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>16</mn>
</math></span> <em><strong>M1A1</strong></em></p>
<p>Area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 40 \times 16 = 640">
<mo>=</mo>
<mn>40</mn>
<mo>×</mo>
<mn>16</mn>
<mo>=</mo>
<mn>640</mn>
</math></span> units<sup>2</sup> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A stretch, with scale factor 3 and y-axis invariant is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3&0 \\ 0&1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>A stretch, with scale factor 4 and x-axis invariant is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1&0 \\ 0&4 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>So <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = A{\left( {\begin{array}{*{20}{c}} 3&0 \\ 0&1 \end{array}} \right)^{ - 1}}{\left( {\begin{array}{*{20}{c}} 1&0 \\ 0&4 \end{array}} \right)^{ - 1}} = \left( {\begin{array}{*{20}{c}} 1&{ - \frac{1}{2}} \\ {\frac{2}{3}}&1 \end{array}} \right)">
<mi>C</mi>
<mo>=</mo>
<mi>A</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <em>G</em> be the graph below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total number of Hamiltonian cycles in <em>G</em>, starting at vertex A. Explain your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a minimum spanning tree for the subgraph obtained by deleting A from <em>G</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find a lower bound for the travelling salesman problem for <em>G</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give an upper bound for the travelling salesman problem for the graph above.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent1" style="margin-top:12.0pt;">Show that the lower bound you have obtained is not the best possible for the solution to the travelling salesman problem for <em>G</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Starting from vertex A there are 4 choices. From the next vertex there are three choices, etc… <em><strong> M1R1</strong></em></p>
<p>So the number of Hamiltonian cycles is 4! = 24. <em><strong>A1 N1 </strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Start (for instance) at B, using Prim′s algorithm Then D is the nearest vertex <em><strong>M1 </strong></em></p>
<p>Next E is the nearest vertex <em><strong>A1 </strong></em></p>
<p>Finally C is the nearest vertex So a minimum spanning tree is B → D → E → C <em><strong>A1 N1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A lower bound for the travelling salesman problem is then obtained by adding the weights of AB and AE to the weight of the minimum <em><strong>M1 </strong></em></p>
<p>spanning tree (ie 20) <em><strong>A1 </strong></em></p>
<p>A lower bound is then 20 + 7 + 6 = 33 <em><strong>A1 N1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ABCDE is an Hamiltonian cycle <em><strong> A1 </strong></em></p>
<p>Thus an upper bound is given by 7 + 9 + 9 + 8 + 6 = 39 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Eliminating C from <em>G</em> a minimum spanning tree is E → A → B → D <em><strong>M1 </strong></em></p>
<p>of weight 18 <em><strong>A1 </strong></em></p>
<p>Adding BC to CE(18 + 9 + 7) gives a lower bound of 34 > 33 <em><strong>A1 </strong></em></p>
<p>So 33 not the best lower bound. <em><strong>AG N0</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The matrix A is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \left( {\begin{array}{*{20}{c}} 3&0 \\ 0&2 \end{array}} \right)">
<mi>A</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Pentagon, P, which has an area of 7 cm<sup>2</sup>, is transformed by A.</p>
</div>
<div class="specification">
<p>The matrix B is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = \frac{1}{2}\left( {\begin{array}{*{20}{c}} {3\sqrt 3 }&3 \\ { - 2}&{2\sqrt 3 } \end{array}} \right)">
<mi>B</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>3</mn>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
</mtd>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>2</mn>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>B represents the combined effect of the transformation represented by a matrix X, followed by the transformation represented by A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe fully the geometrical transformation represented by A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the image of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the matrix X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe fully the geometrical transformation represented by X.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>stretch <em><strong> A1</strong></em></p>
<p>scale factor 3, <em><strong> A1</strong></em></p>
<p>y-axis invariant (condone parallel to the x-axis) <em><strong> A1</strong></em></p>
<p>and</p>
<p>stretch, scale factor 2, <em><strong> A1</strong></em></p>
<p>x-axis invariant (condone parallel to the y-axis) <em><strong> A1 </strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{det}}\left( A \right) = 6">
<mrow>
<mtext>det</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>6</mn>
</math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7 \times 6 = 42\,{\text{c}}{{\text{m}}^2}">
<mn>7</mn>
<mo>×</mo>
<mn>6</mn>
<mo>=</mo>
<mn>42</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = AX">
<mi>B</mi>
<mo>=</mo>
<mi>A</mi>
<mi>X</mi>
</math></span> <em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = {A^{ - 1}}B">
<mi>X</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>A</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mi>B</mi>
</math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = \left( {\begin{array}{*{20}{c}} {0.866}&{0.5} \\ { - 0.5}&{0.866} \end{array}} \right)\left( { = \left( {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \\ { - \frac{1}{2}}&{\frac{{\sqrt 3 }}{2}} \end{array}} \right)} \right)">
<mi>X</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>0.866</mn>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>0.5</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>0.5</mn>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>0.866</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
<mtd>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
<mtd>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Rotation <em><strong>A1</strong></em></p>
<p>clockwise by 30° about the origin <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>In triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{PQR, PR}} = 12{\text{ cm, QR}} = p{\text{ cm, PQ}} = r{\text{ cm}}">
<mrow>
<mtext>PQR, PR</mtext>
</mrow>
<mo>=</mo>
<mn>12</mn>
<mrow>
<mtext> cm, QR</mtext>
</mrow>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mtext> cm, PQ</mtext>
</mrow>
<mo>=</mo>
<mi>r</mi>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{Q\hat PR}} = 30^\circ ">
<mrow>
<mrow>
<mi mathvariant="normal">Q</mi>
<mrow>
<mover>
<mi mathvariant="normal">P</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">R</mi>
</mrow>
</mrow>
<mo>=</mo>
<msup>
<mn>30</mn>
<mo>∘<!-- ∘ --></mo>
</msup>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the possible triangles with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{QR}} = 8{\text{ cm}}">
<mrow>
<mtext>QR</mtext>
</mrow>
<mo>=</mo>
<mn>8</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the case where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, the length of QR is not fixed at 8 cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cosine rule to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2} - 12\sqrt 3 r + 144 - {p^2} = 0">
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>12</mn>
<msqrt>
<mn>3</mn>
</msqrt>
<mi>r</mi>
<mo>+</mo>
<mn>144</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the two corresponding values of PQ.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area of the smaller triangle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the range of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> for which it is possible to form two triangles.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p^2} = {12^2} + {r^2} - 2 \times 12 \times r \times \cos (30^\circ )">
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>12</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mo>×</mo>
<mn>12</mn>
<mo>×</mo>
<mi>r</mi>
<mo>×</mo>
<mi>cos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<msup>
<mn>30</mn>
<mo>∘</mo>
</msup>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2} - 12\sqrt 3 r + 144 - {p^2} = 0">
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>12</mn>
<msqrt>
<mn>3</mn>
</msqrt>
<mi>r</mi>
<mo>+</mo>
<mn>144</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2} - 12\sqrt 3 r + 80 = 0">
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>12</mn>
<msqrt>
<mn>3</mn>
</msqrt>
<mi>r</mi>
<mo>+</mo>
<mn>80</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p>using the sine rule <strong><em>(M1)</em></strong></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{PQ}} = 5.10{\text{ }}({\text{cm}})">
<mrow>
<mtext>PQ</mtext>
</mrow>
<mo>=</mo>
<mn>5.10</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>cm</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> or <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{PQ}} = 15.7{\text{ }}({\text{cm}})">
<mrow>
<mtext>PQ</mtext>
</mrow>
<mo>=</mo>
<mn>15.7</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>cm</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = \frac{1}{2} \times 12 \times 5.1008 \ldots \times \sin (30^\circ )">
<mrow>
<mtext>area</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>12</mn>
<mo>×</mo>
<mn>5.1008</mn>
<mo>…</mo>
<mo>×</mo>
<mi>sin</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<msup>
<mn>30</mn>
<mo>∘</mo>
</msup>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 15.3{\text{ }}({\text{c}}{{\text{m}}^2})">
<mo>=</mo>
<mn>15.3</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2} - 12\sqrt 3 r + 144 - {p^2} = 0">
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>12</mn>
<msqrt>
<mn>3</mn>
</msqrt>
<mi>r</mi>
<mo>+</mo>
<mn>144</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>discriminant <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\left( {12\sqrt 3 } \right)^2} - 4 \times (144 - {p^2})">
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mn>144</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4({p^2} - 36)">
<mo>=</mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>36</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({p^2} - 36) > 0">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>36</mn>
<mo stretchy="false">)</mo>
<mo>></mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p > 6">
<mi>p</mi>
<mo>></mo>
<mn>6</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>construction of a right angle triangle <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12\sin 30^\circ = 6">
<mn>12</mn>
<mi>sin</mi>
<mo></mo>
<msup>
<mn>30</mn>
<mo>∘</mo>
</msup>
<mo>=</mo>
<mn>6</mn>
</math></span> <strong><em>M1(A1)</em></strong></p>
<p>hence for two triangles <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p > 6">
<mi>p</mi>
<mo>></mo>
<mn>6</mn>
</math></span> <strong><em>R1</em></strong></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p < 12">
<mi>p</mi>
<mo><</mo>
<mn>12</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="144 - {p^2} > 0">
<mn>144</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>></mo>
<mn>0</mn>
</math></span> to ensure two positive solutions or valid geometric argument <strong><em>R1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore 6 < p < 12">
<mo>∴</mo>
<mn>6</mn>
<mo><</mo>
<mi>p</mi>
<mo><</mo>
<mn>12</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>diagram showing two triangles <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12\sin 30^\circ = 6">
<mn>12</mn>
<mi>sin</mi>
<mo></mo>
<msup>
<mn>30</mn>
<mo>∘</mo>
</msup>
<mo>=</mo>
<mn>6</mn>
</math></span> <strong><em>M1A1</em></strong></p>
<p>one right angled triangle when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 6">
<mi>p</mi>
<mo>=</mo>
<mn>6</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore p > 6">
<mo>∴</mo>
<mi>p</mi>
<mo>></mo>
<mn>6</mn>
</math></span> for two triangles <strong><em>R1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p < 12">
<mi>p</mi>
<mo><</mo>
<mn>12</mn>
</math></span> for two triangles <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 < p < 12">
<mn>6</mn>
<mo><</mo>
<mi>p</mi>
<mo><</mo>
<mn>12</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the set of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> that satisfy the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - k - 12 < 0">
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>k</mi>
<mo>−</mo>
<mn>12</mn>
<mo><</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The triangle ABC is shown in the following diagram. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos B < \frac{1}{4}">
<mi>cos</mi>
<mo></mo>
<mi>B</mi>
<mo><</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span>, find the range of possible values for AB.</p>
<p><img src="images/Schermafbeelding_2017-08-09_om_18.13.24.png" alt="M17/5/MATHL/HP2/ENG/TZ2/04.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - k - 12 < 0">
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>k</mi>
<mo>−</mo>
<mn>12</mn>
<mo><</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(k - 4)(k + 3) < 0">
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>+</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo><</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < k < 4">
<mo>−</mo>
<mn>3</mn>
<mo><</mo>
<mi>k</mi>
<mo><</mo>
<mn>4</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos B = \frac{{{2^2} + {c^2} - {4^2}}}{{4c}}{\text{ }}({\text{or }}16 = {2^2} + {c^2} - 4c\cos B)">
<mi>cos</mi>
<mo></mo>
<mi>B</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mn>4</mn>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mi>c</mi>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>or </mtext>
</mrow>
<mn>16</mn>
<mo>=</mo>
<mrow>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>c</mi>
<mi>cos</mi>
<mo></mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{{{c^2} - 12}}{{4c}} < \frac{1}{4}">
<mo stretchy="false">⇒</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>12</mn>
</mrow>
<mrow>
<mn>4</mn>
<mi>c</mi>
</mrow>
</mfrac>
<mo><</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {c^2} - c - 12 < 0">
<mo stretchy="false">⇒</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>c</mi>
<mo>−</mo>
<mn>12</mn>
<mo><</mo>
<mn>0</mn>
</math></span></p>
<p>from result in (a)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < {\text{AB}} < 4">
<mn>0</mn>
<mo><</mo>
<mrow>
<mtext>AB</mtext>
</mrow>
<mo><</mo>
<mn>4</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < {\text{AB}} < 4">
<mo>−</mo>
<mn>3</mn>
<mo><</mo>
<mrow>
<mtext>AB</mtext>
</mrow>
<mo><</mo>
<mn>4</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p>but AB must be at least 2</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 2 < {\text{AB}} < 4">
<mo stretchy="false">⇒</mo>
<mn>2</mn>
<mo><</mo>
<mrow>
<mtext>AB</mtext>
</mrow>
<mo><</mo>
<mn>4</mn>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Allow <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \leqslant {\text{AB}}">
<mo>⩽</mo>
<mrow>
<mtext>AB</mtext>
</mrow>
</math></span> for either of the final two <strong><em>A </em></strong>marks.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> radians.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_11.09.30.png" alt="M17/5/MATHL/HP2/ENG/TZ1/08"></p>
</div>
<div class="specification">
<p>The volume of water is increasing at a constant rate of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008{\text{ }}{{\text{m}}^3}{{\text{s}}^{ - 1}}">
<mn>0.0008</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the volume of water <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{\text{ }}({{\text{m}}^3})">
<mi>V</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> in the trough in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{3}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>area of segment <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2} \times {0.5^2} \times (\theta - \sin \theta )">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<msup>
<mn>0.5</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = {\text{area of segment}} \times 10">
<mi>V</mi>
<mo>=</mo>
<mrow>
<mtext>area of segment</mtext>
</mrow>
<mo>×</mo>
<mn>10</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \frac{5}{4}(\theta - \sin \theta )">
<mi>V</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{5}{4}(1 - \cos \theta )\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008 = \frac{5}{4}\left( {1 - \cos \frac{\pi }{3}} \right)\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mn>0.0008</mn>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128{\text{ }}({\text{rad}}\,{s^{ - 1}})">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.00128</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>rad</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>s</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}\theta }}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}\theta }} = \frac{5}{4}(1 - \cos \theta )">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{4 \times 0.0008}}{{5\left( {1 - \cos \frac{\pi }{3}} \right)}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>0.0008</mn>
</mrow>
<mrow>
<mn>5</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128\left( {\frac{4}{{3125}}} \right)({\text{rad }}{s^{ - 1}})">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.00128</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mrow>
<mn>3125</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>rad </mtext>
</mrow>
<mrow>
<msup>
<mi>s</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An aircraft’s position is given by the coordinates (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span>), where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> are the aircraft’s displacement east and north of an airport, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span> is the height of the aircraft above the ground. All displacements are given in kilometres.</p>
<p>The velocity of the aircraft is given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 150} \\ { - 50} \\ { - 20} \end{array}} \right)\,{\text{km}}\,{{\text{h}}^{ - 1}}">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>150</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>50</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>20</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>km</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mtext>h</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<p>At 13:00 it is detected at a position 30 km east and 10 km north of the airport, and at a height of 5 km. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> be the length of time in hours from 13:00.</p>
</div>
<div class="specification">
<p>If the aircraft continued to fly with the velocity given</p>
</div>
<div class="specification">
<p>When the aircraft is 4 km above the ground it continues to fly on the same bearing but adjusts the angle of its descent so that it will land at the point (0, 0, 0).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a vector equation for the displacement, <strong><em>r</em></strong> of the aircraft in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>verify that it would pass directly over the airport.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>state the height of the aircraft at this point.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the time at which it would fly directly over the airport.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time at which the aircraft is 4 km above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the direct distance of the aircraft from the airport at this point.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the velocity of the aircraft, after the adjustment of the angle of descent, is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 150} \\ { - 50} \\ a \end{array}} \right){\text{km}}\,{{\text{h}}^{ - 1}}"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>150</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>50</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>km</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mrow> <mtext>h</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>r </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} {30} \\ {10} \\ 5 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} { - 150} \\ { - 50} \\ { - 20} \end{array}} \right)\,"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>30</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>150</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>50</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>20</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> </math></span> <em><strong>A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{30}}{{150}} = 0.2"> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <mn>30</mn> </mrow> <mrow> <mn>150</mn> </mrow> </mfrac> <mo>=</mo> <mn>0.2</mn> </math></span> <em><strong>M1</strong></em></p>
<p><em><strong>EITHER</strong></em></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{10}}{{150}} = 0.2"> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <mn>10</mn> </mrow> <mrow> <mn>150</mn> </mrow> </mfrac> <mo>=</mo> <mn>0.2</mn> </math></span> <em><strong>A1</strong></em></p>
<p>since the two values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span> are equal the aircraft passes directly over the airport</p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0.2"> <mi>t</mi> <mo>=</mo> <mn>0.2</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>height = 5 − 0.2 × 20 = 1 km <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>time 13:12 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5 - 20t = 4 \Rightarrow t = \frac{1}{{20}}"> <mn>5</mn> <mo>−</mo> <mn>20</mn> <mi>t</mi> <mo>=</mo> <mn>4</mn> <mo stretchy="false">⇒</mo> <mi>t</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>20</mn> </mrow> </mfrac> </math></span> (3 minutes) <em><strong>(M1)</strong></em></p>
<p>time 13:03 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>displacement is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {22.5} \\ {7.5} \\ 4 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>22.5</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>7.5</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>distance is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{22.5}^2} + {{7.5}^2} + {4^2}} "> <msqrt> <mrow> <msup> <mrow> <mn>22.5</mn> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mn>7.5</mn> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> </msqrt> </math></span> <em><strong>(M1)</strong></em></p>
<p>= 24.1 km <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>METHOD 1</strong></em></p>
<p>time until landing is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12 - 3 = 9"> <mn>12</mn> <mo>−</mo> <mn>3</mn> <mo>=</mo> <mn>9</mn> </math></span> minutes <em><strong>M1</strong></em></p>
<p>height to descend = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\,{\text{km}}"> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>km</mtext> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{ - 4}}{{\frac{9}{{60}}}}"> <mi>a</mi> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mrow> <mfrac> <mn>9</mn> <mrow> <mn>60</mn> </mrow> </mfrac> </mrow> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 26.7"> <mo>=</mo> <mo>−</mo> <mn>26.7</mn> </math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 150} \\ { - 50} \\ a \end{array}} \right) = s\left( {\begin{array}{*{20}{c}} {22.5} \\ {7.5} \\ 4 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>150</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>50</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>s</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>22.5</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>7.5</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 150 = 22.5\,s \Rightarrow s = - \frac{{20}}{3}"> <mo>−</mo> <mn>150</mn> <mo>=</mo> <mn>22.5</mn> <mspace width="thinmathspace"></mspace> <mi>s</mi> <mo stretchy="false">⇒</mo> <mi>s</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>20</mn> </mrow> <mn>3</mn> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = - \frac{{20}}{3} \times 4"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>20</mn> </mrow> <mn>3</mn> </mfrac> <mo>×</mo> <mn>4</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 26.7"> <mo>=</mo> <mo>−</mo> <mn>26.7</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Two submarines A and B have their routes planned so that their positions at time <em>t</em> hours, 0 ≤ <em>t</em> < 20 , would be defined by the position vectors <em><strong>r</strong><sub>A</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,2 \hfill \\ \,4 \hfill \\ - 1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 1 \hfill \\ \,1 \hfill \\ - 0.15 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.15</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> and <em><strong>r</strong><sub>B</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,0 \hfill \\ \,3.2 \hfill \\ - 2 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 0.5 \hfill \\ \,1.2 \hfill \\ \,0.1 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>3.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.5</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> relative to a fixed point on the surface of the ocean (all lengths are in kilometres).</p>
</div>
<div class="specification">
<p>To avoid the collision submarine B adjusts its velocity so that its position vector is now given by</p>
<p style="padding-left: 120px;"><em><strong>r</strong><sub>B</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,0 \hfill \\ \,3.2 \hfill \\ - 2 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 0.45 \hfill \\ \,1.08 \hfill \\ \,0.09 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>3.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.45</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1.08</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.09</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the two submarines would collide at a point P and write down the coordinates of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>t</em> when submarine B passes through P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>t</em> when the two submarines are closest together.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance between the two submarines at this time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><em><strong>r</strong><sub>A </sub>= <strong>r</strong><sub>B <strong>(M1)</strong></sub></em></p>
<p>2 − <em>t</em> = − 0.5t ⇒ <em>t</em> = 4 <strong>A1</strong></p>
<p>checking <em>t</em> = 4 satisfies 4 + <em>t</em> = 3.2 + 1.2<em>t</em> and − 1 − 0.15<em>t</em> = − 2 + 0.1<em>t <strong>R1</strong></em></p>
<p>P(−2, 8, −1.6) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not award final <em><strong>A1</strong></em> if answer given as column vector.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \, - 0.45t \hfill \\ 3.2 + 1.08t \hfill \\ - 2 + 0.09t \hfill \\ \end{gathered} \right) = \left( \begin{gathered} - 2 \hfill \\ \,8 \hfill \\ - 1.6 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>0.45</mn> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mn>3.2</mn> <mo>+</mo> <mn>1.08</mn> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>2</mn> <mo>+</mo> <mn>0.09</mn> <mi>t</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mo>−</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mn>1.6</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> The <strong><em>M1</em></strong> can be awarded for any one of the resultant equations.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow t = \frac{{40}}{9} = 4.44 \ldots "> <mo stretchy="false">⇒</mo> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <mn>40</mn> </mrow> <mn>9</mn> </mfrac> <mo>=</mo> <mn>4.44</mn> <mo>…</mo> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>minimum when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}D}}{{{\text{d}}t}} = 0"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>D</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>t</em> = 3.83 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.511 (km) <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A canal system divides a city into six land masses connected by fifteen bridges, as shown in the diagram below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>State with reasons whether or not this graph has</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a graph to represent this map.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the adjacency matrix of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>List the degrees of each of the vertices.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>an Eulerian circuit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>an Eulerian trail.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of walks of length 4 from E to F.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>M</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}} {} \\ {\text{A}} \\ {\text{B}} \\ {\text{C}} \\ {\text{D}} \\ {\text{E}} \\ {\text{F}} \end{array}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\text{A}}&{\text{B}}&{\text{C}}&{\text{D}}&{\text{E}}&{\text{F}} \end{array}} \\ {\left( {\begin{array}{*{20}{c}} 0&1&2&1&2&2 \\ 1&0&0&0&1&2 \\ 2&0&0&1&0&1 \\ 1&0&1&0&1&0 \\ 2&1&0&1&0&1 \\ 2&2&1&0&1&0 \end{array}} \right)} \end{array}"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>A</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>B</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>C</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>D</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>E</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>F</mtext> </mrow> </mtd> </mtr> </mtable> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mtext>A</mtext> </mrow> </mtd> <mtd> <mrow> <mtext>B</mtext> </mrow> </mtd> <mtd> <mrow> <mtext>C</mtext> </mrow> </mtd> <mtd> <mrow> <mtext>D</mtext> </mrow> </mtd> <mtd> <mrow> <mtext>E</mtext> </mrow> </mtd> <mtd> <mrow> <mtext>F</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </math></span> <em><strong>A2</strong></em></p>
<p><strong>Note: </strong>Award A1 for one error or omission, A0 for more than one error or omission. Two symmetrical errors count as one error.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A B C D E F</p>
<p>(8, 4 4, 3 5, 6) <em><strong>A2</strong></em></p>
<p><strong>Note: </strong>Award no more than A1 for one error, A0 for more than one error.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no, because there are odd vertices <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>yes, because there are exactly two odd vertices <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>M</strong></em><sup>4</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}} {} \\ {\text{A}} \\ {\text{B}} \\ {\text{C}} \\ {\text{D}} \\ {\text{E}} \\ {\text{F}} \end{array}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\text{A}}&{}&{\text{B}}&{}&{\text{C}}&{}&{\text{D}}&{}&{\text{E}}&{}&{\text{F}} \end{array}} \\ {\left( {\begin{array}{*{20}{c}} {309\,}&{174}&{140}&{118}&{170}&{214} \\ {174}&{117}&{106}&{70}&{122}&{132} \\ {140\,}&{106}&{117}&{66}&{134}&{138} \\ {118}&{70}&{66}&{53}&{80}&{102} \\ {170}&{122}&{134}&{80}&{157}&{170} \\ {214}&{132}&{138}&{102}&{170}&{213} \end{array}} \right)} \end{array}"> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>A</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>B</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>C</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>D</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>E</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtext>F</mtext> </mrow> </mtd> </mtr> </mtable> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mtext>A</mtext> </mrow> </mtd> <mtd> <mrow> </mrow> </mtd> <mtd> <mrow> <mtext>B</mtext> </mrow> </mtd> <mtd> <mrow> </mrow> </mtd> <mtd> <mrow> <mtext>C</mtext> </mrow> </mtd> <mtd> <mrow> </mrow> </mtd> <mtd> <mrow> <mtext>D</mtext> </mrow> </mtd> <mtd> <mrow> </mrow> </mtd> <mtd> <mrow> <mtext>E</mtext> </mrow> </mtd> <mtd> <mrow> </mrow> </mtd> <mtd> <mrow> <mtext>F</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>309</mn> <mspace width="thinmathspace"></mspace> </mrow> </mtd> <mtd> <mrow> <mn>174</mn> </mrow> </mtd> <mtd> <mrow> <mn>140</mn> </mrow> </mtd> <mtd> <mrow> <mn>118</mn> </mrow> </mtd> <mtd> <mrow> <mn>170</mn> </mrow> </mtd> <mtd> <mrow> <mn>214</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>174</mn> </mrow> </mtd> <mtd> <mrow> <mn>117</mn> </mrow> </mtd> <mtd> <mrow> <mn>106</mn> </mrow> </mtd> <mtd> <mrow> <mn>70</mn> </mrow> </mtd> <mtd> <mrow> <mn>122</mn> </mrow> </mtd> <mtd> <mrow> <mn>132</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>140</mn> <mspace width="thinmathspace"></mspace> </mrow> </mtd> <mtd> <mrow> <mn>106</mn> </mrow> </mtd> <mtd> <mrow> <mn>117</mn> </mrow> </mtd> <mtd> <mrow> <mn>66</mn> </mrow> </mtd> <mtd> <mrow> <mn>134</mn> </mrow> </mtd> <mtd> <mrow> <mn>138</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>118</mn> </mrow> </mtd> <mtd> <mrow> <mn>70</mn> </mrow> </mtd> <mtd> <mrow> <mn>66</mn> </mrow> </mtd> <mtd> <mrow> <mn>53</mn> </mrow> </mtd> <mtd> <mrow> <mn>80</mn> </mrow> </mtd> <mtd> <mrow> <mn>102</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>170</mn> </mrow> </mtd> <mtd> <mrow> <mn>122</mn> </mrow> </mtd> <mtd> <mrow> <mn>134</mn> </mrow> </mtd> <mtd> <mrow> <mn>80</mn> </mrow> </mtd> <mtd> <mrow> <mn>157</mn> </mrow> </mtd> <mtd> <mrow> <mn>170</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>214</mn> </mrow> </mtd> <mtd> <mrow> <mn>132</mn> </mrow> </mtd> <mtd> <mrow> <mn>138</mn> </mrow> </mtd> <mtd> <mrow> <mn>102</mn> </mrow> </mtd> <mtd> <mrow> <mn>170</mn> </mrow> </mtd> <mtd> <mrow> <mn>213</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </math></span> <em><strong>(M1)A1</strong></em></p>
<p>number of walks of length 4 is 170</p>
<p class="indent1"><strong>Note: </strong>The complete matrix need not be shown. Only one of the FE has to be shown.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the costs in US dollars (US$) of direct flights between six cities. Blank cells indicate no direct flights. The rows represent the departure cities. The columns represent the destination cities.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The following table shows the least cost to travel between the cities.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A travelling salesman has to visit each of the cities, starting and finishing at city A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show the direct flights between the cities as a graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the adjacency matrix for this graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (b), find the number of different ways to travel from and return to city A in exactly 6 flights.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether or not it is possible to travel from and return to city A in exactly 6 flights, having visited each of the other 5 cities exactly once. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the nearest neighbour algorithm to find an upper bound for the cost of the trip.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By deleting vertex A, use the deleted vertex algorithm to find a lower bound for the cost of the trip.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to form an adjacency matrix <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 0&1&1&0&0&0 \\ 1&0&1&1&1&0 \\ 1&1&0&0&0&0 \\ 0&1&0&0&1&1 \\ 0&1&0&1&0&1 \\ 0&0&0&1&1&0 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A</strong><strong>1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>raising the matrix to the power six <em><strong>(M1)</strong></em></p>
<p>50 <em><strong>A</strong><strong>1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not possible <em><strong>A1</strong></em></p>
<p>because you must pass through B twice <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Do not award<em><strong> A1R0</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 230"> <mi>a</mi> <mo>=</mo> <mn>230</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 340"> <mi>b</mi> <mo>=</mo> <mn>340</mn> </math></span> <em><strong>A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A → B → D → E → F → C → A <em><strong>(M1)</strong></em></p>
<p>90 + 70 + 100 + 210 + 330 + 150 <em><strong>(A1)</strong></em></p>
<p>(US$) 950 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding weight of minimum spanning tree <em><strong>M1</strong></em></p>
<p>70 + 80 + 100 + 180 = (US$) 430 <em><strong>A1</strong></em></p>
<p>adding in two edges of minimum weight <em><strong>M1</strong></em></p>
<p>430 + 90 + 150 = (US$) 670 <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The adjacency matrix of the graph <em>G</em>, with vertices P, Q, R, S, T is given by:</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{array}{*{20}{c}} {} \\ {\text{P}} \\ {\text{Q}} \\ {\text{R}} \\ {\text{S}} \\ {\text{T}} \end{array}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\text{P}}&{\text{Q}}&{\text{R}}&{\text{S}}&{\text{T}} \end{array}} \\ {\left( {\begin{array}{*{20}{c}} 0&2&1&1&0 \\ 2&1&1&1&0 \\ 1&1&1&0&2 \\ 1&1&0&0&0 \\ 0&0&2&0&0 \end{array}} \right)} \end{array}">
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mtext>P</mtext>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mtext>Q</mtext>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mtext>R</mtext>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mtext>S</mtext>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mtext>T</mtext>
</mrow>
</mtd>
</mtr>
</mtable>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mtext>P</mtext>
</mrow>
</mtd>
<mtd>
<mrow>
<mtext>Q</mtext>
</mrow>
</mtd>
<mtd>
<mrow>
<mtext>R</mtext>
</mrow>
</mtd>
<mtd>
<mrow>
<mtext>S</mtext>
</mrow>
</mtd>
<mtd>
<mrow>
<mtext>T</mtext>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>2</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the graph of <em>G</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an Eulerian circuit in <em>G</em> starting at P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define a Hamiltonian cycle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why it is not possible to have a Hamiltonian cycle in <em>G.</em></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of walks of length 5 from P to Q.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Which pairs of distinct vertices have more than 15 walks of length 3 between them?</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A3</strong></em></p>
<p> </p>
<p class="indent1"><strong>Note: </strong>Award A2 for one missing or misplaced edge, <strong> </strong></p>
<p class="indent1"> A1 for two missing or misplaced edges.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an Eulerian circuit is one that contains every edge of the graph exactly once <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a possible Eulerian circuit is</p>
<p>P → Q → S → P → Q → Q → R → T → R → R → P <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a Hamiltonian cycle passes through each vertex of the graph <em><strong>A1</strong></em></p>
<p>exactly once <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to pass through T, you must have come from R and must return to R. <em><strong>R3</strong></em></p>
<p>hence there is no Hamiltonian cycle</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>using the adjacency matrix <em><strong>A</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\begin{array}{*{20}{c}} 0&2&1&1&0 \\ 2&1&1&1&0 \\ 1&1&1&0&2 \\ 1&1&0&0&0 \\ 0&0&2&0&0 \end{array}} \right)}"> <mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> </math></span>, <em><strong>(M1)</strong></em></p>
<p>we need the entry in the first row second column of the matrix <em><strong>A</strong></em><sup>5</sup> <em><strong>(M1)</strong></em></p>
<p><em><strong>A</strong></em><sup>5</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {245}&{309}&{274}&{143}&{126} \\ {309}&{363}&{322}&{168}&{156} \\ {274}&{322}&{295}&{141}&{164} \\ {143}&{168}&{141}&{77}&{72} \\ {126}&{156}&{164}&{72}&{72} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>245</mn> </mrow> </mtd> <mtd> <mrow> <mn>309</mn> </mrow> </mtd> <mtd> <mrow> <mn>274</mn> </mrow> </mtd> <mtd> <mrow> <mn>143</mn> </mrow> </mtd> <mtd> <mrow> <mn>126</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>309</mn> </mrow> </mtd> <mtd> <mrow> <mn>363</mn> </mrow> </mtd> <mtd> <mrow> <mn>322</mn> </mrow> </mtd> <mtd> <mrow> <mn>168</mn> </mrow> </mtd> <mtd> <mrow> <mn>156</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>274</mn> </mrow> </mtd> <mtd> <mrow> <mn>322</mn> </mrow> </mtd> <mtd> <mrow> <mn>295</mn> </mrow> </mtd> <mtd> <mrow> <mn>141</mn> </mrow> </mtd> <mtd> <mrow> <mn>164</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>143</mn> </mrow> </mtd> <mtd> <mrow> <mn>168</mn> </mrow> </mtd> <mtd> <mrow> <mn>141</mn> </mrow> </mtd> <mtd> <mrow> <mn>77</mn> </mrow> </mtd> <mtd> <mrow> <mn>72</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>126</mn> </mrow> </mtd> <mtd> <mrow> <mn>156</mn> </mrow> </mtd> <mtd> <mrow> <mn>164</mn> </mrow> </mtd> <mtd> <mrow> <mn>72</mn> </mrow> </mtd> <mtd> <mrow> <mn>72</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p>hence there are 309 ways <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>A</strong></em><sup>3</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {13}&{21}&{17}&{10}&6 \\ {21}&{22}&{19}&{11}&8 \\ {17}&{19}&{18}&7&{14} \\ {10}&{11}&7&5&4 \\ 6&8&{14}&4&4 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>13</mn> </mrow> </mtd> <mtd> <mrow> <mn>21</mn> </mrow> </mtd> <mtd> <mrow> <mn>17</mn> </mrow> </mtd> <mtd> <mrow> <mn>10</mn> </mrow> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>21</mn> </mrow> </mtd> <mtd> <mrow> <mn>22</mn> </mrow> </mtd> <mtd> <mrow> <mn>19</mn> </mrow> </mtd> <mtd> <mrow> <mn>11</mn> </mrow> </mtd> <mtd> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>17</mn> </mrow> </mtd> <mtd> <mrow> <mn>19</mn> </mrow> </mtd> <mtd> <mrow> <mn>18</mn> </mrow> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mrow> <mn>14</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> </mrow> </mtd> <mtd> <mrow> <mn>11</mn> </mrow> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>6</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mrow> <mn>14</mn> </mrow> </mtd> <mtd> <mn>4</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p>hence the pairs of vertices are PQ, PR and QR <em><strong>A1A1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The sides of the equilateral triangle ABC have lengths 1 m. The midpoint of [AB] is denoted by P. The circular arc AB has centre, M, the midpoint of [CP].</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find AM.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>PC <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 3 }}{2}"> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span> or 0.8660 <em><strong>(M1)</strong></em></p>
<p>PM <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>PC <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 3 }}{4}"> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span> or 0.4330 <strong>(A1)</strong></p>
<p>AM <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {\frac{1}{4} + \frac{3}{{16}}} "> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mn>3</mn> <mrow> <mn>16</mn> </mrow> </mfrac> </msqrt> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 7 }}{4}"> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span> or 0.661 (m) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>using the cosine rule</p>
<p>AM<sup>2</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {1^2} + {\left( {\frac{{\sqrt 3 }}{4}} \right)^2} - 2 \times \frac{{\sqrt 3 }}{4} \times {\text{cos}}\left( {30^\circ } \right)"> <mo>=</mo> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mo>×</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> <mo>×</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mn>30</mn> <mo>∘</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>M1A1</strong></em></p>
<p>AM <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 7 }}{4}"> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span> or 0.661 (m) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{\text{A}}{{\text{M}}^2}\left( {2\,{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}} - {\text{sin}}\left( {2\,{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}}} \right)} \right)"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>A</mtext> </mrow> <mrow> <msup> <mrow> <mtext>M</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>A</mtext> </mrow> <mover> <mrow> <mtext>M</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>P</mtext> </mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>A</mtext> </mrow> <mover> <mrow> <mtext>M</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>P</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)A1</strong></em></p>
<p><strong>OR </strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{\text{A}}{{\text{M}}^2} \times 2\,{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}} - = \frac{{\sqrt 3 }}{8}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>A</mtext> </mrow> <mrow> <msup> <mrow> <mtext>M</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>×</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>A</mtext> </mrow> <mover> <mrow> <mtext>M</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>P</mtext> </mrow> <mo>−</mo> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>8</mn> </mfrac> </math></span> <em><strong>(M1)A1</strong></em></p>
<p>= 0.158(m<sup>2</sup>) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to calculate area of a sector minus area of a triangle.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows two circles with centres at the points A and B and radii <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2r">
<mn>2</mn>
<mi>r</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, respectively. The point B lies on the circle with centre A. The circles intersect at the points C and D.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_17.29.37.png" alt="N16/5/MATHL/HP2/ENG/TZ0/09"></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α<!-- α --></mi>
</math></span> be the measure of the angle CAD and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> be the measure of the angle CBD in radians.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the shaded area in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}"> <mi>α</mi> <mo>=</mo> <mn>4</mn> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> given that the shaded area is equal to 4.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2(\alpha - \sin \alpha ){r^2} + \frac{1}{2}(\theta - \sin \theta ){r^2}"> <mi>A</mi> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>α</mi> <mo>−</mo> <mi>sin</mi> <mo></mo> <mi>α</mi> <mo stretchy="false">)</mo> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo stretchy="false">(</mo> <mi>θ</mi> <mo>−</mo> <mi>sin</mi> <mo></mo> <mi>θ</mi> <mo stretchy="false">)</mo> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong><em>M1A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1A1A1 </em></strong>for alternative correct expressions <em>eg</em>. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 4\left( {\frac{\alpha }{2} - \sin \frac{\alpha }{2}} \right){r^2} + \frac{1}{2}\theta {r^2}"> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>α</mi> <mn>2</mn> </mfrac> <mo>−</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>θ</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>consider for example triangle ADM where M is the midpoint of BD <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\alpha }{4} = \frac{1}{4}"> <mi>sin</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\alpha }{4} = \arcsin \frac{1}{4}"> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}"> <mi>α</mi> <mo>=</mo> <mn>4</mn> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>attempting to use the cosine rule (to obtain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \cos \frac{\alpha }{2} = \frac{1}{8}"> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </math></span>) <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\alpha }{4} = \frac{1}{4}"> <mi>sin</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> (obtained from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\alpha }{4} = \sqrt {\frac{{1 - \cos \frac{\alpha }{2}}}{2}} "> <mi>sin</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> <mo>=</mo> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>2</mn> </mfrac> </mrow> <mn>2</mn> </mfrac> </msqrt> </math></span>) <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\alpha }{4} = \arcsin \frac{1}{4}"> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}"> <mi>α</mi> <mo>=</mo> <mn>4</mn> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> <strong><em>AG</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \left( {\frac{\pi }{2} - \frac{\alpha }{4}} \right) = 2\sin \frac{\alpha }{2}"> <mi>sin</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>sin</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>2</mn> </mfrac> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\theta }{2} = \frac{\pi }{2} - \frac{\alpha }{4}"> <mfrac> <mi>θ</mi> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \frac{\alpha }{4} = 4\sin \frac{\alpha }{4}\cos \frac{\alpha }{4}"> <mi>cos</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mn>4</mn> <mi>sin</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> <mi>cos</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> </math></span> <strong><em>M1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>either for use of the double angle formula or the conversion from sine to cosine.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} = \sin \frac{\alpha }{4}"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\alpha }{4} = \arcsin \frac{1}{4}"> <mfrac> <mi>α</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}"> <mi>α</mi> <mo>=</mo> <mn>4</mn> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(from triangle ADM), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \pi - \frac{\alpha }{2}{\text{ }}\left( { = \pi - 2\arcsin \frac{1}{4} = 2\arcsin \frac{1}{4} = 2.6362 \ldots } \right)"> <mi>θ</mi> <mo>=</mo> <mi>π</mi> <mo>−</mo> <mfrac> <mi>α</mi> <mn>2</mn> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mi>π</mi> <mo>−</mo> <mn>2</mn> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mn>2</mn> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mn>2.6362</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p>attempting to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2(\alpha - \sin \alpha ){r^2} + \frac{1}{2}(\theta - \sin \theta ){r^2} = 4"> <mn>2</mn> <mo stretchy="false">(</mo> <mi>α</mi> <mo>−</mo> <mi>sin</mi> <mo></mo> <mi>α</mi> <mo stretchy="false">)</mo> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo stretchy="false">(</mo> <mi>θ</mi> <mo>−</mo> <mi>sin</mi> <mo></mo> <mi>θ</mi> <mo stretchy="false">)</mo> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>4</mn> </math></span></p>
<p>with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}"> <mi>α</mi> <mo>=</mo> <mn>4</mn> <mi>arcsin</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \pi - \frac{\alpha }{2}{\text{ }}\left( { = 2\arccos \frac{1}{4}} \right)"> <mi>θ</mi> <mo>=</mo> <mi>π</mi> <mo>−</mo> <mfrac> <mi>α</mi> <mn>2</mn> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>2</mn> <mi>arccos</mi> <mo></mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 1.69"> <mi>r</mi> <mo>=</mo> <mn>1.69</mn> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>In triangle ABC, AB = 5, BC = 14 and AC = 11.</p>
<p>Find all the interior angles of the triangle. Give your answers in degrees to one decimal place.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to apply cosine rule <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,{\text{A}} = \frac{{{5^2} + {{11}^2} - {{14}^2}}}{{2 \times 5 \times 11}} = - 0.4545 \ldots "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>A</mtext> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mn>5</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mn>11</mn> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mrow> <mn>14</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>5</mn> <mo>×</mo> <mn>11</mn> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mn>0.4545</mn> <mo>…</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{A}} = 117.03569 \ldots ^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>A</mtext> </mrow> <mo>=</mo> <mn>117.03569</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{A}} = 117.0^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>A</mtext> </mrow> <mo>=</mo> <msup> <mn>117.0</mn> <mo>∘</mo> </msup> </math></span> <em><strong> A1</strong></em></p>
<p>attempt to apply sine rule or cosine rule: <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{sin}}\,117.03569 \ldots ^\circ }}{{14}} = \frac{{{\text{sin}}\,{\text{B}}}}{{11}}"> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>117.03569</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </mrow> <mrow> <mn>14</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>B</mtext> </mrow> </mrow> <mrow> <mn>11</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{B}} = 44.4153 \ldots ^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>B</mtext> </mrow> <mo>=</mo> <mn>44.4153</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{B}} = 44.4^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>B</mtext> </mrow> <mo>=</mo> <msup> <mn>44.4</mn> <mo>∘</mo> </msup> </math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}} = 180^\circ - {\text{A}} - {\text{B}}"> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <msup> <mn>180</mn> <mo>∘</mo> </msup> <mo>−</mo> <mrow> <mtext>A</mtext> </mrow> <mo>−</mo> <mrow> <mtext>B</mtext> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}} = 18.5^\circ "> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <msup> <mn>18.5</mn> <mo>∘</mo> </msup> </math></span> <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Candidates may attempt to find angles in any order of their choosing.</p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>In a triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABC, AB}} = 4{\text{ cm, BC}} = 3{\text{ cm}}">
<mrow>
<mtext>ABC, AB</mtext>
</mrow>
<mo>=</mo>
<mn>4</mn>
<mrow>
<mtext> cm, BC</mtext>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat AC}} = \frac{\pi }{9}">
<mrow>
<mrow>
<mi mathvariant="normal">B</mi>
<mrow>
<mover>
<mi mathvariant="normal">A</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">C</mi>
</mrow>
</mrow>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>9</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cosine rule to find the two possible values for AC.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the areas of the two possible triangles ABC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = x"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{3^2} = {x^2} + {4^2} - 8x\cos \frac{\pi }{9}"> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>8</mn> <mi>x</mi> <mi>cos</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> </math></span> <strong><em>M1A1</em></strong></p>
<p>attempting to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.09,{\text{ }}6.43"> <mi>x</mi> <mo>=</mo> <mn>1.09</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6.43</mn> </math></span> <strong><em>A1A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = x"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mi>x</mi> </math></span></p>
<p>using the sine rule to find a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C"> <mi>C</mi> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{4^2} = {x^2} + {3^2} - 6x\cos (152.869 \ldots ^\circ ) \Rightarrow x = 1.09"> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mi>cos</mi> <mo></mo> <mo stretchy="false">(</mo> <mn>152.869</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mn>1.09</mn> </math></span> <strong><em>(M1)A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{4^2} = {x^2} + {3^2} - 6x\cos (27.131 \ldots ^\circ ) \Rightarrow x = 6.43"> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mi>cos</mi> <mo></mo> <mo stretchy="false">(</mo> <mn>27.131</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mn>6.43</mn> </math></span> <strong><em>(M1)A1</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = x"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mi>x</mi> </math></span></p>
<p>using the sine rule to find a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span> and a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C"> <mi>C</mi> </math></span> <strong><em>M1</em></strong></p>
<p>obtaining <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = 132.869 \ldots ^\circ ,{\text{ }}7.131 \ldots ^\circ "> <mi>B</mi> <mo>=</mo> <mn>132.869</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>7.131</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 27.131 \ldots ^\circ ,{\text{ }}152.869 \ldots ^\circ "> <mi>C</mi> <mo>=</mo> <mn>27.131</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>152.869</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(B = 2.319 \ldots ,{\text{ }}0.124 \ldots "> <mo stretchy="false">(</mo> <mi>B</mi> <mo>=</mo> <mn>2.319</mn> <mo>…</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.124</mn> <mo>…</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 0.473 \ldots ,{\text{ }}2.668 \ldots )"> <mi>C</mi> <mo>=</mo> <mn>0.473</mn> <mo>…</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2.668</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span></p>
<p>attempting to find a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> using the cosine rule <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.09,{\text{ }}6.43"> <mi>x</mi> <mo>=</mo> <mn>1.09</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6.43</mn> </math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1A0(M1)A1A0 </em></strong>for one correct value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span></p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi }{9}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mn>6.428</mn> <mo>…</mo> <mo>×</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi }{9}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mn>1.088</mn> <mo>…</mo> <mo>×</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> </math></span> <strong><em>(A1)</em></strong></p>
<p>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4.39747 \ldots "> <mn>4.39747</mn> <mo>…</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.744833 \ldots "> <mn>0.744833</mn> <mo>…</mo> </math></span>)</p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D"> <mi>D</mi> </math></span> be the difference between the two areas</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D = \frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi }{9} - \frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi }{9}"> <mi>D</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mn>6.428</mn> <mo>…</mo> <mo>×</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mn>1.088</mn> <mo>…</mo> <mo>×</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(D = 4.39747 \ldots - 0.744833 \ldots )"> <mo stretchy="false">(</mo> <mi>D</mi> <mo>=</mo> <mn>4.39747</mn> <mo>…</mo> <mo>−</mo> <mn>0.744833</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3.65{\text{ (c}}{{\text{m}}^2})"> <mo>=</mo> <mn>3.65</mn> <mrow> <mtext> (c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Boat A is situated 10km away from boat B, and each boat has a marine radio transmitter on board. The range of the transmitter on boat A is 7km, and the range of the transmitter on boat B is 5km. The region in which both transmitters can be detected is represented by the shaded region in the following diagram. Find the area of this region.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">use of cosine rule <em><strong>(M1)</strong></em></p>
<p style="text-align: left;">CÂB = arccos <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{49 + 100 - 25}}{{2 \times 7 \times 10}}} \right) = 0.48276 \ldots \left( { = 27.660 \ldots ^\circ } \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>49</mn> <mo>+</mo> <mn>100</mn> <mo>−</mo> <mn>25</mn> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>7</mn> <mo>×</mo> <mn>10</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.48276</mn> <mo>…</mo> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>27.660</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p style="text-align: left;">C<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\text{B}}\limits^ \wedge "> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> </math></span>A = arccos <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{25 + 100 - 49}}{{2 \times 5 \times 10}}} \right) = 0.70748 \ldots \left( { = 40.535 \ldots ^\circ } \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>25</mn> <mo>+</mo> <mn>100</mn> <mo>−</mo> <mn>49</mn> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>5</mn> <mo>×</mo> <mn>10</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.70748</mn> <mo>…</mo> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>40.535</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p style="text-align: left;">attempt to subtract triangle area from sector area <em><strong>(M1)</strong></em></p>
<p style="text-align: left;">area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2} \times 49\left( {2{\text{C}}\mathop {\text{A}}\limits^ \wedge {\text{B}} - {\text{sin}}\,{\text{2C}}\mathop {\text{A}}\limits^ \wedge {\text{B}}} \right)\, + \frac{1}{2} \times 25\left( {2{\text{C}}\mathop {\text{B}}\limits^ \wedge {\text{A}} - {\text{sin}}\,{\text{2C}}\mathop {\text{B}}\limits^ \wedge {\text{A}}} \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>49</mn> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <mtext>C</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>B</mtext> </mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>2C</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>B</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>25</mn> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <mtext>C</mtext> </mrow> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>A</mtext> </mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>2C</mtext> </mrow> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>A</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p style="text-align: left;">= 3.5079… + 5.3385… <em><strong>(A1)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award this <em><strong>A1</strong></em> for either of these two values.</p>
<p style="text-align: left;">= 8.85 (km<sup>2</sup>) <em><strong>A1</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Accept all answers that round to 8.8 or 8.9.</p>
<p style="text-align: left;"> </p>
<p style="text-align: left;"><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>