File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 2/markSceme-SL-paper1html
File size: 1.01 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>The ticket prices for a concert are shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
<ul>
<li>A total of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>600</mn></math> tickets were sold.</li>
<li>The total amount of money from ticket sales was <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>7816</mn></math>.</li>
<li>There were twice as many adult tickets sold as child tickets.</li>
</ul>
<p>Let the number of adult tickets sold be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, the number of child tickets sold be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>, and the number of student tickets sold be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down three equations that express the information given above.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of each type of ticket sold.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>600</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mi>x</mi><mo>+</mo><mn>10</mn><mi>y</mi><mo>+</mo><mn>12</mn><mi>z</mi><mo>=</mo><mn>7816</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mi>y</mi></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Condone other labelling if clear, e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> (adult), <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> (child) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> (student). Accept equivalent, distinct equations e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>600</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>308</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>154</mn><mo>,</mo><mo> </mo><mi>z</mi><mo>=</mo><mn>138</mn></math> <em><strong>A1A1</strong></em></p>
<p> <br><strong>Note:</strong> Award <em><strong>A1</strong></em> for all three correct values seen, <em><strong>A1</strong></em> for correctly labelled as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>. <br>Accept answers written in words: e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>308</mn></math> adult tickets.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates had at least two of the three equations written down correctly. The interpretation of the phrase “twice as many adult tickets sold as child tickets” was enigmatic. Consequently, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>=</mo><mi>y</mi></math> was a popular but erroneous answer.</p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Too many candidates spent considerable time attempting to solve three equations with three unknowns by hand with pages of working rather than using their GDC.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The strength of earthquakes is measured on the Richter magnitude scale, with values typically between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> is the most severe.</p>
<p>The Gutenberg–Richter equation gives the average number of earthquakes per year, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>, which have a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>. For a particular region the equation is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>N</mi><mo>=</mo><mi>a</mi><mo>-</mo><mi>M</mi></math>, for some <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>This region has an average of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> earthquakes per year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
</div>
<div class="specification">
<p>The equation for this region can also be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfrac><mi>b</mi><msup><mn>10</mn><mi>M</mi></msup></mfrac></math>.</p>
</div>
<div class="specification">
<p>The expected length of time, in years, between earthquakes with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>N</mi></mfrac></math>.</p>
<p>Within this region the most severe earthquake recorded had a magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mi>M</mi><mo><</mo><mn>8</mn></math>, find the range for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected length of time between this earthquake and the next earthquake of at least this magnitude. Give your answer to the nearest year.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mn>100</mn><mo>=</mo><mi>a</mi><mo>-</mo><mn>3</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><msup><mn>10</mn><mrow><mn>5</mn><mo>-</mo><mi>M</mi></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><msup><mn>10</mn><mn>5</mn></msup><msup><mn>10</mn><mi>M</mi></msup></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>100000</mn><msup><mn>10</mn><mi>M</mi></msup></mfrac></mrow></mfenced></math></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>=</mo><mfrac><mi>b</mi><msup><mn>10</mn><mn>3</mn></msup></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>100000</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>001</mn><mo><</mo><mi>N</mi><mo><</mo><mn>100000</mn><mo> </mo><mo> </mo><mfenced><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo><</mo><mi>N</mi><mo><</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct endpoints and <em><strong>A1 </strong></em>for correct inequalities/interval notation.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfrac><msup><mn>10</mn><mn>5</mn></msup><msup><mn>10</mn><mrow><mn>7</mn><mo>.</mo><mn>2</mn></mrow></msup></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>0063095</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p>length of time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mrow><mn>0</mn><mo>.</mo><mn>0063095</mn><mo>…</mo></mrow></mfrac><mo>=</mo><msup><mn>10</mn><mrow><mn>2</mn><mo>.</mo><mn>2</mn></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>158</mn></math> years <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates did not attempt this question. Of those who did attempt the question, most of these candidates arrived at the correct answer to this part with the most common incorrect answer being 103.</p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Those that were successful in part (a) answered this well.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was only answered correctly by the strongest candidates.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This part of the question was a discriminator as correct responses were few and far between.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> represent the height in centimetres of a cylindrical tin can with diameter <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mtext> cm</mtext></math>.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>640</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>14</mn></math>.</p>
</div>
<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> is the inverse function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>10</mn></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the question, interpret your answer to part (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mfrac><mn>640</mn><msup><mn>4</mn><mn>2</mn></msup></mfrac><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>14</mn></mfenced><mo>=</mo><mfrac><mn>640</mn><msup><mn>14</mn><mn>2</mn></msup></mfrac><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>. This can be implicit from seeing <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>77</mn><mo> </mo><mo>(</mo><mn>3</mn><mo>.</mo><mn>76530</mn><mo>…</mo><mo>)</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>77</mn><mo>≤</mo><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>40</mn><mo>.</mo><mn>5</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>3</mn><mo>.</mo><mn>76530</mn><mo>…</mo><mo>≤</mo><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>40</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for both correct endpoints seen, <em><strong>A1</strong></em> for the endpoints in a correct interval.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>10</mn></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><mfrac><mn>640</mn><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></mfrac></msqrt></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>10</mn></mfenced><mo>=</mo><msqrt><mfrac><mn>640</mn><mrow><mn>10</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></mfrac></msqrt></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>8</mn><mo>.</mo><mn>21</mn><mo> </mo><mtext>cm</mtext><mo> </mo><mfenced><mrow><mn>8</mn><mo>.</mo><mn>20782</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a tin that is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mtext>cm</mtext></math> high will have a diameter of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>21</mn><mo> </mo><mtext>cm</mtext><mo> </mo><mo>(</mo><mn>8</mn><mo>.</mo><mn>20782</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Condone a correct answer expressed as the converse.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>≤</mo><msup><mi>h</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>≤</mo><mn>14</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>14</mn></math>. Do not <em><strong>FT</strong></em> in this part.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was reasonably well done. Many candidates were able to find the endpoints but there was some confusion about whether to use strict or weak inequalities. Some candidates wrote their answer as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn><mo>≥</mo><mi>y</mi><mo>≥</mo><mn>3</mn><mo>.</mo><mn>77</mn></math> while some others wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>3</mn><mo>.</mo><mn>77</mn></math>. A few candidates used integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> values from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> to find corresponding values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math> and gave the full list as their final answer. In part (b), the most popular incorrect answer seen was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>9</mn></math> with weaker candidates simply finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>10</mn></mfenced></math>. Several candidates equated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> but missed out <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> in their equation. Finding a value of the inverse of a function still proves to be difficult for candidates. There were many candidates who attempted to find an expression for the inverse before substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> and this proved to be difficult for this function. Regardless of what answer candidates derived for part (b), very few of them could write an interpretation of their answer in context. There was significant confusion between the value for the height and value for the diameter. In part (d), there were very few candidates who realized the relationship between the domain of the function and the range of the inverse function. Many candidates simply reverted to their answer to part (a).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was reasonably well done. Many candidates were able to find the endpoints but there was some confusion about whether to use strict or weak inequalities. Some candidates wrote their answer as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn><mo>≥</mo><mi>y</mi><mo>≥</mo><mn>3</mn><mo>.</mo><mn>77</mn></math> while some others wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>3</mn><mo>.</mo><mn>77</mn></math>. A few candidates used integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> values from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> to find corresponding values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math> and gave the full list as their final answer. In part (b), the most popular incorrect answer seen was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>9</mn></math> with weaker candidates simply finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>10</mn></mfenced></math>. Several candidates equated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> but missed out <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> in their equation. Finding a value of the inverse of a function still proves to be difficult for candidates. There were many candidates who attempted to find an expression for the inverse before substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> and this proved to be difficult for this function. Regardless of what answer candidates derived for part (b), very few of them could write an interpretation of their answer in context. There was significant confusion between the value for the height and value for the diameter. In part (d), there were very few candidates who realized the relationship between the domain of the function and the range of the inverse function. Many candidates simply reverted to their answer to part (a).</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was reasonably well done. Many candidates were able to find the endpoints but there was some confusion about whether to use strict or weak inequalities. Some candidates wrote their answer as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn><mo>≥</mo><mi>y</mi><mo>≥</mo><mn>3</mn><mo>.</mo><mn>77</mn></math> while some others wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>3</mn><mo>.</mo><mn>77</mn></math>. A few candidates used integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> values from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> to find corresponding values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math> and gave the full list as their final answer. In part (b), the most popular incorrect answer seen was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>9</mn></math> with weaker candidates simply finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>10</mn></mfenced></math>. Several candidates equated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> but missed out <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> in their equation. Finding a value of the inverse of a function still proves to be difficult for candidates. There were many candidates who attempted to find an expression for the inverse before substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> and this proved to be difficult for this function. Regardless of what answer candidates derived for part (b), very few of them could write an interpretation of their answer in context. There was significant confusion between the value for the height and value for the diameter. In part (d), there were very few candidates who realized the relationship between the domain of the function and the range of the inverse function. Many candidates simply reverted to their answer to part (a).</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was reasonably well done. Many candidates were able to find the endpoints but there was some confusion about whether to use strict or weak inequalities. Some candidates wrote their answer as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn><mo>≥</mo><mi>y</mi><mo>≥</mo><mn>3</mn><mo>.</mo><mn>77</mn></math> while some others wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>.</mo><mn>5</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>3</mn><mo>.</mo><mn>77</mn></math>. A few candidates used integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> values from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> to find corresponding values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math> and gave the full list as their final answer. In part (b), the most popular incorrect answer seen was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>9</mn></math> with weaker candidates simply finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>10</mn></mfenced></math>. Several candidates equated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> but missed out <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> in their equation. Finding a value of the inverse of a function still proves to be difficult for candidates. There were many candidates who attempted to find an expression for the inverse before substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> and this proved to be difficult for this function. Regardless of what answer candidates derived for part (b), very few of them could write an interpretation of their answer in context. There was significant confusion between the value for the height and value for the diameter. In part (d), there were very few candidates who realized the relationship between the domain of the function and the range of the inverse function. Many candidates simply reverted to their answer to part (a).</p>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Charlie and Daniella each began a fitness programme. On day one, they both ran <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mo> </mo><mtext>m</mtext></math>. On each subsequent day, Charlie ran <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mtext>m</mtext></math> more than the previous day whereas Daniella increased her distance by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> of the distance ran on the previous day.</p>
</div>
<div class="specification">
<p>Calculate how far</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Charlie ran on day <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> of his fitness programme.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Daniella ran on day <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> of her fitness programme.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On day <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> of the fitness programmes Daniella runs more than Charlie for the first time.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>20</mn></msub></math> using an arithmetic sequence<em> </em> <em><strong>(M1)</strong></em></p>
<p>e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>500</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>100</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>20</mn></msub><mo>=</mo><mn>500</mn><mo>+</mo><mn>1900</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mo>,</mo><mo> </mo><mn>600</mn><mo>,</mo><mo> </mo><mn>700</mn><mo>,</mo><mo> </mo><mo>…</mo></math></p>
<p>(Charlie ran) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2400</mn><mo> </mo><mtext>m</mtext></math> <em> </em> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>r</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>1</mn><mo>.</mo><mn>02</mn></math><em> </em> <em><strong>(A1)</strong></em></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>20</mn></msub></math> using a geometric sequence<em> </em> <em><strong>(M1)</strong></em></p>
<p>e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>500</mn></math> and a value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> <strong>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mo>×</mo><msup><mi>r</mi><mn>19</mn></msup></math></strong> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mo>,</mo><mo> </mo><mn>510</mn><mo>,</mo><mo> </mo><mn>520</mn><mo>.</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>…</mo></math></p>
<p>(Daniella ran) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>728</mn><mo> </mo><mtext>m </mtext><mfenced><mrow><mn>728</mn><mo>.</mo><mn>405</mn><mo>…</mo></mrow></mfenced></math> <em> </em> <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>02</mn><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>></mo><mn>500</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mn>100</mn></math><em> </em> <em><strong>(M1)</strong></em></p>
<p>attempt to solve inequality<em> </em> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>></mo><mn>184</mn><mo>.</mo><mn>215</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>185</mn></math> <em> </em> <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math>. The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is shown in the diagram. The vertex of the graph has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>12</mn><mo>.</mo><mn>5</mn><mo>)</mo></math>. The graph intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at two points, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>p</mi><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of</p>
<p>(i) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p>(ii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<p>(iii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the axis of symmetry of the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> seen.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>4</mn><mi>a</mi><mo>-</mo><mn>2</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>,</mo><mo> </mo><mo> </mo><mn>0</mn><mo>=</mo><mn>9</mn><mi>a</mi><mo>+</mo><mn>3</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>,</mo><mo> </mo><mo> </mo><mo>-</mo><mfrac><mn>25</mn><mn>2</mn></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mi>a</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>b</mi><mo>+</mo><mi>c</mi></math> <em><strong>(M1)(A1)</strong></em> </p>
<p>(i) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p>(ii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p>(iii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award the <em><strong>(M1)(A1)</strong></em> if at least one correct value is seen. Do not apply <em><strong>FT</strong></em> form part (a) if workings are not shown.</p>
<p><br><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>12</mn><mo>.</mo><mn>5</mn><mo>=</mo><mi>a</mi><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>-</mo><mn>3</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p>(i) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>2</mn><mo>×</mo><msup><mfenced><mn>3</mn></mfenced><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>b</mi><mo>+</mo><mi>c</mi></math></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>2</mn><mo>×</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mi>b</mi><mo>+</mo><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p>(ii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>-</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p>(iii) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not <em><strong>FT</strong></em> from their part (b), this is a contradiction with the diagram.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A factory produces engraved gold disks. The cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> of the disks is directly proportional to the cube of the radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> of the disk.</p>
<p>A disk with a radius of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8</mn><mo> </mo></math>cm costs <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>375</mn><mo> </mo></math>US dollars (USD).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an equation which links <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, to the nearest USD, the cost of disk that has a radius of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>1</mn><mo> </mo></math>cm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>k</mi><msup><mi>r</mi><mn>3</mn></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>375</mn><mo>=</mo><mi>k</mi><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>8</mn><mn>3</mn></msup><mo>⇒</mo><mi>k</mi><mo>=</mo><mn>732</mn><mo> </mo><mfenced><mrow><mn>732</mn><mo>.</mo><mn>421</mn><mo>…</mo></mrow></mfenced></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>732</mn><msup><mi>r</mi><mn>3</mn></msup></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>732</mn><mo>.</mo><mn>42</mn><mo>…</mo><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>1</mn><mn>3</mn></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mo>$</mo><mn>975</mn><mo> </mo><mfenced><mrow><mn>974</mn><mo>.</mo><mn>853</mn><mo>…</mo></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>974</mn></math> from use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>732</mn><msup><mi>r</mi><mn>3</mn></msup></math> .</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The height of a baseball after it is hit by a bat is modelled by the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mo>-</mo><mn>4</mn><mo>.</mo><mn>8</mn><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>21</mn><mi>t</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>2</mn></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> is the height in metres above the ground and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time in seconds after the ball was hit.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the height of the ball above the ground at the instant it is hit by the bat.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when the ball hits the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an appropriate domain for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> in this model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn></math> metres <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>.</mo><mn>8</mn><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>21</mn><mi>t</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>t</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>4</mn><mo>.</mo><mn>43</mn><mo> </mo><mi mathvariant="normal">s</mi><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>431415</mn><mo>…</mo><mo> </mo><mtext>s</mtext></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p> <br><strong>Note:</strong> If both values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> are seen do not award the<em><strong> A1</strong></em> mark unless the negative is explicitly excluded.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>4</mn><mo>.</mo><mn>43</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>43</mn></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p> <br><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct endpoints and <em><strong>A1</strong> </em>for expressing answer with correct notation. Award at most <em><strong>A1A0</strong> </em>for use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Probably the best answered question on the paper with many correct answers seen.</p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates correctly solved the quadratic equation.</p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some cases, the lower bound was given as 1.2 from confusing height with time. Often the variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> was used in the interval notation which lost a mark.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^2} - 4x - 5">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>4</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>5</mn>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The function can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\left( {x - h} \right)^2} + k">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>k</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the axis of symmetry of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of a second function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span>, is obtained by a reflection of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis, followed by a translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 6 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>6</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p> </p>
<p>Find the coordinates of the vertex of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - \left( { - 4} \right)}}{{2\left( 1 \right)}}">
<mfrac>
<mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 1 + 5}}{2}">
<mfrac>
<mrow>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> (must be an equation with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =">
<mi>x</mi>
<mo>=</mo>
</math></span>) <em><strong> A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> = 2 <em><strong> A1 N1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>(2)</p>
<p>correct substitution <em><strong>(A1)</strong></em></p>
<p><em>eg</em> (2)<sup>2</sup> − 4(2) − 5</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> = −9 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>valid attempt to complete the square <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span><sup>2</sup> − 4<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> + 4</p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span><sup>2</sup> − 4<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> + 4) − 4 − 5, (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> − 2)<sup>2</sup> − 9</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> = −9 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><strong>METHOD 1</strong> (working with vertex)</p>
<p>vertex of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is at (2, −9) <em><strong> (A1)</strong></em></p>
<p>correct horizontal reflection <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = −2, (−2, −9)</p>
<p>valid approach for translation of <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> <strong>or</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> value <em><strong> (M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> − 3, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> + 6, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 2} \\ { - 9} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { - 3} \\ 6 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>6</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, one correct coordinate for vertex</p>
<p>vertex of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is (−5, −3) (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = −5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = −3) <em><strong>A1A1 N1N1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (working with function)</p>
<p>correct approach for horizontal reflection <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>(−<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>)</p>
<p>correct horizontal reflection <em><strong>(A1)</strong></em></p>
<p><em>eg</em> (−<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>)<sup>2</sup> −4(−<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>) − 5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span><sup>2 </sup>+ 4<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> − 5, (−<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> − 2)<sup>2</sup> − 9</p>
<p>valid approach for translation of <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> <strong>or</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> value <em><strong> (M1)</strong></em></p>
<p><em>eg</em> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> + 3)<sup>2</sup> + 4(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> + 3) − 5 + 6, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span><sup>2</sup> + 10<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> + 22, (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> + 5)<sup>2</sup> − 3, one correct coordinate for vertex</p>
<p>vertex of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is (−5, −3) (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = −5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = −3) <em><strong>A1A1 N1N1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Sejah placed a baking tin, that contained cake mix, in a preheated oven in order to bake a cake. The temperature in the centre of the cake mix, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span>, in degrees Celsius (°C) is given by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="T(t) = 150 - a \times {(1.1)^{ - t}}">
<mi>T</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>150</mn>
<mo>−<!-- − --></mo>
<mi>a</mi>
<mo>×<!-- × --></mo>
<mrow>
<mo stretchy="false">(</mo>
<mn>1.1</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mo>−<!-- − --></mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the time, in minutes, since the baking tin was placed in the oven. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_18.27.39.png" alt="N17/5/MATSD/SP1/ENG/TZ0/12"></p>
</div>
<div class="specification">
<p>The temperature in the centre of the cake mix was 18 °C when placed in the oven.</p>
</div>
<div class="specification">
<p>The baking tin is removed from the oven 15 minutes after the temperature in the centre of the cake mix has reached 130 °C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down what the value of 150 represents in the context of the question.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time that the baking tin is in the oven.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>the temperature in the oven <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>the maximum possible temperature of the cake mix <strong><em>(A1) (C1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A0) </em></strong>for “the maximum temperature”.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18 = 150 - a( \times 1.1^\circ )">
<mn>18</mn>
<mo>=</mo>
<mn>150</mn>
<mo>−</mo>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mo>×</mo>
<msup>
<mn>1.1</mn>
<mo>∘</mo>
</msup>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of 18 and 0. Substitution of 0 can be implied.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(a) = 132">
<mo stretchy="false">(</mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>132</mn>
</math></span> <strong><em>(A1) (C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="150-132 \times {1.1^{ - t}} = 130">
<mn>150</mn>
<mo>−</mo>
<mn>132</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>1.1</mn>
<mrow>
<mo>−</mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>130</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituting their <em>a </em>and equating to 130. Accept an inequality.</p>
<p>Award <strong><em>(M1) </em></strong>for a sketch of the horizontal line on the graph.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 19.8{\text{ }}(19.7992 \ldots )">
<mi>t</mi>
<mo>=</mo>
<mn>19.8</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>19.7992</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (b).</p>
<p> </p>
<p>34.8 (minutes) (34.7992…, 34 minutes 48 seconds) <strong><em>(A1)</em>(ft) <em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award the final <strong><em>(A1) </em></strong>for adding 15 minutes to their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> value.</p>
<p>In part (c), award <strong><em>(C2) </em></strong>for a final answer of 19.8 with no working.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept (5, 0) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept (0, 8).</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) + 3">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>3</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {4x} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {2x} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the transformation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {x + 1} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept is 11 (accept (0, 11) ) <em><strong>A1 N1</strong></em> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {4 \times 0} \right) = f\left( 0 \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
</math></span>, recognizing stretch of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-direction</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept is 8 (accept (0, 8) ) <em><strong>A1 N2</strong></em> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{2}\,\,\left( { = 2.5} \right)">
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>2.5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{5}{2}{\text{,}}\,\,\,0} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> or (2.5, 0) ) <em><strong>A2 N2</strong></em> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct name, correct magnitude <strong>and</strong> direction <em><strong>A1A1 N2</strong></em></p>
<p><em>eg name:</em> translation, (horizontal) shift (do not accept move)</p>
<p><em>eg magnitude and direction</em>: 1 unit to the left, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 1} \\ 0 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, horizontal by –1</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a{x^2} + bx + c">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>. The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}5)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 4,{\text{ }}5)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> lie on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-coordinate of the minimum of the graph is 3.</p>
</div>
<div class="question">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{b}{{2a}} = - 2">
<mo>−</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{( - 2)^2} - 2b + 5 = 3">
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>b</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>3</mn>
</math></span> or equivalent</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{( - 4)^2} - 4b + 5 = 5">
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>4</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>b</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>5</mn>
</math></span> or equivalent</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2a( - 2) + b = 0">
<mn>2</mn>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> or equivalent <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for two of the above equations.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 0.5">
<mi>a</mi>
<mo>=</mo>
<mn>0.5</mn>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 2">
<mi>b</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)</em>(ft) <em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award at most <strong><em>(M1)(A1)</em>(ft)<em>(A0) </em></strong>if the answers are reversed.</p>
<p>Follow through from parts (a) and (b).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The size of a computer screen is the length of its diagonal. Zuzana buys a rectangular computer screen with a size of 68 cm, a height of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> cm and a width of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> cm, as shown in the diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="images/Schermafbeelding_2018-02-12_om_18.05.15.png" alt="N17/5/MATSD/SP1/ENG/TZ0/06"></p>
</div>
<div class="specification">
<p>The ratio between the height and the width of the screen is 3:4.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this information to write down an equation involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this ratio to write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span><em>.</em></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + {y^2} = {68^2}">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>68</mn>
<mn>2</mn>
</msup>
</mrow>
</math></span> (or 4624 or equivalent) <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{y}{x} = \frac{3}{4}">
<mfrac>
<mi>y</mi>
<mi>x</mi>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for a correct equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{3}{4}x{\text{ }}(y = 0.75x)">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mi>x</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>=</mo>
<mn>0.75</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1) (C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + {\left( {\frac{3}{4}x} \right)^2} = {68^2}{\text{ }}\left( {{\text{or }}{x^2} + \frac{9}{{16}}{x^2} = 4624{\text{ or equivalent}}} \right)">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>68</mn>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>or </mtext>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>9</mn>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>4624</mn>
<mrow>
<mtext> or equivalent</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of their expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> into their answer to part (a). Accept correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 54.4{\text{ (cm), }}y = 40.8{\text{ (cm)}}">
<mi>x</mi>
<mo>=</mo>
<mn>54.4</mn>
<mrow>
<mtext> (cm), </mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mn>40.8</mn>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft) <em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from parts (a) and (b) as long as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
<mi>x</mi>
<mo>></mo>
<mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y > 0">
<mi>y</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <em>f</em>(<em>x</em>) = <em>ax</em><sup>2</sup> − 4<em>x</em> − <em>c</em>. A horizontal line, <em>L</em> , intersects the graph of<em> f</em> at <em>x</em> = −1 and <em>x</em> = 3.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation of the axis of symmetry is <em>x</em> = <em>p</em>. Find <em>p</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that <em>a</em> = 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong> (using symmetry to find <em>p</em>)</p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 1 + 3}}{2}">
<mfrac>
<mrow>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mn>3</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span>, <img src=""></p>
<p><em>p</em> = 1 <em><strong>A1 N2</strong></em></p>
<p><em><strong>Note:</strong></em> Award no marks if they work backwards by substituting <em>a</em> = 2 into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{b}{{2a}}">
<mo>−</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
</math></span> to find <em>p</em>.</p>
<p>Do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{2}{a}">
<mi>p</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mi>a</mi>
</mfrac>
</math></span>.</p>
<p> </p>
<p><strong>METHOD 2</strong> (calculating <em>a</em> first)<br>(i) & (ii) valid approach to calculate <em>a</em> <em><strong> M1</strong></em></p>
<p><em>eg </em> <em>a</em> + 4 − <em>c</em> = <em>a</em>(3<sup>2</sup>) − 4(3) − <em>c</em>, <em>f</em>(−1) = <em>f</em>(3)</p>
<p>correct working <em><strong>A1</strong></em></p>
<p>eg 8<em>a</em> = 16</p>
<p><em>a</em> = 2 <em><strong>AG N0</strong></em></p>
<p>valid approach to find <em>p <strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{b}{{2a}},\,\,\,\frac{4}{{2\left( 2 \right)}}">
<mo>−</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>4</mn>
<mrow>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p><em>p</em> = 1 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>valid approach<strong> <em>M1</em></strong></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{b}{{2a}},\,\,\,\frac{4}{{2a}}">
<mo>−</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>4</mn>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
</math></span> (might be seen in (i)), <em>f' </em>(1) = 0</p>
<p>correct equation <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{{2a}}">
<mfrac>
<mn>4</mn>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
</math></span> = 1, 2<em>a</em>(1) − 4 = 0</p>
<p><em>a</em> = 2 <em><strong>AG N0</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (calculating <em>a</em> first)<br>(i) & (ii) valid approach to calculate <em>a</em> <em><strong> M1</strong></em></p>
<p><em>eg </em> <em>a</em> + 4 − <em>c</em> = <em>a</em>(3<sup>2</sup>) − 4(3) − <em>c</em>, <em>f</em>(−1) = <em>f</em>(3)</p>
<p>correct working <em><strong>A1</strong></em></p>
<p>eg 8<em>a</em> = 16</p>
<p><em>a</em> = 2 <em><strong>AG N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Jashanti is saving money to buy a car. The price of the car, in US Dollars (USD), can be modelled by the equation</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P = 8500{\text{ }}{(0.95)^t}.">
<mi>P</mi>
<mo>=</mo>
<mn>8500</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>0.95</mn>
<msup>
<mo stretchy="false">)</mo>
<mi>t</mi>
</msup>
</mrow>
<mo>.</mo>
</math></span></p>
<p>Jashanti’s savings, in USD, can be modelled by the equation</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="S = 400t + 2000.">
<mi>S</mi>
<mo>=</mo>
<mn>400</mn>
<mi>t</mi>
<mo>+</mo>
<mn>2000.</mn>
</math></span></p>
<p>In both equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the time in months since Jashanti started saving for the car.</p>
</div>
<div class="specification">
<p>Jashanti does not want to wait too long and wants to buy the car two months after she started saving. She decides to ask her parents for the extra money that she needs.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amount of money Jashanti saves per month.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find how long it will take for Jashanti to have saved enough money to buy the car.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate how much extra money Jashanti needs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>400 (USD) <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8500{\text{ }}{(0.95)^t} = 400 \times t + 2000">
<mn>8500</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>0.95</mn>
<msup>
<mo stretchy="false">)</mo>
<mi>t</mi>
</msup>
</mrow>
<mo>=</mo>
<mn>400</mn>
<mo>×</mo>
<mi>t</mi>
<mo>+</mo>
<mn>2000</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for equating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8500{(0.95)^t}">
<mn>8500</mn>
<mrow>
<mo stretchy="false">(</mo>
<mn>0.95</mn>
<msup>
<mo stretchy="false">)</mo>
<mi>t</mi>
</msup>
</mrow>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="400 \times t + 2000">
<mn>400</mn>
<mo>×</mo>
<mi>t</mi>
<mo>+</mo>
<mn>2000</mn>
</math></span> or for comparing the difference between the two expressions to zero or for showing a sketch of both functions.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(t = ){\text{ }}8.64{\text{ (months) }}\left( {8.6414 \ldots {\text{ (months)}}} \right)">
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>8.64</mn>
<mrow>
<mtext> (months) </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>8.6414</mn>
<mo>…</mo>
<mrow>
<mtext> (months)</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept 9 months.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8500{(0.95)^2} - (400 \times 2 + 2000)">
<mn>8500</mn>
<mrow>
<mo stretchy="false">(</mo>
<mn>0.95</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mo stretchy="false">(</mo>
<mn>400</mn>
<mo>×</mo>
<mn>2</mn>
<mo>+</mo>
<mn>2000</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2">
<mi>t</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> into equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span>, <strong><em>(M1) </em></strong>for finding the difference between a value/expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> and a value/expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span>. The first <strong><em>(M1) </em></strong>is implied if 7671.25 seen.</p>
<p> </p>
<p>4870 (USD) (4871.25) <strong><em>(A1)</em></strong> <strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept 4871.3.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Olava’s Pizza Company supplies and delivers large cheese pizzas.</p>
<p>The total cost to the customer, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>, in Papua New Guinean Kina (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PGK</mtext></math>), is modelled by the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>34</mn><mo>.</mo><mn>50</mn><mi>n</mi><mo>+</mo><mn>8</mn><mo>.</mo><mn>50</mn><mo> </mo><mo>,</mo><mo> </mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo> </mo><mo>,</mo><mo> </mo><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi><mo>,</mo></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, is the number of large cheese pizzas ordered. This total cost includes a fixed cost for delivery.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in the context of the question, what the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>34</mn><mo>.</mo><mn>50</mn></math> represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in the context of the question, what the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>50</mn></math> represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum number of pizzas that can be ordered.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Kaelani has <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>450</mn><mo> </mo><mtext>PGK</mtext></math>.</p>
<p>Find the maximum number of large cheese pizzas that Kaelani can order from Olava’s Pizza Company.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the cost of <strong>each</strong> (large cheese) pizza / <strong>a</strong> pizza / <strong>one</strong> pizza / <strong>per</strong> pizza <em><strong>(A1) (C1)</strong></em><br><br><strong>Note:</strong> Award <em><strong>(A0)</strong></em> for “the cost of (large cheese) pizzas”. Do not accept “the <strong>minimum</strong> cost of a pizza”.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (fixed) delivery cost <em><strong>(A1) (C1)</strong></em><br><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> <em><strong>(A1) (C1)</strong></em><br><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>450</mn><mo>=</mo><mn>34</mn><mo>.</mo><mn>50</mn><mi>n</mi><mo>+</mo><mn>8</mn><mo>.</mo><mn>50</mn></math> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the cost equation to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>450</mn></math> (may be stated as an inequality).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>.</mo><mn>8</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>12</mn><mo>.</mo><mn>7971</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><strong><br>Note:</strong> The final answer must be an integer.<br>The final <em><strong>(A1)</strong></em><strong>(ft)</strong> is awarded for rounding their answer <strong>down</strong> to a whole number, provided their unrounded answer is seen.<br><em><strong><br><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The price of gas at Leon’s gas station is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>1</mn><mo>.</mo><mn>50</mn></math> per litre. If a customer buys a minimum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> litres, a discount of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>5</mn></math> is applied.</p>
<p>This can be modelled by the following function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>, which gives the total cost when buying a minimum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> litres at Leon’s gas station.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>50</mn><mi>x</mi><mo>-</mo><mn>5</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>10</mn></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is the number of litres of gas that a customer buys.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total cost of buying <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math> litres of gas at Leon’s gas station.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>L</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mn>70</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The price of gas at Erica’s gas station is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>1</mn><mo>.</mo><mn>30</mn></math> per litre. A customer must buy a minimum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> litres of gas. The total cost at Erica’s gas station is cheaper than Leon’s gas station when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mi>k</mi></math>.</p>
<p>Find the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mfenced><mn>40</mn></mfenced><mo>=</mo><mn>1</mn><mo>.</mo><mn>50</mn><mo>×</mo><mn>40</mn><mo>-</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>$</mo><mn>55</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>50</mn><mi>x</mi><mo>-</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>50</mn></math> litres <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>30</mn><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>30</mn><mi>x</mi><mo><</mo><mn>1</mn><mo>.</mo><mn>50</mn><mi>x</mi><mo>-</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for a graph showing two intersecting linear functions, provided one function has a <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and the other function has a negative <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept.</p>
<p><br>(minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo></math>) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>25</mn></math>.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The size of the population <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>P</mi><mo>)</mo></math> of migrating birds in a particular town can be approximately modelled by the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mi>a</mi><mo> </mo><mi>sin</mi><mo>(</mo><mi>b</mi><mi>t</mi><mo>)</mo><mo>+</mo><mi>c</mi><mo>,</mo><mo> </mo><mo> </mo><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is measured in months from the time of the initial measurements.</p>
<p>In a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> month period the maximum population is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2600</mn></math> and occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>3</mn></math> and the minimum population is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>800</mn></math> and occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>9</mn></math>.</p>
<p>This information is shown on the graph below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which the population first reaches <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2200</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2600</mn><mo>-</mo><mn>800</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mn>900</mn></math> <strong>(M1)</strong><strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>360</mn><mn>12</mn></mfrac><mo>=</mo><mn>30</mn></math> <strong>(M1)</strong><strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mn>12</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>524</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>523598</mn><mo>…</mo></mrow></mfenced></math>.</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2600</mn><mo>+</mo><mn>800</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mn>1700</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>900</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mn>30</mn><mi>t</mi></mrow></mfenced><mo>+</mo><mn>1700</mn><mo>=</mo><mn>2200</mn></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>12</mn><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>12496</mn><mo>…</mo></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Irina uses a set of coordinate axes to draw her design of a window. The base of the window is on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, the upper part of the window is in the form of a quadratic curve and the sides are vertical lines, as shown on the diagram. The curve has end points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>10</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>10</mn><mo>)</mo></math> and its vertex is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>12</mn><mo>)</mo></math>. Distances are measured in centimetres.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The quadratic curve can be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>8</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence form two equations in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the equation of the quadratic curve.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region in Irina’s design.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>10</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>64</mn><mi>a</mi><mo>+</mo><mn>8</mn><mi>b</mi><mo>+</mo><mn>10</mn><mo>=</mo><mn>10</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mn>10</mn><mo>=</mo><mn>12</mn><mo> </mo></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for each equivalent expression or <em><strong>A1</strong></em> for the use of the axis of symmetry formula to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>=</mo><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math> or from use of derivative. Award <em><strong>A0A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>64</mn><mi>a</mi><mo>+</mo><mn>8</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>12</mn><mo> </mo></math>.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>10</mn></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award<em><strong> A1A0</strong></em> if one term is incorrect, <em><strong>A0A0</strong></em> if two or more terms are incorrect. Award at most <em><strong>A1A0</strong></em> if correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> values are seen but answer not expressed as an equation.<br><br></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing the need to integrate their expression <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>8</mn></msubsup><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>10</mn><mo> </mo><mo>d</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct integral, including limits. Condone absence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>d</mo><mi>x</mi></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>272</mn><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>90</mn><mo>.</mo><mn>6666</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Generally, the responses were good for this last question on the paper. The main issue here was to not give the two equations in part (a)(ii) with simplified coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Several candidates understood what was required but left their answers with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>8</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> un-simplified and lost marks. Some candidates used the coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> to substitute in the equation with an incorrect equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math>. Candidates were successful at writing the equations in part (a)(iii). In part (b), most candidates realized that they had to use integration to find the area of the shaded region and, for the most part, were able to find a correct value for the area using either the correct equation or their obtained equation from the previous part. A common error was to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally, the responses were good for this last question on the paper. The main issue here was to not give the two equations in part (a)(ii) with simplified coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Several candidates understood what was required but left their answers with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>8</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> un-simplified and lost marks. Some candidates used the coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> to substitute in the equation with an incorrect equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math>. Candidates were successful at writing the equations in part (a)(iii). In part (b), most candidates realized that they had to use integration to find the area of the shaded region and, for the most part, were able to find a correct value for the area using either the correct equation or their obtained equation from the previous part. A common error was to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally, the responses were good for this last question on the paper. The main issue here was to not give the two equations in part (a)(ii) with simplified coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Several candidates understood what was required but left their answers with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>8</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> un-simplified and lost marks. Some candidates used the coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> to substitute in the equation with an incorrect equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math>. Candidates were successful at writing the equations in part (a)(iii). In part (b), most candidates realized that they had to use integration to find the area of the shaded region and, for the most part, were able to find a correct value for the area using either the correct equation or their obtained equation from the previous part. A common error was to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally, the responses were good for this last question on the paper. The main issue here was to not give the two equations in part (a)(ii) with simplified coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Several candidates understood what was required but left their answers with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>8</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mi>a</mi></math> un-simplified and lost marks. Some candidates used the coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> to substitute in the equation with an incorrect equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math>. Candidates were successful at writing the equations in part (a)(iii). In part (b), most candidates realized that they had to use integration to find the area of the shaded region and, for the most part, were able to find a correct value for the area using either the correct equation or their obtained equation from the previous part. A common error was to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 5<em>x</em><sup>3 </sup>− 3<em>x</em>.</p>
</div>
<div class="specification">
<p>The curve has a tangent at the point P(−1, −2).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of this tangent at point P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of this tangent. Give your answer in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>15<em>x</em><sup>2</sup> − 3<em><strong> (A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 15<em>x</em><sup>2</sup>, <em><strong>(A1)</strong></em> for −3. Award at most <em><strong>(A1)</strong></em><em><strong>(A0)</strong></em> if additional terms are seen.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>15 (−1)<sup>2</sup> − 3<em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong> (M1)</strong></em> for substituting −1 into their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span>.</p>
<p> </p>
<p>= 12 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>y</em> − (−2)) = 12 (<em>x</em> − (−1)) <em><strong> (M1)</strong></em></p>
<p><strong>OR</strong></p>
<p>−2 = 12(−1) + c <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong> (M1)</strong></em> for point <strong>and</strong> their gradient substituted into the equation of a line.</p>
<p> </p>
<p><em>y</em> = 12<em>x</em> + 10 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{{x^4}}}{4}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>f'</em>(<em>x</em>)</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the graph of <em>f</em> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \frac{1}{2}">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <em>x</em>-coordinate of the point at which the <strong>normal</strong> to the graph of <em>f</em> has gradient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{ - \frac{1}{8}}">
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em>x</em><sup>3</sup> <em><strong>(A1) (C1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4{x^3}}}{4}">
<mfrac>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> and not simplified to <em>x</em><sup>3</sup>.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( { - \frac{1}{2}} \right)^3}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{ - \frac{1}{2}}">
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</math></span> into their derivative.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{ - \frac{1}{8}}">
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</mrow>
</math></span> (−0.125) <em><strong> (A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>x</em><sup>3</sup> = 8 <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 8 seen maybe seen as part of an equation <em>y</em> = 8<em>x</em> + <em>c</em>, <em><strong>(M1)</strong></em> for equating their derivative to 8.</p>
<p>(<em>x</em> =) 2 <em><strong>(A1) (C3)</strong></em></p>
<p><strong>Note:</strong> Do not accept (2, 4).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Elvis Presley is an extremely popular singer. Although he passed away in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1977</mn></math>, many of his fans continue to pay tribute by dressing like Elvis and singing his songs.</p>
<p>The number of Elvis impersonators, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>t</mi></mfenced></math>, can be modelled by the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>170</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>31</mn><mi>t</mi></msup><mo>,</mo></math></p>
<p style="text-align: left;">where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is the number of years since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1977</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of Elvis impersonators in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1977</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the time taken for the number of Elvis impersonators to reach <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>130</mn><mo> </mo><mn>000</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of Elvis impersonators when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>70</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The world population in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2047</mn></math> is projected to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo> </mo><mn>500</mn><mo> </mo><mn>000</mn><mo> </mo><mn>000</mn></math> people.</p>
<p>Use this information to explain why the model for the number of Elvis impersonators is unrealistic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>170</mn></math> <span class="mjpage"> <em><strong>(A1) (C1)</strong></em><br></span></p>
<p><em><strong><span class="mjpage">[1 mark]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>130</mn><mo> </mo><mn>000</mn><mo>=</mo><mn>170</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>31</mn><mi>t</mi></msup></math> <span class="mjpage"> <em><strong>(M1)</strong></em><br></span></p>
<p><span class="mjpage"><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>130</mn><mo> </mo><mn>000</mn></math> to the exponential function.</span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>t</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>24</mn><mo>.</mo><mn>6</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>.</mo><mn>5882</mn><mo>…</mo></math> (years)) <em><strong>(A1) (C2)</strong></em></span></p>
<p><em><strong><span class="mjpage">[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>170</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>31</mn><mn>70</mn></msup></math> <span class="mjpage"> <em><strong>(M1)</strong></em><br></span></p>
<p><span class="mjpage"><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>t</mi></mfenced></math>.</span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>75</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mo> </mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>75067</mn><mo>…</mo><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mo>,</mo><mo> </mo><mn>27</mn><mo> </mo><mn>500</mn><mo> </mo><mn>000</mn><mo> </mo><mn>000</mn><mo>,</mo><mo> </mo><mn>27</mn><mo> </mo><mn>506</mn><mo> </mo><mn>771</mn><mo> </mo><mn>343</mn></mrow></mfenced></math> <em><strong>(A1) (C2)</strong></em></span></p>
<p><em><strong><span class="mjpage">[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The number of Elvis impersonators in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2047</mn></math>, is greater than the world population. <em><strong>(R1) (C1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>75</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mo>></mo><mn>9</mn><mo> </mo><mn>500</mn><mo> </mo><mn>000</mn><mo> </mo><mn>000</mn></math> <em><strong>(R1) (C1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(R1)</strong></em> for a correct comparison of <em>their</em> number of impersonators with the world population. Follow through from part (c) if a reasonable argument can be made that the model is unrealistic.<br>Award <em><strong>(R0)</strong></em> if the number of impersonators is not explicitly seen in part (c) or in part (d).</p>
<p><em><strong><span class="mjpage">[1 mark]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the graph of the quadratic function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math> , with vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>−</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>10</mn></mrow></mfenced></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>k</mi></math> has two solutions. One of these solutions is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the other solution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the table below placing a tick (✔) to show whether the unknown parameters <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> are positive, zero or negative. The row for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> has been completed as an example.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is decreasing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mn>4</mn></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>2</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for correct calculation of the left symmetrical point.</p>
<p><em><strong><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>6</mn></math> (A1) (C2)</strong></em></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct row.</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mo>-</mo><mn>2</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mn>2</mn></math> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> seen as part of an inequality, <em><strong>(A1)</strong></em> for completely correct notation. Award <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em> for correct equivalent statement in words, for example “decreasing when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is greater than negative <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>”.</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>If a shark is spotted near to Brighton beach, a lifeguard will activate a siren to warn swimmers.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The sound intensity, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math>, of the siren varies inversely with the square of the distance, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>, from the siren, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>></mo><mn>0</mn></math>.</p>
<p>It is known that at a distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> metres from the siren, the sound intensity is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> watts per square metre (<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>W m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mfrac><mn>9</mn><msup><mi>d</mi><mn>2</mn></msup></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> on the axes below showing clearly the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo></math>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Whilst swimming, Scarlett can hear the siren only if the sound intensity at her location is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>W m</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>.</p>
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> where Scarlett cannot hear the siren.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mfrac><mi>k</mi><msup><mi>d</mi><mn>2</mn></msup></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>=</mo><mfrac><mi>k</mi><mrow><mn>1</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mfrac><mn>9</mn><msup><mi>d</mi><mn>2</mn></msup></mfrac></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> The <em><strong>AG</strong> </em>line must be seen for the second <em><strong>M1</strong></em> to be awarded. <br> Award no marks for substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mfrac><mn>9</mn><msup><mi>d</mi><mn>2</mn></msup></mfrac></math> (i.e., working backwards).</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:120px;"><img src=""> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct general shape (concave up) with no <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math>-intercept, passing through the marked point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn></mrow></mfenced></math>; the point must be labelled with either the coordinates or the values <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes. Award <em><strong>A1</strong></em> for the curve showing asymptotic behavior (i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math> tends to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math>, as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> tends to infinity), extending to at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>6</mn></math>; the curve must not cross nor veer away from the horizontal asymptote.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>≥</mo><mfrac><mn>9</mn><msup><mi>d</mi><mn>2</mn></msup></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for a correct inequality.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>≥</mo><mn>2450</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>2449</mn><mo>.</mo><mn>48</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>2450</mn></math>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 4{x^3} + \frac{3}{{{x^2}}} - 3,{\text{ }}x \ne 0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at which the gradient of the tangent is equal to 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12{x^2} - \frac{6}{{{x^3}}}">
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> or equivalent <strong><em>(A1)(A1)(A1) (C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12{x^2}">
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6">
<mo>−</mo>
<mn>6</mn>
</math></span> and <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{x^3}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^{ - 3}}">
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>. Award at most <strong><em>(A1)(A1)(A0) </em></strong>if additional terms seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12{x^2} - \frac{6}{{{x^3}}} = 6">
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>6</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their derivative to 6.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}4)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>4</mn>
<mo stretchy="false">)</mo>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1,{\text{ }}y = 4">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft) <em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>A frequent wrong answer seen in scripts is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}6)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6</mn>
<mo stretchy="false">)</mo>
</math></span> for this answer with correct working award <strong><em>(M1)(A0)(A1) </em></strong>and if there is no working award <strong><em>(C1)</em></strong>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Maria owns a cheese factory. The amount of cheese, in kilograms, Maria sells in one week, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q">
<mi>Q</mi>
</math></span>, is given by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = 882 - 45p">
<mi>Q</mi>
<mo>=</mo>
<mn>882</mn>
<mo>−<!-- − --></mo>
<mn>45</mn>
<mi>p</mi>
</math></span>,</p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> is the price of a kilogram of cheese in euros (EUR).</p>
</div>
<div class="specification">
<p>Maria earns <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p - 6.80){\text{ EUR}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>−<!-- − --></mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
<mrow>
<mtext> EUR</mtext>
</mrow>
</math></span> for each kilogram of cheese sold.</p>
</div>
<div class="specification">
<p>To calculate her weekly profit <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span>, in EUR, Maria multiplies the amount of cheese she sells by the amount she earns per kilogram.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down how many kilograms of cheese Maria sells in one week if the price of a kilogram of cheese is 8 EUR.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how much Maria earns in one week, from selling cheese, if the price of a kilogram of cheese is 8 EUR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the price, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, that will give Maria the highest weekly profit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>522 (kg) <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="522(8 - 6.80)">
<mn>522</mn>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span> or equivalent <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying their answer to part (a) by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(8 - 6.80)">
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p>626 (EUR) (626.40) <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(W = ){\text{ }}(882 - 45p)(p - 6.80)">
<mo stretchy="false">(</mo>
<mi>W</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>882</mn>
<mo>−</mo>
<mn>45</mn>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(W = ) - 45{p^2} + 1188p - 5997.6">
<mo stretchy="false">(</mo>
<mi>W</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>45</mn>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1188</mn>
<mi>p</mi>
<mo>−</mo>
<mn>5997.6</mn>
</math></span> <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sketch of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span> with some indication of the maximum <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 90p + 1188 = 0">
<mo>−</mo>
<mn>90</mn>
<mi>p</mi>
<mo>+</mo>
<mn>1188</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating the correct derivative of their part (c) to zero.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p = ){\text{ }}\frac{{ - 1188}}{{2 \times ( - 45)}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1188</mn>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>45</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into the formula for axis of symmetry.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p = ){\text{ }}13.2{\text{ (EUR)}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13.2</mn>
<mrow>
<mtext> (EUR)</mtext>
</mrow>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from their part (c), if the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> is such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6.80 < p < 19.6">
<mn>6.80</mn>
<mo><</mo>
<mi>p</mi>
<mo><</mo>
<mn>19.6</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following function models the growth of a bacteria population in an experiment,</p>
<p style="text-align: center;"><em>P</em>(<em>t</em>) = <em>A</em> × 2<sup><em>t</em></sup>, <em>t</em> ≥ 0</p>
<p>where <em>A</em> is a constant and t is the time, in hours, since the experiment began.</p>
<p>Four hours after the experiment began, the bacteria population is 6400.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>A</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret what <em>A</em> represents in this context.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time since the experiment began for the bacteria population to be equal to 40<em>A</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>6400 = <em>A</em> × 2<sup>4</sup> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of 4 and 6400 in equation.</p>
<p>(<em>A</em> =) 400 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the initial population <strong>OR</strong> the population at the start of experiment <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>40<em>A</em> = <em>A</em> × 2<em><sup>t</sup></em> <strong>OR</strong> 40 × 400 = 400 × 2<em><sup>t</sup></em> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into equation. Follow through with their<em> A</em> from part (a).</p>
<p>40 = 2<em><sup>t</sup></em> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for simplifying.</p>
<p>5.32 (5.32192…) (hours) <strong>OR </strong> 5 hours 19.3 (19.3156…) minutes <em><strong>(A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The cross-section of an arched entrance into the ballroom of a hotel is in the shape of a parabola. This cross-section can be modelled by part of the graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mo>.</mo><mn>48</mn><mi>x</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the height of the archway, in metres, at a horizontal distance, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> metres, from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, in the bottom corner of the archway.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>To prepare for an event, a square-based crate that is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>6</mn><mo> </mo><mtext>m</mtext></math> wide and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>0</mn><mo> </mo><mtext>m</mtext></math> high is to be moved through the archway into the ballroom. The crate must remain upright while it is being moved.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an equation for the axis of symmetry of the parabola that models the archway.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the crate will fit through the archway. Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>48</mn></mrow><mrow><mn>2</mn><mfenced><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></mfenced></mrow></mfrac></math> <strong>OR </strong>coordinates of maximum point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>136</mn><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>the cart is centred in the archway when it is between</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>2</mn></math>, <em><strong>A1</strong></em></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>≥</mo><mn>2</mn><mo>.</mo><mn>112</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> (which is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>) <em><strong>R1</strong></em></p>
<p>the archway is tall enough for the crate <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not award <em><strong>R0A1</strong></em>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>the height of the archway is greater or equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>0</mn></math> between</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>557385</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>24261</mn><mo>…</mo></math> <em><strong>A1</strong></em></p>
<p>width of this section of archway =</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>24261</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>557385</mn><mo>…</mo><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>1</mn><mo>.</mo><mn>68522</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> (which is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>6</mn></math>) <em><strong>R1</strong></em></p>
<p>the archway is wide enough for the crate <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award <em><strong>R0A1</strong></em>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to substitute into the formula for axis of symmetry or find the vertex of the parabola correctly, both being appropriate methods, but neglected to write an equation from that, even though the question specifically asked for an equation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Determining a process to see if the crate would fit through the archway proved to be difficult for many candidates. It was common to see the maximum heights compared, the maximum widths compared, or the area of the front surface of the crate compared to the area of the archway opening. Other candidates merely calculated the height at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn></math>, positioning the corner of the crate at O, and made their conclusion based on this value, without consideration of how the crate would be moving through the archway.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Little Green island originally had no turtles. After 55 turtles were introduced to the island, their population is modelled by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="N\left( t \right) = a \times {2^{ - t}} + 10{\text{,}}\,\,\,t \geqslant 0{\text{,}}">
<mi>N</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mo>−<!-- − --></mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>10</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
<mrow>
<mtext>,</mtext>
</mrow>
</math></span></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> is a constant and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the time in years since the turtles were introduced.</p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in years, for the population to decrease to 20 turtles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There is a number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> beyond which the turtle population will not decrease.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span>. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="55 = a \times {2^0} + 10">
<mn>55</mn>
<mo>=</mo>
<mi>a</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mn>0</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>10</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of zero <strong>and</strong> 55 into the function.</p>
<p>45<em><strong> (A1)</strong></em><em><strong> (C2) </strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="45 \times {2^{ - t}} + 10 \leqslant 20">
<mn>45</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mo>−</mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>10</mn>
<mo>⩽</mo>
<mn>20</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for comparing correct expression involving 20 and their 45. Accept an equation.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 2.17">
<mi>t</mi>
<mo>=</mo>
<mn>2.17</mn>
</math></span> (2.16992…)<em><strong> (A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their part (a), but only if positive.<br><strong>Answer must be in years</strong>; do not accept months for the final <em><strong>(A1)</strong></em>.<em><strong> </strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m =">
<mi>m</mi>
<mo>=</mo>
</math></span>10 <em><strong>(A1)</strong></em></p>
<p>because as the number of years increases the number of turtles approaches 10 <em><strong>(R1)</strong></em><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(R1)</strong></em> for a sketch with an asymptote at approximately <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 10">
<mi>y</mi>
<mo>=</mo>
<mn>10</mn>
</math></span>, <br><strong>OR</strong> for table with values such as 10.003 and 10.001 for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 14">
<mi>t</mi>
<mo>=</mo>
<mn>14</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 15">
<mi>t</mi>
<mo>=</mo>
<mn>15</mn>
</math></span>, for example, <br><strong>OR</strong> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> approaches large numbers <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> approaches 10. Do not award <em><strong>(A1)(R0)</strong></em>.<em><strong> </strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the following graphs of quadratic functions.</p>
<p><img src="images/Schermafbeelding_2017-08-16_om_06.31.16.png" alt="M17/5/MATSD/SP1/ENG/TZ2/15"></p>
<p>The equation of each of the quadratic functions can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = a{x^2} + bx + c">
<mi>y</mi>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \ne 0">
<mi>a</mi>
<mo>≠</mo>
<mn>0</mn>
</math></span>.</p>
<p>Each of the sets of conditions for the constants <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, in the table below, corresponds to one of the graphs above.</p>
<p>Write down the number of the corresponding graph next to each set of conditions.</p>
<p> <img src="images/Schermafbeelding_2017-08-16_om_06.39.22.png" alt="M17/5/MATSD/SP1/ENG/TZ2/15_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-08-16_om_08.45.18.png" alt="M17/5/MATSD/SP1/ENG/TZ2/15/M"> <strong><em>(A1)(A1)(A1)(A1)(A1)(A1)</em></strong> <strong><em>(C6)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for each correct entry.</p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A factory produces shirts. The cost, <em>C</em>, in Fijian dollars (FJD), of producing<em> x</em> shirts can be modelled by</p>
<p style="text-align: center;"><em>C</em>(<em>x</em>) = (<em>x</em> − 75)<sup>2</sup> + 100.</p>
</div>
<div class="specification">
<p>The cost of production should not exceed 500 FJD. To do this the factory needs to produce at least 55 shirts and at most <em>s</em> shirts.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost of producing 70 shirts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>s</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of shirts produced when the cost of production is lowest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(70 − 75)<sup>2</sup> + 100 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting in <em>x</em> = 70.</p>
<p>125 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>s</em> − 75)<sup>2</sup> + 100 = 500 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating <em>C</em>(<em>x</em>) to 500. Accept an inequality instead of =.</p>
<p><strong>OR</strong></p>
<p><img src=""> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for sketching correct graph(s).</p>
<p>(<em>s</em> =) 95 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for an attempt at finding the minimum point using graph.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{95 + 55}}{2}">
<mfrac>
<mrow>
<mn>95</mn>
<mo>+</mo>
<mn>55</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for attempting to find the mid-point between their part (b) and 55.</p>
<p><strong>OR</strong></p>
<p>(<em>C'</em>(<em>x</em>) =) 2<em>x</em> − 150 = 0 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for an attempt at differentiation that is correctly equated to zero.</p>
<p>75 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph below shows the average savings, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> thousand dollars, of a group of university graduates as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, the number of years after graduating from university.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The equation of the model can be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mi>a</mi><msup><mi>t</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mi>t</mi><mo>+</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are real constants.</p>
<p>The graph of the model must pass through the following four points.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A negative value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> indicates that a graduate is expected to be in debt.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down one feature of this graph which suggests a cubic function might be appropriate to model this scenario.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down three simultaneous equations for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to determine the total length of time, in years, for which a graduate is expected to be in debt after graduating from university.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Accept any one of the following (or equivalent):</em></p>
<p>one minimum and one maximum point<br>three <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts or three roots (or zeroes)<br>one point of inflexion <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Do not accept “S shape” as a justification.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>d</mi><mo>=</mo></mrow></mfenced><mo>-</mo><mn>5</mn></math></em> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mi>c</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>=</mo><mn>8</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mn>2</mn><mi>c</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>27</mn><mi>a</mi><mo>+</mo><mn>9</mn><mi>b</mi><mo>+</mo><mn>3</mn><mi>c</mi></math> <em><strong>A2</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A2</strong> </em>if all three equations are correct. <br>Award <em><strong>A1</strong> </em>if at least one is correct. Award <em><strong>A1</strong> </em>for three correct equations that include the letter “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>”.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mo>-</mo><mn>12</mn><mo>,</mo><mo> </mo><mi>c</mi><mo>=</mo><mn>18</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equating found expression to zero <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>2</mn><msup><mi>t</mi><mn>3</mn></msup><mo>-</mo><mn>12</mn><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>18</mn><mi>t</mi><mo>-</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>358216</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>83174</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>81003</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p>(so total time in debt is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>81003</mn><mo>…</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>83174</mn><mo>…</mo><mo>+</mo><mn>0</mn><mo>.</mo><mn>358216</mn><mo>≈</mo></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>34</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>33650</mn><mo>…</mo></mrow></mfenced></math> years <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Proved to be difficult with several referring to the shape of the graph, the graph increasing and decreasing, or positive and negative values fitting the context.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It seemed easy to find the <em>d</em>-value in the function. Most candidates could derive at least one correct equation, but not always three. Many candidates did not write their equations in proper mathematical form, leaving exponents and like terms in their equations. Even those candidates who did not write correct equations in part (ii) were able to correctly find the values of <em>a</em>, <em>b</em>, and <em>c</em> in part (iii) using cubic regression (an off-syllabus method, but still valid and credited full marks). There were some candidates who attempted an analytic method to solve the system of equations which did not usually prove successful.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates realized they had to find the roots, but then did not know what to do with them. Several candidates selected one of the roots as the answer to the question, usually the largest root, clearly not understanding the relationship between the roots and the length of time in debt. Others found only one root and stated that as the answer.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - 4x + 5">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mn>5</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The function can also be expressed in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {(x - h)^2} + k">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mi>h</mi>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>k</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the axis of symmetry of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>.</p>
<p>(ii) Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct approach <strong><em>(A1)</em></strong></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - ( - 4)}}{2},{\text{ }}f'(x) = 2x - 4 = 0,{\text{ (}}{x^2} - 4x + 4) + 5 - 4">
<mfrac>
<mrow>
<mo>−</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> (</mtext>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>5</mn>
<mo>−</mo>
<mn>4</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> (must be an equation) <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 2">
<mi>h</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>A1 N1</em></strong></p>
<p>(ii) <strong>METHOD 1</strong></p>
<p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(2)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p>correct substitution into <strong>their </strong>function <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(2)^2} - 4(2) + 5">
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 1">
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>valid attempt to complete the square <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 4x + 4">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({x^2} - 4x + 4) - 4 + 5,{\text{ }}{(x - 2)^2} + 1">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>4</mn>
<mo>+</mo>
<mn>5</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 1">
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = ax + b + \frac{c}{x}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mfrac>
<mi>c</mi>
<mi>x</mi>
</mfrac>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> are positive integers.</p>
<p>Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> is shown on the axes below. The graph of the function has its local maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }} - 2)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span> and its local minimum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2,{\text{ }}6)">
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.28.21.png" alt="M17/5/MATSD/SP1/ENG/TZ1/12"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain of the function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 6">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>6</mn>
</math></span> on the axes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 6">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mn>6</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = k">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>k</mi>
</math></span> has no solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x \in \mathbb{R}),{\text{ }}x \ne 0">
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠</mo>
<mn>0</mn>
</math></span> <strong><em>(A2)</em></strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent notation. Award <strong><em>(A1)(A0) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y \ne 0">
<mi>y</mi>
<mo>≠</mo>
<mn>0</mn>
</math></span>.</p>
<p>Award <strong><em>(A1) </em></strong>for a clear statement that demonstrates understanding of the meaning of domain. For example, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{D}}:( - \infty ,{\text{ }}0) \cup (1,{\text{ }}\infty )">
<mrow>
<mtext>D</mtext>
</mrow>
<mo>:</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mi mathvariant="normal">∞</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>∪</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi mathvariant="normal">∞</mi>
<mo stretchy="false">)</mo>
</math></span> should be awarded <strong><em>(A1)(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-15_om_15.32.51.png" alt="M17/5/MATSD/SP1/ENG/TZ1/21.b.i/M"> <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> The command term “Draw” states: “A ruler (straight edge) should be used for straight lines”; do not accept a freehand <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 6">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>6</mn>
</math></span> line.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 <strong><em>(A1)</em>(ft)</strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 < k < 6">
<mo>−</mo>
<mn>2</mn>
<mo><</mo>
<mi>k</mi>
<mo><</mo>
<mn>6</mn>
</math></span> <strong><em>(A1)(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for both end points correct and <strong><em>(A1) </em></strong>for correct <strong>strict </strong>inequalities.</p>
<p>Award at most <strong><em>(A1)(A0) </em></strong>if the stated variable is different from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> for example <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 < x < 6">
<mo>−</mo>
<mn>2</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>6</mn>
</math></span> is <strong><em>(A1)(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Professor Wei observed that students have difficulty remembering the information presented in his lectures.</p>
<p>He modelled the percentage of information retained, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>, by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>100</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mi>p</mi><mi>t</mi></mrow></msup></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the number of days after the lecture.</p>
<p>He found that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> day after a lecture, students had forgotten <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo>%</mo></math> of the information presented.</p>
</div>
<div class="specification">
<p>Based on his model, Professor Wei believes that his students will always retain some information from his lecture.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this model to find the percentage of information retained by his students <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn></math> hours after Professor Wei’s lecture.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a mathematical reason why Professor Wei might believe this.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down one possible limitation of the <strong>domain</strong> of the model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo>=</mo><mn>100</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>1</mn><mo>×</mo><mi>p</mi></mrow></msup></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>1</mn><mo>×</mo><mi>p</mi></mrow></msup></math> <em><strong> </strong></em><em><strong>(M1)</strong></em></p>
<p><strong><br>OR</strong></p>
<p><img src=""></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>693</mn><mo> </mo><mo> </mo><mo>(</mo><mn>0</mn><mo>.</mo><mn>693147</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>)</mo></math> <em><strong> A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mfenced><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>100</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>693147</mn><mo>…</mo><mo>×</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup></math> <em><strong> </strong></em><em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn><mo>.</mo><mn>4</mn><mfenced><mo>%</mo></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>35</mn><mo>.</mo><mn>3553</mn><mo>…</mo></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mfenced><mi>t</mi></mfenced><mo>></mo><mn>0</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mfenced><mi>t</mi></mfenced></math> has a horizontal asymptote <em><strong> R1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Award <strong>A1</strong> for <strong>one</strong> reasonable limitation of the domain: </em> <em><strong>A1</strong></em></p>
<p style="padding-left:30px;">small values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> produce unrealistic results</p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>100</mn><mo>%</mo></math></p>
<p style="padding-left:30px;">large values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> are not possible</p>
<p style="padding-left:30px;">people do not live forever</p>
<p style="padding-left:30px;">model is not valid at small or large values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math></p>
<p><em><br>The reason should focus on the domain <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>. Do not accept answers such as:</em></p>
<p style="padding-left:30px;">recollection varies for different people</p>
<p style="padding-left:30px;">memories are discrete not continuous</p>
<p style="padding-left:30px;">the nature of the information will change how easily it is recalled</p>
<p style="padding-left:30px;">emotional/physical stress can affect recollection/concentration</p>
<p><br><strong>Note:</strong> Do not accept <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math> </em>as this is a limitation that has been given in the question.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Professor Vinculum investigated the migration season of the Bulbul bird from their natural wetlands to a warmer climate.</p>
<p>He found that during the migration season their population, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> could be modelled by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 1350 + 400{\left( {1.25} \right)^{ - t}}">
<mi>P</mi>
<mo>=</mo>
<mn>1350</mn>
<mo>+</mo>
<mn>400</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≥ 0 , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the number of days since the start of the migration season.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the population of the Bulbul birds at the start of the migration season.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the population of the Bulbul birds after 5 days.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the time taken for the population to decrease below 1400.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>According to this model, find the smallest possible population of Bulbul birds during the migration season.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1750 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1350 + 400{\left( {1.25} \right)^{ - 5}}">
<mn>1350</mn>
<mo>+</mo>
<mn>400</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 1480 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept 1481.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1400 = 1350 + 400{\left( {1.25} \right)^{ - t}}">
<mn>1400</mn>
<mo>=</mo>
<mn>1350</mn>
<mo>+</mo>
<mn>400</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p>9.32 (days (9.31885…) (days)) <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1350 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept 1351 as a valid interpretation of the model as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> = 1350 is an asymptote.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The amount, in milligrams, of a medicinal drug in the body <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> hours after it was injected is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>23</mn><mo>(</mo><mn>0</mn><mo>.</mo><mn>85</mn><msup><mo>)</mo><mi>t</mi></msup><mo>,</mo><mo> </mo><mi>t</mi><mo>≥</mo><mn>0</mn></math>. Before this injection, the amount of the drug in the body was zero.</p>
</div>
<div class="specification">
<p>Write down</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the initial dose of the drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the percentage of the drug that leaves the body each hour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of the drug remaining in the body <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> hours after the injection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>23</mn><mo> </mo><mtext>mg</mtext></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>85</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>23</mn><mo>-</mo><mn>19</mn><mo>.</mo><mn>55</mn></mrow><mn>23</mn></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>15</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mfenced><mo>%</mo></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>23</mn><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>85</mn></mrow></mfenced><mn>10</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>53</mn><mo> </mo><mtext>mg</mtext><mo> </mo><mo> </mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>52811</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment, a number of fruit flies are placed in a container. The population of fruit flies, <em>P</em> , increases and can be modelled by the function</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P\left( t \right) = 12 \times {3^{0.498t}},\,\,t \geqslant 0,">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>12</mn>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mn>3</mn>
<mrow>
<mn>0.498</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
<mo>,</mo>
</math></span></p>
<p>where <em>t</em> is the number of days since the fruit flies were placed in the container.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of fruit flies which were placed in the container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of fruit flies that are in the container after 6 days.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The maximum capacity of the container is 8000 fruit flies.</p>
<p>Find the number of days until the container reaches its maximum capacity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12 \times {3^{0.498 \times 0}}">
<mn>12</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>3</mn>
<mrow>
<mn>0.498</mn>
<mo>×</mo>
<mn>0</mn>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting zero into the equation.</p>
<p>= 12 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12 \times {3^{0.498 \times 6}}">
<mn>12</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>3</mn>
<mrow>
<mn>0.498</mn>
<mo>×</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting 6 into the equation.</p>
<p>320 <em><strong>(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Accept an answer of 319.756… or 319.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8000 = 12 \times {3^{0.498 \times t}}">
<mn>8000</mn>
<mo>=</mo>
<mn>12</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>3</mn>
<mrow>
<mn>0.498</mn>
<mo>×</mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating equation to 8000.<br>Award <em><strong>(M1)</strong></em> for a sketch of P(<em>t</em>) intersecting with the straight line <em>y</em> = 8000.</p>
<p>= 11.9 (11.8848…) <em><strong>(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Accept an answer of 11 or 12.</p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of the quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = c + bx - {x^2}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>c</mi>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> intersects the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}( - 1,{\text{ }}0)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span> and has its vertex at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(3,{\text{ }}16)">
<mrow>
<mtext>B</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>16</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.57.03.png" alt="N16/5/MATSD/SP1/ENG/TZ0/09"></p>
</div>
<div class="question">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - b}}{{2( - 1)}} = 3">
<mfrac>
<mrow>
<mo>−</mo>
<mi>b</mi>
</mrow>
<mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
<mo>=</mo>
<mn>3</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into axis of symmetry formula.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b - 2x = 0">
<mi>b</mi>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correctly differentiating and equating to zero.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c + b( - 1) - {( - 1)^2} = 0">
<mi>c</mi>
<mo>+</mo>
<mi>b</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> (or equivalent)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c + b(3) - {(3)^2} = 16">
<mi>c</mi>
<mo>+</mo>
<mi>b</mi>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>16</mn>
</math></span> (or equivalent) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 1,{\text{ }}0)">
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(3,{\text{ }}16)">
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>16</mn>
<mo stretchy="false">)</mo>
</math></span> in the original quadratic function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(b = ){\text{ }}6">
<mo stretchy="false">(</mo>
<mi>b</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6</mn>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The amount of yeast, <em>g</em> grams, in a sugar solution can be modelled by the function,</p>
<p style="text-align: center;"><em>g</em>(<em>t</em>) = 10 − <em>k</em>(<em>c</em><sup>−<em>t</em></sup>) for <em>t</em> ≥ 0</p>
<p>where <em>t</em> is the time in minutes.</p>
<p>The graph of <em>g</em>(<em>t</em>) is shown.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The initial amount of yeast in this solution is 2 grams.</p>
</div>
<div class="specification">
<p>The amount of yeast in this solution after 3 minutes is 9 grams.</p>
</div>
<div class="question">
<p>Write down the maximum amount of yeast in this solution.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>10 (grams) <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = a{x^2} + bx + 22">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mn>22</mn>
</math></span>.</p>
<p>The equation of the line of symmetry of the graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right){\text{ is }}x = 1.75">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext> is </mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>1.75</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The graph intersects the <em>x</em>-axis at the point (−2 , 0).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using only this information, write down an equation in terms of <em>a</em> and <em>b</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using this information, write down a second equation in terms of <em>a</em> and <em>b</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph intersects the <em>x</em>-axis at a second point, P.</p>
<p>Find the <em>x</em>-coordinate of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.75 = \frac{{ - b}}{{2a}}">
<mn>1.75</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mi>b</mi>
</mrow>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
</math></span> (or equivalent) <em><strong>(A1) (C1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\left( {1.75} \right)^2}a + 1.75b">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.75</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>a</mi>
<mo>+</mo>
<mn>1.75</mn>
<mi>b</mi>
</math></span> or for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\left( {1.75} \right)^2}a + 1.75b + 22">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.75</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>a</mi>
<mo>+</mo>
<mn>1.75</mn>
<mi>b</mi>
<mo>+</mo>
<mn>22</mn>
</math></span> or for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {1.75} \right) = {\left( {1.75} \right)^2}a + 1.75b + 22">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.75</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.75</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>a</mi>
<mo>+</mo>
<mn>1.75</mn>
<mi>b</mi>
<mo>+</mo>
<mn>22</mn>
</math></span>.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( { - 2} \right)^2} \times a + \left( { - 2} \right) \times b + 22 = 0">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mi>a</mi>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mi>b</mi>
<mo>+</mo>
<mn>22</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> (or equivalent) <em><strong>(A1) (C1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( { - 2} \right)^2} \times a + \left( { - 2} \right) \times b + 22 = 0">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mi>a</mi>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mi>b</mi>
<mo>+</mo>
<mn>22</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> seen.</p>
<p>Award <em><strong>(A0)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\left( { - 2} \right)^2} \times a + \left( { - 2} \right) \times b + 22">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mi>a</mi>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mi>b</mi>
<mo>+</mo>
<mn>22</mn>
</math></span>.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>a</em> = −2, <em>b</em> = 7 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (a) and (b).<br>Accept answers(s) embedded as a coordinate pair.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>−2<em>x</em><sup>2</sup> + 7<em>x</em> + 22 = 0 <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of <em>a</em> and <em>b</em> into equation and setting to zero. Follow through from part (c).</p>
<p>(<em>x </em>=) 5.5 <em><strong> (A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (a) and (b).</p>
<p><strong>OR</strong></p>
<p><em>x</em>-coordinate = 1.75 + (1.75 − (−2)) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct use of axis of symmetry and given intercept.</p>
<p>(<em>x </em>=) 5.5 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mn>12</mn><mrow><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>7</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>7</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mo>-</mo><mn>5</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>0</mn></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mfenced><mrow><mo>-</mo><mn>7</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>8</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mfenced><mn>7</mn></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>1</mn></math> <em><strong>(A1)</strong></em> </p>
<p>range is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>≥</mo><mn>8</mn></math> <em><strong>A1</strong></em><em><strong>A1</strong></em> </p>
<p><br><strong>Note:</strong> Award at most <em><strong>A1A1A0</strong></em> if strict inequalities are used.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> or sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p>finding the correct expression of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><mo>-</mo><mn>5</mn><mi>x</mi></mrow><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfrac></math> <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><mo>-</mo><mn>5</mn><mfenced><mn>0</mn></mfenced></mrow><mrow><mn>0</mn><mo>-</mo><mn>2</mn></mrow></mfrac></math> <strong><em>(M1)</em></strong><br><br><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> <strong><em>(M1)</em></strong><br><br><br><strong>THEN</strong><br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, for −4 ≤ <em>x</em> ≤ 2.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the same axes, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( { - x} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span>, can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = a \times f\left( {x + b} \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mo>×</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>. The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span>.</p>
<p><strong><img src=""></strong></p>
<p>Write down the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""><em><strong>A2 N2</strong></em><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing horizontal shift/translation of 1 unit <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <em>b </em>= 1, moved 1 right</p>
<p>recognizing vertical stretch/dilation with scale factor 2 <em><strong>(M1)</strong></em></p>
<p><em>eg a</em> = 2, <em>y </em>×(−2)</p>
<p><em>a</em> = −2, <em> b</em> = −1 <em><strong> A1A1 N2N2</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graph of the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the zero of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the local minimum point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mo>-</mo><mi>x</mi></math>.</p>
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the function to zero.</p>
<p><em><strong><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>29</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>28942</mn><mo>…</mo></mrow></mfenced></math> (A1) (C2)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(C1)</strong></em> for a correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-value given as part of a coordinate pair or alongside an explicitly stated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-value.</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>88</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>33</mn></mrow></mfenced></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mfenced><mrow><mn>2</mn><mo>.</mo><mn>88449</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>32674</mn><mo>…</mo></mrow></mfenced></mfenced></math> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong><br>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>88</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>33</mn></math>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>-</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> (or equivalent) <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the functions or for a sketch of the two functions.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>43</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>43080</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1) (C2)</strong></em></p>
<p><strong><br>Note: </strong>Do not award the final <em><strong>(</strong><strong>A1)</strong></em> if the answer is seen as part of a coordinate pair or a <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-value is explicitly stated, unless already penalized in part (a).</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>3</mn><mi>x</mi></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is a tangent to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>2</mn><mo>)</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (a) to find the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of lines parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> that are tangent to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>. Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math>, <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mfrac><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math><br> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> into their part (a) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>'</mo><mfenced><mn>1</mn></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>2</mn><mfenced><mn>1</mn></mfenced><mo>+</mo><mfrac><mn>3</mn><msup><mn>1</mn><mn>2</mn></msup></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> <em><strong>A1</strong></em><br> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>686</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>19</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>686140</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>18614</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> with line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>5</mn></math> <em><strong>M1</strong></em></p>
<p><img src=""></p>
<p>three points of intersection marked on this graph <em><strong>A1</strong></em></p>
<p>(and it can be assumed no further intersections occur outside of this window)</p>
<p><br><strong>THEN</strong></p>
<p>there are two other tangent lines to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> that are parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The final <em><strong>A1</strong> </em>can be awarded provided two solutions other than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> are shown <strong>OR</strong> three points of intersection are marked on the graph.</p>
<p>Award <em><strong>M1A1A1</strong></em> for an answer of “3 lines” where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is considered to be parallel with itself (given guide definition of parallel lines), but only if working is shown.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Was reasonably well done, with the stronger candidates able to handle a negative exponent appropriately when finding the derivative. There were a few who confused the notation for derivative with the notation for inverse.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most knew to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> into the derivative to find the gradient at that point, but some also tried to substitute the <em>y</em>-coordinate for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There was a lot of difficulty understanding what approach would help them determine the number of tangents to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> that are parallel to <em>L</em>. Several wrote just an answer, which is not adequate when justification is required.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Dilara is designing a kite <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCD</mtext></math> on a set of coordinate axes in which one unit represents <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mtext>cm</mtext></math>.</p>
<p>The coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> respectively. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>AC</mtext></mfenced></math> is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>BD</mtext></mfenced></math>. This information is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the line through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of the line through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are integers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>-</mo><mn>0</mn></mrow><mrow><mn>4</mn><mo>-</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mn>3</mn></math> <em><strong>(M1)A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>m</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>333</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>333333</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an equation of line with a correct intercept and either of their gradients from (a) or (b) <em><strong>(M1)</strong></em></p>
<p>e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>+</mo><mn>4</mn></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>4</mn><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn></mrow></mfenced></math></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting either of their gradients from parts (a) or (b) and point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>)</mo></math> into equation of a line.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mn>3</mn><mi>y</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math> or any integer multiple <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was overall well done by most candidates. In part (a) calculating the gradient was correctly done with few errors noted where candidates swapped the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinates in the gradient formula. Some candidates left their answer as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>3</mn></mfrac></math> which resulted in a loss of the final mark. There was some confusion with the gradient of a line and the gradient of the perpendicular line in part (a). Some candidates found the perpendicular gradient in part (a). Although many candidates were able to write an appropriate equation of the line through <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>BD</mi></math>, several did not express their answer in the required form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are integers. Many final answers were given as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>+</mo><mn>4</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mn>4</mn><mo>=</mo><mn>0</mn></math>. In part (d), writing the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">D</mi></math> was well done by most candidates. Some candidates wrote a coordinate pair rather than just the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate as required.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was overall well done by most candidates. In part (a) calculating the gradient was correctly done with few errors noted where candidates swapped the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinates in the gradient formula. Some candidates left their answer as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>3</mn></mfrac></math> which resulted in a loss of the final mark. There was some confusion with the gradient of a line and the gradient of the perpendicular line in part (a). Some candidates found the perpendicular gradient in part (a). Although many candidates were able to write an appropriate equation of the line through <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>BD</mi></math>, several did not express their answer in the required form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are integers. Many final answers were given as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>+</mo><mn>4</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mn>4</mn><mo>=</mo><mn>0</mn></math>. In part (d), writing the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">D</mi></math> was well done by most candidates. Some candidates wrote a coordinate pair rather than just the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate as required.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was overall well done by most candidates. In part (a) calculating the gradient was correctly done with few errors noted where candidates swapped the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinates in the gradient formula. Some candidates left their answer as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>3</mn></mfrac></math> which resulted in a loss of the final mark. There was some confusion with the gradient of a line and the gradient of the perpendicular line in part (a). Some candidates found the perpendicular gradient in part (a). Although many candidates were able to write an appropriate equation of the line through <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>BD</mi></math>, several did not express their answer in the required form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are integers. Many final answers were given as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>+</mo><mn>4</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mn>4</mn><mo>=</mo><mn>0</mn></math>. In part (d), writing the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">D</mi></math> was well done by most candidates. Some candidates wrote a coordinate pair rather than just the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate as required.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was overall well done by most candidates. In part (a) calculating the gradient was correctly done with few errors noted where candidates swapped the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinates in the gradient formula. Some candidates left their answer as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>3</mn></mfrac></math> which resulted in a loss of the final mark. There was some confusion with the gradient of a line and the gradient of the perpendicular line in part (a). Some candidates found the perpendicular gradient in part (a). Although many candidates were able to write an appropriate equation of the line through <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>BD</mi></math>, several did not express their answer in the required form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are integers. Many final answers were given as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>+</mo><mn>4</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mn>4</mn><mo>=</mo><mn>0</mn></math>. In part (d), writing the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of point <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">D</mi></math> was well done by most candidates. Some candidates wrote a coordinate pair rather than just the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate as required.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = p{x^2} + qx - 4p">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>p</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>q</mi>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
<mi>p</mi>
</math></span>, where <em>p</em> ≠ 0. Find Find the number of roots for the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<p>Justify your answer.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>evidence of discriminant <em><strong>(M1)</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{b^2} - 4ac,\,\,\Delta ">
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>a</mi>
<mi>c</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi mathvariant="normal">Δ</mi>
</math></span></p>
<p>correct substitution into discriminant <em><strong>(A1)</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{q^2} - 4p\left( { - 4p} \right)">
<mrow>
<msup>
<mi>q</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
<mi>p</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct discriminant <em><strong>A1</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{q^2} + 16{p^2}">
<mrow>
<msup>
<mi>q</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>16</mn>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="16{p^2} > 0\,\,\,\,\left( {{\text{accept}}\,\,{p^2} > 0} \right)">
<mn>16</mn>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>></mo>
<mn>0</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>accept</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>></mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{q^2} \geqslant 0\,\,\,\,\left( {{\text{do not accept}}\,\,{q^2} > 0} \right)">
<mrow>
<msup>
<mi>q</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>⩾</mo>
<mn>0</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>do not accept</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>q</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>></mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{q^2} + 16{p^2} > 0">
<mrow>
<msup>
<mi>q</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>16</mn>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>></mo>
<mn>0</mn>
</math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has 2 roots <em><strong>A1 N0</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><em>y</em>-intercept = −4<em>p</em> (seen anywhere) <em><strong>A1</strong></em></p>
<p>if <em>p</em> is positive, then the <em>y</em>-intercept will be negative <em><strong>A1</strong></em></p>
<p>an upward-opening parabola with a negative <em>y</em>-intercept <em><strong> R1</strong></em><br><em>eg</em> sketch that must indicate<em> p</em> > 0.</p>
<p>if <em>p</em> is negative, then the y-intercept will be positive <em><strong>A1</strong></em></p>
<p>a downward-opening parabola with a positive y-intercept <em><strong> R1</strong></em><br><em>eg</em> sketch that must indicate <em>p</em> > 0.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has 2 roots <em><strong>A2 N0</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Gabriella purchases a new car.</p>
<p>The car’s value in dollars, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V">
<mi>V</mi>
</math></span>, is modelled by the function</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="V(t) = 12870 - k{(1.1)^t},{\text{ }}t \geqslant 0">
<mi>V</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>12870</mn>
<mo>−<!-- − --></mo>
<mi>k</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>1.1</mn>
<msup>
<mo stretchy="false">)</mo>
<mi>t</mi>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the number of years since the car was purchased and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> is a constant.</p>
</div>
<div class="specification">
<p>After two years, the car’s value is $9143.20.</p>
</div>
<div class="specification">
<p>This model is defined for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant n">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>t</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>n</mi>
</math></span>. At <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> years the car’s value will be zero dollars.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, and simplify, an expression for the car’s value when Gabriella purchased it.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12870 - k{(1.1)^0}"> <mn>12870</mn> <mo>−</mo> <mi>k</mi> <mrow> <mo stretchy="false">(</mo> <mn>1.1</mn> <msup> <mo stretchy="false">)</mo> <mn>0</mn> </msup> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V(t)"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 12870 - k"> <mo>=</mo> <mn>12870</mn> <mo>−</mo> <mi>k</mi> </math></span> <strong><em>(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12870 - 3080"> <mn>12870</mn> <mo>−</mo> <mn>3080</mn> </math></span> <strong>OR</strong> 9790 for a final answer.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9143.20 = 12870 - k{(1.1)^2}"> <mn>9143.20</mn> <mo>=</mo> <mn>12870</mn> <mo>−</mo> <mi>k</mi> <mrow> <mo stretchy="false">(</mo> <mn>1.1</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V(t)"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(k = ){\text{ }}3080"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>3080</mn> </math></span> <strong><em>(A1) (C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12870 - 3080{(1.1)^n} = 0"> <mn>12870</mn> <mo>−</mo> <mn>3080</mn> <mrow> <mo stretchy="false">(</mo> <mn>1.1</mn> <msup> <mo stretchy="false">)</mo> <mi>n</mi> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V(t)"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><img src="images/Schermafbeelding_2017-03-07_om_07.33.35.png" alt="N16/5/MATSD/SP1/ENG/TZ0/15.c/M"> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for a correctly shaped curve with some indication of scale on the vertical axis.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(n = ){\text{ }}15.0{\text{ }}(15.0033 \ldots )"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>15.0</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>15.0033</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (b).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Natasha carries out an experiment on the growth of mould. She believes that the growth can be modelled by an exponential function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup></math>,</p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is the area covered by mould in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>mm</mtext><mtext>2</mtext></msup></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time in days since the start of the experiment and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> are constants.</p>
<p>The area covered by mould is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>112</mn><mo> </mo><msup><mtext>mm</mtext><mn>2</mn></msup></math> at the start of the experiment and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo> </mo><msup><mtext>mm</mtext><mn>2</mn></msup></math> after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> days.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>112</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>112</mn><msup><mtext>e</mtext><mrow><mn>5</mn><mi>k</mi></mrow></msup><mo>=</mo><mn>360</mn></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct equation.</p>
<p><br><strong>EITHER</strong></p>
<p>graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>112</mn><msup><mtext>e</mtext><mrow><mn>5</mn><mi>k</mi></mrow></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>360</mn></math> with indication of point of intersection <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mi>ln</mi><mfenced><mfrac><mn>360</mn><mn>112</mn></mfrac></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct rearranging and use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>log</mi></math>.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>234</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>233521</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(</strong><strong>M1)(M1)(A0)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>233</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a), there were some problems for a few candidates to identify the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>. Many answers were left as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>112</mn><msup><mi mathvariant="normal">e</mi><mrow><mi>k</mi><mfenced><mn>0</mn></mfenced></mrow></msup></mfrac></math> and thus scored no marks. Those candidates who could identify the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> were generally able to find a correct solution. Most candidates were able to substitute into the given formula, and many were able to find a correct solution to the resulting equation. The exponential function did not seem to have put candidates off. In several responses the use of logs was seen or implied in the candidates' work; this topic is off syllabus and candidates are expected to use technology (and not logs) to solve such problems. However, very few candidates showed workings between the substitution and the final answer, which was to their detriment in the awarding of marks for their method whenever an incorrect answer was seen. A few candidates did not seem to understand the function notation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mi>t</mi></mfenced></math>. In part (b) a few candidates wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mfenced><mn>5</mn></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mi>t</mi></mfenced></math> and multiplied the two values.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (a), there were some problems for a few candidates to identify the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>. Many answers were left as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>112</mn><msup><mi mathvariant="normal">e</mi><mrow><mi>k</mi><mfenced><mn>0</mn></mfenced></mrow></msup></mfrac></math> and thus scored no marks. Those candidates who could identify the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> were generally able to find a correct solution. Most candidates were able to substitute into the given formula, and many were able to find a correct solution to the resulting equation. The exponential function did not seem to have put candidates off. In several responses the use of logs was seen or implied in the candidates' work; this topic is off syllabus and candidates are expected to use technology (and not logs) to solve such problems. However, very few candidates showed workings between the substitution and the final answer, which was to their detriment in the awarding of marks for their method whenever an incorrect answer was seen. A few candidates did not seem to understand the function notation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mi>t</mi></mfenced></math>. In part (b) a few candidates wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mfenced><mn>5</mn></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mi>t</mi></mfenced></math> and multiplied the two values.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The coordinates of point A are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(6,{\text{ }} - 7)">
<mo stretchy="false">(</mo>
<mn>6</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−<!-- − --></mo>
<mn>7</mn>
<mo stretchy="false">)</mo>
</math></span> and the coordinates of point B are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 6,{\text{ }}2)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>6</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span>. Point M is the midpoint of AB.</p>
</div>
<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> is the line through A and B.</p>
</div>
<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> and passes through M.</p>
</div>
<div class="question">
<p>Write down, in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>, the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{4}{3}x - \frac{5}{2}{\text{ }}(y = 1.33 \ldots x - 2.5)">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>=</mo>
<mn>1.33</mn>
<mo>…</mo>
<mi>x</mi>
<mo>−</mo>
<mn>2.5</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from parts (c)(i) and (a). Award <strong><em>(A0) </em></strong>if final answer is not written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
<p><strong><em>[1 mark]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The intensity level of sound, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> measured in decibels (dB), is a function of the sound intensity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span> watts per square metre (W m<sup>−2</sup>). The intensity level is given by the following formula.</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = 10\,{\text{lo}}{{\text{g}}_{10}}\left( {S \times {{10}^{12}}} \right)">
<mi>L</mi>
<mo>=</mo>
<mn>10</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>S</mi>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span> ≥ 0.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An orchestra has a sound intensity of 6.4 × 10<sup>−3 </sup>W m<sup>−2</sup> . Calculate the intensity level, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> of the orchestra.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A rock concert has an intensity level of 112 dB. Find the sound intensity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10\,{\text{lo}}{{\text{g}}_{10}}\left( {6.4 \times {{10}^{ - 3}} \times {{10}^{12}}} \right)">
<mn>10</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>6.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 98.1(dB) (98.06179…) <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="112 = 10\,{\text{lo}}{{\text{g}}_{10}}\left( {S \times {{10}^{12}}} \right)">
<mn>112</mn>
<mo>=</mo>
<mn>10</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>S</mi>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p>0.158 (W m<sup>−2</sup>) (0.158489… (W m<sup>−2</sup>)) <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The pH of a solution measures its acidity and can be determined using the formula pH <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>−</mo><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>C</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> is the concentration of hydronium ions in the solution, measured in moles per litre. A lower pH indicates a more acidic solution.</p>
<p>The concentration of hydronium ions in a particular type of coffee is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>10</mn><msup><mrow></mrow><mrow><mo>-</mo><mn>5</mn></mrow></msup></math> moles per litre.</p>
</div>
<div class="specification">
<p>A different, unknown, liquid has <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> times the concentration of hydronium ions of the coffee in part (a).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of the coffee.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the unknown liquid is more or less acidic than the coffee. Justify your answer mathematically.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(pH =)<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>-</mo><msub><mi>log</mi><mn>10</mn></msub><mfenced><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>89</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>88605</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>calculating pH</p>
<p>(pH =)<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>-</mo><msub><mi>log</mi><mn>10</mn></msub><mfenced><mrow><mn>10</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>89</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>3</mn><mo>.</mo><mn>88605</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>89</mn><mo><</mo><mn>4</mn><mo>.</mo><mn>89</mn></math>, therefore) the unknown liquid is more acidic (than coffee). <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Follow through within the part for the final <em><strong>A1</strong></em>. A correct conclusion must be supported by a mathematical justification linking the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>-value to the pH level to earn the final <em><strong>A1</strong></em>; a comparison of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>-values only earns <em><strong>M0A0A0</strong></em>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>referencing the graph</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mfenced><mi>x</mi></mfenced></math> shows that as the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> increases, the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> decreases. <em><strong>M1</strong></em></p>
<p>Since the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>-value (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-value) of the unknown liquid is larger than that of the coffee, the pH level (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-value) is lower. <em><strong>R1</strong></em></p>
<p>The unknown liquid is more acidic (than coffee). <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Follow through within the part for the final <em><strong>A1</strong></em>. A correct conclusion must be supported by a mathematical justification linking the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>-value to the pH level to earn the final <em><strong>A1</strong></em>; a comparison of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>-values only earns <em><strong>M0R0A0</strong></em>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Evaluation of logarithms was well done, although the notation when substituting into the logarithmic formula was not always correct, with several candidates including a multiplication sign between the base and the argument. Even when the substitution was done correctly, some candidates still used multiplication, so not fully understanding logarithmic notation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Several candidates multiplied their answer to part (a) by 10 rather than multiplying the C-value by 10, and several attempted to compare the C-values rather than calculating the pH of the unknown liquid. Most were able to make a correct contextual interpretation of their result.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows part of the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>. The graph passes through point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(1,{\text{ }}3)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.22.37.png" alt="M17/5/MATSD/SP1/ENG/TZ2/13"></p>
</div>
<div class="specification">
<p>The tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at A has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 2x + 5">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>5</mn>
</math></span>. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span> be the normal to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span>. Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + d = 0">
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mi>y</mi>
<mo>+</mo>
<mi>d</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{Z}">
<mi>d</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span> on the diagram above.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3 <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 3">
<mi>y</mi>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 = 0.5(1) + c">
<mn>3</mn>
<mo>=</mo>
<mn>0.5</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>c</mi>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 3 = 0.5(x - 1)">
<mi>y</mi>
<mo>−</mo>
<mn>3</mn>
<mo>=</mo>
<mn>0.5</mn>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for correct gradient, <strong><em>(A1) </em></strong>for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(1,{\text{ }}3)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span> in the equation of line.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - 2y + 5 = 0">
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
<mi>y</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> or any integer multiple <strong><em>(A1)</em>(ft)</strong> <strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for their equation correctly rearranged in the indicated form.</p>
<p>The candidate’s answer <strong>must </strong>be an equation for this mark.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-16_om_08.26.38.png" alt="M17/5/MATSD/SP1/ENG/TZ2/13.c/M"> <strong><em>(M1)(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1) </em></strong>for a straight line, with positive gradient, passing through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}3)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>, <strong><em>(A1)</em>(ft) </strong>for line (or extension of their line) passing approximately through 2.5 or their intercept with the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the straight lines <em>L</em><sub>1</sub> and <em>L</em><sub>2 </sub>. <em>R</em> is the point of intersection of these lines.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The equation of line <em>L</em><sub>1</sub> is <em>y</em> = <em>ax</em> + 5.</p>
</div>
<div class="specification">
<p>The equation of line <em>L</em><sub>2</sub> is <em>y</em> = −2<em>x</em> + 3.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <em>R</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Line <em>L</em><sub>3</sub> is parallel to line <em>L</em><sub>2</sub> and passes through the point (2, 3).</p>
<p>Find the equation of line <em>L</em><sub>3</sub>. Give your answer in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>0 = 10<em>a</em> + 5 <em><strong>(M1)</strong></em></p>
<p>Note: Award <em><strong>(M1)</strong></em> for correctly substituting any point from <em>L</em><sub>1</sub> into the equation.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0 - 5}}{{10 - 0}}">
<mfrac>
<mrow>
<mn>0</mn>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mrow>
<mn>10</mn>
<mo>−</mo>
<mn>0</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituting any two points on <em>L</em><sub>1</sub> into the gradient formula.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{5}{{10}}\left( { - \frac{1}{2},\,\, - 0.5} \right)">
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>0.5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 1.33,\,\,5.67} \right)\,\,\left( {\left( { - \frac{4}{3},\,\,\frac{{17}}{{13}}} \right),\,\,\left( { - 1\frac{1}{3},\,\,5\frac{2}{3}} \right),\,\,\left( { - 1.33333 \ldots ,\,\,5.66666 \ldots } \right)} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.33</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5.67</mn>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>17</mn>
</mrow>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1</mn>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.33333</mn>
<mo>…</mo>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5.66666</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note: </strong>Award <em><strong>(A1)</strong></em> for <em>x</em>-coordinate and <em><strong>(A1)</strong></em> for <em>y</em>-coordinate. Follow through from their part (a). Award <em><strong>(A1)</strong></em><em><strong>(A0)</strong></em> if brackets are missing. Accept <em>x</em> = −1.33, <em>y</em> = 5.67.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3 = −2(2) + <em>c</em> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituting –2 and the given point into the equation of a line.</p>
<p><em>y</em> = −2<em>x</em> + 7 <em><strong>(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if the equation is not written in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, give your answers to the nearest whole number.</strong></p>
<p><br>Criselda travelled to Kota Kinabalu in Malaysia. At the airport, she saw the following information at the Currency Exchange counter.</p>
<p style="text-align: center;"><img src=""></p>
<p>This means the Currency Exchange counter would <strong>buy</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>USD</mtext></math> from a traveller and in exchange return <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>MYR</mtext></math> at a rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>USD</mtext><mo>=</mo><mn>4</mn><mo>.</mo><mn>25</mn><mo> </mo><mtext>MYR</mtext></math>. There is no commission charged.</p>
<p>Criselda changed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>460</mn></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>SGD</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>MYR</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>MYR</mtext></math> that Criselda received.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>While in Kota Kinabalu, Criselda spent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>440</mn><mo> </mo><mtext>MYR</mtext></math>. She returned to the Currency Exchange counter and changed the remainder of her <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>MYR</mtext></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>USD</mtext></math>.</p>
<p>Calculate the amount of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>USD</mtext></math> she received.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>460</mn><mo>×</mo><mn>3</mn><mo>.</mo><mn>07</mn></math> <span class="mjpage"> <em><strong>(A1)(M1)</strong></em><br></span></p>
<p><span class="mjpage"><strong>Note:</strong> Award<em><strong> (A1)</strong></em> for selecting <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>07</mn></math> as the exchange rate, <em><strong>(M1)</strong></em> for multiplying <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>460</mn></math> by an exchange rate from the table.<br></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1412</mn><mo> </mo><mfenced><mtext>MYR</mtext></mfenced></math> <em><strong>(A1)</strong></em><em><strong> (C3)</strong></em><br></span></p>
<p><span class="mjpage"><strong>Note:</strong> Do not award the final<em><strong> (A1)</strong></em> if the answer is to the wrong level of accuracy.</span></p>
<p><em><strong><span class="mjpage">[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1412</mn><mo>-</mo><mn>440</mn></mrow><mrow><mn>4</mn><mo>.</mo><mn>45</mn></mrow></mfrac></math> <span class="mjpage"> <em><strong>(M1)(M1)</strong></em><br></span></p>
<p><span class="mjpage"><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct subtraction or for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>972</mn><mo> </mo><mfenced><mrow><mn>972</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math> or <em>their</em> correct difference seen. Award <em><strong>(M1)</strong></em> for dividing by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>45</mn></math>. Follow through from part (a).<br></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>218</mn><mo> </mo><mfenced><mtext>USD</mtext></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em><br></span></p>
<p><span class="mjpage"><strong>Note:</strong> Do not award the final<em><strong> (A1)</strong></em> if the answer is to the wrong level of accuracy.</span></p>
<p><em><strong><span class="mjpage">[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graph of the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{3}{x} - 2,\,\,\,x \ne 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mi>x</mi>
</mfrac>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the horizontal asymptote.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>x</em> for which <em>f</em>(<em>x</em>) = 0 .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em>x</em> = 0 <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>x </em>= “a constant” <em><strong>(A1)</strong></em> for = 0. Award <em><strong>(A0)(A0)</strong></em> for an answer of “0”.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>f</em>(<em>x</em>) = −2 (<em>y</em> = −2) <em><strong>(</strong><strong>A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for y = “a constant” <em><strong>(A1)</strong></em> for = −2. Award <em><strong>(A0)(A0)</strong></em> for an answer of “−2”.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{x} - 2 = 0">
<mfrac>
<mn>3</mn>
<mi>x</mi>
</mfrac>
<mo>−</mo>
<mn>2</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating <em>f</em>(<em>x</em>) to 0.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x = } \right)\frac{3}{2}\,\,\,\,\,\left( {1.5} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>=</mo>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong> (A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mi>x</mi></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>k</mi><mo>></mo><mn>0</mn></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>p</mi><mo>,</mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac></mrow></mfenced></math> be any point on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis at point B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is translated by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math> to give the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.<br>In the following diagram:</p>
<ul>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> lie on the vertical asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> lie on the horizontal asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>G</mtext></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FG</mtext></math> is parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DC</mtext></math>.</li>
</ul>
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>, and passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<p><img src=""></p>
<p>Given that triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EDF</mtext></math> and rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext></math> have equal areas, find the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>p</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong> A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use point and gradient to find equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> <em><strong>M1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>p</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>p</mi></mrow></mfenced><mo>,</mo><mo> </mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mfenced><mi>p</mi></mfenced><mo>+</mo><mi>b</mi></math></p>
<p>correct working leading to answer <em><strong> A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mi>k</mi><mi>p</mi><mo>=</mo><mo>-</mo><mi>k</mi><mi>x</mi><mo>+</mo><mi>k</mi><mi>p</mi><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>-</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math> <em><strong> AG N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 – area of a triangle</strong></p>
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> <em><strong>(M1)</strong></em></p>
<p>correct working to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of null<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of null at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math> (may be seen in area formula) <em><strong> A1</strong></em></p>
<p>correct substitution to find area of triangle<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mfenced><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mfenced><mo>,</mo><mo> </mo><mo> </mo><mi>p</mi><mo>×</mo><mfenced><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mfenced></math></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math> <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2 – integration</strong></p>
<p>recognizing to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>p</mi></math> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup><msub><mi>L</mi><mrow><mn>1</mn><mo> </mo></mrow></msub><mo>d</mo><mi>x</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math></p>
<p>correct integration of <strong>both</strong> terms <em><strong> A1</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mi>x</mi></mrow><mi>p</mi></mfrac><mo> </mo><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mi>x</mi><mo>+</mo><mi>c</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mi>x</mi></mrow></mfenced><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup></math></p>
<p>substituting limits into <strong>their</strong> integrated function and subtracting (in either order) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced></mrow><mi>p</mi></mfrac><mo>-</mo><mfenced><mn>0</mn></mfenced><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mrow><mn>4</mn><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>4</mn><mi>k</mi><mi>p</mi></mrow><mi>p</mi></mfrac></math></p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>4</mn><mi>k</mi></math></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math> <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In this question, the second <em><strong>M</strong></em> mark may be awarded independently of the other marks, so it is possible to award <em><strong>(M0)(A0)M1(A0)(A0)A0</strong></em>.</p>
<p> </p>
<p>recognizing use of transformation <em><strong>(M1)</strong></em></p>
<p><em>eg</em> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> = area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DEF</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mo>,</mo></math> gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub><mo>=</mo></math> gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced><mtext>, 2p+4, </mtext></math> one correct shift</p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg</em> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DEF</mtext><mo>=</mo><mn>2</mn><mi>k</mi><mo>,</mo><mo> </mo><mtext>CD</mtext><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mtext>DF</mtext><mo>=</mo><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>CG</mtext><mo>=</mo><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>E</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mo>+</mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>F</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>Q</mtext><mfenced><mrow><mi>p</mi><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>+</mo><mn>3</mn></mrow></mfenced><mo>,</mo></math> </p>
<p>gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>,</mo></math> area of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>ED</mtext><mo>×</mo><mtext>DF</mtext></mrow><mn>2</mn></mfrac><mo>=</mo><mtext>CD</mtext><mo>×</mo><mtext>DF</mtext><mo>,</mo><mo> </mo><mn>2</mn><mi>p</mi><mo>·</mo><mn>3</mn><mo>=</mo><mn>2</mn><mi>k</mi><mo> </mo><mo>,</mo><mo> </mo><mtext>ED</mtext><mo>=</mo><mn>2</mn><mtext>CD</mtext><mo> </mo><mo>,</mo><mo> </mo><msubsup><mo>∫</mo><mn>4</mn><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></msubsup><msub><mi>L</mi><mn>2</mn></msub><mo> </mo><mtext>d</mtext><mi>x</mi><mo>=</mo><mn>4</mn><mi>k</mi></math></p>
<p>correct working<em> <strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ED</mtext><mo>=</mo><mn>6</mn><mo>,</mo><mo> </mo><mtext>E</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>9</mn></mrow></mfenced><mo>,</mo><mo> </mo><mi>k</mi><mo>=</mo><mn>3</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>gradient</mtext><mo>=</mo><mfrac><mrow><mn>3</mn><mo>-</mo><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mstyle><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mo>-</mo><mn>4</mn></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mfenced><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mn>3</mn></mfrac></mstyle></mfenced></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>9</mn><mi>k</mi></mfrac></math></p>
<p>correct expression for gradient (in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>)<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mrow><mn>2</mn><mi>p</mi></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>9</mn><mo>-</mo><mn>3</mn></mrow><mrow><mn>4</mn><mo>-</mo><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced></mrow></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mrow><mn>3</mn><mi>p</mi></mrow><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mo>-</mo><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mfenced><mrow><mn>3</mn><mi>p</mi></mrow></mfenced></mrow><mi>p</mi></mfrac></mstyle><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mstyle displaystyle="true"><mo>-</mo></mstyle><mstyle displaystyle="true"><mn>4</mn></mstyle></mrow></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>9</mn><mrow><mn>3</mn><mi>p</mi></mrow></mfrac></math></p>
<p>gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>3</mn><mi>p</mi></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>3</mn><msup><mi>p</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong> A1 N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>M-Line is a company that prints and sells custom designs on T-shirts. For each order, they charge an initial design fee and then an additional fee for each printed T-shirt.</p>
<p>M-Line charges <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
<mi>M</mi>
</math></span> euros per order. This charge is modelled by the linear function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M\left( x \right) = 5x + 40">
<mi>M</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>5</mn>
<mi>x</mi>
<mo>+</mo>
<mn>40</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is the number of T-shirts in the order.</p>
</div>
<div class="specification">
<p>EnYear is another company that prints and sells T-shirts. The price, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span> euros, that they charge for an order can be modelled by the linear function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N\left( x \right) = 9x">
<mi>N</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>9</mn>
<mi>x</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is the number of T-shirts in the order.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the initial design fee charged for each order.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total amount charged for an order of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="94"> <mn>94</mn> </math></span> T-shirts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of T-shirts in an order for which EnYear charged <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="63"> <mn>63</mn> </math></span> euros.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An order of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> T-shirts will be charged the same price by both M-Line and EnYear.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="40"> <mn>40</mn> </math></span> (euros) <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {M\left( {94} \right) = } \right)5\left( {94} \right) + 40"> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mrow> <mo>(</mo> <mrow> <mn>94</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> </mrow> <mo>)</mo> </mrow> <mn>5</mn> <mrow> <mo>(</mo> <mrow> <mn>94</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>40</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="94"> <mn>94</mn> </math></span> into given function.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="510"> <mn>510</mn> </math></span> (euros) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> (T-shirts) <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9p = 5p + 40"> <mn>9</mn> <mi>p</mi> <mo>=</mo> <mn>5</mn> <mi>p</mi> <mo>+</mo> <mn>40</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the given functions. Accept a sketch showing both functions.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {p = } \right)\,\,10"> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>=</mo> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>10</mn> </math></span> (T-shirts) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Jean-Pierre jumps out of an airplane that is flying at constant altitude. Before opening his parachute, he goes through a period of freefall.</p>
<p>Jean-Pierre’s vertical speed during the time of freefall, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, is modelled by the following function.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>K</mi><mo>-</mo><mn>60</mn><mfenced><mrow><mn>1</mn><mo>.</mo><msup><mn>2</mn><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mo> </mo><mo>,</mo><mo> </mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is the number of seconds after he jumps out of the airplane, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math> is a constant. A sketch of Jean-Pierre’s vertical speed against time is shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Jean-Pierre’s initial vertical speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the model, state what the horizontal asymptote represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Jean-Pierre’s vertical speed after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> seconds. Give your answer in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>km</mtext><mo> </mo><msup><mtext>h</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> .</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>K</mi><mo>-</mo><mn>60</mn><mfenced><mrow><mn>1</mn><mo>.</mo><msup><mn>2</mn><mn>0</mn></msup></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted function equated to zero.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>K</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>60</mn></math> <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (vertical) speed that Jean-Pierre is approaching (as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> increases) <em><strong>(A1) (C1)<br></strong></em><strong>OR<br></strong>the limit of the (vertical) speed of Jean-Pierre <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note: </strong>Accept “maximum speed” or “terminal speed”.</p>
<p><em><strong><br></strong></em><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>S</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>60</mn><mo>-</mo><mn>60</mn><mfenced><mrow><mn>1</mn><mo>.</mo><msup><mn>2</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></mrow></mfenced></math> <em><strong>(M1)<br></strong></em></p>
<p><strong><br></strong><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted function.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>S</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>50</mn><mo>.</mo><mn>3096</mn><mo>…</mo><mo> </mo><mfenced><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong><br>Note: </strong>Follow through from part (a).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>181</mn><mo> </mo><mfenced><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>181</mn><mo>.</mo><mn>114</mn><mo>…</mo><mo> </mo><mfenced><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></mrow></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft) <em> (C3)</em></strong></p>
<p><br><strong>Note:</strong> Award the final <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct conversion of their speed to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>km</mtext><mo> </mo><msup><mtext>h</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>.</p>
<p><em><strong><br></strong></em><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Three towns, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> are represented as coordinates on a map, where the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes represent the distances east and north of an origin, respectively, measured in kilometres.</p>
<p>Town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is located at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>6</mn><mo>,</mo><mo> </mo><mo>−</mo><mn>1</mn><mo>)</mo></math> and town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is located at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math>. A road runs along the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>. This information is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line that the road follows.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is due north of town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and the road passes through town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>midpoint <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>6</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mn>8</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>(M1)A1</strong></em></p>
<p><br><strong>Note:</strong> Accept equivalent gradient statements including using midpoint.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mo>⊥</mo></msub><mo>=</mo><mo>-</mo><mn>2</mn></math> <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for finding the negative reciprocal of their gradient.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>9</mn><mn>2</mn></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>-</mo><mn>9</mn><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>6</mn></math> into their equation from part (a) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mo>+</mo><mfrac><mn>9</mn><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>16</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>6</mn><mo>,</mo><mo> </mo><mn>16</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> as their final answer.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A large proportion of candidates seemed to be well drilled into finding the gradient of a line and the subsequent gradient of the normal. But without finding the coordinates of the midpoint of AB, no more marks were gained.</p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates worked out the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> correctly (or “correct” following the value they found in part (a)) but then incorrectly gave their answer as a coordinate pair.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of a quadratic function has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept 10 and <strong>one </strong>of its <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercepts is 1.</p>
<p>The <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate of the vertex of the graph is 3.</p>
<p>The equation of the quadratic function is in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = a{x^2} + bx + c">
<mi>y</mi>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the second <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>10 <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}10)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>10</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 = \frac{{ - b}}{{2a}}">
<mn>3</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mi>b</mi>
</mrow>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = a{(1)^2} + b(1) + c">
<mn>0</mn>
<mo>=</mo>
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>c</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 = a{(6)^2} + b(6) + c">
<mn>10</mn>
<mo>=</mo>
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>6</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo stretchy="false">(</mo>
<mn>6</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>c</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = a{(5)^2} + b(5) + c">
<mn>0</mn>
<mo>=</mo>
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>5</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo stretchy="false">(</mo>
<mn>5</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>c</mi>
</math></span> <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for each of the above equations, provided they are not equivalent, up to a maximum of <strong><em>(M1)(M1)</em></strong>. Accept equations that substitute their 10 for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>sketch graph showing given information: intercepts <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}0)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}10)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>10</mn>
<mo stretchy="false">)</mo>
</math></span> and line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3">
<mi>x</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = a(x - 1)(x - 5)">
<mi>y</mi>
<mo>=</mo>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x - 1)(x - 5)">
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> seen.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 2">
<mi>a</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = - 12">
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>12</mn>
</math></span> <strong><em>(A1)</em>(ft)</strong> <strong><em>(C4)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p>If it is not clear which is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and which is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> award at most <strong><em>(A0)(A1)(ft)</em></strong>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>5 <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> intersects the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at point A and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis at point B, as shown on the diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.18.01.png" alt="M17/5/MATSD/SP1/ENG/TZ2/04"></p>
<p>The length of line segment OB is three times the length of line segment OA, where O is the origin.</p>
</div>
<div class="specification">
<p>Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{(2, 6)}}">
<mrow>
<mtext>(2, 6)</mtext>
</mrow>
</math></span> lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate of point A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3">
<mo>−</mo>
<mn>3</mn>
</math></span> <strong><em>(A1)(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award <strong><em>(A1) </em></strong>for 3 and <strong><em>(A1) </em></strong>for a negative value.</p>
<p>Award <strong><em>(A1)(A0) </em></strong>for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x">
<mn>3</mn>
<mi>x</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3x">
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 = - 3(2) + c">
<mn>6</mn>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>c</mi>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(y - 6) = - 3(x - 2)">
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>−</mo>
<mn>6</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for substitution of their gradient from part (a) into a correct equation with the coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2,{\text{ }}6)">
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6</mn>
<mo stretchy="false">)</mo>
</math></span> correctly substituted.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 3x + 12">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>12</mn>
</math></span> <strong><em>(A1)(</em>ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award <strong><em>(A1)(</em>ft) </strong>for their correct equation. Follow through from part (a).</p>
<p>If no method seen, award <strong><em>(A1)(A0) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 3x">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</math></span>.</p>
<p>Award <strong><em>(A1)(A0) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3x + 12">
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>12</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = - 3x + 12">
<mn>0</mn>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>12</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> in their equation from part (b).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x = ){\text{ }}4">
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>4</mn>
</math></span> <strong><em>(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Follow through from their equation from part (b). Do not follow through if no method seen. Do not award the final <strong><em>(A1) </em></strong>if the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is negative or zero.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A potter sells <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> vases per month.</p>
<p>His monthly profit in Australian dollars (AUD) can be modelled by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P\left( x \right) = - \frac{1}{5}{x^3} + 7{x^2} - 120{\text{,}}\,\,x \geqslant 0.">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>120</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0.</mn>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> if no vases are sold.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Differentiate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>−120 (AUD) <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{5}{x^2} + 14x">
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>14</mn>
<mi>x</mi>
</math></span> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term. Award at most <em><strong>(A1)(A0)</strong></em> for extra terms seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, give all answers to two decimal places.</strong></p>
<p>Karl invests 1000 US dollars (USD) in an account that pays a nominal annual interest of 3.5%, <strong>compounded quarterly</strong>. He leaves the money in the account for 5 years.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of money he has in the account after 5 years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amount of <strong>interest</strong> he earned after 5 years.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Karl decides to donate this <strong>interest</strong> to a charity in France. The charity receives 170 euros (EUR). The exchange rate is 1 USD = <em>t</em> EUR.</p>
<p>Calculate the value of <em>t</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1000{\left( {1 + \frac{{3.5}}{{4 \times 100}}} \right)^{4 \times 5}}">
<mn>1000</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mn>3.5</mn>
</mrow>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>100</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in compound interest formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p><strong>OR </strong></p>
<p><em>N</em> = 5</p>
<p><em>I</em> = 3.5</p>
<p><em>PV</em> = 1000</p>
<p><em>P</em>/<em>Y</em> = 1</p>
<p><em>C</em>/<em>Y</em> = 4</p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>C</em>/<em>Y</em> = 4 seen, <em><strong>(M1)</strong></em> for other correct entries.</p>
<p><strong>OR</strong></p>
<p><em>N</em> = 5 × 4</p>
<p><em>I</em> = 3.5</p>
<p><em>PV</em> = 1000</p>
<p><em>P</em>/<em>Y</em> = 1</p>
<p><em>C</em>/<em>Y</em> = 4</p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>C</em>/<em>Y</em> = 4 seen, <em><strong>(M1)</strong></em> for other correct entries.</p>
<p>= 1190.34 (USD) <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in compound interest formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>190.34 (USD) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C4)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for subtraction of 1000 from their part (a)(i). Follow through from (a)(i).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{170}}{{190.34}}">
<mfrac>
<mrow>
<mn>170</mn>
</mrow>
<mrow>
<mn>190.34</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for division of 170 by their part (a)(ii).</p>
<p>= 0.89 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their part (a)(ii).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider a function <em>f </em>(<em>x</em>) , for −2 ≤ <em>x</em> ≤ 2 . The following diagram shows the graph of <em>f</em>.</p>
<p><img src=""></p>
</div>
<div class="question">
<p>On the grid above, sketch the graph of <em>f </em><sup>−1</sup>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src=""><strong>A1</strong><strong>A1A1A1 N4</strong></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for evidence of approximately correct reflection in <em>y</em> = <em>x</em> with correct curvature.</p>
<p>(<em>y</em> = <em>x</em> does not need to be explicitly seen)</p>
<p>Only if this mark is awarded, award marks as follows:</p>
<p><em><strong>A1</strong></em> for both correct invariant points in circles,</p>
<p><em><strong>A1</strong></em> for the three other points in circles,</p>
<p><em><strong>A1</strong></em> for correct domain.</p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 1 + {{\text{e}}^{ - x}}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = 2x + b">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> is a constant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x)">
<mo stretchy="false">(</mo>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to + \infty } (g \circ f)(x) = - 3">
<munder>
<mrow>
<mo form="prefix">lim</mo>
</mrow>
<mrow>
<mi>x</mi>
<mo stretchy="false">→</mo>
<mo>+</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</munder>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to form composite <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(1 + {{\text{e}}^{ - x}})">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span></p>
<p>correct function <strong><em>A1 N2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x) = 2 + b + 2{{\text{e}}^{ - x}},{\text{ }}2(1 + {{\text{e}}^{ - x}}) + b">
<mo stretchy="false">(</mo>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>b</mi>
</math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to \infty } (2 + b + 2{{\text{e}}^{ - x}}) = 2 + b + \mathop {\lim }\limits_{x \to \infty } (2{{\text{e}}^{ - x}})">
<munder>
<mrow>
<mo form="prefix">lim</mo>
</mrow>
<mrow>
<mi>x</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</munder>
<mo></mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<munder>
<mrow>
<mo form="prefix">lim</mo>
</mrow>
<mrow>
<mi>x</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</munder>
<mo></mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + b + 2{{\text{e}}^{ - \infty }}">
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</msup>
</mrow>
</math></span>, graph with horizontal asymptote when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to \infty ">
<mi>x</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M0 </em></strong>if candidate clearly has incorrect limit, such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to 0,{\text{ }}{{\text{e}}^\infty },{\text{ }}2{{\text{e}}^0}">
<mi>x</mi>
<mo stretchy="false">→</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi mathvariant="normal">∞</mi>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>0</mn>
</msup>
</mrow>
</math></span>.</p>
<p> </p>
<p>evidence that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{ - x}} \to 0">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">→</mo>
<mn>0</mn>
</math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to \infty } ({{\text{e}}^{ - x}}) = 0,{\text{ }}1 + {{\text{e}}^{ - x}} \to 1,{\text{ }}2(1) + b = - 3,{\text{ }}{{\text{e}}^{{\text{large negative number}}}} \to 0">
<munder>
<mrow>
<mo form="prefix">lim</mo>
</mrow>
<mrow>
<mi>x</mi>
<mo stretchy="false">→</mo>
<mi mathvariant="normal">∞</mi>
</mrow>
</munder>
<mo></mo>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">→</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<mtext>large negative number</mtext>
</mrow>
</mrow>
</msup>
</mrow>
<mo stretchy="false">→</mo>
<mn>0</mn>
</math></span>, graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {{\text{e}}^{ - x}}">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span> or</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2{{\text{e}}^{ - x}}">
<mi>y</mi>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span> with asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, graph of composite function with asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 3">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + b = - 3">
<mn>2</mn>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = - 5">
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>5</mn>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>